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Abstract. We study perturbations of the eigenvalue problem for the Robin p-Laplacian. First

we consider the case of a (p − 1)-sublinear perturbation and prove existence, nonexistence and

uniqueness of positive solutions. Then we deal with the case of a (p − 1)-superlinear perturbation

which need not satisfy the Ambrosetti–Rabinowitz condition and prove a multiplicity result for

positive solutions. Our approach uses variational methods together with suitable truncation and

perturbation techniques.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we

study the following nonlinear parametric Robin problem:

(Pλ)







−∆pu(z) = λu(z)p−1 + f(z, u(z)) in Ω,
∂u

∂np
+ β(z)u(z)p−1 = 0 on ∂Ω, u > 0, 1 < p <∞.

Here ∆p denotes the p-Laplace differential operator defined by

∆pu = div (|Du|p−2Du) for all u ∈ W 1,p(Ω).

Also ∂u
∂np

= |Du|p−2(Du, n)RN with n(z) being the outward unit normal at z ∈ ∂Ω.

Moreover, λ ∈ R is a parameter and f(z, x) is a Carathéodory perturbation (that
is, for all x ∈ R, the mapping z 7−→ f(z, x) is measurable on Ω and for a.a. z ∈ Ω,
x 7−→ f(z, x) is continuous).

We are interested in the existence, nonexistence and uniqueness of positive solu-
tions for problem (Pλ) as the parameter λ ∈ R varies. We can view problem (Pλ) as
a perturbation of the classical eigenvalue problem for the Robin p-Laplacian, inves-
tigated by Lê [12] and Papageorgiou and Rădulescu [15]. Similar studies concerning
positive solutions, were conducted by Brezis and Oswald [5] (for problems driven by
the Dirichlet Laplacian) and by Diaz and Saa [6] (for problems driven by the Dirichlet
p-Laplacian). More recently, Gasinski and Papageorgiou [11] produced analogous re-
sults for the Neumann p-Laplacian. Multiplicity results concerning perturbed Robin
problems involving the p-Laplacian were investigated recently by Winkert [18]. We
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also mention the recent work of Papageorgiou and Rădulescu [15], who studied a
class of parametric equations driven by the Robin p-Laplacian and proved multiplic-
ity results with precise sign information for all the solutions produced.

Here we first examine the case where f(z, ·) is (p− 1)-sublinear near +∞, which
leads to uniqueness results. Next, we consider the case where f(z, ·) is (p − 1)-
superlinear (but without employing the Ambrosetti–Rabinowitz condition), which
leads to multiplicity results.

2. Mathematical background

Our approach uses variational methods based on the critical point theory as well
as suitable truncation and perturbation techniques. So, let X be a Banach space
and X∗ be its topological dual. By 〈·, ·〉 we denote the duality brackets for the pair
(X∗, X). Given ϕ ∈ C1(X), we say that ϕ satisfies the Cerami condition (the C-
condition for short), if the following is true: Every sequence {un}n>1 ⊆ X such that
{ϕ(un)}n>1 ⊆ R is bounded and

(1 + ‖un‖)ϕ
′(un) → 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence.
This is a compactness type condition on ϕ needed to offset the fact that the space

X is not necessarily locally compact (being in general infinite dimensional). It is a
basic tool in proving a deformation theorem which in turn leads to a minimax theory
for the critical values of ϕ. Prominent in this theory, is the so-called “mountain pass
theorem” due to Ambrosetti and Rabinowitz [3], stated here in a slightly more general
form.

Theorem 1. Assume that ϕ ∈ C1(X) satisfies the C-condition, u0, u1 ∈ X,
‖u1 − u0‖ > ρ > 0,

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ‖u− u0‖ = ρ] = mρ

and c = inf
γ∈Γ

max
06t61

ϕ(γ(t)) where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}. Then

c > mρ and c is a critical value of ϕ.

In the analysis of problem (Pλ), in addition to the Sobolev space W 1,p(Ω), we
will also use the Banach space C1(Ω). This is an ordered Banach space with positive
cone

C+ = {u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

In the Sobolev space W 1,p(Ω), we consider the usual norm given by

‖u‖ =
[

‖u‖pp + ‖Du‖pp
]1/p

for all u ∈ W 1,p(Ω).

To distinguish, we denote by |·| the Euclidean norm on R
N . On ∂Ω we use the (N−1)-

dimensional surface (Hausdorff) measure σ( · ). So, we can define the Lebesgue spaces
Lq(∂Ω), 1 6 q 6 ∞. We know that there is a unique, continuous linear map
γ0 : W

1,p(Ω) → Lp(∂Ω), known as the “trace map”, such that γ0(u) = u|∂Ω for all

u ∈ C1(Ω). We have γ0(W
1,p(Ω)) = W

1

p′
,p
(∂Ω)

(

1
p
+ 1

p′
= 1

)

and ker γ0 = W 1,p
0 (Ω).

In the sequel, for the sake of notational simplicity, we drop the use of the trace map
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γ0 to denote the restriction of a Sobolev function on ∂Ω. All such restrictions are
understood in the sense of traces.

For every x ∈ R, we set x± = max{±x, 0}. Then for u ∈ W 1,p(Ω) we define
u±(·) = u(·)±. We know that

u± ∈ W 1,p(Ω), u = u+ − u− and |u| = u+ + u−.

Given a measurable function h : Ω×R → R (for example, a Carathéodory function),
we define

Nh(u)(·) = h(·, u(·)) for all u ∈ W 1,p(Ω)

and by | · |N we denote the Lebesgue measure on R
N .

Let A : W 1,p(Ω) →W 1,p(Ω)∗ be the nonlinear map defined by

〈A(u), v〉 =

ˆ

Ω

|Du|p−2(Du,Dv)RN dz for all u, v ∈ W 1,p(Ω).(1)

Proposition 2. The map A : W 1,p(Ω) → W 1,p(Ω)∗ defined by (1) is bounded
(maps bounded sets to bounded sets), demicontinuous monotone (hence maximal

monotone too) and of type (S)+, that is, if un
w
→ u in W 1,p(Ω) and

lim sup
n→∞

〈A(un), un − u〉 6 0,

then un → u in W 1,p(Ω).

Suppose that f0 : Ω×R → R is a Carathéodory function such that

|f0(z, x)| 6 a(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R,

with a ∈ L∞(Ω)+ and 1 < r < p∗ =

{

Np
N−p

if p < N,

+∞ if p > N.

We set F0(z, x) =
´ x

0
f0(z, s)ds and consider the C1-functional ϕ0 : W

1,p(Ω) → R

defined by

ϕ0(u) =
1

p
‖Du‖pp +

1

p

ˆ

∂Ω

β(z)|u(z)|p dσ −

ˆ

Ω

F0(z, u(z)) dz for all u ∈ W 1,p(Ω).

We assume that β ∈ C0,τ (∂Ω) with 0 < τ < 1 and β > 0, β 6= 0. From Papageorgiou
and Rădulescu [15], we have the following result, which is a consequence of the
nonlinear regularity theory.

Proposition 3. Let u0 ∈ W 1,p(Ω) be a local C1(Ω)-minimizer of ϕ0, that is,
there exists ρ0 > 0 such that

ϕ0(u0) 6 ϕ0(u0 + h) for all h ∈ C1(Ω), ‖h‖C1(Ω) 6 ρ0.

Then u0 ∈ C1,γ(Ω) for some γ ∈ (0, 1) and it is also a local W 1,p(Ω)-minimizer of ϕ0,
that is, there exists ρ1 > 0 such that

ϕ0(u0) 6 ϕ0(u0 + h) for all h ∈ W 1,p(Ω), ‖h‖ 6 ρ1.

Remark 1. We mention that the first such result was proved by Brezis and
Nirenberg [4] for the space H1

0 (Ω).
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Finally consider the nonlinear eigenvalue problem

(Eλ)







−∆pu(z) = λ|u(z)|p−2u(z) in Ω,
∂u

∂np
+ β(z)|u(z)|p−2u(z) = 0 on ∂Ω.

This eigenvalue problem was studied by Lê [12] and Papageorgiou and Rădulescu
[15].

We say that λ ∈ R is an eigenvalue of the negative Robin p-Laplacian (denoted
by −∆R

p ), if problem (Eλ) admits a nontrivial solution u, known as an eigenfunction
corresponding to the eigenvalue λ.

