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Superlinear, Noncoercive Asymmetric
Robin Problems with Indefinite,

Unbounded Potential
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Abstract. We consider a semilinear Robin problem driven by the Laplacian plus
an indefinite and unbounded potential. The reaction term exhibits an asymmetric
behavior, namely it is superlinear in the positive direction but without satisfying the
Ambrosetti–Rabinowitz condition and it is sublinear but noncoercive in the negative
direction. Using variational methods together with suitable truncation and perturba-
tion techniques and Morse theory (critical groups), we prove a multiplicity theorem
producing three nontrivial smooth solutions two of which have constant sign (one
positive and the other negative).
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we
study the following semilinear Robin problem

−∆u(z) + ξ(z)u(z) = f(z, u(z)) in Ω,

∂u

∂n
+ β(z)u = 0 on ∂Ω .

(1)

In this problem, ξ ∈ Ls(Ω) (for s > N) is a potential function which may
change sign (indefinite potential) and f(z, x) is a Carathéodory reaction term
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(that is, for all x ∈ R the mapping z 7→ f(z, x) is measurable and for almost
all z ∈ Ω, x 7→ f(z, x) is continuous), which exhibits asymmetric growth as
x → ±∞. More precisely, we assume that f(z, ·) is superlinear near +∞ but
without satisfying the usual in such cases Ambrosetti–Rabinowitz condition
(the AR-condition for short), while f(z, ·) is sublinear near −∞, but the en-
ergy (Euler) functional of the problem is not coercive in that direction. This

means that the quotient f(z,x)
x

asymptotically as x→ −∞ stays above the prin-
ciple eigenvalue of u 7→ −∆u + ξ(z)u, u ∈ H1(Ω), with the Robin boundary
condition. So, our work here complements the recent one by the authors, see
Papageorgiou & Rădulescu [15], where the energy functional is coercive in the
negative direction. The geometries of the two problems differ drastically and
as expected, the present noncoercive setting is more complicated and requires
more delicate arguments.

We mention that asymmetric boundary value problems were also investi-
gated by Arcoya & Villegas [3], de Figueiredo & Ruf [6], Motreanu, Motreanu &
Papageorgiou [10], Perera [18] and Recova & Rumbos [19]. Arcoya & Villegas [3]
and de Figueiredo & Ruf [6], deal with Neumann problems (that is, β ≡ 0) and
in addition, de Figueiredo & Ruf [6] assume that N = 1 (that is, they consider
ordinary differential equations). Both works prove existence theorems. Multi-
plicity results can be found in the papers of Motreanu, Motreanu & Papageor-
giou [10] (Dirichlet problems), Perera [18] (Neumann problems with N = 1)
and Recova & Rumbos [19] (Dirichlet problems). In all the aforementioned
works the potential function is zero (that is, ξ ≡ 0) and the superlinearity in
the positive direction is expressed via the standard AR-condition.

Using variational methods based on the critical point theory, together with
suitable truncation and perturbation techniques and Morse theory (critical
groups) we establish the existence of up to three nontrivial smooth solutions.

2. Mathematical background

In this section, we review the main mathematical tools which will use in this
work.

So, let X be a Banach space and X∗ be its topological dual. By 〈·, ·〉 we
denote the duality brackets for the pair (X∗, X).

Definition 2.1. Let ϕ ∈ C1(X,R). We say that ϕ satisfies the “Cerami con-
dition” (the “C-condition” for short), if the following is true:
“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and

(1 + ||un||)ϕ′(un)→ 0 in X∗ as n→∞,

admits a strongly convergent subsequence”.
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This is a compactness-type condition on the functional ϕ, which is needed
since the ambient space need not be locally compact (X is usually infinite
dimensional). This condition is the main tool in proving a deformation theorem,
from which one can derive the minimax theory of the critical values of ϕ. One
of the main results in this theory, is the so-called “mountain pass theorem” due
to Ambrosetti & Rabinowitz [2]. Here the theorem is formulated in a slightly
more general form (see Gasinski & Papageorgiou [7, p. 648]).

Theorem 2.2. Assume that ϕ∈C1(X,R) satisfies the C-condition, u0, u1∈X,
||u1 − u0|| > ρ > 0,

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ||u− u0|| = ρ] = mρ

and
c = inf

γ∈Γ
max
0≤t≤1

ϕ(γ(t))

with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}. Then c ≥ mρ and c is a
critical value of ϕ.

In the study of problem (1), we will use the Sobolev space H1(Ω), the
Banach space C1(Ω) and the “boundary” spaces Lp(∂Ω) (1 ≤ p ≤ ∞). In what
follows, || · || denotes the norm of H1(Ω) defined by

||u|| =
[
||u||22 + ||Du||22

] 1
2 for all u ∈ H1(Ω).

The Banach space C1(Ω) is an ordered Banach space with positive (order)
cone given by

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

We will be using the following open subset of C+,

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we consider the (N−1)-dimensional Hausdorff (surface) measure σ(·).
Using this measure, we can define in the usual way the Lebesgue spaces Lp(∂Ω)
(1 ≤ p ≤ ∞). From the theory of Sobolev spaces, we know that there exists a
unique continuous linear map

γ0 : H1(Ω)→ L2(∂Ω),

known as the “trace map”, such that γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).
So, we understand the trace map γ0(u) as representing the “boundary values”
of a Sobolev function u. We know that the linear map γ0 is compact into Lq(Ω)

with q ∈
[
1, 2(N−1)

N−2

)
if N ≥ 3 and into Lq(Ω) with q ∈

[
1,+∞

)
if N = 1, 2.
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In the sequel, for the sake of notational simplicity, we will drop the use of the
trace map γ0. All restrictions of Sobolev functions on ∂Ω are understood in the
sense of traces.

We will also make use of the spectrum of the operator H1(Ω) 3 u 7→
−∆u + ξ(z)u, with Robin boundary condition. So, we consider the following
linear eigenvalue problem:

−∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω. (2)

In this boundary value problem, we assume that

• ξ ∈ LN
2 (Ω) if N ≥ 3, ξ ∈ Lr(Ω) with r ∈ (1,∞) if N = 2 and ξ ∈ L1(Ω)

if N = 1;

• β ∈ W 1,∞(∂Ω) and β(z) ≥ 0 for all z ∈ ∂Ω.

By ∂u
∂n

we denote the usual normal derivative of u ∈ H1(Ω) defined by

∂u

∂n
= (Du, n)RN on ∂Ω,

with n(·) being the outward unit normal on ∂Ω.
Let γ : H1(Ω)→ R be the C1-functional defined by

γ(u) = ||Du||22 +

∫
Ω

ξ(z)|u|2dz +

∫
∂Ω

β(z)|u|2dσ for all u ∈ H1(Ω).

From Papageorgiou & Rădulescu [15,16], we know that there exists µ > 0 such
that

γ(u) + µ||u||22 ≥ c0||u||2 for all u ∈ H1(Ω) with c0 > 0. (3)

Using (3) and the spectral theorem for compact self-adjoint operators on
a Hilbert space, we can have a complete description of the spectrum of (2).
So, we have a strictly increasing sequence {λ̂k}k≥1 of eigenvalues such that

λ̂k → +∞. By E(λ̂k), k ∈ N, we denote the corresponding eigenspace. We
have the following orthogonal direct sum decomposition:

H1(Ω) = ⊕
k≥1

E(λ̂k).

These eigenvalues have the following properties (see Papageorgiou & Rădu-
lescu [14], where ξ = 0 and [15,16])

• It holds

λ̂1 = inf

[
γ(u)

||u||22
: u ∈ H1(Ω), u 6= 0

]
and the infimum is realized on E(λ̂1); hence the elements of E(λ̂1) have
fixed sign;
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• λ̂1 is simple (that is, dimE(λ̂1) = 1);

• for n ≥ 2, we have

λ̂n=inf

[
γ(u)

||u||22
: u∈⊕

k≥n
E(λ̂k), u 6=0

]
=sup

[
γ(u)

||u||22
: u∈

n
⊕

k=1
E(λ̂k), u 6=0

]
; (4)

in (4) both the infimum and the supremum are realized on E(λ̂n) and the
eigenfunctions corresponding to λ̂n are all nodal (that is, sign changing).

