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Abstract. We consider a parametric nonlinear nonhomogeneous elliptic equation, driven by the sum of two differential
operators having different structure. The associated energy functional has unbalanced growth and we do not impose any
global growth conditions to the reaction term, whose behavior is prescribed only near the origin. Using truncation and
comparison techniques and Morse theory, we show that the problem has multiple solutions in the case of high perturbations.
We also show that if a symmetry condition is imposed to the reaction term, then we can generate a sequence of distinct
nodal solutions with smaller and smaller energies.
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1. Introduction

This paper was motivated by several recent contributions to the qualitative analysis of nonlinear problems
with unbalanced growth. We first refer to the pioneering contributions of Marcellini [23,24] who studied
lower semicontinuity and regularity properties of minimizers of certain quasiconvex integrals. Problems
of this type arise in nonlinear elasticity and are connected with the deformation of an elastic body, cf.
Ball [5,6].

In order to recall the roots of double-phase problems, let us assume that Ω is a bounded domain in
R

N (N � 2) with smooth boundary. If u : Ω → R
N is the displacement and if Du is the N × N matrix

of the deformation gradient, then the total energy can be represented by an integral of the type

I(u) =
∫

Ω

F (x,Du(x))dx, (1)

where the energy function F = F (x, ξ) : Ω × R
N×N → R is quasiconvex with respect to ξ. One of the

simplest examples considered by Ball is given by functions F of the type

F (ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N × N matrix ξ, and g, h are nonnegative convex functions, which
satisfy the growth conditions

g(ξ) � c1 |ξ|p; lim
t→+∞ h(t) = +∞,

where c1 is a positive constant and 1 < p < N . The condition p � N is necessary to study the existence
of equilibrium solutions with cavities, that is, minima of the integral (1) that are discontinuous at one
point where a cavity forms; in fact, every u with finite energy belongs to the Sobolev space W 1,p(Ω,RN ),
and thus it is a continuous function if p > N .
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In accordance with these problems arising in nonlinear elasticity, Marcellini [23,24] considered contin-
uous functions F = F (x, u) with unbalanced growth that satisfy

c1 |u|p � |F (x, u)| � c2 (1 + |u|q) for all (x, u) ∈ Ω × R,

where c1, c2 are positive constants and 1 < p < q. Regularity and existence of solutions of elliptic
equations with p, q–growth conditions were studied in [24].

The study of nonautonomous functionals characterized by the fact that the energy density changes
its ellipticity and growth properties according to the point has been continued in a series of remarkable
papers by Mingione et al. [7–9,11,12]. These contributions are in relationship with the works of Zhikov
[35], in order to describe the behavior of phenomena arising in nonlinear elasticity. In fact, Zhikov intended
to provide models for strongly anisotropic materials in the context of homogenization. We also point out
that these functionals revealed to be important in the study of duality theory and in the context of the
Lavrentiev phenomenon [36]. One of the problems considered by Zhikov was the double-phase functional

Pp,q(u) :=
∫

Ω

(|Du|p + a(x)|Duq)dx, 0 � a(x) � L, 1 < p < q.

where the modulating coefficient a(x) dictates the geometry of the composite made by two differential
materials, with hardening exponents p and q, respectively.

Motivated by these results, we study in this paper a paper with (p, 2)–growth. More precisely, we
consider the following nonlinear, nonhomogeneous parametric Dirichlet problem

− Δpu(z) − Δu(z) = λf(z, u(z)) in Ω, u|∂Ω = 0, 2 < p < ∞, λ > 0, (Pλ)

where Ω ⊆ R
N is a bounded domain with smooth C2-boundary ∂Ω.

For q ∈ (1,∞), we denote by Δq the q-Laplace differential operator defined by

Δqu = div (|Du|q−2Du) for all u ∈ W 1,q
0 (Ω).

If q = 2, then Δ2 = Δ is the usual Laplacian.
So, in problem (Pλ) the differential operator (the left-hand side of the equation), is not homogeneous.

The reaction term f(z, x) is a Carathéodory function (that is, for all x ∈ R the mapping z �→ f(z, x) is
measurable and for almost all z ∈ Ω, x �→ f(z, x) is continuous). Here the interesting feature of our work is
that no global growth conditions are imposed on f(z, ·). Instead, all our hypotheses on f(z, ·) concern its
behavior near zero. Our goal is to show that under these minimal conditions on the reaction term, we can
obtain multiplicity results for problem (Pλ) when the parameter λ > 0 is big enough. Moreover, we provide
sign information for all solutions we produce. Using variational methods combined with truncation and
comparison techniques and Morse theory, we prove two multiplicity theorems, producing, respectively,
three and four nontrivial smooth solutions, all with sign information. When a symmetry condition is
imposed on f(z, ·) (namely, that f(z, ·) is odd) we show that we can have an entire sequence of smooth
nodal (that is, sign-changing) solutions converging to zero in C1

0 (Ω).
Recently, multiplicity theorems with sign information for the solutions of (p, 2)-equations (that is,

equations driven by the sum of a p-Laplacian and a Laplacian), have been proved by Aizicovici, Papa-
georgiou and Staicu [2], Papageorgiou and Rădulescu [26,27], Papageorgiou, Rădulescu and Repovš [29],
Papageorgiou and Smyrlis [30], Sun [32] and Sun, Zhang and Su [33]. In all these works, it is assumed that
the reaction term has subcritical polynomial growth. We mention that (p, 2)-equations arise in problem of
mathematical physics, see Cherfils and Ilyasov [10] (reaction diffusion equations), Derrick [14] (elementary
particles), and Wilhelmsson [34] (plasma physics).
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2. Mathematical background

Let X be a Banach space and let X∗ be its topological dual. We denote by 〈·, ·〉 the duality brackets
for the pair (X,X∗). Given ϕ ∈ C1(X,R), we say that ϕ satisfies the “Palais-Smale condition” (the
“PS-condition” for short), if the following property holds:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.
This is a compactness-type condition on the functional ϕ and leads to a deformation theorem from

which one can derive the minimax theory of the critical values of ϕ. One of the main results in this theory
is the “mountain pass theorem” of Ambrosetti and Rabinowitz [3].

Theorem 1. Let X be a Banach space. Assume that ϕ ∈ C1(X,R) satisfies the PS-condition, u0, u1 ∈
X, ||u1 − u0|| > r,

max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ||u − u0|| = ρ} = mρ.

Set c = inf
γ∈Γ

max
0�t�1

ϕ(γ(t)), where Γ = {γ ∈ C([0, 1],X) : γ(0) = u0, γ(1) = u1}. Then c � mρ and c is a

critical value of ϕ (that is, there exists û ∈ X such that ϕ′(û) = 0, ϕ(û) = c).

In the analysis of problem (Pλ) we will use the Sobolev space W 1,p
0 (Ω) and the ordered Banach space

C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

By || · || we denote the norm of W 1,p
0 (Ω). Using the Poincaré inequality we can say that

||u|| = ||Du||p for all u ∈ W 1,p
0 (Ω).

