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PROBLEMS

11649. Proposed by Grahame Bennett, Indiana University, Bloomington, IN. Let p be
real with p > 1. Let (x0, x1, . . .) be a sequence of nonnegative real numbers. Prove
that

∞∑
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(
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xk
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)p

<∞ ⇒
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<∞.

11650. Proposed by Michael Becker, University of South Carolina at Sumter, Sumter,
SC. Evaluate ∫

∞

x=0

∫
∞

y=x
e−(x−y)2 sin2(x2

+ y2)
x2
− y2

(x2 + y2)2
dy dx .

11651. Proposed by Marcel Celaya and Frank Ruskey, University of Victoria, Victoria,
BC, Canada. Show that the equation
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holds for every nonnegative integer n if and only if φ = (1+

√
5)/2.

11652. Proposed by Ajai Choudhry, Foreign Service Institute, New Delhi, India. For
a, b, c, d ∈ R, and for nonnegative integers i , j , and n, let

ti, j =

i∑
s=0

(
n − i

j − s

)(
i

s

)
an−i− j+sb j−sci−sds .
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Let T (a, b, c, d, n) be the (n + 1)-by-(n + 1)matrix with (i, j)-entry given by ti, j , for
i, j ∈ {0, . . . , n}. Show that det T (a, b, c, d, n) = (ad − bc)n(n+1)/2.

11653. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let n
be a positive integer. Determine all entire functions f that satisfy, for all complex s
and t , the functional equation

f (s + t) =
n−1∑
k=0

f (n−1−k)(s) f (k)(t).

Here, f (m) denotes the mth derivative of f .

11654. Proposed by David Borwein, University of Western Ontario, Canada, and
Jonathan M. Borwein and James Wan, CARMA, University of Newcastle, Australia.
Let Cl denote the Clausen function, given by Cl(θ) =

∑
∞

n=1 sin(nθ)/n2. Let ζ denote
the Riemann zeta function.
(a) Show that∫ 2π

y=0

∫ 2π

x=0
log(3+ 2 cos x + 2 cos y + 2 cos(x − y)) dx dy = 8πCl(π/3).

(b) Show that∫ π

y=0

∫ π

x=0
log(3+ 2 cos x + 2 cos y + 2 cos(x − y)) dx dy =

28

3
ζ(3).

11655. Proposed by Pál Péter Dályay, Szeged, Hungary. Let ABCD be a convex
quadrilateral, and let α, β, γ , and δ be the radian measures of angles DAB, ABC, BCD,
and CDA, respectively. Suppose α + β > π and α + δ > π , and let η = α + β − π
and φ = α + δ − π . Let a, b, c, d, e, f be real numbers with ac = bd = e f . Show
that if abe > 0, then

a cosα + b cosβ + c cos γ + d cos δ + e cos η + f cosφ ≤
be

2a
+

c f

2b
+

de

2c
+

a f

2d
,

while for abe < 0 the inequality is reversed.

SOLUTIONS

A Triangle Inequality

11527 [2010, 742]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania. Prove that in an acute triangle with sides of length a, b, c,
inradius r , and circumradius R,

a2

b2 + c2 − a2
+

b2

c2 + a2 − b2
+

c2

a2 + b2 − c2
≥

3

2
·

R

r
.

Solution by Thomas Smotzer, Youngstown State University, Youngstown, OH. Let
4ABC be acute, with side lengths a, b, c, area K , and semiperimeter p. Let S =
S(a, b, c) be the sum on the left in the required inequality. Note that K = 1

2 bc sin A,
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and by the law of cosines b2
+ c2
− a2

= 2bc cos A, and similar formulas hold for
angles B and C . So

S =
a2

2bc cos A
+

b2

2ca cos B
+

c2

2ab cos C

=
a2 tan A

4K
+

b2 tan B

4K
+

c2 tan C

4K
.

