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a b s t r a c t

In this paper, we prove the existence of a sequence of nonnegative (weak) solutions
for the following problem{

− ∆Hu + u = λα(σ)f(u) in BN

u ∈ H1,2(BN ),

where ∆H denotes the Laplace–Beltrami operator on the Poincaré ball model BN

(with N ≥ 3) of the hyperbolic space HN , α ∈ L1(BN )∩L∞(BN ) is a nonnegative
and not identically zero radially symmetric potential, f is a suitable continuous
function, and λ is a positive real parameter. The analysis developed in this
paper combines a compactness embedding result due to Skrzypczak and Tintarev
[(2013), Theorem 1.3 and Proposition 3.1], some group-theoretical arguments on
the Poincaré ball model BN , and variational methods for smooth functionals
defined on the Sobolev space H1,2(BN ) associated to the homogeneous Hadamard
manifold BN .

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Hyperbolic geometry was created in the first half of the nineteenth century in the midst of attempts to
understand Euclid’s axiomatic basis for geometry. In the theory of hyperbolic geometry there are different
models for the hyperbolic space HN . Each model has its own metric, geodesics, isometries, and related
roperties. In order to understand the relationships among these models, it is helpful to understand the
eometric properties of the connecting maps. Two of them are the central or stereographic projection from
sphere to a plane; see, e.g., the monograph [5] and references therein.
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Recently, some eigenvalue problems on the hyperbolic space framework have been studied; see, for
instance, the papers [6,15,24,31], as well as [45,50,51]. Motivated by this wide interest on the current
literature, in this paper we deal with the following elliptic problem{

− ∆Hu + u = λα(σ)f(u) in BN

u ∈ H1,2(BN ),
(1.1)

ettled on the Poincaré ball model BN , with N ≥ 3.
Here, ∆H denotes the Laplace–Beltrami operator on BN , α ∈ L1(BN ) ∩ L∞(BN ) is a nonnegative and

nontrivial radially symmetric potential, f is a continuous function, and λ is a positive real parameter.
As usual, according to the notations of Section 2, a weak solution of problem (1.1) is any function

∈ H1,2(BN ) ∩ L∞(BN ) such that∫
BN

⟨∇Hu(σ), ∇Hφ(σ)⟩σ dµ +
∫
BN

u(σ)φ(σ)dµ

− λ

∫
BN

α(σ)f(u(σ))φ(σ)dµ = 0,

or every φ ∈ H1,2(BN ).
Let N ≥ 3 and define the family of subgroups of the special orthogonal group SO(N) given by

F :=

⎧⎨⎩G ⊆ SO(N) : G :=
ℓ∏

j=1
SO(Nj), where Nj ≥ 2, j = 1, . . . , ℓ, and

ℓ∑
j=1

Nj = N

⎫⎬⎭ ,

here SO(Nj) denotes here the special orthogonal group in dimension Nj , for every j = 1, . . . , ℓ. Now, take
∈ F and let · : G × BN → BN be the natural multiplicative action of the group G on BN . We briefly

ecall that a function u ∈ H1,2(BN ) is said to be G –invariant if

u(g · σ) = u(σ), in BN

or every g ∈ G ; see Section 3 for details.
A special case of the main result given in Theorem 5 of Section 4 reads as follows.

heorem 1. Let α ∈ L1(BN ) ∩ L∞(BN ) be a nonnegative and not identically zero radially symmetric map
ith respect to the origin σ0 ∈ BN . Furthermore, let f : R → R be a continuous function satisfying the

ollowing conditions:

(f ′
0) There are two real sequences (ξk)k and (ζk)k, with limk→∞ ζk = 0 such that 0 ≤ ξk < ζk for every k ∈ N,

and
F (ξk) = sup

t∈[0,ζk]
F (t),

where F (t) :=
∫ t

0 f(s)ds;
(f ′

1)

−∞ < lim inf
t→0+

F (t)
t2 ≤ lim sup

t→0+

F (t)
t2 = ∞.

Then, for every G ∈ F and λ > 0, there exists a sequence (uG
k )k ⊂ H1,2(BN ) of nonnegative and not

dentically zero G –invariant weak solutions of problem (1.1) such that

lim
k→∞

∥uG
k ∥ = lim

k→∞
∥uG

k ∥∞ = 0. (1.2)
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Our approach in order to prove Theorem 5 is based on variational techniques; in the sequel, we will
escribe it briefly; see the classical book of Brezis [8] as general reference for this topics. More precisely, it is
ell known that H1,2(BN ) cannot be compactly embedded into Lν(BN ), ν > 1, due to the unboundedness

of the hyperbolic space. However, by a Lions-type result, the fixed point space of H1,2(BN ) under the action
of G ∈ F , denoted H1,2

G (BN ), is compactly embedded into Lν(BN ) whenever ν ∈ (2, 2∗); see Skrzypczak
nd Tintarev [49].