The positive (order) cone of C1
0 (Ω) is

C+ = {u ∈ C1
0 (Ω) : u(z) � 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n

∣∣∣∣
∂Ω

< 0},

where n(·) denotes the outward unit normal on ∂Ω.
Suppose that f̂ : Ω × R → R is a Carathéodory function satisfying

|f̂(z, x)| � a(z)(1 + |x|r−1) for almost all z ∈ Ω and all x ∈ R,

with a ∈ L∞(Ω)+, 1 < r � p∗, where p∗ =
{ Np

N−p if p < N

+∞ if N � p
(the Sobolev critical exponent). We set

F̂ (z, x) =
x∫
0

f̂(z, s)ds and consider the C1-functional ϕ̂ : W 1,p
0 (Ω) → R defined by

ϕ̂(u) =
1
p
||Du||pp +

1
2
||Du||22 −

∫

Ω

F̂ (z, u(z))dz for all u ∈ W 1,p
0 (Ω).

The next result is essentially an outgrowth of the nonlinear regularity theory (see Lieberman [22]) and
can be found in Gasinski and Papageorgiou [18] (the subcritical case) and Papageorgiou and Rădulescu
[28] (the critical case).
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Proposition 2. Let û ∈ W 1,p
0 (Ω) be a local C1

0 (Ω)-minimizer of ϕ̂, that is, there exists ρ0 > 0 such that

ϕ̂(û) � ϕ̂(û + h) for all h ∈ C1
0 (Ω) with ||h||C1

0 (Ω) � ρ0.

Then û ∈ C1,α
0 (Ω) for some α ∈ (0, 1) and û is also a local W 1,p

0 (Ω)-minimizer of ϕ̂, that is, there exists
ρ1 > 0 such that

ϕ̂(û) � ϕ̂(û + h) for all h ∈ W 1,p
0 (Ω) with ||h|| � ρ1.

As we have already mentioned in the introduction, some of our tools in the analysis of problem (Pλ),
are the comparison results for such equations. One such result can be found in Filippakis, O’Regan and
Papageorgiou [15] and is an extension of a result for p-Laplacian equations due to Arcoya and Ruiz [4,
Proposition 2.6]. First, let us introduce some notations. Given h1, h2 ∈ L∞(Ω), we say that h1 ≺ h2 if
and only if for every compact K ⊆ Ω, we can find ε = ε(K) > 0 such that

h1(z) + ε � h2(z) for almost all z ∈ K.

Note that if h1, h2 ∈ C(Ω) and h1(z) < h2(z) for all z ∈ Ω, then h1 ≺ h2.

Proposition 3. If ξ̂ � 0, h1, h2 ∈ L∞(Ω) with h1 ≺ h2 and u ∈ C1
0 (Ω), v ∈ D+ satisfy

−Δpu − Δu + ξ̂|u|p−2u = h1 in Ω,

−Δpv − Δv + ξ̂vp−1 = h2 in Ω,

then v − u ∈ D+.

To produce a sequence of distinct smooth nodal solution, we will use an abstract result of Kajikiya
[21], which is an extension of the symmetric mountain pass theorem.

Theorem 4. Let X be a Banach space. Assume that ϕ ∈ C1(X,R) satisfies the PS-condition, is even,
bounded below, ϕ(0) = 0, and for every n ∈ N there exist an n-dimensional subspace Vn of X and ρn > 0
such that

sup{ϕ(u) : u ∈ Vn, ||u|| = ρn} < 0.

Then there exists a sequence {un}n�1 of critical points of ϕ (that is, ϕ′(un) = 0 for all n ∈ N) such that
un → 0 in X.

For q ∈ (1,∞), let Aq : W 1,q
0 (Ω) → W−1,q′

(Ω)∗ = W 1,q
0 (Ω)∗ (with 1

q + 1
q′ = 1) be the nonlinear map

defined by

〈Aq(u), h〉 =
∫

Ω

|Du|q−2(Du,Dh)RN dz for all u, h ∈ W 1,q
0 (Ω).

When q = 2, we set A2 = A and we have A ∈ L(H1
0 (Ω),H−1(Ω)). For the general map Aq we have

the following result summarizing its properties (see Gasinski and Papageorgiou [17, p. 746]).

Proposition 5. The map Aq : W 1,q
0 (Ω) → W−1,q′

(Ω) is strictly monotone, continuous (hence maximal
monotone, too) and of type (S)+, that is, if un

w→ u in W 1,q
0 (Ω) and lim sup

n→∞
〈Aq(un), un − u〉 � 0, then

un → u in W 1,q
0 (Ω).

Another tool that we use in the analysis of problem (Pλ) is the Morse theory (critical groups). So, let
X be a Banach space and (Y1, Y2) a topological pair such that Y2 ⊆ Y1 ⊆ X. For every k ∈ N0, we denote
by Hk(Y1, Y2) the kth singular homology group with integer coefficients for the pair (Y1, Y2). Recall that
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for k ∈ −N we have Hk(Y1, Y2) = 0. Suppose that ϕ ∈ C1(X,R) and c ∈ R. We introduce the following
sets:

Kϕ = {u ∈ X : ϕ′(u) = 0},

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c},

ϕc = {u ∈ X : ϕ(u) � c}.

Let u ∈ Kc
ϕ be isolated. The critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U\{u}) for all k ∈ N0,

where U is a neighborhood of u such that Kϕ ∩ϕc ∩U = {u}. The excision property of singular homology
implies that the above definition is independent of the choice of the neighborhood of U .

Assume that ϕ ∈ C1(X,R) satisfies the PS-condition and inf ϕ(Kϕ) > −∞. Let c < inf ϕ(Kϕ). The
critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ∈ N0.

The definition is independent of the choice of the level c < inf ϕ(Kϕ). Indeed, let c′ < inf ϕ(Kϕ) be
another such level. We assume that c′ < c. Then we know that ϕc′

is a strong deformation retract of ϕc

(see Gasinski and Papageorgiou [17, p. 628]). So, we have

Hk(X,ϕc) = Hk(X,ϕc′
) for all k ∈ N0

(see Motreanu et al. [25, p. 145]).
Suppose that Kϕ is finite. We introduce the following formal series

M(t, u) =
∑
k�0

rankCk(ϕ, u)tk for all t ∈ R, u ∈ Kϕ

and P (t,∞) =
∑
k�0

rankCk(ϕ,∞)tk for all t ∈ R.

These quantities are related via the Morse relation, which says that

∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R, (2)

with Q(t) =
∑

k�0 βktk being a formal series in t ∈ R with nonnegative integer coefficients βk.
Finally, let us introduce some basic notations which we will use in the sequel. Given x ∈ R, we set

x± = max{±x, 0}. Then for u ∈ W 1,p
0 (Ω), we define

u±(·) = u(·)±.

We know that

u± ∈ W 1,p
0 (Ω), u = u+ − u− and |u| = u+ + u−.

For a measurable function g : Ω×R → R (for example, for a Carathéodory function g(·, ·)), we denote
by Ng(·) the Nemitsky (superposition) operator associated with g, that is,

Ng(u)(·) = g(·, u(·)) for all u ∈ W 1,p
0 (Ω).