It is enough to show a2 tan A + b2 tan B + c2 tan C ≥ 6K R/r = 6pR, since K = r p.
By the law of sines a = 2R sin A, etc., so we must show that

a 2R sin A tan A + b 2R sin B tan B + c 2R sin C tan C ≥ 3(a + b + c)R.

Equivalently, we must show that a sin A tan A+ b sin B tan B + c sin C tan C ≥ 3
2 (a +

b + c) . Note that since the triangle is acute, sin A tan A, sin B tan B, and sin C tan C
occur in the same order after sorting as do the corresponding quantities a, b, and c.

Using Chebyshev’s inequality, it suffices to show that 1
3 (a + b + c)(sin A tan A +

sin B tan B + sin C tan C) ≥ 3
2 . This simplifies to

sin A tan A + sin B tan B + sin C tan C ≥ 9
2 .

Since sin x tan x is a convex function of x on [0, π/2), by Jensen’s inequality we have
sin A tan A+ sin B tan B + sin C tan C ≥ 3 sin 1

3 (A+ B + C) tan 1
3 (A+ B + C). The

right side of this simplifies to 3 sin(π/6) tan(π/6) = 9/2.

Also solved by A. Alt, G. Apostolopoulos (Greece), R. Bagby, M. Bataille (France), D. Beckwith, M. Can,
M. Caragiu, C. Curtis, P. P. Dályay (Hungary), H. Y. Far, O. Faynshteyn (Germany), M. Goldenberg & M.
Kaplan, J. G. Heuver (Canada), E. Hysnelaj & E. Bojaxhiu (Australia, Germany), E. Jee & S. Kim (S. Korea),
W.-D. Jiang (China), O. Kouba (Syria), K.-W. Lau (China), J. H. Lee (Korea), K. McInturff, N. Minculete
(Romania), P. Nüesch (Switzerland), Á. Plaza (Spain), C. R. Pranesachar (India), E. A. Smith, R. Stong, M.
Tetiva (Romania), Z. Vörös (Hungary), M. Vowe (Switzerland), S. Wagon, H. Wang & J. Wojydylo, J. B.
Zacharias, Barclays Capital Problems Solving Group (U. K.), Con Amore Problem Group (Denmark), GCHQ
Problem Solving Group (U. K.), and the proposer.

An Inequality for Three Circumradii

11531 [2010, 834]. Proposed by Nicuşor Minculete, “Dimitrie Cantemir” University,
Brasov, Romania. Let M be a point in the interior of triangle ABC and let λ1, λ2, λ3 be
positive real numbers. Let Ra , Rb, and Rc be the circumradii of triangles MBC, MCA,
and MAB, respectively. Show that

λ2
1 Ra + λ

2
2 Rb + λ

2
3 Rc ≥ λ1λ2λ3

(
|MA|

λ1
+
|MB|

λ2
+
|MC|

λ3

)
.

(Here, for V ∈ {A, B,C}, |MV| denotes the length of the line segment MV. )

Solution by George Apostolopoulis, Massolonghi, Greece. With points named as in
the figure, we have that B ′C ′ is perpendicular to MA, C ′A′ is perpendicular to MB, and
A′B ′ is perpendicular to MC. Using Pappus’s Theorem, we have the inequality

|B ′C ′||M A′| ≥ |C ′A′||MC| + |A′B ′||MB|. (1)
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A
B

C

A′

B ′

C ′

M

2Ra

2Rb

2Rc

However, |MA′| is the diameter of the circumcircle for 4BAC, that is, |MA′| = 2Ra .
Therefore, using this in (1) gives

2Ra ≥
|C ′A′|

|B ′C ′|
|MC| +

|A′B ′|

|B ′C ′|
|MB|. (2)

Similarly,

2Rb ≥
|A′B ′|

|C ′A′|
|MA| +

|B ′C ′|

|C ′A′|
|MC|, (3)

2Rc ≥
|B ′C ′|

|A′B ′|
|MB| +

|C ′A′|

|A′B ′|
|MA|. (4)