Let û1 denote the L2-normalized (that is, ||û1||2 = 1) positive eigenfunction
corresponding to λ̂1. If ξ ∈ Ls(Ω) with s > N , then using the regularity result
of Wang [20, Lemmata 5.1 and 5.2], we have that û1 ∈ C+\{0}. Moreover,
Harnack’s inequality (see, for example, Motreanu, Motreanu & Papageorgiou
[11, Corollary 8.17, p. 212]), we have û1(z) > 0 for all z ∈ Ω. Suppose that
ξ+ ∈ L∞(Ω). Then the boundary point theorem (see, for example, Gasinski &
Papageorgiou [7, Theorem 6.2.8, p. 738]), implies that û1 ∈ D+. Moreover, when
ξ ∈ Ls(Ω) with s > N

2
, then the eigenspaces E(λ̂k), k ∈ N, have the so-called

“Unique Continuation Property” (the “UCP” for short). This means that

“if u ∈ E(λ̂k) and u vanishes on a set of positive Lebesgue measure, then
u ≡ 0 (see de Figueiredo & Gossez [5])”.

Using these properties, we can have the following useful inequalities.

Lemma 2.3. (a) If k ∈ N, η ∈ L∞(Ω), η(z) ≤ λ̂k for almost all z ∈ Ω,
η 6≡ λ̂k then there exists ĉ > 0 such that

γ(u)−
∫

Ω

η(z)|u|2dz ≥ ĉ||u||2 for all u ∈ ⊕
i≥k
E(λ̂i).

(b) If k ∈ N, η ∈ L∞(Ω), η(z) ≥ λ̂k for almost all z ∈ Ω, η 6≡ λ̂k, then there
exists c̄ > 0 such that

γ(u)−
∫

Ω

η(z)|u|2dz ≤ −c̄||u||2 for all u ∈
k
⊕
i=1
E(λ̂i).

There is also a weighted version of problem (2) with a weight m ∈ L∞(Ω),
m ≥ 0, m 6≡ 0. So, we consider the following linear eigenvalue problem

−∆u(z) + ξ(z)u(z) = λ̃m(z)u(z) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω.

As was the case with (2), this eigenvalue problem has an increasing sequence
{λ̃k(m)}k≥1 of distinct eigenvalues such that λ̃k(m) → +∞ as k → ∞. As a
consequence of the UCP, we have the following strict monotonicity property for
the function m 7→ λ̃k(m), k ∈ N.
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Lemma 2.4. If m1,m2 ∈ L∞(Ω), 0 ≤ m1 ≤ m2, m1 6≡ 0, m2 6≡ m1, then for
all k ∈ N we have λ̃k(m2) < λ̃k(m1).

Next let us recall some basic definitions and facts from Morse theory (critical
groups) which we will need in the sequel.

So, let X be a Banach space, ϕ ∈ C1(X,R) and c ∈ R. We introduce the
following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c}, ϕ̇c = {u ∈ X : ϕ(u) < c},
Kϕ = {u ∈ X : ϕ′(u) = 0}, Kc

ϕ = {u ∈ Kϕ : ϕ(u) = c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For every k ∈ N0,
by Hk(Y1, Y2) we denote the kth relative singular homology group for the pair
(Y1, Y2) with integer coefficients. If k ∈ −N, then Hk(Y1, Y2) = 0. Suppose that
u0 ∈ Kc

ϕ is isolated. Then the critical groups of ϕ at u0 are defined by

Ck(ϕ, u0) = Hk(ϕ
c ∩ U,ϕc ∩ U\{u0}) for all k ∈ N0,

with U being a neighborhood of u0 such that Kϕ ∩ ϕc ∩ U = {u0}. The exci-
sion property of singular homology theory, implies that the above definition is
independent of the choice of the neighborhood U .

Suppose that ϕ ∈ C1(X,R) satisfies the C-condition and −∞ < inf ϕ(Kϕ).
Let c < inf ϕ(Kϕ). Then the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕ
c) for all k ∈ N0.

The second deformation theorem (see, for example, Gasinski & Papageorgiou
[7, p. 628]), implies that the above definition is independent of the choice of the
level c < inf ϕ(Kϕ).

Suppose that the critical set Kϕ is finite. We introduce the following poly-
nomials in t ∈ R:

M(t, u) =
∑
k≥0

rankCk(ϕ, u)tk for all t ∈ R, all u ∈ Kϕ,

P (t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk for all t ∈ R.

The “Morse relation” says that∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R, (5)

with Q(t) =
∑

k≥0 βkt
k being a formal series in t ∈ R with nonnegative integer

coefficients βk.
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Suppose that H is a Hilbert space, ϕ ∈ C2(H,R) and u0 ∈ Kϕ. The
“Morse index” of u0 is defined to be the supremum of the dimensions of the
vector subspaces of H on which ϕ′′(u0) ∈ L(H) is negative definite.

Finally let us fix our notation and terminology. So, by A ∈ L (H1(Ω),
H1(Ω)∗) we denote the linear operator defined by

〈A(u), h〉 =

∫
Ω

(Du,Dh)RNdz for all u, h ∈ H1(Ω).

We say that a Banach space X has the “Kadec–Klee property”, if the
following is true:

“un
w→ u in X and ||un|| → ||u|| ⇒ un → u in X ”.

Locally uniformly convex Banach spaces, in particular Hilbert spaces, have the
Kadec–Klee property.

Let x ∈ R. We set x± = max{±x, 0}. Then for u ∈ H1(Ω), we define

u±(·) = u(·)±.

We know that u± ∈ H1(Ω), |u| = u+ + u−, u = u+ − u−.
By | · |N we denote the Lebesgue measure on RN . Also, given a measurable

function f : Ω×R→ R (for example, a Carathéodory function f(z, x)), we set

Nf (u)(·) = f(·, u(·)) for all u ∈ H1(Ω)

(the Nemytskii map corresponding to the function f). Evidently z 7→ Nf (u)(z)
= f(z, u(z)) is measurable. Finally, we define

2∗ =

{
2N
N−2

if N ≥ 3

+∞ if N = 1, 2
(the critical Sobolev exponent)

and k0 = inf[k ∈ N : λ̂k ≥ 0].

3. Multiplicity theorem

In this section we prove a multiplicity theorem for problem (1), producing three
nontrivial smooth solutions, two of which have constant sign. Throughout this
section the hypotheses on the potential function ξ(·) and the boundary coeffi-
cient β(·), are the following:

• H(ξ) : ξ ∈ Ls(Ω) with s > N and ξ+ ∈ L∞(Ω).

• H(β) : β ∈ W 1,∞(∂Ω) and β(z) ≥ 0 for all z ∈ ∂Ω.

Remark 3.1. When β ≡ 0, we recover the Neumann problem.
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To produce the two constant sign solutions, we will use the following con-
ditions on the reaction term f(z, x):

H1 : f : Ω×R→ R is a Carathéodory function such that f(z, 0) = 0 for almost
all z ∈ Ω and

(i) |f(z, x)|≤a(z)(1+|x|r−1) for almost all z∈Ω, all x∈R, with a∈L∞(Ω)+,
2 < r < 2∗;

(ii) if F (z, x) =
∫ x

0
f(z, s)ds and e(z, x) = f(z, x)x− 2F (z, x), then

(a) limx→+∞
F (z,x)
x2 = +∞ uniformly for almost all z ∈ Ω

(b) e(z, x) ≤ e(z, y) + τ(z) for almost all z ∈ Ω, all 0 ≤ x ≤ y with
τ ∈ L1(Ω)+.

(iii) there exist m ≥ max{k0, 2}, functions η, η̂ ∈ L∞(Ω) and constant ĉ > 0
such that

(a) λ̂m ≤ η(z) ≤ η̂(z) ≤ λ̂m+1 for almost all z ∈ Ω, λ̂m 6≡ η, λ̂m+1 6≡ η̂,

(b) η(z) ≤ lim infx→−∞
f(z,x)
x
≤ lim supx→−∞

f(z,x)
x
≤ η̂(z) uniformly for

almost all z ∈ Ω,

(c) −ĉ ≤ e(z, x) for almost all z ∈ Ω, all x ≤ 0.