Evidently, the mapping z �→ Ng(u)(z) is measurable.
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3. Multiplicity theorems

In this section we prove two multiplicity theorems for problem (Pλ) when λ > 0 is big. In both theorems
we provide precise sign information for all solutions. Our method of proof is based on a cutoff technique
first used by Costa and Wang [13] in the context of semilinear Dirichlet problems driven by the Laplacian.

The hypotheses on the reaction term f(z, x) are the following:
H1 : f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for almost all z ∈ Ω and

(i) there exists r ∈ (p, p∗) such that lim
x→0

f(z,x)
|x|r−2x = 0 uniformly for almost all z ∈ Ω,

(ii) if F (z, x) =
x∫
0

f(z, s)ds, then there exists β ∈ (r, p∗) such that lim
x→0

F (z,x)
|x|β = +∞ uniformly for

almost all z ∈ Ω;
(iii) there exist q ∈ (p, p∗) and δ > 0 such that

0 < qF (z, x) � f(z, x)x for almost all z ∈ Ω and all 0 < |x| � δ;

(iv) there exists ξ̂ > 0 such that for almost all z ∈ Ω, the function

x �→ f(z, x) + ξ̂|x|p−2x

is nondecreasing on [−δ, δ] (here, δ > 0 is as in (iii) above).
Hypotheses H1(i), (ii) imply that we can find δ1 ∈ (0, δ] such that

|f(z, x)| � |x|r−1 and F (z, x) � |x|β for almost all z ∈ Ω and all |x| � δ1. (3)

Let η ∈ (
0, δ1

2

)
and let ϑ ∈ C2(R, [0, 1]) be an even cutoff function such that

ϑ(x) =
{

1 if |x| � η
0 if |x| > 2η

(4)

xϑ′(x) � 0, |xϑ′(x)| � 2
η

for all x ∈ R. (5)

Using this cutoff function, we introduce the following modification of the primitive F (z, x) :

F̂ (z, x) = ϑ(x)F (z, x) + (1 − ϑ(x))
|x|r
r

.

Also, we set

f̂(z, x) = F̂ ′
x(z, x) =

∂F̂

∂x
(z, x).

By Lemma 1.1 of Costa and Wang [13], we have the following property.

Lemma 6. If hypotheses H1 hold, then
(a) |f̂(z, x)| � c1|x|r−1 for almost all z ∈ Ω, all x ∈ R and some c1 > 0;
(b) 0 < μF̂ (z, x) � f̂(z, x)x for almost all z ∈ Ω and all x ∈ R\{0} with μ = min{q, r}.

We introduce the following auxiliary Dirichlet problem

− Δpu(z) − Δu(z) = λf̂(z, u(z)) in Ω, u|∂Ω = 0. (Qλ)

The nonlinear regularity theory (see Lieberman [22], Theorem 1 and Motreanu et al. [25, Corollary
8.7, p. 208]) together with Lemma 6, give the following result (see also Papageorgiou and Rădulescu [28]
for an alternative approach).

Proposition 7. If hypotheses H1 hold and uλ ∈ W 1,p
0 (Ω) (λ > 0) is a solution of (Qλ), then uλ ∈ C1(Ω)

and there exists c2 = c2(r,N,Ω) > 0 such that

||uλ||∞ � c2λ
(p∗−r)−1 ||uλ||(p∗−p)/(p∗−r).



ZAMP Double-phase problems with reaction of arbitrary growth Page 7 of 21  108 

For every λ > 0, we consider the energy functional ϕ̂λ : W 1,p
0 (Ω) → R for problem (Qλ) defined by

ϕ̂λ(u) =
1
p
||Du||pp +

1
2
||Du||22 − λ

∫

Ω

F̂ (z, u)dz for all u ∈ W 1,p
0 (Ω).

Evidently, ϕ̂λ ∈ C1(W 1,p
0 (Ω),R). From Lemma 6(b) we see that F̂ (z, ·) satisfies a global Ambrosetti-

Rabinowitz condition (see Ambrosetti and Rabinowitz [3]). From this we derive the following result.

Proposition 8. If hypotheses H1 hold and λ > 0, then ϕ̂λ satisfies the PS-condition.

Next, we show that for big λ > 0 the energy functional ϕ̂λ satisfies the mountain pass geometry (see
Theorem 1).

Proposition 9. If hypotheses H1 hold, then
(a) for every λ > 0, we can find m̂λ > 0 and ρ̂λ > 0 such that

ϕ̂λ(u) � m̂λ > 0 for all u ∈ W 1,p
0 (Ω) with ||u|| = ρ̂λ;

(b) we can find λ̂∗ > 0 and ū ∈ C1
0 (Ω) such that for all λ � λ̂∗ we have

|ū(z)| � η

2
for all z ∈ Ω, ||ū|| > ρλ, ϕ̂λ(ū) � 0 < m̂λ, ||ū||p + c2

3||ū||2 � λ||ū||ββ ,

with c3 > 0 being such that || · ||1,2 � c3|| · || (here, || · ||1,2 denotes the norm of H1
0 (Ω), recall that

p > 2).

Proof. (a) By Lemma 6(a) we have

F̂ (z, x) � c4|x|r for almost all z ∈ Ω, all x ∈ R, and some c4 > 0.

Then for all u ∈ W 1,p
0 (Ω) we have

ϕ̂λ(u) � 1
p
||Du||pp − λc4||u||rr

� 1
p
||u||p − λc5||u||r for some c5 > 0 (recall that r < p∗)

=
[
1
p

− λc5||u||r−p

]
||u||p.

If we choose ρ̂λ =
(

1
2pλc5

) 1
r−p

> 0, then

ϕ̂λ(u) � 1
2p

ρ̂p
λ > 0 for all u ∈ W 1,p

0 (Ω) with ||u|| = ρ̂λ.

(b) Let ū ∈ C1
0 (Ω)\{0} be such that

|ū(z)| � η

2
for all z ∈ Ω. (6)

Note that ρ̂λ → 0 as λ → +∞. So, we can find λ̂∗ > 0 such that

||ū|| > ρ̂λ and ||ū||p + c2
3||ū||2 � λ||ū||ββ for all λ > λ̂∗ . (7)

Using (3) and (6), we have

ϕ̂λ(ū) � 1
p
||Dū||pp +

1
2
||Dū||22 − λ||ū||ββ

� ||ū||p + c2
3||ū||2 − λ||ū||ββ � 0 < m̂λ (see 6).

�
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Proposition 10. If hypotheses H1 hold, λ > 0 and u ∈ Kϕ̂λ
, then we can find ĉ > 0 such that ||u||p �

ĉϕ̂λ(u).