Suppose that β ∈ C0,τ (∂Ω), 0 < τ < 1 and β(z) > 0 for all z ∈ ∂Ω, β 6= 0. Then

we know that (Eλ) admits a smallest eigenvalue λ̂1 such that

• λ̂1 > 0;
• λ̂1 is simple and isolated (that is, if u, v are eigenfunctions corresponding to

λ̂1, then u = ξv for some ξ ∈ R \ {0} and there exists ε > 0 such that

(λ̂1, λ̂1 + ε) contains no eigenvalue);
• we have

λ̂1 = inf

[

‖Du‖pp +
´

∂Ω
β(z)|u|p dσ

‖u‖pp
: u ∈ W 1,p(Ω), u 6= 0

]

.(2)

The infimum in (2) is realized on the one dimensional eigenspace corresponding to

λ̂1. From (2) it is clear that the elements of this eigenspace, do not change sign.
Let û1 ∈ W 1,p(Ω) be the positive, Lp-normalized (that is, ‖û1‖p = 1) eigenfunction

corresponding to λ̂1. The nonlinear regularity theory (see Lieberman [13]) and the
nonlinear maximum principle (see Vazquez [16]), imply û1 ∈ intC+. We mention

that λ̂1 is the only eigenvalue with eigenfunctions of constant sign. All the other
eigenvalues have nodal (sign-changing) eigenfunctions. For more about the higher
parts of the spectrum of −∆R

p , we refer to Lê [12] and Papageorgiou and Rădulescu
[15].

As an easy consequence of the above properties, we have the following result (see
for example, Papageorgiou and Rădulescu [14]).

Proposition 4. If ϑ ∈ L∞(Ω), ϑ(z) 6 λ̂1 a.e. in Ω, ϑ 6= λ̂1, then there exists
ξ0 > 0 such that

‖Du‖pp +

ˆ

∂Ω

β(z)|u|p dσ −

ˆ

Ω

ϑ(z)|u|p dz > ξ0‖u‖
p,

for all u ∈ W 1,p(Ω).

In the next section, we study the case in which the perturbation f(z, ·) is (p−1)-
sublinear.

3. Sublinear perturbations

Our hypotheses on the data of problem (Pλ), are the following:

H(β): β ∈ C0,τ(∂Ω), with τ ∈ (0, 1) and β(z) > 0 for all z ∈ ∂Ω, β 6= 0.
H(f): f : Ω×R → R is a Carathéodory function such that for a.a. z ∈ Ω, f(z, 0) = 0,

f(z, x) > 0 for all x > 0 and
(i) f(z, x) 6 a(z)(1 + xp−1) for a.a. z ∈ Ω, all x > 0, with a ∈ L∞(Ω)+;
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(ii) lim
x→+∞

f(z,x)
xp−1 = 0 uniformly for a.a. z ∈ Ω;

(iii) lim
x→0+

f(z,x)
xp−1 = +∞ uniformly for a.a. z ∈ Ω.

Remark 2. Since we are interested in positive solutions and the above hypothe-
ses concern the positive semiaxis (0,+∞), without any loss of generality, we assume
that f(z, x) = 0 for a.a. z ∈ Ω, all x 6 0. Hypothesis H(f)(ii) implies that the
perturbation f(z, ·) is strictly (p− 1)-sublinear near +∞, while hypothesis H(f)(iii)
dictates a similar polynomial growth near 0+. A simple example illustrating such a
perturbation, is given by the function f(x) = xq−1 for all x > 0, with q ∈ (1, p). In
the sequel F (z, x) =

´ x

0
f(z, s) ds.

We introduce the following two sets related to problem (Pλ):

P = {λ ∈ R : problem (Pλ) admits a positive solution},

S(λ) = the set of positive solutions for problem (Pλ).

Note that as in Filippakis, Kristaly and Papageorgiou [8], exploiting the monotonicity
of the operator A (see Proposition 2), we have that S(λ) is downward directed, that
is, if u1, u2 ∈ S(λ), then we can find u ∈ S(λ) such that u 6 u1, u 6 u2.

Proposition 5. If hypotheses H(β) and H(f) hold, then P 6= ∅ and for every
λ ∈ P, we have S(λ) ⊆ intC+.

Proof. For every λ ∈ R, we consider the C1-functional ϕ̂λ : W
1,p(Ω) → R defined

by

ϕ̂λ(u) =
1

p
‖Du‖pp +

1

p
‖u−‖pp +

1

p

ˆ

∂Ω

β(z)(u+)p dσ −
λ

p
‖u+‖pp −

ˆ

Ω

F (z, u+) dz

for all u ∈ W 1,p(Ω). Hypotheses H(f)(i), (ii) imply that given ε > 0, we can find
c1 = c1(ε) > 0 such that

F (z, x) 6
ε

p
xp + c1 for a.a. z ∈ Ω, all x > 0.(3)

Let λ < λ̂1. Then for all u ∈ W 1,p(Ω), we have

ϕ̂λ(u) >
1

p
‖Du+‖pp +

1

p

ˆ

∂Ω

β(z)(u+)p dσ −
λ+ ε

p
‖u+‖pp

+
1

p
‖Du−‖pp +

1

p
‖u−‖pp − c1|Ω|N (see (3))

>
1

p
[c2 − ε]‖u+‖p +

1

p
‖u−‖p − c1|Ω|N (see Prop. 4 and recall λ < λ̂1).

Choosing ε ∈ (0, c2), we see that

ϕ̂λ(u) >
c3
p
‖u‖p − c1|Ω|N with c3 = min{1, c2 − ε} > 0 =⇒ ϕ̂λ is coercive.

Also, using the Sobolev embedding theorem and the continuity of the trace map,
we see that ϕ̂λ is sequentially weakly lower semicontinuous. So, by the Weierstrass
theorem, we can find ûλ ∈ W 1,p(Ω) such that

(4) ϕ̂λ(ûλ) = inf
[

ϕ̂λ(u) : u ∈ W 1,p(Ω)
]

.
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By virtue of hypothesis H(f)(iii), given any ξ > λ̂1 − λ, we can find δ = δ(ξ) > 0
such that

(5) F (z, x) >
ξ

p
xp for a.a. z ∈ Ω, all x ∈ [0, δ].

Choose t ∈ (0, 1) small such that tû1(z) ∈ (0, δ] for all z ∈ Ω (recall that û1 ∈ intC+).
We have

ϕ̂λ(tû1) 6
tp

p
‖Dû1‖

p
p +

tp

p

ˆ

∂Ω

β(z)ûp1 dσ −
λtp

p
‖û1‖

p
p −

ξtp

p
‖û1‖

p
p (see (5))

=
tp

p
[λ̂1 − λ− ξ] (recall ‖û1‖p = 1).

Since ξ > λ̂1 − λ, it follows that

ϕ̂λ(tû1) < 0 =⇒ ϕ̂λ(ûλ) < 0 = ϕ̂λ(0) (see (4)), hence ûλ 6= 0.

From (4), we have

ϕ̂′
λ(ûλ) = 0 =⇒

〈A(ûλ), h〉+

ˆ

∂Ω

β(z)(û+λ )
p−1h dσ −

ˆ

Ω

(û−λ )
p−1h dz

= λ

ˆ

Ω

(û+λ )
p−1h dz +

ˆ

Ω

f(z, û+λ )h dz for all h ∈ W 1,p(Ω).

(6)

In (6) we choose h = −û−λ ∈ W 1,p(Ω). Then

‖Dû−λ ‖
p
p + ‖û−λ ‖

p
p = 0 =⇒ ûλ > 0, ûλ 6= 0.

Therefore (6) becomes

(7) 〈A(ûλ), h〉+

ˆ

∂Ω

β(z)ûp−1
λ h dσ = λ

ˆ

Ω

ûp−1
λ h dz +

ˆ

Ω

f(z, ûλ)h dz

for all h ∈ W 1,p(Ω).
By 〈·, ·〉0 we denote the duality brackets for the pair (W−1,p′(Ω),W 1,p

0 (Ω)). From
the representation theorem for the elements of W−1,p′(Ω) =W 1,p

0 (Ω)∗ (see, for exam-
ple, Gasinski and Papageorgiou [9, p. 212]), we have

div
(

|Dûλ|
p−2Dûλ

)

∈ W−1,p′(Ω)
(

1
p
+ 1

p′
= 1

)

.

Integrating by parts, we have

〈A(ûλ), h〉 = 〈−div
(

|Dûλ|
p−2Dûλ

)

, h〉0 for all h ∈ W 1,p
0 (Ω) ⊆W 1,p(Ω).