Instead of (1.1) we study an auxiliary variational problem whose solutions also solve problem (1.1) in the
eak sense. If Jλ is the C1 energy functional associated to the aforementioned auxiliary problem, thanks to
compactness result due to Skrzypczak and Tintarev [49], the restriction of Jλ to H1,2

G (BN ), denoted by
G ,λ, is weakly sequentially lower semicontinuous and its critical points are critical points of Jλ as well, due
o the principle of symmetric criticality of Palais; see [40, Theorem 5.4].

The crucial step in our arguments is the construction of an appropriate sequence of weakly closed subsets
EG

k )k of H1,2(BN ), proving that the relative minima of JG ,λ on these sets are actually local minima of
G ,λ on H1,2

G (BN ), so G –invariant weak solutions of problem (1.1). Subsequently, a suitable subsequence of
ritical points of JG ,λ can be extracted from the aforementioned local minima having the property (1.2). We

emphasize that the crucial step described above can be achieved by using the continuity of the superposition
operator due to Marcus and Mizel [25, Theorem 1, p. 219] settled in the hyperbolic context instead of the
classical Euclidean framework; see [16, Proposition 2.5, p. 24] for additional comments and remarks.

Problem (1.1) is a reasonably useful generalization of most studied elliptic problems with oscillating non-
linearities, which naturally arise in different branches of mathematics. More precisely, the main result given
in Theorem 5 complement some results obtained on bounded Euclidean domains where elliptic problems with
oscillatory nonlinearities have been considered. For instance, among others, Dirichlet problems were studied
by Anello and Cordaro in [1] and Molica Bisci and Pizzimenti in [32], while Neumann type problems have
been considered by Anello and Cordaro in [2]. We point out that some almost straightforward computations
in [1,2] are adapted here to the hyperbolic setting. Anyway, due to the non-compact framework, our abstract
procedure, as well as the setting of the main results, is different from the results contained in [1,2], where
elliptic problems on bounded smooth domains have been studied.

Furthermore, the existence of infinitely many solutions of the following Dirichlet problem{
−∆u = λf(u) in Ω
u|∂Ω = 0,

(1.3)

on a bounded domain Ω ⊂ RN with smooth boundary ∂Ω has been extensively studied. Most results assume
that the nonlinearity f is odd in order to apply some variant of the classical Lusternik–Schnirelmann theory.
Only a few papers deal with nonlinearities having no symmetry properties. Among them, the ones which
are closest to the present article are certainly [1,38,47,48]. For instance, in [38], Omari and Zanolin proved
that if

lim inf
t→0+

F (t)
t2 = 0 and lim sup

t→0+

F (t)
t2 = ∞, (1.4)

problem (1.3) has a sequence of not identically zero and nonnegative weak solutions, satisfying (1.2); see
also [25,36,37,39] for related topics. We refer the interested reader to the results proved by Molica Bisci
in [29], where a similar multiplicity property has been established for an elliptic problem defined on the
Euclidean sphere SN ↪→ RN+1 endowed with the Euclidean induced metric.

The Laplacian case was also studied using different methods, and the existence of infinitely many weak
solutions, with the property that the L2–norm of their gradient goes to infinity, was proved by Kavian in [22]
and Struwe in [52,53]; see also the classical book of Rabinowitz [46].

The non–compact hyperbolic setting presents additional difficulties respect to the aforementioned cases
and suitable geometrical and algebraic tools need to be exploited in order to get the main results. For
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instance, a crucial ingredient used along the proof of Theorem 5 is based on a careful analysis of the energy
level on (EG

k )k of some G –invariant functions whose simple prototype, for suitable 0 < r < ρ and ε ∈ (0, 1),
s defined by

wε
ρ,r(σ) :=

⎧⎪⎪⎨⎪⎪⎩
0 if σ ∈ BN \ Aρ

r

1 if σ ∈ Aρ
εr

1
(1 − ε)r

(
r −

⏐⏐⏐⏐log
(

1 + |σ|
1 − |σ|

)
− ρ

⏐⏐⏐⏐) if σ ∈ Aρ
r \ Aρ

εr,

and whose support is contained in the annular domain Aρ
r of BN ; see Section 4 and [30] for related topics.