Multiplying (2) by λ2
1, (3) by λ2

2, and (4) by λ2
3, then adding, we obtain

2λ2
1 Ra + 2λ2

2 Rb + 2λ2
3 Rc ≥

(
λ2

2|A
′B ′|

|C ′A′|
+
λ2

3|C
′A′|

|A′B ′|

)
|MA|

+

(
λ2

1|A
′B ′|

|B ′C ′|
+
λ2

3|B
′C ′|

|A′B ′|

)
|MB| +

(
λ2

1|C
′A′|

|B ′C ′|
+
λ2

2|B
′C ′|

|C ′A′|

)
|MC|. (5)

For any real x and y, x2
+ y2

≥ 2xy. Applying this to the coefficient of |MA| on the
right of (5), we get

λ2
2|A
′B ′|2 + λ2

3|C
′A′|2

|A′B ′||C ′A′|
≥ 2λ2λ3.

Similar inequalities follow for the other two terms in (5), and so (5) implies

2λ2
1 Ra + 2λ2

2 Rb + 2λ2
3 Rc ≥ 2λ2λ3|MA| + 2λ1λ3|MB| + 2λ1λ2|MC|.

This is the required inequality, namely

λ2
1 Ra + λ

2
2 Rb + λ

2
3 Rc ≥ λ1λ2λ3

(
|MA|

λ1
+
|MB|

λ2
+
|MC|

λ3

)
.

Equality holds when 4ABC is equilateral, M is the circumcenter, and λ1 = λ2 = λ3.

Also solved by M. Bataille (France), P. P. Dályay (Hungary), O. Faynshteyn (Germany), O. Geupel (Germany),
O. Kouba (Syria), J. H. Smith, T. Smotzer, R. Stong, M. Tetiva (Romania), Z. Vörös (Hungary), J. B. Zacharias
& K. T. Greeson, and the proposer.
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Zero–Nonzero Matrices

11534 [2010, 835]. Proposed by Christopher Hillar, Mathematical Sciences Research
Institute, Berkeley, CA. Let k and n be positive integers with k < n. Characterize the
n × n real matrices M with the property that for all v ∈ Rn with at most k nonzero
entries, Mv also has at most k nonzero entries.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
show that either M has at most k nonzero rows or M has at most 1 nonzero entry in
every column. Such a matrix has the desired property: in the first case Mv has at most
k nonzero entries for any v, and in the second case Mv has at most as many nonzero
entries as v.

Now suppose that some matrix M with the desired property is not of the form
stated. Thus M has at least k + 1 rows with nonzero entries and at least one column
with at least two nonzero entries. Build a list of columns of M as follows: say a list
of columns represents a row if and only if at least one of the columns in the set has
a nonzero entry in that row. Start with a column w1 with at least two nonzero entries.
If w1, . . . , wr have been chosen, and together they represent fewer than k + 1 rows,
then choose wr+1 to be any column that represents a new row and append it to the list.
Stop when w1, . . . , wr represent at least k + 1 rows. Now we started with a column
representing two rows, and each time we added a new column we got at least one new
row. Hence r ≤ k. Thus any linear combination

∑r
j=1 a jw j is of the form Mv, where

v has at most k nonzero entries. Fix k + 1 rows represented by the w j . For the i th such
row, let Vi be the set of all r -tuples (a1, . . . , ar ) such that

∑r
j=1 a jw j has a nonzero

entry in that i th row. Since w1, . . . , wr do represent this row, Vi is the nullspace of a
nontrivial linear equation on r -tuples and therefore is a codimension-1 subspace of Rr .
However, the required property of M says that for any r -tuple (a1, . . . , ar ), the linear
combination

∑r
j=1 a jv j has at most k nonzero entries; thus (a1, . . . , ar ) must lie in

one of these k + 1 subspaces. But of course Rr cannot be covered by finitely many
codimension-1 subspaces. This contradiction shows that such an M cannot exist.