We use this in (7) and recall that h|∂Ω = 0 for all h ∈ W 1,p
0 (Ω). We obtain

〈−div
(

|Dûλ|
p−2Dûλ

)

, h〉0 = λ

ˆ

Ω

ûp−1
λ h dz +

ˆ

Ω

f(z, ûλ)h dz

for all h ∈ W 1,p
0 (Ω) =⇒ −∆pûλ(z) = λûλ(z)

p−1 + f(z, ûλ(z)) a.e. in Ω.

(8)

From the nonlinear Green’s identity (see, for example, Gasinski and Papageorgiou
[9, p. 210]), we have

〈A(ûλ), h〉+

ˆ

Ω

(∆pûλ)h dz =

〈

∂ûλ
∂np

, h

〉

∂Ω

for all h ∈ W 1,p(Ω) (see (8))
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where by 〈·, ·〉∂Ω we denote the duality brackets for the pair

(9)
(

W
− 1

p′
,p′
(∂Ω),W

1

p
,p(∂Ω)

) (

1
p
+ 1

p′
= 1

)

.

We return to (7) and use (9) above. We obtain
ˆ

Ω

(−∆pûλ)h dz +

〈

∂ûλ
∂np

, h

〉

∂Ω

+

ˆ

∂Ω

β(z)ûp−1
λ h dσ

= λ

ˆ

Ω

ûp−1
λ h dz +

ˆ

Ω

f(z, ûλ)h dz for all h ∈ W 1,p(Ω)

=⇒

〈

∂ûλ
∂np

, h

〉

∂Ω

+

ˆ

∂Ω

β(z)ûp−1
λ h dσ = 0 for all h ∈ W 1,p(Ω) (see (8))

=⇒
∂ûλ
∂np

+ β(z)ûp−1
λ = 0 on ∂Ω.

(10)

From (8) and (10) it follows that ûλ ∈ S(λ) and so λ ∈ P for every λ < λ̂1. From
Winkert [17], we have that ûλ ∈ L∞(Ω). So, we can apply Theorem 2 of Lieberman
[13] and obtain that ûλ ∈ C+ \ {0}.

Hypotheses H(f)(i),(iii) imply that given ρ > 0, we can find ξρ > 0 such that

(11) f(z, x) + ξρx
p−1 > 0 for a.a. z ∈ Ω, all x ∈ [0, ρ].

Let ρ = ‖ûλ‖∞ and let ξρ > 0 be as in (11) above. Then

−∆pûλ(z) + ξρûλ(z)
p−1

= λûλ(z)
p−1 + f(z, ûλ(z)) + ξρûλ(z)

p−1 > 0 a.e. in Ω (see (11))

=⇒ ∆pûλ(z) 6 ξρûλ(z)
p−1 a.e. in Ω,

=⇒ ûλ ∈ intC+ (see Vazquez [16]).

So, we have proved that S(λ) ⊆ intC+. �

Proposition 6. If hypotheses H(β) and H(f) hold and λ ∈ P, then (−∞, λ] ⊆
P.

Proof. Since λ ∈ P, we can find uλ ∈ S(λ) ⊆ intC+ (see Proposition 5). Let
µ ∈ (−∞, λ]. Using uλ ∈ intC+, we introduce the following truncation-perturbation
of the reaction in problem (Pµ):

(12) eµ(z, x) =











0 if x < 0,

(µ+ 1)xp−1 + f(z, x) if 0 6 x 6 uλ(z),

(µ+ 1)uλ(z)
p−1 + f(z, uλ(z)) if uλ(z) < x.

This is a Carathéodory function. We set Eµ(z, x) =
´ x

0
eµ(z, s) ds and consider the

C1-functional τµ : W
1,p(Ω) → R defined by

τµ(u) =
1

p
‖Du‖pp +

1

p
‖u‖pp +

1

p

ˆ

∂Ω

β(z)(u+)p dσ −

ˆ

Ω

Eµ(z, u) dz for all u ∈ W 1,p(Ω),

=⇒ τµ(u) >
1

p
‖u‖p − c4 for some c4 > 0 (see H(β) and (12))

=⇒ τµ is coercive.
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Also τµ is sequentially weakly lower semicontinuous. Hence we can find uµ ∈ W 1,p(Ω)
such that

τµ(uµ) = inf[τµ(u) : u ∈ W 1,p(Ω)].(13)

As in the proof of Proposition 5 for t ∈ (0, 1) small (at least such that tû1(z) 6 min
Ω
uλ

for all z ∈ Ω; recall that ûλ ∈ intC+), we have

τµ(tû1) < 0 =⇒ τµ(uµ) < 0 = τµ(0) (see (13)), hence uµ 6= 0.

From (13) we have

τ ′µ(uµ) = 0 =⇒

〈A(uµ), h〉+

ˆ

Ω

|uµ|
p−2uµh dz +

ˆ

∂Ω

β(z)(u+µ )
p−1h dσ =

ˆ

Ω

eµ(z, uµ)h dz

for all h ∈ W 1,p(Ω).

(14)

In (14) we choose h = −u−µ ∈ W 1,p(Ω). Then

‖Du−µ ‖
p
p + ‖u−µ ‖

p
p = 0 (see (12)) =⇒ uµ > 0, uµ 6= 0.

Next in (14) we choose (uµ − uλ)
+ ∈ W 1,p(Ω). Then

〈A(uµ), (uµ − uλ)
+〉+

ˆ

Ω

up−1
µ (uµ − uλ)

+ dz +

ˆ

∂Ω

β(z)up−1
µ (uµ − uλ)

+ dσ

=

ˆ

Ω

eµ(z, uµ)(uµ − uλ)
+ dz

=

ˆ

Ω

[

µup−1
λ + f(z, uλ)

]

(uµ − uλ)
+ dz +

ˆ

Ω

up−1
λ (uµ − uλ)

+ dz

6

ˆ

Ω

[

λup−1
λ + f(z, uλ)

]

(uµ − uλ)
+ dz +

ˆ

Ω

up−1
λ (uµ − uλ)

+ dz

= 〈A(uλ), (uµ − uλ)
+〉+

ˆ

Ω

up−1
λ (uµ − uλ)

+ dz +

ˆ

∂Ω

β(z)up−1
λ (uµ − uλ)

+ dσ,

=⇒ 〈A(uµ)−A(uλ), (uµ − uλ)
+〉+

ˆ

Ω

(up−1
µ − up−1

λ )(uµ − uλ)
+ dz

+

ˆ

∂Ω

β(z)(up−1
µ − up−1

λ )(uµ − uλ)
+ dσ 6 0,

=⇒ |{uµ > uλ}|N = 0, hence uµ 6 uλ.

So, we have proved that

uµ ∈ [0, uλ] \ {0},

where [0, uλ] = {u ∈ W 1,p(Ω) : 0 6 u(z) 6 uλ(z) a.e. in Ω}. Then (14) becomes

〈A(uµ), h〉+

ˆ

Ω

up−1
µ h dz +

ˆ

∂Ω

β(z)up−1
µ h dσ = (µ+ 1)

ˆ

Ω

up−1
µ h dz +

ˆ

Ω

f(z, uµ)h dz

for all h ∈ W 1,p(Ω). As in the proof of Proposition 5, using the nonlinear Green’s
identity, we obtain

uµ ∈ S(µ) ⊆ intC+ and so µ ∈ P.

Therefore (−∞, λ] ⊆ P. �
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Hypotheses H(f)(i),(iii) imply that given any ξ > 0 and r ∈ (p, p∗), we can find
c5 = c5(ξ, r) > 0 such that

(15) f(z, x) > ξxp−1 − c5x
r−1 for a.a. z ∈ Ω, all x > 0.

This unilateral growth constraint on the perturbation f(z, x), leads to the following
auxiliary Robin problem:

(16)







−∆pu(z) = ξu(z)p−1 − c5u(z)
r−1 in Ω,

∂u

∂np
+ β(z)u(z)p−1 = 0 on ∂Ω, u > 0.

Proposition 7. If hypotheses H(β) hold, then for ξ > 0 big problem (16) has a
unique positive solution u ∈ intC+.

Proof. First we establish the existence of a positive solution for problem (16).
To this end, we consider the C1-functional ψ : W 1,p(Ω) → R defined by

ψ(u) =
1

p
‖Du‖pp +

1

p
‖u−‖pp +

1

p

ˆ

∂Ω

β(z)(u+)p dσ +
c5
r
‖u+‖rr −

ξ

p
‖u+‖pp

for all u ∈ W 1,p(Ω). We have

(17) ψ(u) >
1

p
‖u‖p +

[

c5
r
‖u+‖r−pr −

(

ξ

p
+ 1

)

c6

]

‖u+‖pr for some c6 > 0.