The Poincaré ball model is a significative model of Hadamard manifold, that is a complete, simply
connected Riemannian manifold with nonpositive sectional curvature. The approach adopted here can be
used in order to study the existence of multiple sequences of solutions for elliptic problems on Hadamard
manifolds in presence of a compact topological group action. Since this approach differs to the above, we
will treat it in a forthcoming manuscript. General results on complete Riemannian manifolds can be found
in [35] and [42].

The paper is organized in the following way: in Section 2 we recall some notions and notations which will
be used throughout the paper. In Section 3, in order to handle the lack of compactness of BN , a compactness
argument will be used, based on the action of a suitable subgroup of the group of isometries of BN . More
precisely, we shall adapt the main results of Skrzypczak and Tintarev [49, Theorem 1.3 and Proposition 3.1]
to our setting concerning Sobolev spaces in the presence of group-symmetries. The last section is devoted
to the proof of the main result stated in Theorem 5.

Some of the abstract tools used in this paper can be found in the recent monograph by Papageorgiou,
Rădulescu and Repovš [41].

2. Abstract framework

In this section we briefly recall some notions from Riemannian geometry needed in the sequel and then
illustrate the functional framework we will move in. We refer the reader to the following source [5] for detailed
derivations of the geometric quantities, their motivation and further applications. As is well-known there
are several models for the hyperbolic space HN , for instance, the Poincaré ball model BN . In particular, the
Poincaré disk model, also called the conformal ball model, is a model of two-dimensional hyperbolic geometry
in which the points of the geometry are inside the unit disk, and the straight lines consist of all segments of
circles contained within that disk that are orthogonal to the boundary of the disk, plus all diameters of the
disk.

To be specific, let us set

BN := {σ = (x1, x2, . . . , xN ) ∈ RN : |σ| < 1},

endowed with the Riemannian metric given by

gij := 4
(1 − |σ|2)2

δij (σ ∈ BN ; i, j = 1, . . . , N),

here | · | and δij denote respectively the Euclidean distance and the usual Kronecker delta.
For every i, j = 1, . . . , N , we also set

gij := (gij)−1, and g := det(gij).

n this setting the Laplace–Beltrami operator ∆H is locally defined as follows

∆H := 1
√

g

N∑ ∂

∂xi

⎛⎝√g
N∑

gij ∂

∂xj

⎞⎠ .

i=1 j=1
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Now, as usual, let
dµ := √gdx = 2N

(1 − |σ|2)N
dx

be the Riemannian volume element in BN , where dx denotes standard Lebesgue measure in the Euclidean
space RN .

Hence, if

dH(σ) := 2
∫ |σ|

0

dt

1 − t2 = log
(

1 + |σ|
1 − |σ|

)
,

denotes the geodesic distance of σ ∈ BN from the origin σ0 ∈ BN , a direct computation ensures that the
operator ∆H has the more convenient form

∆H = 1
4(1 − |σ|2)2

N∑
i=1

∂2

∂x2
i

+ N − 2
2 (1 − |σ|2)

N∑
i=1

xi
∂

∂xi
.

inally, let (ϱ, θ) be polar geodesic coordinates in BN \ {0}. Then, in BN \ {0} we have that

ds2 = dϱ2 + (sinh ϱ)2dθ,

nd
∆H = ∂2

∂ϱ2 + (N − 1) coth ϱ
∂

∂ϱ
+ 1

(sinh ϱ)2∆θ,

eing ∆θ the Laplace–Beltrami operator on the sphere SN−1 ↪→ RN .
We also notice that the hyperbolic distance in the Poincaré ball model is given by the formula

dH(σ1, σ2) = Arccosh
(

1 + 2|σ2 − σ1|2

(1 − |σ1|2)(1 − |σ2|2)

)
,

for every σ1, σ2 ∈ BN .
Now, let r ∈ (0, 1) and denote by

B(r) := {x ∈ BN : |x| < r}

the Euclidean ball of radius r and centered at the origin. Moreover, let

BH(y) := {σ ∈ BN : dH(σ) < y}

be the geodesic ball of radius y > 0 and centered in σ0 ∈ BN . One has

B(r) = BH

(
log
(

1 + r

1 − r

))
.