Editorial comment. Several solvers noted that the same result holds for any field of
characteristic 0. John Smith (Needham, MA) noted that the result holds for rectangular
matrices.

Also solved by P. Budney, N. Caro (Brazil), P. P. Dályay (Hungary), E. A. Herman, Y. J. Ionin, J. H. Lindsey II,
O. P. Lossers (Netherlands), R. E. Prather, J. Simons (U. K.), J. H. Smith, M. Tetiva (Romania), E. I. Verriest,
Barclays Capital Problems Solving Group (U. K.), NSA Problems Group, and the proposer.

How Closely Does This Sum Approximate the Integral?

11535 [2010, 835]. Proposed by Marian Tetiva, Bı̂rlad, Romania. Let f be a contin-
uously differentiable function on [0, 1]. Let A = f (1) and let B =

∫ 1
0 x−1/2 f (x) dx .

Evaluate

lim
n→∞

n

(∫ 1

0
f (x) dx −

n∑
k=1

(
k2

n2
−
(k − 1)2

n2

)
f

(
(k − 1)2

n2

))
in terms of A and B.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA. Answer: A − B/2.
Proposition. If h is continuously differentiable on [0, 1], then

lim
n→∞

n

(∫ 1

0
h(x) dx −

1

n

n∑
k=1

h

(
k − 1

n

))
=

h(1)− h(0)

2
.
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Proof. Let H denote an antiderivative of h. By Taylor’s theorem,∫ 1

0
h(y) dy −

1

n

n∑
k=1

h

(
k − 1

n

)
=

n∑
k=1

(∫ k/n

(k−1)/n
h(y) dy −

1

n
h

(
k − 1

n

))

=

n∑
k=1

(
H

(
k

n

)
− H

(
k − 1

n

)
−

1

n
H ′
(

k − 1

n

))
=

1

2n2

n∑
k=1

H ′′(yk),

for some list (y1, . . . , yn) with yk ∈ ((k − 1)/n, k/n) for 1 ≤ k ≤ n. Therefore,

lim
n→∞

n

(∫ 1

0
h(y) dy −

n∑
k=1

h

(
k − 1

n

)
1

n

)
=

1

2
lim

n→∞

1

n

n∑
k=1

H ′′(yk)

=
1

2

∫ 1

0
h′(y) dy =

h(1)− h(0)

2
.

For this problem, let h(y) = 2y f (y2). Now (h(1)− h(0))/2 = (2 f (1))/2 = A. Using
the substitution y =

√
x , we have∫ 1

0
f (x) dx =

∫ 1

0
h(y)dy, B =

∫ 1

0
x−1/2 f (x) dx = 2

∫ 1

0
f (y2) dy.

Therefore, by the proposition,

lim
n→∞

n

(∫ 1

0
f (x) dx −

n∑
k=1

(
k2

n2
−
(k − 1)2

n2

)
f

(
(k − 1)2

n2

))

= lim
n→∞

n

(∫ 1

0
h(y) dy −

n∑
k=1

(
2(k − 1)

n2
+

1

n2

)
f

(
(k − 1)2

n2

))

= lim
n→∞

[
n

(∫ 1

0
h(y) dy −

1

n

n∑
k=1

h

(
k − 1

n

))
−

1

n

n∑
k=1

f

(
(k − 1)2

n2

)]

=
h(1)− h(0)

2
−

∫ 1

0
f (y2) dy = A −

B

2
.

Also solved by P. Bracken, N. Caro (Brazil), H. Chen, D. Constales (Belgium), P. P. Dályay (Hungary), Y. Du-
mont (France), P. J. Fitzsimmons, D. Fleischman, J.-P. Grivaux (France), F. Holland (Ireland), S. Kaczkowski,
P. Khalili, O. Kouba (Syria), W. C. Lang, J. H. Lindsey II, R. Nandan, M. Omarjee (France), K. Schilling, J.
Schlosberg, J. Simons (U. K.), N. C. Singer, Z. Song & L. Yin (China), A. Stenger, R. Stong, T. Tam, J. A. Van
Casteren (Belgium), E. I. Verriest, P. Xi (China), J. B. Zacharias & K. T. Greeson, Barclays Capital Problems
Solving Group (U. K.), GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposer.