(iv) there exist functions ϑ0, ϑ ∈ L∞(Ω) such that

(a) ϑ0(z) ≤ ϑ(z) ≤ λ̂1 for almost all z ∈ Ω, ϑ 6≡ λ̂1,

(b) ϑ0(z) ≤ lim infx→0
f(z,x)
x
≤ lim supx→0

f(z,x)
x
≤ ϑ(z) uniformly for

almost all z ∈ Ω.

Remark 3.2. Hypothesis H1(ii) says that the primitive F (z, ·) is superquad-
ratic near +∞. In fact the two conditions in hypothesis H1(ii) imply that
the reaction term f(z, ·) is superlinear near +∞. However, we stress that the
superlinearity of f(z, ·) is not expressed using the usual for such problems AR-
condition. We recall that the AR-condition says that there exist p > 2 and
M > 0 such that

0 < pF (z, x) ≤ f(z, x)x for almost all z ∈ Ω, all x ≥M, (6a)

0 < ess inf
Ω
F (·,M) (6b)

(see Ambrosetti & Rabinowitz [2] and Mugnai [12]). Integrating (6a) and us-
ing (6b), we obtain

c1x
p ≤ F (z, x) for almost all z ∈ Ω, all x ≥M, with c1 > 0. (7)

From (7) and the second condition in hypothesis H1(ii) we have that f(z, ·)
has as least (p − 1)-polynomial growth in the positive semiaxis (in particular
then we have that f(z, ·) is superlinear). Here instead of the AR-condition
(see (6a), (6b)), we use a quasimonotonicity condition on the function e(z, ·)
(see hypothesis H1(ii)). This quasimonotonicity condition is satisfied, if there
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exists M > 0 such that for almost all z ∈ Ω the function x 7→ f(z,x)
x

is non-
decreasing on [M,+∞). Slightly more restrictive version of this condition was
used by Li & Yang [9] who conduct a detailed study of this condition and of its
implications. Hypothesis H1(iii) implies that f(z, ·) is sublinear near −∞ and
we have nonuniform nonresonance with respect to any nonprincipal, nonnega-
tive spectral interval [λ̂m, λ̂m+1]. So, the problem is indefinite (noncoercive) in
both directions and this distinguishes the present situation from that of Papa-
georgiou & Rădulescu [15]. The geometry of the two problems is different.

Recall that γ : H1(Ω)→ R is defined by

γ(u) = ||Du||22 +

∫
Ω

ξ(z)|u|2dz +

∫
∂Ω

β(z)|u|2dσ for all u ∈ H1(Ω).

Let ϕ : H1(Ω)→ R be the energy (Euler) functional for problem (1) defined by

ϕ(u) =
1

2
γ(u)−

∫
Ω

F (z, u(z))dz for all u ∈ H1(Ω).

Evidently ϕ ∈ C1(H1(Ω)). Next we show that ϕ satisfies the C-condition and
this permits the consideration of the critical groups of ϕ at infinity.

Proposition 3.3. If hypotheses H(ξ),H(β) and H1 hold, then the functional ϕ
satisfies the C-condition.

Proof. Let {un}n≥1 ⊆ H1(Ω) be a sequence such that

|ϕ(un)| ≤M1 for some M1 > 0, all n ∈ N, (8)

(1 + ||un||)ϕ′(un)→ 0 in H1(Ω)∗ as n→∞. (9)

We have

1

2
γ(u+

n ) =
1

2
γ(un)− 1

2
γ(u−n )

=
1

2
γ(un)− 1

2
γ(u−n ) +

∫
Ω

F (z, un)dz −
∫

Ω

F (z, un)dz

= ϕ(un)− 1

2
γ(u−n ) +

∫
Ω

F (z, un)dz

≤M1 +
1

2

[∫
Ω

2F (z, un)dz − γ(u−n )

]
for all n ∈ N (see (8)).

(10)

From (9) we have∣∣∣∣〈A(un), h〉+

∫
Ω

ξ(z)unhdz +

∫
∂Ω

β(z)unhdσ −
∫

Ω

f(z, un)hdz

∣∣∣∣
≤ εn||h||

1 + ||un||
for all h ∈ H1(Ω), with εn → 0+.

(11)
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In (11) we choose h = −u−n ∈ H1(Ω). Then

|γ(u−n )−
∫

Ω

f(z,−u−n )(−u−n )dz| ≤ εn for all n ∈ N,

⇒− γ(u−n ) ≤ εn −
∫

Ω

f(z,−u−n )(−u−n ) for all n ∈ N.
(12)

We return to (10) and use (12). We obtain

1

2
γ(u+

n ) ≤M2 +
1

2

[∫
Ω

(2F (z, un)− f(z,−u−n )(−u−n ))dz

]
(13)

for some M2 > 0, all n ∈ N. We have

2F (z, un) = 2F (z, u+
n ) + 2F (z,−u−n ) ≤ 2F (z, u+

n ) + f(z,−u−n )(−u−n ) + ĉ (14)

for almost all z ∈ Ω, all n ∈ N (see hypothesis H1(iii)). We use (14) in (13) and
obtain

γ(u+
n ) ≤M3 +

∫
Ω

2F (z, u+
n )dz for some M3 > 0, all n ∈ N,

⇒ ϕ(u+
n ) ≤M3 for all n ∈ N.

(15)

In (11) we choose h = u+
n ∈ H1(Ω). Then

−γ(u+
n ) +

∫
Ω

f(z, u+
n )u+

n dz ≤ εn for all n ∈ N. (16)

We add (15) and (16) and have∫
Ω

[f(z, u+
n )u+

n − 2F (z, u+
n )]dz ≤M4 for some M4 > 0, all n ∈ N,

⇒
∫

Ω

e(z, u+
n )dz ≤M4 for all n ∈ N.

(17)

We will use (17) to prove the following Claim.

Claim 1. {u+
n }n≥1 ⊆ H1(Ω) is bounded.

We argue indirectly. So, suppose that Claim 1 is not true. By passing to a

subsequence if necessary, we may assume that ||u+
n || → +∞. Let yn = u+

n

||u+
n ||

for

all n ∈ N. Then ||yn|| = 1, yn ≥ 0 for all n ∈ N. So, we may assume that

yn
w→ y in H1(Ω) and yn → y in L

2s
s−1 (Ω) and in L2(∂Ω) (18)

(recall that s > N (see hypothesis H(ξ)) and note that 2s
s−1

< 2∗).



Superlinear, Noncoercive Asymmetric Robin Problems 263

Suppose that y 6= 0 and let Ω0 = {z ∈ Ω : y(z) = 0}. Then |Ω\Ω0|N > 0
and we have

u+
n (z)→ +∞ for almost all z ∈ Ω\Ω0.

Hypothesis H1(ii) implies that

F (z, u+
n (z))

||u+
n ||2

=
F (z, u+

n (z))

u+
n (z)2

yn(z)2 → +∞ for almost all z ∈ Ω\Ω0.

Using Fatou’s lemma (hypotheses H1(i), (ii) permit its use), we obtain

lim
n→∞

∫
Ω

F (z, u+
n )

||u+
n ||2

dz = +∞. (19)

Since e(z, 0) = 0 for almost all z ∈ Ω, from hypothesis H1(ii) we have

2F (z, u+
n ) ≤ f(z, u+

n )u+
n + τ(z) for almost all z ∈ Ω, all n ∈ N,

⇒
∫

Ω

2F (z, u+
n )dz ≤

∫
Ω

f(z, u+
n )u+

n dz + ||τ ||1

≤M5 + γ(u+
n ) for some M5>0, all n∈N (see (16)),

⇒
∫

Ω

F (z, u+
n )

||u+
n ||2

dz ≤ M5

2||u+
n ||2

+
1

2
γ(yn)

≤M6 for some M6>0, all n∈N.