Since r > p, from (17) it follows that ψ is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find u ∈ W 1,p(Ω) such that

ψ(u) = inf[ψ(u) : u ∈ W 1,p(Ω)].(18)

Choosing ξ > λ̂1 and since r > p, we see that for t ∈ (0, 1) small, we have

ψ(tû1) < 0 =⇒ ψ(u) < 0 = ψ(0) (see (18)), hence u 6= 0.

From (18) we have

ψ′(u) = 0 =⇒ 〈A(u), h〉 −

ˆ

Ω

(u−)p−1h dz +

ˆ

∂Ω

β(z)(u+)p−1h dσ

= ξ

ˆ

Ω

(u+)p−1h dz − c5

ˆ

Ω

(u+)r−1h dz for all h ∈ W 1,p(Ω).

(19)

Choose h = −u− ∈ W 1,p(Ω). Then we obtain u > 0, u 6= 0 and so (19) becomes

〈A(u), h〉+

ˆ

∂Ω

β(z)up−1h dσ = ξ

ˆ

Ω

up−1h dz − c5

ˆ

Ω

ur−1h dz for all h ∈ W 1,p(Ω)

=⇒ u is a positive solution of (16) (as in the proof of Proposition 5).

The nonlinear regularity theory (see [17], [13]) implies that u ∈ C+ \ {0}. We have

−∆pu(z) > −c5u(z)
r−1 a.e. in Ω =⇒ ∆pu(z) 6 c5‖u‖

r−p
∞ u(z)p−1 a.e. in Ω

=⇒ u ∈ intC+ (see Vazquez [16]).

Next we show the uniqueness of this positive solution. For this purpose, we introduce
the integral functional ϑ : Lp(Ω) → R = R ∪ {+∞} defined by

ϑ(u) =







1

p
‖Du1/p‖pp +

1

p

ˆ

∂Ω

β(z)u dσ if u > 0, u1/p ∈ W 1,p(Ω),

+∞ otherwise.
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Lemma 1 of Diaz and Saa [6] implies that ϑ is convex and lower semicontinuous.
Suppose that u, v are two positive solutions of the auxiliary problem (16). From the
first part of the proof, we have

u, v ∈ intC+

=⇒ up, vp ∈ domϑ = {y ∈ W 1,p(Ω) : ϑ(y) <∞} (the effective domain of ϑ).

Then for every h ∈ C1(Ω) and for |t| 6 1 small, we have

up + th, v + th ∈ domϑ.

It follows that ϑ is Gâteaux differentiable at up and at vp in the direction h. Using
the chain rule, we have

ϑ′(up)(h) =
1

p

ˆ

Ω

−∆pu

up−1 h dz +
1

p

ˆ

∂Ω

β(z)h dσ

ϑ′(vp)(h) =
1

p

ˆ

Ω

−∆pv

vp−1
h dz +

1

p

ˆ

∂Ω

β(z)h dσ for all h ∈ W 1,p(Ω)

(recall that C1(Ω) is dense in W 1,p(Ω)). The convexity of ϑ implies the monotonicity
of ϑ′. So, we have

0 6
1

p

ˆ

Ω

[

−∆pu

up−1 −
−∆pv

vp−1

]

(up − vp) dz

6
1

p

ˆ

Ω

c5(v
r−p − ur−p)(up − vp) dz 6 0 (see (16))

=⇒ u = v =⇒ u ∈ intC+ is the unique positive solution of (16). �

Proposition 8. If hypotheses H(β) and H(f) hold and λ ∈ P, then u 6 u for
all u ∈ S(λ).

Proof. Let u ∈ S(λ). We introduce the following Carathéodory function

(20) γ(z, x) =











0 if x < 0,

(ξ + 1)xp−1 − c5x
r−1 if 0 6 x 6 u(z),

(ξ + 1)u(z)p−1 − c5u(z)
r−1 if u(z) < x.

Let Γ(z, x) =
´ x

0
γ(z, s) ds and consider the C1-functional χ : W 1,p(Ω) → R defined

by

χ(u) =
1

p
‖Du‖pp +

1

p
‖u‖pp +

1

p

ˆ

∂Ω

β(z)(u+)p dσ −

ˆ

Ω

Γ(z, u) dz for all u ∈ W 1,p(Ω).

Using hypothesis H(β) and (20), we see that

χ(u) >
1

p
‖u‖p − c6 for some c6 > 0 =⇒ χ is coercive.

In addition, χ is sequentially weakly lower semicontinuous. So, we can find u∗ ∈
W 1,p(Ω) such that

(21) χ(u∗) = inf[χ(u) : u ∈ W 1,p(Ω)].

As before, since r > p, for t ∈ (0, 1) small, we have

χ(tû1) < 0 =⇒ χ(u∗) < 0 = χ(0) (see (21)), hence u∗ 6= 0.
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From (21) we have

χ′(u∗) = 0 =⇒

〈A(u∗), h〉+

ˆ

Ω

|u∗|
p−2u∗h dz +

ˆ

∂Ω

β(z)(u+∗ )
p−1h dσ =

ˆ

Ω

γ(z, u∗)h dz

for all h ∈ W 1,p(Ω).

(22)

In (22) we choose h = −u−∗ ∈ W 1,p(Ω). Then

‖Du−∗ ‖
p
p + ‖u−∗ ‖

p
p = 0 (see (20)) =⇒ u∗ > 0, u∗ 6= 0.

Next in (22) we choose h = (u∗ − u)+ ∈ W 1,p(Ω). Then

〈A(u∗), (u∗ − u)+〉+

ˆ

Ω

up−1
∗ (u∗ − u)+ dz +

ˆ

∂Ω

β(z)up−1
∗ (u∗ − u)+ dσ

=

ˆ

Ω

[ξup−1 − c5u
r−1](u∗ − u)+ dz +

ˆ

Ω

up−1(u∗ − u)+ dz (see (20))

6

ˆ

Ω

[λup−1 + f(z, u)](u∗ − u)+ dz +

ˆ

Ω

up−1(u∗ − u)+ dz (see (15))

= 〈A(u), (u∗ − u)+〉+

ˆ

Ω

up−1(u∗ − u)+ dz +

ˆ

∂Ω

β(z)up−1(u∗ − u)+ dσ

(since u ∈ S(λ))

=⇒ |{u∗ > u}|N = 0 (as before), hence u∗ 6 u.

So, we have proved that

u∗ ∈ [0, u] \ {0}.

Then from (20) and (22) it follows that u∗ ∈ intC+ is a positive solution of (16) and
so by virtue of Proposition 7, we have

u∗ = u =⇒ u 6 u for all u ∈ S(λ). �

In the proof of Proposition 5 we have seen that (−∞, λ̂1) ⊆ P. Next we show

that in fact we have P = (−∞, λ̂1).

Proposition 9. If hypotheses H(β) and H(f) hold, then λ̂1 /∈ P.

Proof. Arguing by contradiction, suppose that λ̂1 ∈ P. Then we can find u0 ∈
S(λ̂1) ⊆ intC+. Recall that û1 ∈ intC+ too. Invoking Lemma 3.3 of Filippakis,
Kristaly and Papageorgiou [8] we can find c7, c8 > 0 such that

c7u0 6 û1 6 c8u0 =⇒ c7 6
û1
u0

6 c8 and
1

c8
6
u0
û1

6
1

c7

=⇒
û1
u0

and
u0
û1

belong in L∞(Ω).

(23)

We have

(24) −∆pu0(z) = λ̂1u0(z)
p−1 + f(z, u0(z)) a.e. in Ω,

∂u0
∂np

+ β(z)up−1
0 = 0 on ∂Ω.

Let

(25) R(û1, u0)(z) = |Dû1(z)|
p − |Du0(z)|

p−2

(

Du0(z), D

(

ûp1
up−1
0

)

(z)

)

RN

.
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From the nonlinear Picone’s identity of Allegretto and Huang [2], we have

(26) 0 6

ˆ

Ω

R(û1, u0) dz = ‖Dû1‖
p
p −

ˆ

Ω

|Du0|
p−2

(

Du0, D

(

ûp1
up−1
0

))

RN

dz.

From (23), (24) and the nonlinear Green’s identity (see, for example, Gasinski and
Papageorgiou [9, p. 211]), we have

ˆ

Ω

|Du0|
p−2

(

Du0, D

(

ûp1
up−1
0

))

RN

dz

=

ˆ

Ω

(−∆pu0)

(

ûp1
up−1
0

)

dz +

〈

∂u0
∂np

,
ûp1
up−1
0

〉

∂Ω

.