See [45] for additional comments and related facts.
Let Tσ(BN ) be the tangent space at σ ∈ BN endowed by the inner product ⟨·, ·⟩σ and by T (BN ) =⋃

σ∈BN Tσ(BN ) the tangent bundle. When no confusion arises, if X, Y ∈ Tσ(BN ), we simply write |X| and
X, Y ⟩ instead of the norm |X|σ and inner product gσ(X, Y ) = ⟨X, Y ⟩σ, respectively. If C∞

0 (BN ) denotes,
s customary, the space of real-valued compactly supported smooth functions on BN , we set

∥u∥ :=
(∫

BN
|∇Hu(σ)|2dµ +

∫
BN

|u(σ)|2dµ

)1/2
, (2.1)

or every u ∈ C∞
0 (BN ), where ∇H is the covariant derivative of u and dµ is the Riemannian measure on BN .

n a direct form

∇H =
(

(1 − |σ|2)
2

)2

∇, and |∇Hu(σ)| =
(

(1 − |σ|2)
2

)2√
⟨∇u, ∇u⟩,

where ∇ denotes the Euclidean gradient.
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The space H1,2(BN ) is defined to be the completion of C∞
0 (BN ) with respect to the norm (2.1) and it

turns out to be a Hilbert space equipped with the inner product

⟨u, v⟩ :=
∫
BN

⟨∇Hu(σ), ∇Hv(σ)⟩ dµ +
∫
BN

u(σ)v(σ)dµ, (2.2)

or every u, v ∈ H1,2(BN ).
Referring to Hoffman and Spruck [21], the Sobolev embedding H1,2(BN ) ↪→ Lν(BN ) is continuous (but

ot compact) for every ν ∈ [2, 2∗], where 2∗ = 2N/(N − 2). In the light of this result, we indicate by cν the
ositive constant

cν := sup
u∈H1,2(BN )\{0}

(∫
BN

|u(σ)|νdµ

)1/ν

(∫
BN

|∇Hu(σ)|2dµ +
∫
BN

|u(σ)|2dµ

)1/2 ,

hence cν := supu∈H1,2(BN )\{0}
∥u∥ν
∥u∥ , where ∥·∥ν denote, as usual, the Lν-norm on BN .

The following result will be crucial in the sequel.

roposition 2. Let ϱ : R → R be a Lipschitz continuous function and u ∈ H1,2(BN ). If ϱ ◦ u ∈ L2(BN ),
hen ϱ ◦ u ∈ H1,2(BN ) and

|∇H(ϱ ◦ u)(σ)| = |ϱ′(u(σ)) ∥ ∇Hu(σ)|,

or a.e. σ ∈ BN .

See [16, Proposition 2.5, page 24] for a detailed proof valid on a smooth complete Riemannian manifold.
Since problem (1.1) is settled in the entire non–compact space BN , in the next section we will adopt a

roup theoretical approach to identify suitable symmetric subspaces of H1,2(BN ) for which the compactness
f the embedding in Lν(BN ) can be regained.

. Isometric invariant functions

Let SO(N) be the special orthogonal group in dimension N ≥ 3 and let · : G ×BN → BN be the natural
ultiplicative action of the group SO(N) on BN . Furthermore, let us consider the family of subgroups of
O(N) given by

F :=

⎧⎨⎩G ⊆ SO(N) : G :=
ℓ∏

j=1
SO(Nj), where Nj ≥ 2, j = 1, . . . , ℓ, and

ℓ∑
j=1

Nj = N

⎫⎬⎭ ,

here SO(Nj) denotes here the special orthogonal group in dimension Nj , for every j = 1, . . . , ℓ. The action
G : G × H1,2(BN ) → H1,2(BN ) of a subgroup G ∈ F on H1,2(BN ) is given, as usual, by

g ⊛G u(σ) := u(g−1 · σ), for a.e. σ ∈ BN , (3.1)

or every g ∈ G and u ∈ H1,2(BN ).
Denote by

H1,2
G (BN ) :=

{
u ∈ H1,2(BN ) : g ⊛G u = u for every g ∈ G

}
he subspace of G –invariant functions of H1,2(BN ).

By using a recent embedding result à la Lions due to Skrzypczak and Tintarev [49, Theorem 1.3 and
roposition 3.1] we have the following compactness argument.
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Theorem 3. Let (BN , gij) be the N–dimensional homogeneous Poincaré ball model and let G ∈ F . Then,
the embedding

H1,2
G (BN ) ↪→ Lν(BN )

is compact for any ν ∈ (2, 2∗).

See [12] for related topics and additional comments and remarks.
Finally, let us recall the well known principle of symmetric criticality of Palais. A group (H , ∗) acts

continuously on a real Banach space X by an application (τ, u) ↦→ τ ⊛H u from H × X to X if this map
tself is continuous on H × X and satisfies

i1) idH ⊛H u = u for every u ∈ X, where idH ∈ H is the identity element of H ;
i2) (τ1 ∗ τ2) ⊛H u = τ1 ⊛H (τ2 ⊛H u) for every τ1, τ2 ∈ H and u ∈ X;
i3) u ↦→ τ ⊛H u is linear for every τ ∈ H .

et
FixH (X) := {u ∈ X : τ ⊛H u = u for every τ ∈ H } .

functional J : X → R is said to be H –invariant if

J (τ ⊛H u) = J (u),

or every u ∈ X.
With the above notations, according to [40], the following result is valid.

heorem 4. Let X be a real Banach space, H be a compact topological group acting continuously on X by
map ⊛H : H × X → X, and J : X → R be a H –invariant C1–function. If u ∈ FixH (X) is a critical

point of the restriction J|F ixH (X), then u ∈ X is also a critical point of J .