(20)

Comparing (19) and (20) we reach a contradiction. Therefore we can not have
that y 6= 0. So, we must have y ≡ 0. Let q > 0 and consider the functions

vn = (2q)
1
2yn ∈ H1(Ω) for all n ∈ N.

Since y = 0, we have

vn → 0 in L
2s
s−1 (Ω) (see (18)) ⇒

∫
Ω

F (z, vn)dz → 0. (21)

Recall that ||u+
n || → ∞. So, we can find n0 ∈ N such that

0 < (2q)
1
2

1

||u+
n ||
≤ 1 for all n ≥ n0. (22)

Let tn ∈ [0, 1] be such that

ϕ(tnu
+
n ) = max{ϕ(tu+

n ) : 0 ≤ t ≤ 1}. (23)

From (22) and (23), we have

ϕ(tnu
+
n ) ≥ ϕ(vn)

= qγ(yn)−
∫

Ω

F (z, vn)dz

≥ qc0 − qµ||yn||22 −
∫

Ω

F (z, vn)dz for all n ≥ n0

(24)
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(see (3) and recall ||yn|| = 1 for all n ∈ N). We know that yn → 0 in L2(Ω)
(see (18) and recall that y = 0). This fact and (21) imply that

ϕ(tnu
+
n ) ≥ 1

2
qc0 for all n ≥ n1 ≥ n0. (25)

Because q > 0 is arbitrary, from (25) we infer that

ϕ(tnu
+
n )→ +∞ as n→∞. (26)

We know that

ϕ(0) = 0 and ϕ(u+
n ) ≤M3 for all n ∈ N (see (15)). (27)

From (23), (26) and (27) it follows that

tn ∈ (0, 1) for all n ≥ n2. (28)

Therefore we have

d

dt
ϕ(tu+

n )

∣∣∣∣
t=tn

= 0 for all n ≥ n2,

⇒
〈
ϕ′(tnu

+
n ), u+

n

〉
= 0 for all n ≥ n2 (by the chain rule),

⇒
〈
ϕ′(tnu

+
n ), tnu

+
n

〉
= 0 for all n ≥ n2 (see (28)),

⇒ γ(tnu
+
n ) =

∫
Ω

f(z, tnu
+
n )(tnu

+
n )dz for all n ≥ n2. (29)

From (28) and hypothesis H1(ii), we have∫
Ω

e(z, tnu
+
n )dz ≤

∫
Ω

e(z, u+
n )dz + ||τ ||1 ≤M4 + ||τ ||1 for all n ≥ n2 (30)

(see (17)). From (30) and (29) it follows that

2ϕ(tnu
+
n ) ≤M6 for some M6 > 0, all n ≥ n2. (31)

Comparing (26) and (31), again we reach a contradiction. This proves Claim 1.

Claim 2. {u−n }n≥1 ⊆ H1(Ω) is bounded.

Again we proceed by contradiction. So, we assume that at least for a

subsequence, we have ||u−n || → ∞. We set wn = u−n
||u−n ||

, n ∈ N. Then ||wn|| = 1,

wn ≥ 0 for all n ∈ N. So, we may assume that

wn
w→ w in H1(Ω) and wn → w in L

2s
s−1 (Ω) and in L2(∂Ω), w ≥ 0. (32)
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From (11) and Claim 1 it follows that∣∣∣∣〈A(−u−n ), h
〉
+

∫
Ω

ξ(z)(−u−n )hdz+

∫
∂Ω

β(z)(−u−n )hdσ−
∫

Ω

f(z,−u−n )hdz

∣∣∣∣
≤M7||h|| for some M7 > 0, all h ∈ H1(Ω), all n ∈ N,

⇒
∣∣∣∣〈A(−wn), h〉+

∫
Ω

ξ(z)(−wn)hdz+

∫
∂Ω

β(z)(−wn)hdσ−
∫

Ω

Nf (−u−n )

||u−n ||
hdz

∣∣∣∣
≤ M7||h||
||u−n ||

for all n ∈ N, all h ∈ H1(Ω). (33)

Hypotheses H1(i),(iii) imply that |f(z, x)| ≤ c2(1 + |x|) for almost all z ∈ Ω,

all x ≤ 0, with c2 > 0, Hence,
{
Nf (−u−n )

||u−n ||

}
n≥1
⊆ L2(Ω) is bounded. So, we may

assume that
Nf (−u−n )

||u−n ||
w→ g in L2(Ω). (34)

Using hypothesis H1(iii) we have

g = −η0w with η(z) ≤ η0(z) ≤ η̂(z) for almost all z ∈ Ω (35)

(see Aizicovici, Papageorgiou & Staicu [1, proof of Proposition 14]). In (33) we
pass to the limit as n→∞ and use (32), (34), (35). We obtain

〈A(w), h〉+

∫
Ω

ξ(z)whdz +

∫
∂Ω

β(z)whdσ =

∫
Ω

η0whdz for all h ∈ H1(Ω),

⇒


−∆w(z) + ξ(z)w(z) = η0(z)w(z) for almost all z ∈ Ω,

∂w

∂n
+ β(z)w = 0 on ∂Ω

(36)

(see Papageorgiou & Rădulescu [14]).
From (35), hypothesis H1(iii) and Lemma 2.4, we have

λ̃m(η0) < λ̃m(λ̂m) = 1 and 1 = λ̃m+1(λ̂m+1) < λ̃m+1(η0). (37)

From (36) and (37) it follows that w ≡ 0. On the other hand, if in (33) we
choose h = wn − w ∈ H1(Ω), pass to the limit as n → ∞ and use (32), (34),
then

lim
n→∞

〈A(wn), wn − w〉 = 0 ⇒ ||Dwn||2 → ||Dw||2 ⇒ wn → w in H1(Ω)

(by the Kadec–Klee property, see (32)), and ||w|| = 1 follows, a contradiction.
This proves Claim 2.

From Claims 1 and 2, we deduce that {un}n≥1 ⊆ H1(Ω) is bounded. So, we
may assume that

un
w→ u in H1(Ω) and un → u in L

2s
s−1 (Ω) and in L2(∂Ω). (38)
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In (11) we choose h = un−u ∈ H1(Ω), pass to the limit as n→∞ and use (38).
Then

lim
n→∞

〈A(un), un − u〉 = 0 ⇒ un → u in H1(Ω)

(as before via the Kadec–Klee property), and ϕ satisfies the C-condition. This
completes the proof of Proposition 3.3.

Next we consider the following truncation-perturbation of the reaction
term f(z, ·) :

f̂+(z, x) =

{
0 if x < 0
f(z, x) + µx if 0 ≤ x

(39)

(here µ > 0 is as in (3)). This is a Carathéodory function. We set

F̂+(z, x) =

∫ x

0

f̂+(z, s)ds

and consider the C1-functional ϕ̂+ : H1(Ω)→ R defined by

ϕ̂+(u) =
1

2
γ(u) +

µ

2
||u||2 −

∫
Ω

F̂+(z, u)dz for all u ∈ H1(Ω).

Proposition 3.4. If hypotheses H(ξ), H(β) and H1 hold, then the functional ϕ̂+

satisfies the C-condition.