(27)

Returning to (26) and using (24) and (27), we obtain

0 6 ‖Dû1‖
p
p − λ̂1‖û1‖

p
p −

ˆ

Ω

f(z, u0)
ûp1
up−1
0

dz +

ˆ

∂Ω

β(z)ûp1 dσ

= −

ˆ

Ω

f(z, u0)
ûp1
up−1
0

dz < 0 (see H(f)),

a contradiction. So, λ̂1 /∈ P. �

From Propositions 6 and 9 it follows that

P = (−∞, λ̂1)

(recall that in the proof of Proposition 5 we established that (−∞, λ̂1) ⊆ P).

Proposition 10. If hypotheses H(β) and H(f) hold, λ ∈ P and uλ ∈ S(λ) ⊆
intC+, then for every µ < λ, we can find uµ ∈ S(µ) ⊆ intC+ such that uµ 6 uλ.

Proof. We consider the following truncation-perturbation of the reaction in prob-
lem (Pµ):

(28) γµ(z, x) =











0 ifx < 0,

(µ+ 1)xp−1 + f(z, x) if 0 6 x 6 uλ(z),

(µ+ 1)uλ(z)
p−1 + f(z, uλ(z)) if uλ(z) < x.

This is a Carathéodory function. We set Γµ(z, x) =
´ x

0
γµ(z, s)ds and consider the

C1-functional η : W 1,p(Ω) → R defined by

η(u) =
1

p
‖Du‖pp +

1

p
‖u‖pp +

1

p

ˆ

∂Ω

β(z)(u+)p dσ −

ˆ

Ω

Γµ(z, u) dz for all u ∈ W 1,p(Ω).

From hypothesis H(β) and (28) it is clear that η is coercive. Also, it is sequentially
weakly lower semicontinuous. So, we can find uµ ∈ W 1,p(Ω) such that

η(uµ) = inf[η(u) : u ∈ W 1,p(Ω)].(29)

As before (see the proof of Proposition 5), using hypothesis H(f)(iii), we show that
for t ∈ (0, 1) small (at least such that tû1(z) 6 min

Ω
uλ, recall uλ ∈ intC+), we have

η(tû1) < 0 =⇒ η(uµ) < 0 = η(0) (see (29)), hence uµ 6= 0.
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From (29), we have

η′(uµ) = 0 =⇒

〈A(uµ), h〉+

ˆ

Ω

|uµ|
p−2uµh dz +

ˆ

∂Ω

β(z)(u+µ )
p−1h dσ =

ˆ

Ω

γµ(z, uµ)h dz

for all h ∈ W 1,p(Ω). As in the proof of Proposition 8, choosing first h = −u−µ ∈
W 1,p(Ω) and then h = (uµ − uλ)

+ ∈ W 1,p(Ω), we show that

uµ ∈ [0, uλ] \ {0}.

From (28) it follows that uµ ∈ S(µ) ⊆ intC+ and uµ 6 uλ. �

Proposition 11. If hypotheses H(β) and H(f) hold, λ ∈ P = (−∞, λ̂1), then
problem (Pλ) admits a smallest positive solution u∗λ ∈ S(λ) ⊆ intC+.

Proof. From Dunford and Schwartz [7, p. 336], we know that we can find
{un}n>1 ⊆ S(λ) such that

inf S(λ) = inf
n>1

un.

From Proposition 10 and since S(λ) is downward directed, we may assume that

(30) un 6 û for all n > 1, with û ∈ S(λ̂) ⊆ intC+, λ̂ ∈ P, λn < λ̂, n > 1.

We have

(31) 〈A(un), h〉+

ˆ

∂Ω

β(z)up−1
n h dσ = λ

ˆ

Ω

up−1
n h dz +

ˆ

Ω

f(z, un)h dz

for all h ∈ W 1,p(Ω), all n > 1. In (31) we choose h = un ∈ W 1,p(Ω). Then using
hypotheses H(β), H(f)(i) and (30) we see that

{un}n>1 ⊆ W 1,p(Ω) is bounded.

So, we may assume that

(32) un
w
→ u∗λ in W 1,p(Ω) and un → u∗λ in Lp(Ω) and in Lp(∂Ω).

In (31) we choose h = un − u∗λ ∈ W 1,p(Ω), pass to the limit as n→ ∞ and use (32).
We obtain

lim
n→∞

〈A(un), un − u∗λ〉 = 0 =⇒

un → u∗λ in W 1,p(Ω) (see Proposition 2 and (32)).
(33)

So, if in (31) we pass to the limit as n→ ∞ and use (33) and Proposition 2, then

〈A(u∗λ), h〉+

ˆ

∂Ω

β(z)(u∗λ)
p−1hdσ = λ

ˆ

Ω

(u∗λ)
p−1hdz +

ˆ

Ω

f(z, u∗λ)hdz

for all h ∈ W 1,p(Ω) which implies

(34) −∆pu
∗
λ(z) = λ(u∗λ)(z)

p−1+f(z, u∗λ(z)) a.e. in Ω,
∂u∗λ
∂np

+β(z)(u∗λ)
p−1 = 0 on ∂Ω

(as in the proof of Proposition 5). Moreover, from Proposition 8, we have

(35) u 6 un for all n > 1 =⇒ u 6 u∗λ (see (33)).

Then (34) and (35) imply that

u∗λ ∈ S(λ) and u∗λ = inf S(λ). �
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If we strengthen the conditions on the perturbation f(z, ·), we can guarantee the
uniqueness of the positive solution of problem (Pλ).

The new stronger conditions on f(z, x) are the following:

H(f)′: f : Ω×R → R is a Carathéodory function such that for a.a. z ∈ Ω, f(z, 0) = 0,
f(z, x) > 0 for all x > 0, hypotheses H(f)′(i),(ii),(iii) are the same as the
corresponding hypotheses H(f)(i),(ii),(iii) and

(iv) for a.a. z ∈ Ω, x → f(z,x)
xp−1 is decreasing, strictly for all z ∈ Ω0 ⊆ Ω with

|Ω0|N > 0.

Proposition 12. If hypotheses H(β) and H(f)′ hold and λ ∈ P = (−∞, λ̂1),

then S(λ) is a singleton {uλ} and the map λ 7−→ uλ is continuous from (−∞, λ̂1)
into C1(Ω) and increasing (that is, if µ < λ, then uλ − uµ ∈ C+).

Proof. We already know that for all λ ∈ (−∞, λ̂1), S(λ) 6= ∅.
Let u, v ∈ S(λ) ⊆ intC+. Then as in the proof of Proposition 7, we have

0 6
1

p

ˆ

Ω

[

−∆pu

up−1
−

−∆pv

vp−1

]

(up − vp) dz

=
1

p

ˆ

Ω

[

f(z, u)

up−1
−
f(z, v)

vp−1

]

(up − vp) dz 6 0,

=⇒ u = v (see hypothesis H(f)′(iv)),

=⇒ S(λ) = {uλ} (a singleton).

Next we show the continuity of λ 7−→ uλ. To this end, suppose {λn}n>1 ⊆

(−∞, λ̂1) and assume that λn → λ ∈ (−∞, λ̂1). Let un = uλn ∈ S(λn) ⊆ intC+, n >

1. We can find λ̂ ∈ (−∞, λ̂1) such that λn 6 λ̂ for all n > 1. Let û ∈ S(λ̂) ⊆ intC+.
Proposition 8 and 10 imply that

u 6 un 6 û for all n > 1.(36)

Also, we have

(37) 〈A(un), h〉+

ˆ

∂Ω

β(z)up−1
n h dσ = λ

ˆ

Ω

up−1
n h dz +

ˆ

Ω

f(z, un)h dz

for all h ∈ W 1,p(Ω). Choosing h = un ∈ W 1,p(Ω) and using hypotheses H(β), H(f)(i)
and (36), we see that

{un}n>1 ⊆ W 1,p(Ω) is bounded.

So, we may assume that

un
w
→ uλ in W 1,p(Ω) and un → uλ in Lp(Ω) and in Lp(∂Ω).(38)

If in (37) we choose h = un − uλ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(38), then

(39) lim
n→∞

〈A(un), un − uλ〉 = 0 =⇒ un → uλ in W 1,p(Ω).