For details and comments we refer to [11] and [9, Section 5]. See also [30,35,43] for related topics and
esults.

. The main result

The main result reads as follows.

heorem 5. Let α ∈ L1(BN ) ∩ L∞(BN ) be a nonnegative and not identically zero radially symmetric map
ith respect to the origin σ0 ∈ BN . Furthermore, let f : R → R be a continuous function such that:

(f0) There are two real sequences (ξk)k and (ζk)k, with limk→∞ ζk = 0 such that 0 ≤ ξk < ζk for every k ∈ N,
and

F (ξk) = sup
t∈[ξk,ζk]

F (t),

where F (t) :=
∫ t

0 f(s)ds;
(f1) There exist a constant M > 0 and a sequence (ηk)k ⊂ (0, ∞), with limk→∞ ηk = 0 such that

lim
k→∞

F (ηk)
η2

k

= ∞,

and
inf

t∈[0,ηk]
F (t) ≥ −MF (ηk).
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Then, for every G ∈ F and λ > 0, there exists a sequence (uG
k )k ⊂ H1,2(BN ) of nonnegative and not

dentically zero G –invariant weak solutions of problem (1.1) such that

lim
k→∞

∥uG
k ∥ = lim

k→∞
∥uG

k ∥∞ = 0.

roof. Fix λ > 0 and t0 > 0. Since the term f is continuous, there exists κ > 0 such that

|f(t)| ≤ κ,

or every 0 ≤ t ≤ t0. Moreover, conditions (f0) and (f1) yield f(0) = 0. Indeed, by (f0) the function F

ttains its maximum in [ξk, ζk] at the point ξk. Then

lim
t→0+

∫ ξk+t

ξk

f(s)ds

t
= f(ξk) ≤ 0.

ince f is continuous, passing to the limit, as k → ∞, one has limk→∞ f(ξk) = f(0) ≤ 0. On the other hand,
et (ηk)k be the real sequence that appears in (f1). Since

lim
k→∞

F (ηk)
η2

k

= ∞, (4.1)

ne has f(0) ≥ 0. Indeed, arguing by contradiction, assume that f(0) < 0. Exploiting again the continuity
of f , it follows that f(t) < 0, for every t ∈ (0, δ), for some δ > 0. Consequently, F (t) < 0 for every t ∈ (0, δ).

earing in mind that ηk → 0+, as k → ∞, one has

lim
k→∞

F (ηk)
η2

k

≤ 0. (4.2)

learly, inequality (4.2) contradicts (4.1). In conclusion, the function f vanishes at zero.
Without loss of generality suppose that max{ηk, ζk} ≤ t0, for every k ∈ N, and define the truncated

(continuous) function h : R → R as follows

h(t) :=

⎧⎨⎩ f(t0) if t > t0
f(t) if 0 ≤ t ≤ t0
0 if t < 0.

Thanks again on our assumptions on the nonlinear term f and on the weight α, by using the continuous
mbedding result due to Hoffman and Spruck [21], the energy functional Jλ : H1,2(BN ) → R given by

Jλ(u) := 1
2λ

∥u∥2 −
∫
BN

α(σ)
(∫ u(σ)

0
h(t)dt

)
dµ (4.3)

s of class C1(H1,2(BN )). Now, let us consider the auxiliary problem{
− ∆Hu + u = λα(σ)h(u) in BN

u ∈ H1,2
G (BN ).

(4.4)

et
JG ,λ(u) := 1

λ
Φ(u) − Ψ(u), ∀ u ∈ H1,2

G (BN ),

where
Φ(u) := 1∥u∥2,
2
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Ψ(u) :=
∫
BN

α(σ)
(∫ u(σ)

0
h(t)dt

)
dµ,

or every u ∈ H1,2
G (BN ).