Proof. Let {un}n≥1 ⊆ H1(Ω) be a sequence such that

|ϕ̂+(un)| ≤M7 for some M7 > 0, all n ∈ N, (40)

(1 + ||un||)ϕ̂′+(un)→ 0 in H1(Ω)∗ as n→∞. (41)

From (41) we have∣∣∣∣〈A(un), h〉+

∫
Ω

ξ(z)unhdz +

∫
∂Ω

β(z)unhdσ + µ

∫
Ω

unhdz −
∫

Ω

f̂+(z, un)hdz

∣∣∣∣
≤ εn||h||

1 + ||un||
for all h ∈ H1(Ω), with εn → 0+. (42)

In (42) we choose h = −u−n ∈ H1(Ω). Then

γ(u−n ) + µ||u−n ||22 ≤ εn for all n ∈ N (see (39)),

⇒ c0||u−n ||2 ≤ εn for all n ∈ N (see (3)),

⇒ u−n → 0 in H1(Ω) as n→∞. (43)

From (40) and (43), we have

γ(u+
n )−

∫
Ω

2F (z, u+
n )dz ≤M8 for some M8 > 0, all n ∈ N. (44)



Superlinear, Noncoercive Asymmetric Robin Problems 267

Also, in (38) we choose h = u+
n ∈ H1(Ω). Then

−γ(u+
n ) +

∫
Ω

f(z, u+
n )u+

n dz ≤M9 for some M9>0, all n∈N (see (39)). (45)

We add (44) and (45) and obtain∫
Ω

e(z, u+
n )dz ≤M10 for some M10 > 0, all n ∈ N. (46)

Using (46) and reasoning as in the proof of Proposition 3.3 (see Claim 1 in that
proof), we infer that

{u+
n }n≥1 ⊆ H1(Ω) is bounded. (47)

From (43) and (47) it follows that {un}n≥1 ⊆ H1(Ω) is bounded. So, we may
assume that

un
w→ u in H1(Ω) and un → u in L

2s
s−1 (Ω) and in L2(∂Ω). (48)

In (42) we choose h = un−u ∈ H1(Ω), pass to the limit as n→∞ and use (44).
Then

lim
n→∞

〈A(un), un − u〉 = 0 ⇒ un → u in H1(Ω)

(as before via the Kadec–Klee property), and ϕ̂+ satisfies the C-condition. The
proof of Proposition 3.4 is complete.

Proposition 3.5. If hypotheses H(ξ), H(β) and H1 hold, then u = 0 is a local
minimizer for the functionals ϕ and ϕ̂+.

Proof. We do the proof for the functional ϕ, the proof for ϕ̂+ being similar.
Using hypotheses H1(i),(iv), we see that given ε > 0, we can find c3 = c3(ε) > 0
such that

F (z, x) ≤ 1

2
(ϑ(z) + ε)x2 + c3|x|r for almost all z ∈ Ω, all x ∈ R. (49)

Then for all u ∈ H1(Ω), we have

ϕ(u)=
1

2
γ(u)−

∫
Ω

F (z, u)dz

≥ 1

2

[
γ(u)−

∫
Ω

ϑ(z)u2dz

]
− ε

2
||u||2−c4||u||r for some c4>0 (see (49))

≥ 1

2
[c5−ε]||u||2−c4||u||r for some c5>0 (see Lemma 2.3).

(50)

Choosing ε ∈ (0, c5), from (50) we conclude that

ϕ(u) ≥ c6||u||2 − c4||u||r for some c6 > 0, all u ∈ H1(Ω). (51)

Since r > 2, from (51) we see that if ρ ∈ (0, 1) is small, then ϕ(u) > 0 = ϕ(0)
for all u ∈ H1(Ω), 0 < ||u|| ≤ ρ, and u = 0 is a (strict) local minimizer for ϕ.

We argue similarly for the functional ϕ̂+.
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Proposition 3.6. If hypotheses H(ξ), H(β) and H1 hold, then Kϕ̂+ ⊆ D+∪{0}.

Proof. Let u ∈ Kϕ̂+\{0}. Then ϕ̂′+(u) = 0 implies

〈A(u), h〉+

∫
Ω

ξ(z)uhdz +

∫
∂Ω

β(z)uhdσ + µ

∫
Ω

uhdz =

∫
Ω

f̂+(z, u)hdz (52)

for all h ∈ H1(Ω). In (48) we choose h = −u− ∈ H1(Ω). Then

γ(u−) + µ||u−||22 = 0 (see (39)) ⇒ c0||u−||2 ≤ 0 (see (3)) ⇒ u ≥ 0, u 6= 0.

Then (52) becomes

〈A(u), h〉+

∫
Ω

ξ(z)uhdz +

∫
∂Ω

β(z)uhdσ =

∫
Ω

f(z, u)hdz

for all h ∈ H1(Ω) (see (39)),

⇒


−∆u(z) + ξ(z)u(z) = f(z, u(z)) for almost all z ∈ Ω,

∂u

∂n
+ β(z)u = 0 on ∂Ω

(53)

(see Papageorgiou & Rădulescu [14]).

Let a0(z) = f(z,u(z))
1+u(z)

. Then |a0(z)| = |f(z,u(z))|
1+u(z)

≤ c7(1+u(z)r−1)
1+u(z)

for some c7 > 0.
Hence,

|a0(z)| ≤ c8(1+u(z))r−1

1+u(z)
= c8(1+u(z))r−2 ≤ c9(1+u(z)r−2) for some c8, c9>0,

and a0 ∈ L
N
2 (Ω). Note that

(r − 2)
N

2
≤
(

2N

N − 2
− 2

)
N

2
=

2N

N − 2
= 2∗ if N ≥ 3.

Also by hypothesis H(ξ), ξ ∈ Ls(Ω) with s > N . Hence from (53) and
Wang [20, Lemma 5.1], we have

u ∈ L∞(Ω).

Then from (53) and using hypotheses H(ξ) and H1(i), we have ∆u ∈ Ls(Ω).
Using the Calderon–Zygmund estimates (see Wang [20, Lemma 5.2]) and the
Sobolev embedding theorem, we infer that

u ∈ C1,α(Ω) with α = 1− N

s
∈ (0, 1).

Let ρ = ||u||∞. We can find ξ̂ρ > 0 such that

f(z, x)x+ ξ̂ρx
2 ≥ 0 for almost all z ∈ Ω, all x ∈ R
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(see hypotheses H1(i),(iv)). Then from (53) and hypotheses H(ξ), H1(i), we
have

∆u(z) ≤ (c10 + ||ξ+||∞)u(z) for almost all z ∈ Ω.

Use the strong maximum principle (see Gasinski & Papageorgiou [7, p. 738]) to
deduce u ∈ D+. The proof of Proposition 3.6 is complete.

Now working with the functional ϕ̂+ and using variational arguments we
are ready to produce a positive solution.

Proposition 3.7. If hypotheses H(ξ), H(β) and H1 hold, then problem (1) ad-
mits a positive solution u0 ∈ D+.

Proof. We may assume that Kϕ̂+ is finite. Otherwise Proposition 3.6 and (39)
imply that we have an infinity of positive smooth solutions for problem (1).

Because of Proposition 3.5, we can find ρ ∈ (0, 1) small such that

ϕ̂+(0) = 0 < inf{ϕ̂+(u) : ||u|| = ρ} = m̂+
ρ (54)

(see Aizicovici, Papageorgiou & Staicu [1, proof of Proposition 29]).
If u ∈ D+, then hypothesis H1(ii) implies that

ϕ̂+(tu)→ −∞ as t→ +∞. (55)

Finally from Proposition 3.4 we know that

ϕ̂+ satisfies the C-condition. (56)

Relations (54)–(56) permit the use of Theorem 2.2 (the mountain pass theorem).
So, we can find u0 ∈ H1(Ω) such that

u0 ∈ Kϕ̂+ and m̂+
ρ ≤ ϕ̂+(u0). (57)

From (57), Proposition 3.6, (54) and (39), we conclude that u0 ∈ D+ is a
positive solution of problem (1).

Next we will produce a negative smooth solution. To this end, we consider
the following truncation-perturbation of the reaction term f(z, ·):

f̂−(z, x) =

{
f(z, x) + µ|x|p−2x if x < 0
0 if 0 ≤ x

(58)

(as before µ > 0 is the constant from (3)). This is a Carathéodory function. We
set F̂−(z, x) =

∫ x
0
f̂−(z, s)ds and consider the C1-functional ϕ̂− : H1(Ω) → R

defined by

ϕ̂−(u) =
1

2
γ(u) +

µ

2
||u||22 −

∫
Ω

F̂−(z, u)dz for all u ∈ H1(Ω).

Reasoning as in the proof of Proposition 3.5, we show the following result.
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Proposition 3.8. If hypotheses H(ξ), H(β) and H1 hold, then u = 0 is a local
minimizer for the functional ϕ̂−.

Next we show that the functional ϕ̂− satisfies the C-condition.