Use Hayashi’s Inequality

11536 [2010, 835]. Proposed by Mihaly Bencze, Brasov, Romania. Let K , L , and M
denote the respective midpoints of sides AB, BC, and CA in triangle ABC, and let P be
a point in the plane of ABC other than K , L , or M . Show that

|AB|

|PK|
+
|BC|

|PL|
+
|CA|

|PM|
≥
|AB| · |BC| · |CA|

4|PK| · |PL| · |PM|
,

where |UV| denotes the length of segment UV.
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Solution by D. Marinescu, Colegiul Naţional “Iancu de Hunedoara”, Hunedoara, Ro-
mania, and M. Monea, Colegiul Naţional“Decebral”, Deva, Romania. In 1913, T.
Hayashi proved Hayashi’s Inequality: For any triangle ABC with opposite sides of
lengths a, b, c respectively, and for and an arbitrary point M in its plane,

a|MB| · |MC| + b|MC| · |MA| + c|MA| · |MB| ≥ abc.

See D. M. Mitronović, J. E. Peĉarić, V. Volenec, Recent Advances in Geometric In-
equalities, (Kluwer, 1989), p. 297. We now apply Hayashi’s Inequality with triangle
KLM and point P to get

|KL| · |PK| · |PL| + |KM| · |PK| · |PM| + |ML| · |PM| · |PL| ≥ |KL| · |ML| · |MK|.

Since |KL| = |AC|/2, |KM| = |BC|/2, and|ML| = |AC|/2,

|CA| · |PK| · |PL| + |BC| · |PK| · |PM| + |AB| · |PM| · |PL| ≥
1

4
|CA| · |BC| · |AB|,

which is equivalent to the inequality to be proved.

Also solved by G. Apostolopoulos (Greece), M. Bataille (France), D. Beckwith, M. Caragiu, P. P. Dályay (Hun-
gary), O. Geupel (Germany), O. Kouba (Syria), N. Minculete (Romania), B. Mulansky (Germany), C. R. Prane-
sachar (India), J. Schlosberg, T. Smotzer, M. Vowe (Switzerland), GCHQ Problem Solving Group (U. K.),
Northwestern University Math Problem Solving Group, and the proposer.

A Circumradius Inequality

11541 [2010, 929]. Proposed by Nicuşor Minculete, “Dimitrie Cantemir” University,
Brasov, Romania. Let M be a point in the interior of triangle ABC. Let Ra , Rb, and Rc

be the circumradii of triangles MBC, MCA, and MAB, respectively. Let |MA|, |MB|,
and |MC| be the distances from M to A, B, and C . Show that

|MA|

Rb + Rc
+
|MB|

Ra + Rc
+
|MC|

Ra + Rb
≤

3

2
.

Solution by Oleh Faynshteyn, Leipzig, Germany. Let ϕ1 = ∠CAM, ϕ2 = ∠MAB, ϕ3 =

∠ABM, ϕ4 = ∠MBC, ϕ5 = ∠BCM, and ϕ6 = ∠BCM. Observe that
∑6

i=1 ϕi = π .
From triangles AMC and ABM, it follows that

|MA| = 2Rb sinϕ6 = 2Rc sinϕ3,

hence

|MA|

Rb + Rc
=

2

cscϕ3 + cscϕ6
≤

1

2
(sinϕ3 + sinϕ6) ,

where the inequality is a consequence of the arithmetic-harmonic mean inequality.
Similarly we get

|MB|

Rc + Ra
≤

1

2
(sinϕ2 + sinϕ5) ,

|MC|

Ra + Rb
≤

1

2
(sinϕ1 + sinϕ4) .