So, if in (37) we pass to the limit as n→ ∞ and use (39) and Proposition 2, then

〈A(uλ), h〉+

ˆ

∂Ω

β(z)up−1
λ h dσ = λ

ˆ

Ω

up−1
λ h dz +

ˆ

Ω

f(z, uλ)h dz for all h ∈ W 1,p(Ω),

=⇒ uλ ∈ S(λ) ⊆ intC+.
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Since S(λ) is a singleton, we have

(40) un → uλ in W 1,p(Ω) for the original sequence.

From Theorem 2 of Lieberman [13], we know that we can find α ∈ (0, 1) and c9 > 0
such that

(41) un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) 6 c9 for all n > 1.

Exploiting the compact embedding of C1,α(Ω) into C1(Ω), from (40) and (41) it
follows that

un → uλ in C1(Ω) =⇒ λ 7−→ uλ is continuous from (−∞, λ̂1) into C1(Ω).

Finally the monotonicity of λ 7−→ uλ follows from Proposition 10. �

In fact the monotonicity conclusion in the above proposition, can be improved
provided we strengthen further the conditions on f(z, ·).

The new stronger conditions on the perturbation f(z, x) are the following:

H(f)′′: f : Ω×R → R is a Carathéodory function such that for a.a. z ∈ Ω, f(z, 0) = 0,
f(z, x) > 0 for all x > 0, hypotheses H(f)′′(i),(ii),(iii),(iv) are the same as
the corresponding hypotheses H(f)′(i),(ii),(iii),(iv) and

(v) for every ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ Ω, the mapping
x 7−→ f(z, x) + ξρx

p−1 is nondecreasing on [0, ρ].

Under these new conditions on the perturbation f(z, x), we have the following
result.

Proposition 13. If hypotheses H(β) and H(f)′′ hold, then the mapping λ 7−→

uλ from (−∞, λ̂1) into C1(Ω) is strictly increasing, that is, if λ < ϑ ∈ (−∞, λ̂1), then
uϑ − uλ ∈ intC+.

Proof. From Proposition 12, we know that uϑ−uλ ∈ C+. Let ρ = ‖uϑ‖∞ and let
ξρ > 0 be as postulated by hypothesis H(f)′′(v). Also, for δ > 0, let uδλ = uλ + δ ∈
intC+. We have

−∆pu
δ
λ(z) + ξρu

δ
λ(z)

p−1

6 −∆puλ(z) + ξρuλ(z)
p−1 + γ(δ) with γ(δ) → 0+ as δ → 0+

= λuλ(z)
p−1 + f(z, uλ(z)) + ξρuλ(z)

p−1 + γ(δ)

6 λuϑ(z)
p−1 + f(z, uϑ(z)) + ξρuϑ(z)

p−1 + γ(δ)

(see H(f)′′(v) and recall uλ 6 uϑ)

= ϑuϑ(z)
p−1 + f(z, uϑ(z)) + ξρuϑ(z)

p−1 − (ϑ− λ)uϑ(z)
p−1 + γ(δ)

6 ϑuϑ(z)
p−1 + f(z, uϑ(z)) + ξρuϑ(z)

p−1 − (ϑ− λ)m̂p−1
ϑ + γ(δ)

with m̂ϑ = min
Ω
uϑ > 0

6 −∆puϑ(z) + ξρuϑ(z)
p−1 for a.a. z ∈ Ω and for δ > 0 small

=⇒ uδλ 6 uϑ =⇒ uϑ − uλ ∈ intC+. �

The next theorem summarizes the situation for problem (Pλ) when the pertur-
bation f(z, x) is (p− 1)-sublinear in x ∈ R.
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Theorem 14. (a) If hypotheses H(β) and H(f) hold, then for all λ ∈ (−∞,

λ̂1), S(λ) 6= ∅, S(λ) ⊆ intC+ and S(λ) admits a smallest element u∗λ ∈ intC+;

if λ > λ̂1, then S(λ) = ∅.

(b) If hypotheses H(β) and H(f)′ hold, then for all λ ∈ (−∞, λ̂1), S(λ) = {uλ}
and the map λ 7−→ uλ is continuous and increasing (that is, λ 6 ϑ⇒ uϑ−uλ ∈
C+).

(c) If hypotheses H(β) and H(f)′′ hold, then the map λ 7−→ uλ is strictly in-

creasing (that is, λ < ϑ ∈ (−∞, λ̂1) ⇒ uϑ − uλ ∈ intC+).

4. Superlinear perturbation

In this section, we examine problem (Pλ) when the perturbation f(z, ·) is (p−1)-
superlinear, but without satisfying the usual in such cases Ambrosetti–Rabinowitz
condition (AR-condition for short). Now we can not hope for uniqueness and we
have multiplicity of positive solutions.

The hypotheses on the perturbation f(z, x), are the following:

H(f)1: f : Ω×R → R is a Carathéodory function such that for a.a. z ∈ Ω, f(z, 0) = 0,
f(z, x) > 0 for all x > 0 and
(i) f(z, x) 6 a(z)(1 + xr−1) for a.a. z ∈ Ω, all x > 0, with a ∈ L∞(Ω)+ and

p < r < p∗;

(ii) if F (z, x) =
´ x

0
f(z, s) ds, then lim

x→+∞

F (z,x)
xp

= +∞ uniformly for a.a.

z ∈ Ω;

(iii) there exists µ ∈
(

(r − p)max
{

1, N
p

}

, p∗
)

such that

0 < η0 6 lim inf
x→+∞

f(z, x)x− pF (z, x)

xµ
uniformly for a.a. z ∈ Ω;

(iv) lim
x→0+

f(z,x)
xp−1 = 0 uniformly for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ Ω, the map
x 7−→ f(z, x) + ξρx

p−1 is nondecreasing on [0, ρ].

Remark 3. As before, since we are interested on positive solutions and the
above hypotheses concern the positive semiaxis R+ = [0,+∞), without any loss of
generality, we assume that f(z, x) = 0 for a.a. z ∈ Ω, all x 6 0. From hypotheses
H(f)1(ii),(iii) it follows that

lim
x→+∞

f(z, x)

xp−1
= +∞ uniformly for a.a. z ∈ Ω.

So, for a.a. z ∈ Ω, f(z, ·) is (p − 1)-superlinear. However, we do not employ
the usual in such cases AR-condition (unilateral version) which says that there exist
q > p and M > 0 such that

0 < qF (z, x) 6 f(z, x)x for a.a. z ∈ Ω, all x >M (see [3]).

This implies that

c10x
q 6 F (z, x) for a.a. z ∈ Ω, all x >M, some c10 > 0.

Here instead, we employ the weaker condition H(f)(iii) which incorporates in our
framework (p − 1)-superlinear perturbations, with “slower” growth near +∞ (see
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the examples below). A similar polynomial growth is assumed near 0+ by virtue of
hypothesis H(f)1(iv).

Example 1. The following functions satisfy hypotheses H(f)1. For the sake of
simplicity, we drop the z-dependence:

f1(x) = xr−1 for all x > 0 with p < r < p∗,

f2(x) = xp−1

(

ln x+
1

p

)

for all x > 0.

Note that f2 does not satisfy the AR-condition.
The sets P and S(λ) have the same meaning as in Section 3.

Proposition 15. If hypotheses H(β) and H(f)1 hold, then P 6= ∅ and S(λ) ⊆
intC+.

Proof. For λ ∈ R, we consider the C1-functional ϕλ : W
1,p(Ω) → R defined by

ϕλ(u) =
1

p
||Du||pp +

1

p

ˆ

∂Ω

β(z)(u+)p dσ +
1

p
||u−||pp −

λ

p
||u+||pp −

ˆ

Ω

F (z, u+) dz

for all u ∈ W 1,p(Ω). Hypotheses H(f)1(i),(iv) imply that given ε > 0, we can find
c11 = c11(ε) > 0 such that

(42) F (z, x) 6
ε

p
xp + c11x

r for a.a. z ∈ Ω, all x > 0.

Let λ < λ̂1. Then for any u ∈ W 1,p(Ω) we have

ϕλ(u) =
1

p
||Du+||pp +

1

p

ˆ

∂Ω

β(z)(u+)p dσ −
λ

p
||u+||pp +

1

p
||Du−||pp

+
1

p
||u−||pp −

ε

p
||u+||pp − c12||u||

r for some c12 > 0 (see (42))

>

(

c13 −
ε

p

)

||u+||p +
1

p
||u−||p − c12||u||

r for some c13 > 0

(see Proposition 4 and recall λ < λ̂1). Choosing ε ∈ (0, p c13), we have

ϕλ(u) > c14||u||
p − c12||u||

r for some c14 > 0.