Proposition 3.9. If hypotheses H(ξ), H(β) and H1 hold, then the functional ϕ̂−
satisfies the C-condition.

Proof. Let {un}n≥1 ⊆ H1(Ω) be a sequence such that {ϕ̂−(un)}n≥1 ⊆ R is
bounded and

(1 + ||un||)ϕ̂′−(un)→ 0 in H1(Ω)∗ as n→∞. (59)

From (59), we have∣∣∣∣〈A(un), h〉+

∫
Ω

ξ(z)unhdz +

∫
∂Ω

β(z)unhdσ + µ

∫
Ω

u+
nhdz −

∫
Ω

f(z,−u−n )hdz

∣∣∣∣
≤ ε||h||

1 + ||un||
for all h ∈ H1(Ω) with εn → 0+ (see (58)). (60)

In (60) we choose h = u+
n ∈ H1(Ω). Then

γ(u+
n ) + µ||u+

n ||22 ≤ εn for all n ∈ N,
⇒ c0||u+

n ||2 ≤ εn for all n ∈ N (see (3)),

⇒ u+
n → 0 in H1(Ω) as n→∞. (61)

Arguing as in the proof of Proposition 3.3 (see Claim 2 in that proof), using
hypothesis H1(iii), we show that

{u−n }n≥1 ⊆ H1(Ω) is bounded. (62)

From (61) and (62), we have that {un}n≥1 ⊆ H1(Ω) is bounded, from which
as before via the Kadec–Klee property, we conclude that ϕ̂− satisfies the C-
condition.

We can also characterize the critical points of ϕ̂− as we did for those of ϕ̂+

(see Proposition 3.6).

Proposition 3.10. If hypotheses H(ξ), H(β) and H1 hold, then Kϕ̂ ⊆
(−D+) ∪ {0}.

Proof. Let u ∈ Kϕ̂−\{0}. We have

ϕ̂′−(u) = 0 ⇒


〈A(u), h〉+

∫
Ω

ξ(z)uhdz +

∫
∂Ω

β(z)uhdσ + µ

∫
Ω

u+hdz

=

∫
Ω

f(z,−u−)hdz for all h ∈ H1(Ω) (see (58)).

(63)
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In (63) we choose h = u+ ∈ H1(Ω). Then

γ(u+) + µ||u+||22 = 0 ⇒ c0||u+||2 ≤ 0 (see (3)) ⇒ u ≤ 0, u 6= 0.

So, relation (63) becomes

〈A(u), h〉+

∫
Ω

ξ(z)uhdz +

∫
∂Ω

β(z)uhdσ =

∫
Ω

f(z, u)hdz for all h ∈ H1(Ω),

⇒


−∆u(z) + ξ(z)u(z) = f(z, u(z)) for almost all z ∈ Ω,

∂u

∂n
+ β(z)u = 0 on ∂Ω

(64)

(see Papageorgiou & Rădulescu [14]).

Hypotheses H1(i),(iii),(iv), imply that

|f(z, x)| ≤ c11|x| for almost all z ∈ Ω, all x ≤ 0, with c11 > 0. (65)

We set

m̂(z) =

{
f(z,u(z))
u(z)

if u(z) 6= 0

0 if u(z) = 0.

From (65) we have that m̂ ∈ L∞(Ω) and from (64) we have

−∆u(z) = (m̂− ξ)(z)u(z) for almost all z ∈ Ω. (66)

We have (m̂− ξ)(·) ∈ Ls(Ω) (see hypothesis H(ξ)). So, Wang [20, Lemma 5.1]
implies that u ∈ L∞(Ω) and so from (66) we have ∆u ∈ Ls(Ω). As before, by
the Calderon–Zygmund estimates (see Wang [20, Lemma 5.2]) we have

u ∈ W 2,s(Ω) ⇒ u ∈ C1,α(Ω) with α = 1− N

s

(see the Sobolev embedding theorem). From (64), (65) and hypothesis H(ξ) we
have

∆(−u)(z) ≤ (c12 + ||ξ+||∞)(−u)(z) for almost all z ∈ Ω ⇒ u ∈ (−D+)

(by the strong maximum principle, see Gasinski & Papageorgiou [7, p. 738]).

Now we are ready to produce the negative solution.

Proposition 3.11. If hypotheses H(ξ), H(β) and H1 hold, then problem (1)
admits a negative solution v0 ∈ (−D+).
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Proof. We may assume that Kϕ̂− is finite. Otherwise Proposition 3.10 and (66)
imply that we already have an infinity of distinct negative smooth solutions.

Because of Proposition 3.8, we can find ρ ∈ (0, 1) small such that

ϕ̂−(0) = 0 < inf{ϕ̂−(u) : ||u|| = ρ} = m̂−ρ (67)

(see Aizicovici, Papageorgiou & Staicu [1], proof of Proposition 29). Hypotheses
H1(i),(iii) imply that given ε > 0, we can find c13 = c13(ε) > 0 such that

F (z, x) ≥ 1

2
(η(z)− ε)x2 − c13 for almost all z ∈ Ω, all x ≤ 0.

Then for t > 0 we have

ϕ̂−(t(−û1)) =
t2

2
γ(û1)−

∫
Ω

F (z, t(−û1))dz (see (58))

≤ t2

2

[
γ(û1)−

∫
Ω

η(z)û2
1dz + ε

]
+ c13|Ω|N (68)

(see (67) and recall that ||û1||2 = 1).
Note that γ(û1)−

∫
Ω
η(z)û2

1dz =
∫

Ω
(λ̂1− η(z))û2

1dz = ζ < 0 (see hypothesis
H1(iii) and recall û1 ∈ intC+) So, from (68) we have

ϕ̂−(t(−û1)) ≤ t2

2
[ζ + ε] + c13|Ω|N . (69)

Choosing ε ∈ (0,−ζ), from (69) we infer that

ϕ̂−(t(−û1))→ −∞ as t→ +∞. (70)

From (67), (70) and Proposition 3.9, we see that we can use Theorem 2.2 (the
mountain pass theorem). So, we can find v0 ∈ H1(Ω) such that

v0 ∈ Kϕ̂− and m̂−ρ ≤ ϕ̂−(v0). (71)

From (67), (71) and Proposition 3.10, we have that v0 ∈ −D+ is a negative
smooth solution of problem (1).

We will produce a third nontrivial smooth solution using tools from Morse
theory (critical groups). To do this we will need eventually to strengthen the
regularity of f(z, ·). However, for the moment, we do not need this extra con-
dition. We start by computing the critical groups at infinity of the energy
functional ϕ.

Proposition 3.12. If hypotheses H(ξ), H(β), H1 hold and ϕ(Kϕ) is bounded
below, then Ck(ϕ,∞) = 0 for all k ∈ N0.
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Proof. We set ϕc = ϕ|C1(Ω). As in the proof of Proposition 3.6 (see also the
proof of Proposition 3.10), we can show that

Kϕc = Kϕ = K.

Since C1(Ω) is dense in H1(Ω), from Palais [13, Theorem 16], we have

Hk(H
1(Ω), ϕ̇a) = Hk(C

1(Ω), ϕ̇ac) for all k ∈ N0, all a ∈ R.

If a ∈ R is not a critical value of ϕ, then

Hk(H
1(Ω), ϕa) = Hk(H

1(Ω), ϕ̇a) and Hk(C
1(Ω), ϕac) = Hk(C

1(Ω), ϕ̇ac)

for all k ∈ N0 (see Granas & Dugundji [8, p. 407]).
Let a < inf ϕ(Kϕ) (recall that by hypothesis, ϕ(Kϕ) is bounded below).

Then from the previous remarks and the definition of the critical groups at
infinity (see Section 2), it suffices to show that

Hk(C
1(Ω), ϕac) = 0 for all k ∈ N0.

Let C ⊆ ϕac be a compact set.

Claim 3. For a < 0 with |a| > 0 big, the set C is contractible in ϕac .

In what follows by 〈·, ·〉c we denote the duality brackets for the pair(
C1(Ω)∗, C1(Ω)

)
and let i : C1(Ω) → H1(Ω) be the continuous embedding.