Adding these three inequalities, we obtain

|MA|

Rb + Rc
+
|MB|

Ra + Rc
+
|MC|

Ra + Rb
≤

1

2

6∑
i=1

sinϕi .
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Since the sine function is concave down on (0, π), Jensen’s inequality gives

|MA|

Rb + Rc
+
|MB|

Ra + Rc
+
|MC|

Ra + Rb
≤ 3 sin

π

6
=

3

2
.

Equality holds if and only if all the ϕi are π/6, that is, if and only if ABC is equilateral
and M is its center.

Editorial comment. Pál Péter Dályay and Marian Dincă (independently) remarked that
the problem and solution generalize as follows. Let M be a point in the interior of
the convex n-gonA1 · · · An (with all indices interpreted mod n). With Rk denoting the
circumradius of triangle M Ak Ak+1, we have

n∑
k=1

|MAk |

Rk−1 + Rk
≤ n cos

π

n
,

with equality if and only if the n-gon is regular and M is its center.

Also solved by G. Apostolopoulos (Greece), M. Bataille (France), M. Can, R. Chapman (U. K.), P. P. Dályay
(Hungary), M. Dincă (Romania), W. Jiang (China), O. Kouba (Syria), C. R. Pranesachar (India), J. Schlosberg,
R. A. Simon (Chile), J. Simons (U. K.), R. Smith, T. Smotzer, R. Stong, M. Tetiva (Romania), Z. Vörös
(Hungary), J. B. Zacharias & K. T. Greeson, GCHQ Problem Solving Group (U. K.), and the proposer.

Gamma and Beta Inequalities

11542 [2010, 929]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania, and Vicenţiu Rădulescu, Institute of Mathematics “Simion
Stoilow” of the Romanian Academy, Bucharest, Romania. Show that for x, y, z > 1,
and for positive α, β, γ ,

(2x2
+ yz)0(x)+ (2y2

+ zx)0(y)+ (2z2
+ xy)0(z)

≥ (x + y + z)(x0(x)+ y0(y)+ z0(z)),

and

B(x, α)x2
+2yz B(y, β)y2

+2zx B(z, γ )z2
+2xy

≥ (B(x, α)B(y, β)B(z, γ ))xy+yz+zx .

Here, B(x, α) is Euler’s beta function, defined by B(x, α) =
∫ 1

0 t x−1(1− t)α−1dt .

Solution by M. A. Prasad, India. The first inequality is equivalent to

(x − y)(x − z)0(x)+ (y − z)(y − x)0(x)+ (z − x)(z − y)0(z) ≥ 0.

It is symmetric in x, y, z, so we may assume x ≥ y ≥ z. The first and third terms are
nonnegative, and the middle term is nonpositive. Note also that 0(x) is a convex func-
tion for x > 0, since (d2/dx2)0(x) = (log x)2

∫
∞

0 e−t t x−1 dx ≥ 0. Therefore, 0(y) ≤
max{0(x), 0(z)}. Since |(y − z)(y − x)| ≤ min{(x − y)(x − z), (z − x)(z − y)}, one
of the nonnegative terms is at least as large as the nonpositive term in absolute value.
This completes the proof for the first inequality. The second inequality is incorrect. For
a counterexample, consider x > y > z, and α, γ very large, and β = 1. The inequality
is equivalent to

B(x, α)(x−y)(x−z)B(y, β)(y−z)(y−x)B(z, γ )(z−x)(z−y)
≥ 1.

Now as α, γ →∞, we have B(x, α), B(z, γ )→ 0, so the left side is less than 1.

Also solved by G. Apostopoulos (Greece), R. Bagby, R. Chapman (U. K.), P. P. Dályay (Hungary), R. Stong,
J. V. Tejedor (Spain), and GCHQ Problem Solving Group (U. K.)
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