Proof. Let u ∈ Kϕ̂λ
. We have

μϕ̂λ(u) = μϕ̂λ(u) − 〈ϕ̂′
λ(u), u〉 (since u ∈ Kϕ̂λ

)

=
μ

p
||Du||pp +

μ

2
||Du||22 −

∫

Ω

μλF̂ (z, u)dz − ||Du||pp − ||Du||22 +
∫

Ω

λf̂(z, u)udz

=
(

μ

p
− 1

)
||Du||pp +

(μ

2
− 1

)
||Du||22 + λ

∫

Ω

[f̂(z, u)u − μF̂ (z, u)]dz

� c6||u||p with c6 =
μ

p
− 1 > 0 (recall that μ > p > 2 and use Lemma 6(b))

⇒ ||u||p � ĉϕ̂λ(u) with ĉ =
μ

c6
> 0.

�
Now we can produce a nontrivial smooth solution for the auxiliary problem (Qλ) when λ > 0 is big.

Proposition 11. If hypotheses H1 hold, then for every λ � λ̂∗ (see Proposition 9b) problem (Qλ) admits
a nontrivial smooth solution uλ ∈ C1

0 (Ω) such that

||uλ||∞ � c̃
1

λ
2

β−2
for some c̃ > 0.

Proof. Propositions 8 and 9 permit the use of Theorem 1 (the mountain pass theorem). So, we can find
uλ ∈ W 1,p

0 (Ω) such that

uλ ∈ Kϕ̂λ
and m̂λ � ϕ̂λ(uλ) = cλ = inf

γ∈Γ
max
0�t�1

ϕλ(γ(t)), (8)

where Γ = {γ ∈ C([0, 1],W 1,p
0 (Ω)) : γ(0) = 0, γ(1) = ū}.

We consider the function

ξ̃λ(t) = t2[||ū||p + c2
3||ū||2] − λtβ ||ū||ββ for all t � 0.

Note that ξ̃λ(·) is continuous and

ξ̃λ(0) = 0, ξ̃λ(1) � 0 (see (7)).

Since 2 < p < β, for small t ∈ (0, 1) we see that

ξ̃λ(t) > 0.

Therefore we can find t0 ∈ (0, 1) such that

ξ̃λ(t0) = max
0�t�1

ξλ(t),

⇒ ξ̃′
λ(t0) = 2t0[||ū||p + c2

3||ū||2] − λβtβ−1
0 ||ū||ββ = 0,

⇒ t0 =

[
2(||ū||p + c2

3||ū||2)
λβ||ū||ββ

] 1
β−2

.

Then we have

ξ̃λ(t0) =
1

λ
2

β−2
c7 + λ

1

λ
β

β−2

c8 for some c7, c8 > 0

=
1

λ
2

β−2
c9 with c9 = c7 + c8 > 0. (9)
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Let γ0(t) = tū. Then γ0 ∈ Γ and so by virtue of (8) we have

ϕ̂λ(uλ) = cλ � max
0�t�1

ϕ̂λ(tū) � max
0�t�1

ξ̃λ(t) (see (6) and (3))

= ξ̃λ(t0) =
c9

λ
2

β−2
(see (9)),

⇒ ||uλ||p � ĉc9

λ
2

β−2
and so c̃ = ĉc9 > 0 (see Proposition 10).

�

Now we are ready to produce constant-sign smooth solutions for problem (Pλ) when the parameter
λ > 0 is big.

Proposition 12. If hypotheses H1 hold, then we can find λ∗ � λ̂∗ > 0 such that for all λ � λ∗, problem
(Pλ) has at least two nontrivial smooth solutions of constant sign

ûλ ∈ D+ and v̂λ ∈ −D+.

Proof. First, we produce the positive solution.
To this end we consider the C1-functional ϕ̂+

λ : W 1,p
0 (Ω) → R defined by

ϕ̂+
λ (u) =

1
p
||Du||pp +

1
2
||Du||22 − λ

∫

Ω

F̂ (z, u+)dz for all u ∈ W 1,p
0 (Ω).

Note that F̂ (z, x+) = 0 for almost all z ∈ Ω and all x � 0. By Lemma 6, F̂+(z, x) = F̂ (z, x+) satisfies
the Ambrosetti-Rabinowitz condition on R+ = [0,+∞). Therefore

ϕ̂+
λ satisfies the PS-condition. (10)

A careful reading of the proof of Proposition 9 reveals that the result remains true also for the
functional ϕ̂+

λ (in this case in part (b) we choose ū ∈ C+ \ {0}). This fact and (10) permit the use of
Theorem 1 (the mountain pass theorem) and so we can find ûλ ∈ W 1,p

0 (Ω) such that

ûλ ∈ Kϕ̂+
λ

and ϕ̂+
λ (0) = 0 < m̂+

λ � ϕ̂+
λ (ûλ). (11)

From (10) we see that

ûλ �= 0 and (ϕ̂+
λ )′(ûλ) = 0.

So, we have

〈Ap(ûλ), h〉 + 〈A(ûλ), h〉 =
∫

Ω

λf̂(z, û+
λ )hdz for all h ∈ W 1,p

0 (Ω). (12)

In (12) we choose h = −û−
λ ∈ W 1,p

0 (Ω). Then

||Dû−
λ ||pp + ||Dû−

λ ||22 = 0,

⇒ ûλ � 0, ûλ �= 0.

We have
− Δpûλ(z) − Δûλ(z) = λf̂(z, ûλ(z)) for almost all z ∈ Ω, ûλ|∂Ω = 0. (13)

By Theorem 8.4 of Motreanu et al. [25, p. 204], we have

ûλ ∈ L∞(Ω).

So, we can apply Theorem 1 of Lieberman [22] and infer that

ûλ ∈ C+\{0}.
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From Lemma 6(a) and (13) we have

Δpûλ(z) + Δûλ(z) � c1||ûλ||r−p
∞ ûλ(z)p−1 for almost all z ∈ Ω. (14)

Let a : RN → R
N be defined by

a(y) = |y|p−2y + y for all y ∈ R
N .

Note that a ∈ C1(RN ,RN ) (recall that p > 2) and

div a(Du) = Δpu + Δu for all u ∈ W 1,p
0 (Ω).

We have

∇a(y) = |y|p−2

[
I + (p − 2)

y ⊗ y

|y|2
]

+ I for all y ∈ R
N\{0},

⇒ (∇a(y)ξ
′
, ξ

′
)RN � |ξ′ |2 for all ξ

′ ∈ R
N .

This permits the use of the tangency principle of Pucci and Serrin [31, p. 35] and implies that

ûλ(z) > 0 for all z ∈ Ω.

Then (14) and the boundary point theorem of Pucci and Serrin [31, p. 120] imply that

ûλ ∈ D+.

Note that

ϕ̂
′
λ|C+ = (ϕ̂+

λ )
′ |C+ ,

⇒ ûλ ∈ Kϕ̂λ
,

⇒ ||ûλ||∞ � c̃λ− 2
β−2 for all λ � λ̂∗ (see Proposition 11).

It follows that

||ûλ||∞ → 0 as λ → +∞, λ � λ̂+ (recall that β > 2).

So, we can find λ∗ � λ̂∗ such that

0 � ûλ(z) � η for all z ∈ Ω, all λ � λ∗,
⇒ ûλ ∈ D+ is a positive solution of (Pλ) for λ � λ∗ (see 4).