Let us fix q ∈ (2, 2∗). Since h is bounded and α ∈ L1(BN ) ∩ L∞(BN ), bearing in mind that the
embedding of H1,2

G (BN ) into Lq(BN ) is compact, the functional JG ,λ is well-defined, sequentially weakly
lower semicontinuous and continuously Gâteaux derivable in the Sobolev space H1,2

G (BN ). Hence, the weak
solutions of problem (4.4) are exactly the critical points of the C1 functional JG ,λ. Indeed, a weak solution
of problem (4.4) is any function u ∈ H1,2

G (BN ) ∩ L∞(BN ) such that∫
BN

⟨∇Hu(σ), ∇Hv(σ)⟩ dµ +
∫
BN

u(σ)φ(σ)dµ

− λ

∫
BN

α(σ)h(u(σ))φ(σ)dµ = 0,

for every φ ∈ H1,2
G (BN ).

Fix k ∈ N and define

EG
k :=

{
u ∈ H1,2

G (BN ) : 0 ≤ u(σ) ≤ ζk a.e. in BN
}

.

Step 1 - The functional JG ,λ is bounded from below on EG
k and its infimum on EG

k is attained at uG
k ∈ EG

k .
Since the set EG

k is closed and convex in H1,2
G (BN ), the same set is weakly closed in H1,2

G (BN ). Moreover,
for every u ∈ EG

k , one has
JG ,λ(u) ≥ −Ψ(u) ≥ −κ∥α∥1ζk, (4.5)

taking into account that

Ψ(u) ≤
∫
BN

α(σ)

⏐⏐⏐⏐⏐
∫ u(σ)

0
h(t)dt

⏐⏐⏐⏐⏐ dµ

≤ κ

∫
BN

α(σ)u(σ)dµ ≤ κ

∫
BN

α(σ)ξkdµ

≤ κ∥α∥1ζk,

for every u ∈ EG
k .

Let αG
k := infu∈EG

k
JG ,λ(u). For every j ∈ N, there exists vj ∈ EG

k such that

αG
k ≤ JG ,λ(vj) < αG

k + 1
j

.

Hence, it follows that

Φ(vj) = λ(Ψ(vj) + Jλ(vj))

≤ λ

(∫
BN

α(σ)
(∫ u(σ)

0
h(t)dt

)
dµ + αG

k + 1
j

)
≤ λ

(
κ∥α∥1ζk + αG

k + 1
)

.

hen (vj)j is norm bounded in H1,2
G (BN ). This implies that there exists a subsequence (vjl

)l weakly
G G G
onvergent to uk ∈ Ek , being Ek weakly closed. At this point, we exploit the weak sequentially lower
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semicontinuity of JG ,λ obtaining that

αG
k = inf

u∈EG ,k

JG ,λ(u) ≤ JG ,λ(uG
k ) ≤ lim inf

l→∞
JG ,λ(vjl

) = αG
k .

Hence JG ,λ(uG
k ) = αG

k as affirmed.
Step 2 - For every k ∈ N one has that uG

k (σ) ∈ [0, ξk] for a.e. σ ∈ BN .
In fact, fix k ∈ N and define ϱk : R → R as follows

ϱk(t) =

⎧⎨⎩ ξk if t > ξk

t if 0 ≤ t ≤ ξk

0 if t < 0,

and consider the superposition operator Tk : H1,2
G (BN ) → H1,2

G (BN ), such that u ↦→ Tku, where

Tku(σ) := ϱk(u(σ)), a.e. in BN ,

for every u ∈ H1,2
G (BN ). We notice that, for every u ∈ H1,2

G (BN ), Tku ∈ H1,2
G (BN ). Indeed, since ϱk is

Lipschitz continuous, with ϱk(0) = 0, then Tku ∈ H1,2(BN ); see Proposition 2 in Section 2. We claim that
Tku ∈ H1,2

G (BN ). Indeed, since u ∈ H1,2
G (BN ), one has

g ⊛G Tku(σ) = Tku(g−1 · σ) = (ϱk ◦ u)(g−1 · σ)
= ϱk(u(g−1 · σ)) = ϱk(u(σ))
= Tku(σ)

for a.e. σ ∈ BN and g ∈ G . More precisely, for every u ∈ H1,2
G (BN ), one has Tku ∈ EG

k for every k ∈ N.
Now, set v⋆

G ,k := TkuG
k and let

XG
k := {σ ∈ BN : uG

k (x) ̸∈ [0, ξk]}.