We have
ϕc = ϕ ◦ i ⇒ ϕ′c(u) = i∗ϕ′(u) for all u ∈ C1(Ω). (72)

Let u ∈ ϕac and t > 0. Then we have

d

dt
ϕc(tu) = 〈ϕ′c(tu), u〉c (by the chain rule)

= 〈ϕ′(tu), u〉 (see (72))

=
1

t
〈ϕ′(tu), tu〉

=
1

t

[
γ(tu)−

∫
Ω

f(z, tu)(tu)dz

]
=

1

t

[
γ(tu)−

∫
Ω

f(z, tu+)(tu+)dz −
∫

Ω

f(z,−tu−)(−tu−)dz

]
≤ 1

t

[
γ(tu)−

∫
Ω

2F (z, tu+)dz −
∫

Ω

2F (z,−tu−)dz + c14

]
for some c14 > 0 (see hypotheses H1(ii), (iii))

=
1

t

[
γ(tu)−

∫
Ω

2F (z, tu)dz + c14

]
=

1

t
[2ϕc(tu) + c14] .
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Hence d
dt
ϕc(tu)|t=1 ≤ 2ϕc(u)+c14 ≤ 2a+c14 (recall that u ∈ ϕac). It follows that

a < −c14

2
⇒ d

dt
ϕc(tu)|t=1 < 0.

By virtue of hypothesis H1(ii), if ϕc(u) ∈ (a− 1, a], then we can find a unique
τ̂(u) > 0 such that

ϕc(τ̂(u)u) = a− 1.

If u ∈ ϕa−1
c , then we set τ̂(u) = 1. The implicit function theorem implies

that τ̂ ∈ C(ϕac , (0, 1]). Consider the deformation h1 : [0, 1]×C → ϕac defined by

h1(t, u) = [(1− t) + tτ̂(u)]u.

We set C1 = h1(1, C) ⊆ ϕa−1
c . The set C1 ⊆ C1(Ω) is compact. So, we can find

M11 > 0 such that∣∣∣∣∂u∂n(z)

∣∣∣∣ ≤M11 for all z ∈ ∂Ω, all u ∈ C1. (73)

Let d̂(z) = d(z, ∂Ω) for all z ∈ Ω (the distance function from ∂Ω). For
ε, c > 0 we consider the function

ζ̂ε,c(z) =

{
cd̂(z) if d̂(z) ≤ ε

cε if d̂(z) > ε
for all z ∈ Ω.

We approximate ζ̂ε by a C1(Ω)-function ζε. Then because of (73) by choosing
c > 0 big we can have (u + ζε,c)

+ 6= 0 for all u ∈ C1. In addition, if ε > 0 is
small we have

ϕc(u+ tζε,c) ≤ a for all (t, u) ∈ [0, 1]× C1.

So, we can have a deformation h2 : [0, 1]× C1 → ϕac defined by

h2(t, u) = u+ tζε,c for (t, u) ∈ [0, 1]× C1.

We set C2 = h2(1, C1) and consider u ∈ C2. Then u+ 6= 0 and

ϕc(u) = ϕc(u
+) + ϕc(−u−) ≤ a.

From the previous considerations we know that [1,∞) 3 t 7→ ϕc(tu) is decreas-
ing. Since the set C2 = h2(1, C1) ⊆ C1(Ω) is compact, we can find t∗ ≥ 1 such
that

ϕc(tu
+) ≤ a for all t ≥ t∗, all u ∈ C2. (74)

We introduce the deformation h3 : [0, 1]× C2 → ϕac defined by

h3(t, u) = (1− t+ t∗t)u for all (t, u) ∈ [0, 1]× C2.
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We set C3 = h3(1, C2). From (74) we have

ϕc(u
+) ≤ a for all u ∈ C3. (75)

The set C3 = h3(1, C2) ⊆ C1(Ω) is compact. So, we can find c15 > 0 such that

ϕc(s(−u−)) ≤ c15 for all s ∈ [0, 1], all u ∈ C3. (76)

Since the function t → ϕc(tu
+) is decreasing on [1,∞), using (75) we see that

we can find t′∗ ≥ 1 such that

ϕc(t
′
∗u

+) ≤ a− c15 for all u ∈ C3.

So, we define a deformation h4 : [0, 1]× C3 → ϕac by setting

h4(t, u) = (1− t+ t′∗t)u
+ + u− for all (t, u) ∈ [0, 1]× C3.

Let C4 = h4(1, C3). Then C4 ⊆ C1(Ω) is compact and

C4 ⊆ ϕac ∩ {u ∈ C1(Ω) : ϕc(u
+) ≤ a− c15} (see (76)). (77)

Finally we introduce the deformation h5 : [0, 1]× C4 → ϕac defined by

h5(t, u) = u+ + (1− t)(−u−) for all (t, u) ∈ [0, 1]× C4.

We have

ϕc(h5(t, u))=ϕc(u
++(1−t)(−u−))=ϕc(u

+)+ϕc((1−t)(−u−))≤a−c15+c15 =a

(see (76), (77)), which shows that this deformation is well-defined into the
sublevel set ϕac . We set C5 = h5(1, C4). Then C5 ⊆ C1(Ω) is compact and we
have

C5 ⊆ ϕac , C5 ⊆ C+ ⇒ C5 ⊆ ϕac ∩ C+ = Ca
+. (78)

Let ∂Bc
+ = {u ∈ C1(Ω) : ||u||C1(Ω) = 1} ∩ C+. From the first part of

the proof we know that given u ∈ ∂Bc
+, we can find τ0(u) > 0 such that

ϕc(τ0(u)u) = a and

Ca
+ = {tu : u ∈ ∂Bc

+, t ≥ τ0(u)}.

Via the radial retraction, we see that the sets Ca
+ and ∂Bc

+ are homotopy equiv-
alent. Consider the deformation h+ : [0, 1]× ∂Bc

+ → ∂Bc
+ defined by

h+(t, u) =
(1− t)u+ tû1

||(1− t)u+ tû1||C1(Ω)

for all (t, u) ∈ [0, 1]× ∂Bc
+.
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We have h+(1, u) = û1

||û1||C1(Ω)
∈ ∂Bc

+ (recall û1 ∈ D+),

⇒ ∂Bc
+ is contractible ⇒ Ca

+ is contractible ⇒ C5 is contractible (see (78)).

Therefore, by successive deformations we have passed from the initial set C ⊆ ϕac
to the set C5 which is contractible. Hence C is contractible and this proves the
Claim.

Let ∗ ∈ ϕac . Since a < inf ϕ(K) = inf ϕc(K), we have

Hk(ϕ
a
c , ∗) = Hk(ϕ̇

a
c , ∗) for all k ∈ N0. (79)

The Banach space C1(Ω) is separable. So, we can find a sequence {Xn}n≥1 of
finite dimensional subspaces of C1(Ω) such that

C1(Ω) =
⋃
n≥1

Xn.