Similarly, we obtain a negative solution

v̂λ ∈ −D+ for all λ � λ∗

(we may need to increase λ∗ � λ̂∗). In this case we work with the C1-functional ϕ̂−
λ : W 1,p

0 (Ω) → R

defined by

ϕ̂−
λ (u) =

1
p
||Du||pp +

1
2
||Du||22 − λ

∫

Ω

F̂ (z,−u−)dz for all u ∈ W 1,p
0 (Ω).

�

In fact, we can produce extremal constant-sign solutions for (Pλ) when λ � λ∗, that is, a smallest
positive solution and a biggest negative solution. These extremal constant-sign solutions will be useful in
producing nodal (that is, sign-changing) solutions.

We have the following result.

Proposition 13. If hypotheses H1 hold and λ � λ∗ (see Proposition 12), then problem (Pλ) admits a
smallest positive solution u∗

λ ∈ D+ and a biggest negative solution v∗
λ ∈ −D+.
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Proof. We introduce the following two sets

S+ =
{

u ∈ W 1,p
0 (Ω) : u ∈ [0, η], u is a positive solution of (Pλ)

}
,

S− =
{

v ∈ W 1,p
0 (Ω) : v ∈ [−η, 0], v is a negative solution of (Pλ)

}
.

From Proposition 12 and its proof, we infer that

∅ �= S+ ⊆ D+ and ∅ �= S− ⊆ −D+.

Invoking Lemma 3.10 of Hu and Papageorgiou [20, p. 178], we can find {un}n�1 ⊆ S+ such that

inf
n�1

un = inf S+.

We have

〈Ap(un), h〉 + 〈A(un), h〉 = λ

∫

Ω

f(z, un)hdz for all h ∈ W 1,p
0 (Ω), all n ∈ N. (15)

Evidently, {un}n�1 ⊆ W 1,p
0 (Ω) is bounded and so we may assume that

un
w−→ u∗

λ in W 1,p
0 (Ω) and un → u∗

λ in Lp(Ω). (16)

In (15) we choose h = un − u∗
λ ∈ W 1,p

0 (Ω), pass to the limit as n → ∞ and use (16). We obtain

lim
n→∞ [〈Ap(un), un − u∗

λ〉 + 〈A(un), un − u∗
λ〉] = 0

⇒ lim sup
n→∞

[〈Ap(un), un − u∗
λ〉 + 〈A(u∗

λ), un − u∗
λ〉] � 0

(exploiting the monotonicity of A(·))
⇒ lim sup

n→∞
〈Ap(un), un − u∗

λ〉 � 0 (see 16)

⇒ un → u∗
λ in W 1,p

0 (Ω) (see Propositions 5 and (16)), u∗
λ � 0. (17)

If in (15) we pass to the limit as n → ∞ and use (17) then

〈Ap(u∗
λ), h〉 + 〈A(u∗

λ), h〉 = λ

∫

Ω

f(z, u∗
λ)hdz for all h ∈ W 1,p

0 (Ω),

⇒ −Δpu
∗
λ(z) − Δu∗

λ(z) = λf(z, u∗
λ(z)) for almost all z ∈ Ω, u∗

λ|∂Ω = 0, u∗
λ � 0. (18)

By (18) we see that if we can show that u∗
λ �= 0, then we have u∗

λ ∈ S+. We argue by contradiction.
So, suppose that u∗

λ = 0. Then by (17) we have

un → 0 in W 1,p
0 (Ω). (19)

Let yn = un

||un|| , n ∈ N. Then ||yn|| = 1, yn � 0 for all n ∈ N and so we may assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω). (20)

By (15) we have

||un||p−2〈Ap(yn), h〉 + 〈A(yn), h〉 = λ

∫

Ω

Nf (un)
||un|| hdz for all h ∈ W 1,p

0 (Ω). (21)

Hypothesis H1(i) implies that∫

Ω

Nf (un)
||un|| hdz → 0 for all h ∈ W 1,p

0 (Ω). (22)
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Since Ap(·) is bounded (that is, maps bounded sets to bounded sets), it follows from (19) and (20)
that

||un||p−2〈Ap(yn), h〉 → 0 for all h ∈ W 1,p
0 (Ω). (23)

In (21) we choose h = yn − y ∈ W 1,p
0 (Ω), pass to the limit as n → ∞ and use (22), (23). Then

lim
n→∞〈A(yn), yn − y〉 = 0. (24)

Note that

〈A(yn), yn − y〉 − 〈A(y), yn − y〉 = ||D(yn − y)||22 for all n ∈ N,

⇒ ||D(yn − y)||22 → 0 (from 20, 24), (25)
⇒ ||y||H1

0 (Ω) = 1. (26)

On the other hand from (21), passing to the limit as n → ∞ and using (22), (23), (25), we obtain

〈A(y), h〉 = 0 for all h ∈ W 1,p
0 (Ω),

⇒ y = 0, which contradicts (26).

Therefore u∗
λ �= 0 and so

u∗
λ ∈ S+ and u∗

λ = inf S+.

Similarly, we produce v∗
λ ∈ W 1,p

0 (Ω) such that

v∗
λ ∈ S− and v∗

λ = sup S−.

The proof is now complete. �
Now our strategy becomes clear. We will truncate the reaction term at {v∗

λ(z), u∗
λ(z)} in order to focus

on the order interval

[v∗
λ, u∗

λ] = {u ∈ W 1,p(Ω) : v∗
λ(z) � u(z) � u∗

λ(z) for almost all z ∈ Ω}.

Working with the truncated functional and using variational tools (critical point theory), we will produce
a nontrivial solution yλ ∈ [v∗

λ, u∗
λ] ∩ C1

0 (Ω), yλ /∈ {v∗
λ, u∗

λ}. The extremality of v∗
λ and u∗

λ, forces yλ to be
nodal.

Proposition 14. If hypotheses H1 hold, then there exists λ0
∗ � λ∗ such that for all λ > λ0

∗ problem (Pλ)
admits a nodal solution yλ ∈ intC1

0 (Ω)[v
∗
λ, u∗

λ] (that is, yλ ∈ C1
0 (Ω) and u∗

λ − yλ, yλ − v∗
λ ∈ D+).

Proof. Let u∗
λ ∈ D+ and v∗

λ ∈ −D+ be the two extremal constant-sign solutions produced by Proposi-
tion 13. We introduce the Carathéodory function ĝ(z, x) defined by

ĝ(z, x) =

⎧⎨
⎩

f(z, v∗
λ(z)) if x < v∗

λ(z)
f(z, x) if v∗

λ(z) � x � u∗
λ(z)

f(z, u∗
λ(z)) if u∗

λ(z) < x.
(27)

We also consider the positive and negative truncations of ĝ(z, ·), namely the Carathéodory functions

ĝ±(z, x) = ĝ(z,±x±).