If the Riemann measure µ(XG
k ) = 0 our conclusion is achieved. Otherwise, suppose that µ(XG

k ) > 0. Then,
ne has

ξk < uG
k (σ) ≤ ζk,

s well as
v⋆

G ,k(σ) = TkuG
k (σ) = ξk, (4.6)

or a.e. σ ∈ XG
k . However, hypothesis (f0) gives∫ uG

k (σ)

0
h(t)dt ≤ sup

t∈[ξk,ζk]

∫ t

0
h(s)ds =

∫ ξk

0
h(t)dt =

∫ v⋆
G ,k(σ)

0
h(t)dt,

or a.e. σ ∈ XG
k . Hence ∫ uG

k (σ)

0
h(t)dt ≤

∫ v⋆
G ,k(σ)

0
h(t)dt, (4.7)

nd |∇v⋆
k,G (σ)| = 0 for a.e. σ ∈ XG

k . By (4.7), it follows that

∥v⋆
G ,k∥2 − ∥uG

k ∥2 =
∫
BN

(|v⋆
G ,k(σ)|2 − |uG

k (σ)|2)dµ +
∫
BN

(|∇Hv⋆
G ,k(σ)|2 − |∇HuG

k (σ)|2)dµ

=
∫

XG
k

(ξ2
k − (uG

k (σ))2)dµ −
∫

XG
k

|∇HuG
k (σ)|2dµ

≤ −
∫

G
|uG

k (σ) − ξk|2dµ −
∫

G
|∇Hv⋆

G ,k(σ) − ∇HuG
k (σ)|2dµ
X
k

X
k
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= −
∫
BN

|v⋆
G ,k(σ) − uG

k (σ)|dµ −
∫
BN

|∇Hv⋆
G ,k(σ) − ∇HuG

k (σ)|2dµ

= −∥v⋆
G ,k − uG

k ∥2.

Hence, the above inequality ensures that

JG ,λ(v⋆
G ,k) − JG ,λ(uG

k ) = 1
2λ

(∥v⋆
G ,k∥2 − ∥uG

k ∥2) −
∫
BN

α(σ)
(∫ v⋆

G ,k

uG
k

h(t)dt

)
dµ

≤ − 1
2λ

∥v⋆
G ,k − uG

k ∥2 −
∫

XG
k

α(σ)
(∫ v⋆

G ,k

uG
k

h(t)dt

)
dµ

≤ − 1
2λ

∥v⋆
G ,k − uG

k ∥2.

ince v⋆
G ,k ∈ EG

k , it follows that JG ,λ(v⋆
G ,k) ≥ JG ,λ(uG

k ). Then

∥v⋆
G ,k − uG

k ∥ = 0,

that is

∥v⋆
G ,k − uG

k ∥ =
(∫

XG
k

|∇(v⋆
G ,k − uG

k )(σ)|2dµ +
∫

XG
k

|(v⋆
G ,k − uG

k )(σ)|2dµ

)1/2

= 0.

Since µ(XG
k ) > 0, one has uG

k (σ) = v⋆
G ,k(σ) ∈ [0, ξk] a.e. in BN . Thus, the claim is proved.

Step 3 - For every k ∈ N one has that uG
k is a local minimum point of functional JG ,λ in the Sobolev space

H1,2
G (BN ).
To this end, let us fix u ∈ H1,2

G (BN ), and let

ZG ,k := {σ ∈ BN : u(σ) ̸∈ [0, ξk]},

for every k ∈ N.
Now, if Tk is the operator defined above, set

v⋆
k(σ) := Tku(σ) =

⎧⎨⎩ ξk if u(σ) > ξk

u(σ) if 0 ≤ u(σ) ≤ ξk

0 if u(σ) < 0,
(4.8)

for a.e. σ ∈ BN .
The definition of Tk yields ∫ u(σ)

v⋆
k

(σ)
h(t)dt = 0,

if σ ∈ BN \ ZG ,k. Furthermore, if σ ∈ ZG ,k, then the following alternatives hold:

(a) If u(σ) ≤ 0, then ∫ u(σ)

v⋆
k

(σ)
h(t)dt =

∫ u(σ)

0
h(t)dt = 0.

b) If ξk < u(σ) ≤ ζk, one has ∫ u(σ)

v⋆
k

(σ)
h(t)dt =

∫ u(σ)

0
h(t)dt −

∫ v⋆
k(σ)

0
h(t)dt

=
∫ u(σ)

0
h(t)dt −

∫ ξk

0
h(t)dt

=
∫ u(σ)

0
h(t)dt − sup

t∈[ξk,ζk]

∫ t

0
h(s)ds

≤ 0.
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(c) If u(σ) > ζk, it follows that ∫ u(σ)

v⋆
k

(σ)
h(t)dt =

∫ u(σ)

ξk

h(t)dt

≤

⏐⏐⏐⏐⏐
∫ u(σ)

ξk

h(t)dt

⏐⏐⏐⏐⏐ ≤ κ(u(σ) − ξk).