Since r > p, if we choose ρ ∈ (0, 1) small, we have

ϕλ(u) > 0 = ϕλ(0) for all u ∈ W 1,p(Ω) with 0 < ||u|| 6 ρ

=⇒ u = 0 is a (strict) local minimizer of ϕλ.

So, we can find ρ ∈ (0, 1) small such that

(43) ϕλ(0) = 0 < inf [ϕλ(u) : ||u|| = ρ] = mρ

(see, for example, Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).
By virtue of hypothesis H(f)1(ii), we see that for every u ∈ intC+, we have

(44) ϕλ(tu) → −∞ as t→ +∞.

Moreover, as in Gasinski and Papageorgiou [10], we can check that

(45) ϕλ satisfies the C-condition.
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Because of (43), (44) and (45), we can apply Theorem 1 (the mountain pass
theorem) and obtain uλ ∈ W 1,p(Ω) such that

(46) ϕλ(0) = 0 < mρ 6 ϕλ(uλ) and ϕ′
λ(uλ) = 0.

From (46) we have uλ 6= 0 and

〈A(uλ), h〉+

ˆ

∂Ω

β(z)(u+λ )
p−1h dσ −

ˆ

Ω

(u−λ )
p−1h dz

= λ

ˆ

Ω

(u+λ )
p−1h dz +

ˆ

Ω

f(z, u+)h dz for all h ∈ W 1,p(Ω).

(47)

In (47) we choose h = −u−λ ∈ W 1,p(Ω) and we infer that uλ > 0, uλ 6= 0. So, we have

〈A(uλ), h〉+

ˆ

∂Ω

β(z)up−1
λ h dσ = λ

ˆ

Ω

up−1
λ h dz +

ˆ

Ω

f(z, u)h dz for all h ∈ W 1,p(Ω)

=⇒ uλ ∈ S(λ) (see the proof of Proposition 5).

The nonlinear regularity theory implies uλ ∈ C+\{0}. Let ρ = ||uλ||∞ and let
ξρ > 0 be as postulated by hypothesis H(f)1(v). Then

−∆puλ(z) + ξρuλ(z)
p−1 = λuλ(z)

p−1 + f(z, uλ(z)) + ξρuλ(z)
p−1 > 0 a.e. in Ω

=⇒ ∆puλ(z) 6 ξρuλ(z)
p−1 a.e. in Ω =⇒ uλ ∈ intC+ (see Vazquez [16]).

Therefore we have proved that P 6= ∅ (in fact (−∞, λ̂1) ⊆ P) and that S(λ) ⊆
intC+. �

The proof of the next proposition is identical to the proof of Proposition 6.

Proposition 16. If hypothesesH(β) andH(f)1 hold and λ ∈ P, then (−∞, λ] ⊆
P.

Moreover, as in the proof of Proposition 9, using the nonlinear Picone’s identity
(see [2]), we have:

Proposition 17. If hypotheses H(β) and H(f)1 hold, then λ̂1 6∈ P and so

P = (−∞, λ̂1).

In fact, as we already mentioned, in this case for every λ ∈ P = (−∞, λ̂1)
problem (Pλ) has at least two positive solutions.

Proposition 18. If hypotheses H(β) and H(f)1 hold and λ ∈ P = (−∞, λ̂1),
then problem (Pλ) has at least two positive solutions

uλ, vλ ∈ intC+, uλ 6 vλ, uλ 6= vλ.

Proof. Since λ ∈ P, we can find uλ ∈ S(λ) ⊆ intC+. We introduce the following
Carathéodory function:

(48) kλ(z, x) =

{

(λ+ 1)uλ(z)
p−1 + f(z, uλ(z)) if x 6 uλ(z),

(λ+ 1)xp−1 + f(z, x) if uλ(z) < x.

In addition we consider the following truncation of the boundary term (recall that
uλ ∈ intC+):

(49) dλ(z, x) =

{

uλ(z)
p−1 if x 6 uλ(z),

xp−1 if uλ(z) < x,
for all (z, x) ∈ ∂Ω ×R.
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This is also a Carathéodory function on ∂Ω ×R.
Let Kλ(z, x) =

´ x

0
kλ(z, s) ds and Dλ(z, x) =

´ x

0
dλ(z, s) ds and consider the C1-

functional ψλ : W
1,p(Ω) → R defined by

ψλ(u) =
1

p
||Du||pp +

1

p
||u||pp +

1

p

ˆ

∂Ω

β(z)Dλ(z, u) dσ −

ˆ

Ω

Kλ(z, u) dz

for all u ∈ W 1,p(Ω).

Claim 1. We have

Kψλ
= {u ∈ W 1,p(Ω) : ψ′

λ(u) = 0} ⊆ [uλ) = {u ∈ W 1,p(Ω) : uλ(z) 6 u(z) a.e. in Ω}.

To this end, let u ∈ Kψλ
. Then

(50) 〈A(u), h〉+

ˆ

Ω

|u|p−2uh dz +

ˆ

∂Ω

β(z)dλ(z, x) dσ =

ˆ

Ω

kλ(z, u)h dz

for all h ∈ W 1,p(Ω). In (50) we choose h = (uλ − u)+ ∈ W 1,p(Ω). Then

〈

A(u), (uλ − u)+
〉

+

ˆ

Ω

|u|p−2u(uλ − u)+ dz +

ˆ

∂Ω

β(z)up−1
λ (uλ − u)+ dσ

=

ˆ

Ω

[λup−1
λ + f(z, uλ)](uλ − u)+ dz +

ˆ

Ω

up−1
λ (uλ − u)+ dz (see (48) and (49))

=
〈

A(uλ), (uλ − u)+
〉

+

ˆ

Ω

up−1
λ (uλ − u)+ dz +

ˆ

∂Ω

β(z)up−1
λ (uλ − u)+ dσ,

=⇒
〈

A(uλ)− A(u), (uλ − u)+
〉

+

ˆ

Ω

(up−1
λ − |u|p−2u)(uλ − u)+ dz 6 0 (see H(β)),

=⇒ |{uλ > u}|N = 0, hence uλ 6 u and so u ∈ [uλ) .

This proves Claim 1.

Claim 2. Every u ∈ Kψλ
belongs in S(λ).

From (50) and Claim 1, we have

〈A(u), h〉+

ˆ

Ω

up−1h dz +

ˆ

∂Ω

β(z)up−1h dσ =

ˆ

Ω

[λup−1 + f(z, u)]h dz +

ˆ

Ω

up−1h dz

for all h ∈ W 1,p(Ω) (see (48) and (49)) which implies

〈A(u), h〉+

ˆ

∂Ω

β(z)up−1h dσ =

ˆ

Ω

[λup−1 + f(z, u)]h dz for all h ∈ W 1,p(Ω).

From this as in the proof of Proposition 5, we infer that u ∈ S(λ). This proves
Claim 2.

Claim 3. We may assume that uλ ∈ intC+ is a local minimizer of ψλ.

Let ϑ ∈ (λ, λ̂1) ⊆ P. We can find uϑ ∈ S(ϑ). In fact as in the proof of Proposition
6 we can have uλ 6 uϑ. Then we introduce the following truncation of kλ(z, ·):

(51) k̂λ(z, x) =

{

kλ(z, x) if x < uϑ(z),

kλ(z, uϑ(z)) if uϑ(z) 6 x.
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We also consider the corresponding truncation of the boundary term dλ(z, ·):

(52) d̂λ(z, x) =

{

dλ(z, x) if x < uϑ(z),

dλ(z, uϑ(z)) if uϑ(z) 6 x,
for all (z, x) ∈ ∂Ω×R.

Both are Carathéodory functions. We set

K̂λ(z, x) =

ˆ x

0

k̂λ(z, s) ds and D̂λ(z, x) =

ˆ x

0

d̂λ(z, s) ds

and consider the C1-functional ψ̂λ : W
1,p(Ω) → R defined by

ψ̂λ(u) =
1

p
||Du||pp +

1

p
||u||pp +

ˆ

∂Ω

β(z)D̂λ(z, u) dσ −

ˆ

Ω

K̂λ(z, u) dz

for all u ∈ W 1,p(Ω). From (51) and (52) it is clear that ψ̂λ is coercive. Also, is is
sequentially weakly lower semicontinuous. So, we can find ûλ ∈ W 1,p(Ω) such that

ψ̂λ(ûλ) = inf
[

ψ̂λ(u) : W
1,p(Ω)

]

=⇒ ψ̂′
λ(ûλ) = 0 =⇒

〈A(ûλ), h〉+

ˆ

Ω

|ûλ|
p−2ûλh dz +

ˆ

∂Ω

β(z)d̂λ(z, uλ)h dσ =

ˆ

Ω

k̂λ(z, uλ)h dz
(53)

for all h ∈ W 1,p(Ω). As in the proof of Claim 1 earlier, choosing h = (uλ − λ̂λ)
+ ∈

W 1,p(Ω) in (53), we obtain

uλ 6 ûλ.