We set Ĝ(z, x) =
x∫
0

ĝ(z, s)ds and Ĝ±(z, x) =
x∫
0

ĝ±(z, s)ds and consider the C1-functionals σ̂λ, σ̂±
λ :

W 1,p
0 (Ω) → R defined by

σ̂λ(u) =
1
p
||Du||pp +

1
2
||Du||22 − λ

∫

Ω

Ĝ(z, u)dz,

σ̂±
λ (u) =

1
p
||Du||pp +

1
2
||Du||22 − λ

∫

Ω

Ĝ±(z, u)dz for all u ∈ W 1,p
0 (Ω).
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Claim 1. Kσ̂λ
⊆ [v∗

λ, u∗
λ] ∩ C1

0 (Ω),Kσ̂+
λ

= {0, u∗
λ},Kσ̂−

λ
= {v∗

λ, 0}.
Let u ∈ Kσ̂λ

. Then

〈Ap(u), h〉 + 〈A(u), h〉 =
∫

Ω

λĝ(z, u)hdz for all h ∈ W 1,p
0 (Ω). (28)

In (28) we choose h = (u − u∗
λ)+ ∈ W 1,p

0 (Ω). Then

〈Ap(u), (u − u∗
λ)+〉 + 〈A(u), (u − u∗

λ)+〉
= λ

∫

λ

f(z, u∗
λ)(u − u∗

λ)+dz (see 27)

= 〈Ap(u∗
λ), (u − u∗

λ)+〉 + 〈A(u), (u − u∗
λ)+〉 (since u∗

λ ∈ S+),

⇒ 〈Ap(u) − Ap(u∗
λ), (u − u∗

λ)+〉 + 〈A(u) − A(u∗
λ), (u − u∗

λ)+〉 = 0,

⇒ ||D(u − u∗
λ)+||22 = 0,

⇒ u � u∗
λ.

Similarly, if in (28) we choose h = (v∗
λ − u)+ ∈ W 1,p

0 (Ω), then we obtain

v∗
λ � u.

So, we have proved that

u ∈ [v∗
λ, u∗

λ].

Moreover, as before, the nonlinear regularity theory (see the proof of Proposition 12), implies that
u ∈ C1

0 (Ω). Therefore we conclude that

Kσλ
⊆ [v∗

λ, u∗
λ] ∩ C1

0 (Ω).

In a similar fashion we show that

Kσ̂+
λ

⊆ [0, u∗
λ] ∩ C+ and Kσ̂−

λ
⊆ [v∗

λ, 0] ∩ (−C+).

The extremality of u∗
λ and v∗

λ, implies that

Kσ̂+
λ

= {0, u∗
λ} and Kσ̂−

λ
= {v∗

λ, 0}.

This proves Claim 1.
On account of Claim 1, we see that we may assume that

Kσ̂λ
is finite. (29)

Otherwise we evidently already have an infinity of smooth nodal solutions and so we are done.

Claim 2. u∗
λ ∈ D+ and v∗

λ ∈ −D+ are local minimizers of the functional σ̂λ.

From (27) it is clear that σ̂+
λ is coercive. Also, σ̂+

λ is sequentially weakly lower semicontinuous. So, we
can find û∗

λ ∈ W 1,p
0 (Ω) such that

σ̂+
λ (û∗

λ) = inf
{

σ̂+
λ (u) : u ∈ W 1,p

0 (Ω)
}

. (30)

Let û1(p) be the positive principal eigenfunction of (−Δp,W
1,p
0 (Ω)). We know that û1(p) ∈ D+ (see

Motreanu et al. [25]). Recall that u∗
λ ∈ D+. So, by invoking Lemma 3.6 of Filippakis and Papageorgiou

[16], we can find τ > 0 such that

τ û1(p) =
[
1
2
u∗

λ, u∗
λ

]
. (31)
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Evidently, 1
2 � τ � 2. Hypothesis H1(ii) implies that there exists ξ > 0 such that

F (z, x) � ξ|x|β for almost all z ∈ Ω, and all 0 � x � η (32)

(here η ∈ (0, δ1) is as in (4)). We have

σ̂+
λ (τ û1(p)) � τp

p
λ̂1(p) +

τ2

2
||Dû1(p)||22 − λξτβ ||û1(p)||ββ ,

with λ̂1(p) > 0 being the principal eigenvalue of (−Δp,W
1,p
0 (Ω)).

It follows that
σ̂+

λ (τ û1(p)) < 0
if and only if

τp−2
p λ̂1(p)+ 1

2 ||Dû1(p)||22
ξτβ−2||û1(p)||ββ

< λ.

(33)

Note that
τp−2

p λ̂1(p) + 1
2 ||Dû1(p)||22

ξτβ−2||û1(p)||ββ
�

2β+p−4

p λ̂1(p) + 2β−3||Dû1(p)||22
ξ||û1(p)||ββ

(recall that 1
2 � τ � 2).

So, if we let λ0 =
2β+p−4

p λ̂1(p)+2β−3||Dû1(p)||22
ξ||û1(p)||ββ

and define

λ0
∗ = max{λ0, λ∗},

then we infer from (33) that

σ̂+
λ (τ û1(p)) < 0 for all λ > λ0

∗,

⇒ σ̂+
λ (û∗

λ) < 0 = σ̂+
λ (0) for all λ > λ0

∗ (see 30),

⇒ û∗
λ �= 0 and û∗

λ ∈ Kσ̂+
λ

for all λ > λ0
∗ (see 30),

⇒ û∗
λ = u∗

λ for all λ > λ0
∗ (see Claim 1).

By (27) it is clear that σ̂+
λ |C+ = σ̂λ|C+ . Since u∗

λ ∈ D+, it follows from (30) that

u∗
λ is a local C1(Ω) − minimizer of σ̂λ,

⇒ u∗
λ is a local W 1,p

0 (Ω) − minimizer of σ̂λ (see Proposition 2).

Similarly for v∗
λ ∈ −D+, using this time the functional σ̂−

λ .
This proves Claim 2.
Without any loss of generality, we may assume that

σ̂λ(v∗
λ) � σ̂(u∗

λ).

By (29) and Claim 2, we see that we can find small ρ ∈ (0, 1) such that

σ̂λ(v∗
λ) � σ̂λ(u∗

λ) < inf {σ̂λ(u) : ||u − u∗
λ|| = ρ} = m̂λ, ||v∗

λ − u∗
λ|| > ρ (34)

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29). The functional σ̂λ is coercive (see
27). Hence

σ̂λ satisfies the PS-condition. (35)

Then (34), (35) permit the use of Theorem 1 (the mountain pass theorem). So, we can find yλ ∈
W 1,p

0 (Ω) such that
yλ ∈ Kσ̂λ

and m̂λ � σ̂λ(yλ). (36)
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Using (34), (36) and Claim 1, we have

yλ ∈ [v∗
λ, u∗

λ] ∩ C1
0 (Ω), yλ /∈ {v∗

λ, u∗
λ},

⇒ yλ is a smooth solution of (Pλ).