Without any loss of generality, we assume that

∗ ∈ B̄Xn
n = {u ∈ Xn : ||u||C1(Ω) ≤ n}

for all n ∈ N big enough. From Claim 3 and (79), we have

Hk(ϕ̇
a
c , ∗) = Hk(ϕ̇

a
c , ϕ̇

a
c ∩ B̄Xn

n ) for all k ∈ N0. (80)

From Palais [13, Corollary, p. 5], we have

0 = Hk(ϕ̇
a
c , ϕ̇

a
c) = lim

→
n

Hk(ϕ̇
a
c , ϕ̇

a
c ∩ B̄Xn

n ) for all k ∈ N0, (81)

with lim→
n

denoting the inductive limit. From (79)–(81) it follows that

Hk(ϕ
a
c , ∗) = 0 for all k ∈ N0. (82)

We consider the following triple of sets

{∗} ⊆ ϕac ⊆ C1(Ω)

We consider the long exact sequence of singular homology groups corresponding
to this triple (see, for example, Motreanu, Motreanu & Papageorgiou [11, Propo-
sition 6.14, p. 143]). We have

· · · → Hk(ϕ
a
c , ∗)

i∗−→ Hk(C
1(Ω), ϕac)

∂∗−→ Hk−1(ϕac , ∗)→ · · · (83)

Here i∗ is the group homomorphism induced by the inclusion i : (ϕac , ∗) →
(C1(Ω), ϕac) and ∂∗ is the boundary homomorphism. Exploiting the exactness
of (83) and using (82), we infer that

Hk(C
1(Ω), ϕac) = 0 for all k ∈ N0,

⇒ Ck(ϕc,∞) = 0 for all k ∈ N0 (recall that a < inf ϕc(K) = inf ϕ(K)),

⇒ Ck(ϕ,∞) = 0 for all k ∈ N0 (see the beginning of the proof).
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As we already mentioned earlier, in order to produce a third nontrivial
smooth solution, we need to strengthen the regularity of f(z, ·). So, the new
stronger conditions on the reaction term f(z, x) are the following:

H2 : f : Ω × R → R is a measurable function such that for almost all z ∈ Ω,
f(z, 0) = 0, f(z, ·) ∈ C1(R) and

(i) |f ′x(z, x)| ≤ a(z)(1 + |x|r−2) for almost all z ∈ Ω, all x ∈ R, with a ∈
L∞(Ω)+, 2 < r < 2∗;

(ii) if F (z, x) =
∫ x

0
f(z, s)ds and e(z, x) = f(z, x)x− 2F (z, x), then

(a) limx→+∞
F (z,x)
x2 = +∞ uniformly for almost all z ∈ Ω,

(b) e(z, x) ≤ e(z, y) + τ(z) for almost all z ∈ Ω, all 0 ≤ x ≤ y with
τ ∈ L1(Ω)+;

(iii) there exist m ≥ max{k0, 2}, functions η, η̂ ∈ L∞(Ω) and a constant ĉ > 0
such that

(a) λ̂m ≤ η(z) ≤ η̂(z) ≤ λ̂m+1 for almost all z ∈ Ω, λ̂m 6≡ η, λ̂m+1 6≡ η̂,

(b) η(z) ≤ lim infx→−∞
f(z,x)
x
≤ lim supx→−∞

f(z,x)
x
≤ η̂(z) uniformly for

almost all z ∈ Ω,

(c) −ĉ ≤ e(z, x) for almost all z ∈ Ω, all x ≤ 0;

(iv) f ′x(z, 0) = limx→0
f(z,x)
x

uniformly for almost all z ∈ Ω and f ′x(z, 0) ≤ λ̂1

for almost all z ∈ Ω, f ′x(·, 0) 6≡ λ̂1.

Let u0 ∈ D+ and v0 ∈ −D+ be the two nontrivial constant sign smooth
solutions produced in Propositions 3.7 and 3.11 respectively.

Proposition 3.13. If hypotheses H(ξ), H(β), H2 hold and Kϕ is finite, then
Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0.

Proof. From the proof of Proposition 3.7, we know that u0 ∈ D+ is a critical
point of mountain pass type for the functional ϕ̂+. So, we have

C1(ϕ̂+, u0) 6= 0 (84)

(see Motreanu, Motreanu & Papageorgiou [11, Corollary 6.81, p. 168]). Consider
the homotopy

ĥ+(t, u) = (1− t)ϕ(u) + tϕ̂+(u) for all (t, u) ∈ [0, 1]×H1(Ω).

Suppose that we could find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ H1(Ω) such that

tn → t, un → u0 in H1(Ω) and (ĥ+)′u(tn, un) = 0 for all n ∈ N0. (85)
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From the equation in (85), we have

〈A(un), h〉+
∫

Ω

ξ(z)unhdz +

∫
∂Ω

β(z)unhdσ

=

∫
Ω

f(z, un)hdz − tn
∫

Ω

f(z,−u−n )hdz + tn

∫
Ω

u−nhdz for all h∈H1(Ω), all n∈N,

⇒


−∆un(z) + ξ(z)un(z) = f(z, un(z))− tnf(z,−u−n (z)) + tnu

−
n (z)

for almost all z ∈ Ω,

∂un
∂n

+ β(z)un = 0 on ∂Ω

(86)

(see Papageorgiou & Rădulescu [14]).
From (86) and Wang [20] (see also Papageorgiou & Rădulescu [17]), we have

that we can find M12 > 0 such that ||un||∞ ≤M12 for all n ∈ N. Then using (86)
and the Calderon–Zygmund estimates (see Wang [20, Lemma 5.2]), as before,
we can find α ∈ (0, 1) and M13 > 0 such that

un ∈ C1,α(Ω) and ||un||C1,α(Ω) ≤M13 for all n ∈ N. (87)

From (85), (87) and since C1,α(Ω) is embedded compactly into C1(Ω), we have

un → u0 in C1(Ω) ⇒ un ∈ D+ for all n ≥ n0 (recall that u0 ∈ D+),

and {un}n≥n0 ⊆ D+ are all distinct positive solutions of (1), a contradiction to
our hypothesis that Kϕ is finite. So, (85) cannot occur and then by the homo-
topy invariance of critical groups (see Corvellec & Hantoute [4, Theorem 5.2]),
we have

Ck(ϕ, u0) = Ck(ϕ̂+, u0) for all k ∈ N0 ⇒ C1(ϕ, u0) 6= 0 (see (84)).

Hypotheses H2 imply that ϕ ∈ C2(H1(Ω)) and

〈ϕ′′(u0)v, h〉 =

∫
Ω

(Dv,Dh)RNdz +

∫
Ω

ξ(z)vhdz +

∫
∂Ω

β(z)vhdσ

−
∫
∂

f ′x(z, u0)vhdz for all v, h ∈ H1(Ω).

(88)

Suppose that the Morse index of u0 ∈ Kϕ is zero. Then we have

||Dv||22 +

∫
∂Ω

β(z)v2dσ ≥
∫

Ω

[f ′x(z, u0)− ξ(z)]v2dz for all v ∈ H1(Ω) (89)

(see (88)). Assume that [f ′x(·, u0(·)) − ξ(·)]+ = 0 and let v ∈ kerϕ′′(u0). Then
from (88) we have

||Dv||22 +

∫
∂Ω

β(z)v2dσ ≤ 0 ⇒ v = constant (see hypothesis H(β)).
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Next assume that [f ′x(·, u0(·))−ξ(·)]+ 6=0 and again let v∈kerϕ′′(u0). From (88)
and (89) we have

λ̃1(m̃) = 1 where m̃ = f ′x(·, u0(·))− ξ(·)

and we know that it is simple. So, it follows that dim kerϕ′′(u0) = 1. Therefore
we can use Motreanu, Motreanu & Papageorgiou [11, Corollary 6.102, p. 177]
and conclude that

Ck(ϕ, u0) = δk,1Z for all k ∈ N0.

Reasoning in a similar fashion and using this time the functional ϕ̂−, we
show that

Ck(ϕ, v0) = δk,1Z for all k ∈ N0.

This completes the proof of Proposition 3.13.

Now we are ready for the multiplicity theorem (three nontrivial solutions
theorem) for problem (1).

Theorem 3.14. If hypotheses H(ξ), H(β) and H2 hold, then problem (1) has
at least three nontrivial smooth solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ C1(Ω).

Proof. From Proposition 3.7 and 3.11, we already have two nontrivial, constant
sign smooth solutions

u0 ∈ D+ and v0 ∈ −D+.

Suppose that Kϕ = {0, u0, v0}. Then from Proposition 3.5, we have

Ck(ϕ, 0) = δk,0Z for all k ∈ N0. (90)

Also, from Proposition 3.13, we have

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0. (91)

Finally from Proposition 3.12, we know that

Ck(ϕ,∞) = 0 for all k ∈ N0. (92)

From (90)–(92) and the Morse relation with t = −1 (see (5)), we have

(−1)0 + 2(−1)1 = 0,

a contradiction. So, there exists y0 ∈ Kϕ, y0 /∈ {0, u0, v0}. Then this is the third
nontrivial solution of problem (1) and the regularity theory (see Wang [20])
implies that y0 ∈ C1(Ω).
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