Next in (53), we choose h = (ûλ − uϑ)
+ ∈ W 1,p(Ω). Then

〈

A(ûλ), (ûλ − uϑ)
+
〉

+

ˆ

Ω

ûp−1
λ (ûλ − uϑ)

+ dz +

ˆ

∂Ω

β(z)up−1
ϑ (ûλ − uϑ)

+ dσ

=

ˆ

Ω

[λup−1
ϑ + f(z, uϑ)](ûλ − uϑ)

+ dz +

ˆ

Ω

up−1
ϑ (ûλ − uϑ)

+ dz (see (51) and (52))

6

ˆ

Ω

[ϑup−1
ϑ + f(z, uϑ)](ûλ − uϑ)

+ dz +

ˆ

Ω

up−1
ϑ (ûλ − uϑ)

+ dz (since λ < ϑ)

=
〈

A(uϑ), (ûλ − uϑ)
+
〉

+

ˆ

Ω

up−1
ϑ (ûλ − uϑ)

+ dz +

ˆ

∂Ω

β(z)up−1
ϑ (ûλ − uϑ)

+ dσ

=⇒
〈

A(ûλ)− A(uϑ), (ûλ − uϑ)
+
〉

+

ˆ

Ω

(ûp−1
λ − up−1

ϑ )(ûλ − uϑ)
+ dz 6 0

=⇒ |{ûλ > uϑ}|N = 0, hence ûλ 6 uϑ.

So, we have proved that

ûλ ∈ [uλ, uϑ] = {u ∈ W 1,p(Ω) : uλ(z) 6 u(z) 6 uϑ(z) a.e. in Ω}.

Then from (51), (52) and Claim 2, it follows that ûλ ∈ S(λ). If ûλ 6= uλ, then this is
desired second positive solution of problem (Pλ) and so we are done. Therefore, we
may assume that ûλ = uλ.

Note that ψ̂λ|[0,uϑ] = ψλ|[0,uϑ] (see (51) and (52)). Also as in the proof of Propo-
sition 13, using uδλ = uλ + δ ∈ intC+ (δ > 0) and hypothesis H(f)1(v), we show
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that

uϑ − uλ ∈ intC+ =⇒ uλ ∈ intC1(Ω)[0, uϑ]

=⇒ uλ is a local C1(Ω)− minimizer of ψλ

=⇒ uλ is a local W 1,p(Ω)− minimizer of ψλ (see Proposition 3).

This proves Claim 3.
We assume that Kψλ

is finite (or otherwise we are done since we already have an
infinity of solutions (see Claim 1 and (48), (49))). By virtue of Claim 3, we can find
ρ > 0 small such that

(54) ψλ(u0) < inf [ψλ(u) : ||u− u0|| = ρ] = mλ

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29). If ϕλ is as in
the proof of Proposition 15, then

ϕλ = ψλ + ξ∗λ with ξ∗λ ∈ R.

So, if u ∈ intC+, then

ψλ(tu) → −∞ as t→ −∞ (see (44)),

ψλ satisfies the C − condition (see (45)).

These two facts and (54), permit the use of Theorem 1 (the mountain pass theorem).
Hence we obtain vλ ∈ W 1,p(Ω) such that

(55) mλ 6 ψλ(vλ) and vλ ∈ Kψλ
.

From (54), (55) and Claims 1 and 2, we infer that

vλ ∈ S(λ) ⊆ intC+, uλ 6 vλ, uλ 6= vλ. �

We can also establish the existence of a smallest positive solution.

Proposition 19. If hypotheses H(β) and H(f)1 hold and λ ∈ P = (−∞, λ̂1),
then problem (Pλ) admits a smallest positive solution u∗λ ∈ intC+ and the map

λ 7−→ u∗λ is strictly increasing (that is, λ < ϑ ∈ (−∞, λ̂1) ⇒ u∗ϑ − u∗λ ∈ intC+).

Proof. As in the proof of Proposition 11, we can find {un}n>1 ⊆ S(λ) such that

inf S(λ) = inf
n>1

un.

Since S(λ) is downward directed, we may assume that {un}n>1 is decreasing. So, we
have

(56) un 6 u1 ∈ intC+ for all n > 1.

We have

(57) 〈A(un), h〉+

ˆ

∂Ω

β(z)up−1
n h dσ = λ

ˆ

Ω

up−1
n h dz +

ˆ

Ω

f(z, un)h dz

for all h ∈ W 1,p(Ω). Choosing h = un ∈ W 1,p(Ω) in (57) and using (56), we infer
that

{un}n>1 ⊆ W 1,p(Ω) is bounded.

So, we may assume that

(58) un
w
→ u∗λ in W 1,p(Ω) and un → u∗λ in Lr(Ω) and in Lp(∂Ω).
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Suppose that u∗λ ≡ 0. Let yn = un
||un||

n > 1. Then ||yn|| = 1 for all n > 1 and so

we may assume that

(59) yn
w
→ y in W 1,p(Ω) and yn → y in Lr(Ω) and in Lp(∂Ω).

From (57) we have

(60) 〈A(yn), h〉+

ˆ

∂Ω

β(z)yp−1
n h dσ = λ

ˆ

Ω

yp−1
n h dz +

ˆ

Ω

f(z, un)

||un||p−1
h dz

for all h ∈ W 1,p(Ω). In (60) we choose h = yn − y ∈ W 1,p(Ω), pass to the limit as
n→ ∞ and use (59). Then

(61) lim
n→∞

〈A(yn), yn − y〉 = 0 =⇒ yn → y in W 1,p(Ω), and so ||y|| = 1, y > 0.

Note that since we have assumed that u∗λ ≡ 0, by virtue of hypothesis H(f)1(iv),
we have (at least for a subsequence) that

(62)
Nf (un)

||un||p−1

w
→ 0 in Lr

′

(Ω).

So, if in (60) we pass to the limit as n→ ∞ and use (61) and (62), then

〈A(y), h〉+

ˆ

∂Ω

β(z)yp−1h dσ = λ

ˆ

Ω

yp−1h dz for all h ∈ W 1,p(Ω)

=⇒ −∆py(z) = λy(z)p−1 a.e. in Ω,
∂y

∂np
+ β(z)yp−1 = 0 on ∂Ω.

Since λ < λ̂1, it follows that y ≡ 0, a contradiction to (61). Therefore u∗λ 6= 0.
In (57) we choose h = un − u∗λ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use

(58). Then

(63) lim
n→∞

〈A(un), un − u∗λ〉 = 0 =⇒ un → u∗λ in W 1,p(Ω) (see Proposition 2).

So, if in (57) we pass to the limit as n→ ∞ and use (63), then

〈A(u∗λ), h〉+

ˆ

∂Ω

β(z)(u∗λ)
p−1h dσ = λ

ˆ

Ω

(u∗λ)
p−1h dz +

ˆ

Ω

f(z, u∗λ)h dz

for all h ∈ W 1,p(Ω) which implies

u∗λ ∈ S(λ) and u∗λ = inf S(λ).

Therefore u∗λ ∈ intC+ is the smallest positive solution of problem (Pλ).

Suppose that λ < ϑ ∈ P = (−∞, λ̂1) and let uϑ ∈ S(ϑ). Then

u∗λ 6 uϑ (see Proposition 10) =⇒ u∗λ 6 u∗ϑ.

In fact, by considering (u∗λ)
δ = u∗λ+ δ ∈ intC+ (δ > 0) as in the proof of Proposition

13, via hypothesis H(f)1(v), we show that

u∗ϑ − u∗λ ∈ intC+. �

Summarizing the situation in the case of superlinear perturbations, we can state
the following theorem.
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Theorem 20. If hypotheses H(β) and H(f)1 hold, then for every λ ∈ (−∞, λ̂1)
problem (Pλ) has at least two positive solutions

uλ, vλ ∈ intC+, uλ 6 vλ, uλ 6= vλ;

also it admits a smallest positive solution u∗λ ∈ intC+ and the map λ→ u∗λ is strictly
increasing, that is,

λ < ϑ ∈ (−∞, λ̂1) =⇒ u∗ϑ − u∗λ ∈ intC+;

finally for λ > λ̂1 problem (Pλ) has no positive solution.
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