We need to show that yλ �= 0, in order to conclude that yλ is a smooth nodal solution of (Pλ) for
λ > λ0

∗.
From the previous argument we have that yλ is a critical point of mountain pass type for the functional

σ̂λ. Therefore we have

C1(σ̂λ, yλ) �= 0 (37)

(see Motreanu et al. [25, Corollary 6.81, p. 168]).
Hypothesis H1(i) implies that we can find δ2 ∈ (0, η) such that

F (z, x) � 1
r
|x|r for almost all z ∈ Ω, and all |x| � δ2. (38)

Since u∗
λ ∈ D+ and v∗

λ ∈ −D+, we see that

intC1
0 (Ω)[v

∗
λ, u∗

λ] �= ∅.

So, we can find δ3 > 0 such that

B
C1

0 (Ω)
δ3

= {u ∈ C1
0 (Ω) : ||u||C1

0 (Ω) < δ3} ⊆ [v∗
λ, u∗

λ] ∩ C1
0 (Ω). (39)

Then for u ∈ B
C1

0 (Ω)
δ3

, we have

σ̂λ(u) � 1
p
||Du||pp +

1
2
||Du||22 − 1

r
||u||rr (see 38, 39)

� 1
p
||u||p − c10||u||r for some c10 > 0 (recall that r < p∗).

Since r > p, we see that by choosing δ3 > 0 even smaller if necessary, we have

σ̂λ(u) � 0,

⇒ u = 0 is a local C1
0 (Ω)-minimizer of σ̂λ,

⇒ u = 0 is a local W 1,p
0 (Ω)-minimizer of σ̂λ (see Proposition 2),

⇒ Ck(σ̂λ, 0) = δk,0Z for all k ∈ N0. (40)

Comparing (37) and (40), we infer that

yλ �= 0,

⇒ yλ ∈ C1
0 (Ω) is a nodal solution of (Pλ) for λ > λ0

∗.

Let ξ̂ > 0 be as postulated by hypothesis H1(iv). Then for x > y, x, y ∈ [−η, η] we have

f(z, x) − f(z, y) � −ξ̂(|x|p−2x − |y|p−2y)

� −ξ̂c11|x − y| for some c11 > 0 (recall that p > 2).

Because of this inequality and since u∗
λ, v∗

λ are solutions of (Pλ), u∗
λ �= v∗

λ, we have from the tangency
principle of Pucci and Serrin [31, p. 35],

yλ(z) < u∗
λ(z) for all z ∈ Ω. (41)
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Let ξ̂0 > ξ̂. We have

−Δpyλ(z) − Δyλ(z) + λξ̂0|yλ(z)|p−2yλ(z)

= λ
[
f(z, yλ(z)) + ξ̂0|yλ(z)|p−2yλ(z)

]

= λ
[
f(z, yλ(z)) + ξ̂|yλ(z)|p−2yλ(z) + (ξ̂0 − ξ̂)|yλ(z)|p−2yλ(z)

]

� λ
[
f(z, u∗

λ(z)) + ξ̂u∗
λ(z)p−1 + (ξ̂0 − ξ)u∗

λ(z)p−1
]

(see hypothesis H1(iv))

= −Δpu
∗
λ(z) − Δu∗

λ(z) + λξ̂0u
∗
λ(z)p−1 for almost all z ∈ Ω (since u∗

λ ∈ S+). (42)

Set h1(z) = f(z, yλ(z)) + ξ̂|yλ(z)|p−2yλ(z) + (ξ̂0 − ξ̂)|yλ(z)|p−2yλ(z) and
h2(z) = f(z, u∗

λ(z)) + ξ̂u∗
λ(z)p−1 + (ξ̂0 − ξ̂)u∗

λ(z)p−1.

Since u∗
λ, yλ ∈ C1(Ω) and using hypothesis H1(iv) and (41), we see that

h1 ≺ h2.

Then it follows from (42) and Proposition 3 that

u∗
λ − yλ ∈ D+.

Similarly, we show that

yλ − v∗
λ ∈ D+.

Therefore

yλ ∈ intC1
0 (Ω)[v

∗
λ, u∗

λ].

This completes the proof. �

Se, we can state our first multiplicity theorem for problem (Pλ).

Theorem 15. If hypotheses H1 hold, then we can find λ0
∗ > 0 such that for all λ > λ0

∗ problem (Pλ) has
at least three nontrivial solutions

ûλ ∈ D+, v̂λ ∈ −D+ and yλ ∈ intC1
0 (Ω)[v̂λ, ûλ] nodal.

We can improve this theorem and produce a second nodal solution provided we strengthen the condi-
tions on f(z, ·).

The new hypotheses on the reaction f(z, x) are the following.
H2: f : Ω × R → R is a measurable function such that for almost all z ∈ Ω, f(z, 0) = 0, f(z, ·) ∈

C1(R,R) and

(i) there exists r ∈ (p, p∗) such that limx→0
f(z,x)

|x|r−2x = 0 uniformly for almost all z ∈ Ω;

(ii) if F (z, x) =
x∫
0

f(z, s)ds, then there exists β ∈ (r, p∗) such that limx→0
F (z,x)

|x|β = +∞ uniformly for

almost all z ∈ Ω;
(iii) there exists q ∈ (p, p∗) and δ > 0 such that

0 < qF (z, x) � f(z, x)x for almost all z ∈ Ω, and all 0 < |x| � δ,

|f ′
x(z, x)| � a0(z) for almost all z ∈ Ω and all |x| � δ with a0 ∈ L∞(Ω).
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Remark 1. Evidently, hypothesis H1(i) implies that f ′
x(z, 0) = 0 for almost all z ∈ Ω. In the framework

of the above conditions, hypothesis H1(iv) is automatically satisfied by the mean value theorem and
hypothesis H2(iii). Therefore, hypotheses H2 are a more restricted version of hypotheses H1.

Theorem 16. If hypotheses H2 hold, then there exists λ0
∗ > 0 such that for all λ > λ0

∗ problem (Pλ) has
at least four nontrivial smooth solutions

ûλ ∈ D+, v̂λ ∈ −D+,

yλ, ŷλ ∈ intC1
0 (Ω)[v̂λ, ûλ] nodal.

Proof. From Proposition 10, we know that we can find λ0
∗ > 0 such that for all λ > λ0

∗ problem (Pλ) has
at least three nontrivial smooth solutions

ûλ ∈ D+, v̂λ ∈ −Dt and yλ ∈ intC1
0 (Ω)[v̂λ, ûλ] nodal. (43)

We use the notation introduced in the proof of Proposition 14. By Claim 2 of that proof, we know
that ûλ and v̂λ are both local minimizers of the functional σ̂λ. Therefore we have

Ck(σ̂λ, ûλ) = Ck(σ̂λ, v̂λ) = δk,0Z for all k ∈ N0. (44)

Moreover, from (37) we have
C1(σ̂λ, yλ) �= 0. (45)

Consider the functional ϕ̂λ ∈ C2(W 1,p
0 (Ω),R) introduced before Proposition 8 (note that because of

hypotheses H2 and since ρ ∈ C2(R, [0, 1]), we have that ϕ̂λ is C2). We consider the homotopy

hλ(t, u) = (1 − t)σ̂λ(u) + tϕ̂λ(u) for all (t, u) ∈ [0, 1] × W 1,p
0 (Ω).

Suppose we could find {tn}n�1 ⊆ [0, 1] and {un}n�1 ⊆ W 1,p
0 (Ω) such that

tn → t ∈ [0, 1], un → yλ in W 1,p
0 (Ω) and (hλ)′

u(tn, un) = 0 for all n ∈ N. (46)

From the equality in (46), we have

〈Ap(un), h〉 + 〈A(un), h〉 = (1 − tn)λ
∫

Ω

ĝ(z, un)hdz + tnλ

∫

Ω

f̂(z, un)hdz

for all h ∈ W 1,p
0 (Ω), all n ∈ N

⇒ −Δpun(z) − Δun(z) = λ
[
(1 − tn)ĝ(z, un(z)) + tnf̂(z, un(z))

]

for almost all z ∈ Ω, un|∂Ω = 0 for all n ∈ N.

Corollary 8.6 of Motreanu et al. [25, p. 208], implies that we can find c12 > 0 such that

||un||∞ � c12 for all n ∈ N.

Then Theorem 1 of Lieberman [22] implies that we can find α ∈ (0, 1) and c13 > 0 such that

un ∈ C1,α
0 (Ω), ||un||C1,α

0 (Ω) � c13 for all n ∈ N. (47)

Exploiting the compact embedding of C1,α
0 (Ω) into C1

0 (Ω), from (46) and (47) we infer that

un → yn in C1
0 (Ω),

⇒ un ∈ [v̂λ, ûλ] for all n � n0 (see 43),

⇒ {un}n�1 ⊆ Kσ̂λ
(see 27 and recall the definition of f̂),
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a contradiction to our hypothesis that Kσ̂λ
is finite (see 29). Hence (46) cannot occur and from the

homotopy invariance of critical groups (see Gasinski and Papageorgiou [19, Theorem 5.125, p. 836]), we
have

Ck(σ̂λ, yλ) = Ck(ϕ̂λ, yλ) for all k ∈ N0, (48)
⇒ C1(ϕ̂λ, yλ) �= 0 (see 45). (49)

Since ϕ̂λ ∈ C2(W 1,p
0 (Ω),R), from (49) and Papageorgiou and Rădulescu [26] (see Proposition 3.5,

Claim 3), we have

Ck(ϕ̂λ, yλ) = δk,1Z for all k ∈ N0,

⇒ Ck(σ̂λ, yλ) = δk,1Z for all k ∈ N0 (see 48). (50)

From the proof of Proposition 14, we know that u = 0 is a local minimizer of σ̂λ. Hence

Ck(σ̂λ, 0) = δk,0Z for all k ∈ N0. (51)

By (27) it is clear that σ̂λ is coercive. Hence

Ck(σ̂λ,∞) = δk,0Z for all k ∈ N0. (52)

Suppose that Kσ̂λ
= {ûλ, v̂λ, yλ, 0}. Then from (44), (50), (51), (52) and the Morse relation with

t = −1 (see 2), we have

2(−1)0 + (−1)1 + (−1)0 = (−1)0,

a contradiction. This means that there exists ŷλ ∈ Kσ̂λ
, ŷλ /∈ {ûλ, v̂λ, yλ, 0}. Assuming without any loss

of generality that the two constant-sign solutions {ûλ, v̂λ} are extremal (that is, ûλ = u∗
λ, v̂λ = v∗

λ, see
Proposition 13), we have that

ŷλ ∈ [v̂λ, ûλ] ∩ C1
0 (Ω) (see Claim 2 in the proof of Proposition 14) is nodal.

Moreover, as in the proof of Proposition 14, using Proposition 3, we show that

ŷλ ∈ intC1
0 (Ω)[v̂λ, ûλ].

The proof of Theorem 16 is now complete. �

4. Infinitely many nodal solutions

In this section we introduce a symmetry condition on f(z, ·) (namely, that it is odd) and using Theorem 4,
we show that for all λ > 0 big, problem (Pλ) has a whole sequence of nodal solutions converging to zero
in C1

0 (Ω).
The new hypotheses on the reaction term f(z, x) are the following:
H3: f : Ω × R → R is a Carathéodory function such that for almost all z ∈ Ω, f(z, 0) = 0, f(z, ·) is

odd and hypotheses H3 (i), (ii), (iii), (iv) are the same as the corresponding hypotheses H1 (i), (ii), (iii),
(iv).

Theorem 17. If hypotheses H3 hold, then we can find λ1
∗ > 0 such that for all λ > λ1

∗ problem (Pλ) has
a sequence of nodal solutions {un}n�1 ⊆ C1

0 (Ω) such that un → 0 in C1
0 (Ω).

Proof. Let f̂(z, x) be as in Section 3. Consider its truncation at {−η, η}, that is, the Carathéodory
function

f̃(z, x) =

⎧⎨
⎩

f(z,−η) if x < −η
f(z, x) if − η � x � η (see 4)
f(z, η) if η < x.

(53)
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We set F̃ (z, x) =
x∫
0

f̃(z, s)ds and consider the C1-functional ϕ̃λ : W 1,p
0 (Ω) → R defined by

ϕ̃λ(u) =
1
p
||Du||pp +

1
2
||Du||22 − λ

∫

Ω

F̃ (z, u)dz for all u ∈ W 1,p
0 (Ω).

Evidently, ϕ̃λ is even, coercive (see 53); hence, it is also bounded below and satisfies the PS-condition.
Moreover, ϕ̃λ(0) = 0.

Let Y ⊆ W 1,p
0 (Ω) be a finite dimensional subspace. All norms on Y are equivalent. So, we can find

ρ0 > 0 such that
u ∈ Y, ||u|| � ρ0 ⇒ |u(z)| � η for almost all z ∈ Ω. (54)

Hypothesis H3(ii) implies that we can find ξ1 > 0 such that

F̃ (z, x) � ξ1|x|β for almost all z ∈ Ω, and all |x| � η (see 3). (55)

Using (54), (55) and reasoning as in the proof of Proposition 14, we can find λ1
∗ > 0 such that for all

λ > λ1
∗ we can find ρλ > 0 for which we have

sup {ϕ̃λ(u) : u ∈ Y, ||u|| = ρλ} < 0.

Applying Theorem 4, we can find {un}n�1 ⊆ Kϕ̃λ
such that

un → 0 in W 1,p
0 (Ω). (56)

As before, using the nonlinear regularity theory and (55), we have

un → 0 in C1
0 (Ω),

⇒ un ∈ [v∗
λ, u∗

λ] for all n � n0 (see Proposition (13)),
⇒ {un}n�n0 are nodal solutions of (Pλ) for λ > λ1

∗.

The proof of Theorem 17 is now complete. �
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[26] Papageorgiou, N.S., Rădulescu, V.D.: Qualitative phenomena for some classes of quasilinear elliptic equations with

multiple resonance. Appl. Math. Optim. 69, 393–430 (2014)
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