Hence, the constant
C := κ

∥α∥∞
sup
ξ≥ζk

ξ − ξk

(ξ − ξk)q
,

is finite and we have that ∫ u(σ)

v⋆
k

(σ)
h(t)dt ≤ C∥α∥∞|u(σ) − v⋆

k(σ)|q,

a.e. in BN . Then, we can write∫
BN

α(σ)
(∫ u(σ)

v⋆
k

(σ)
h(t)dt

)
dµ ≤ Cγq∥u − v⋆

k∥q, (4.9)

where

γ := sup
u∈H

1,2
G

(BN )\{0}

(∫
BN

|u(σ)|qdµ

)1/q

∥u∥
< +∞.

Moreover, one has

∥u∥2 − ∥v⋆
k∥2 =

∫
BN

(|u(σ)|2 − |v⋆
k(σ)|2)dµ +

∫
BN

(|∇Hu(σ)|2 − |∇Hv⋆
k(σ)|2)dµ

=
∫

Z−
G ,k

|u(σ)|2dµ +
∫

Z+
G ,k

|u(σ)2 − ξ2
k|dµ +

∫
ZG ,k

|∇Hu(σ)|2dµ

≥
∫

Z−
G ,k

|u(σ) − v⋆
k(σ)|2dµ +

∫
Z+

G ,k

|u(σ) − ξk|2dµ

+
∫

ZG ,k

|∇Hu(σ) − ∇Hv⋆
k(σ)|2dµ

= ∥u − v⋆
k∥2,

where
Z−

G ,k := {σ ∈ ZG ,k : u(σ) < 0} and Z+
G ,k := {σ ∈ ZG ,k : u(σ) > 0}.

aking into account the above computations, it follows that

JG ,λ(u) − JG ,λ(v⋆
k) = 1

2λ
(∥u∥2 − ∥u⋆

k∥2) −
∫
BN

α(σ)
(∫ u(σ)

v⋆
k

(σ)
h(t)dt

)
dµ

= 1
2λ

∥u − v⋆
k∥2 −

∫
BN

α(σ)
(∫ u(σ)

v⋆
k

(σ)
h(t)dt

)
dµ

≥ 1
2λ

∥u − v⋆
k∥2 − Cγq∥u − v⋆

k∥q.

Since v⋆
k ∈ EG

k , it follows that JG ,λ(v⋆
k) ≥ JG ,λ(uG

k ). Then, we have

JG ,λ(u) ≥ JG ,λ(uG
k ) + ∥u − v⋆

G ∥2
(

1 − Cγq∥u − v⋆
k∥q−2

)
.
2λ



G. Molica Bisci and V.D. Rădulescu / Nonlinear Analysis 201 (2020) 111812 13

a

f

t
S

t

t
s

Now, for every k ∈ N, the operator Tk : H1,2
G (BN ) → EG

k is continuous on account of Proposition 2
nd [25, Theorem 1, page 219]. Since q > 2 and

∥u − v⋆
k∥ ≤ ∥u − uG

k ∥ + ∥uG
k − v⋆

k∥
= ∥u − uG

k ∥ + ∥TkuG
k − v⋆

k∥,

there exists β > 0 such that
∥u − v⋆

k∥q−2 ≤ 1
4λCγq

,

or every u ∈ H1,2
G (BN ) with ∥u − uG

k ∥ < β. Hence, if ∥u − uG
k ∥ < β, it follows that

JG ,λ(u) ≥ JG ,λ(uG
k ) + 1

4λ
∥u − v⋆

k∥2

≥ JG ,λ(uG
k ),

hat is, uG
k is a local minimum of JG ,λ in H1,2

G (BN ).
tep 4 - If

αG
k := inf

u∈EG
k

JG ,λ(u), (4.10)

hen limk→∞ αG
k = limk→∞ ∥uG

k ∥ = 0.
Since uG

k ∈ EG
k and αG

k = JG ,λ(uG
k ), one has∫

BN
|∇Hu(σ)|2dµ +

∫
BN

|u(σ)|2dµ = 2λ (Ψ(u) + JG ,λ(u))

= 2λ

(∫
BN

α(σ)
(∫ u(σ)

0
h(t)dt

)
dµ + αG

k

)
(4.11)

≤ 2λ
(
κ∥α∥1ζk + αG

k

)
.

Now (4.5) holds and
− κ∥α∥1ζk ≤ αG

k = inf
u∈EG

k

JG ,λ(u) ≤ 0, (4.12)

aking into account that the identically zero function u0 ≡ 0 belongs to EG
k and JG ,λ(0) = 0. By (4.12),

ince ζk → 0 as k → ∞, it follows that
lim

k→∞
αG

k = 0. (4.13)

Hence, inequality (4.11) yields
lim

k→∞
∥uG

k ∥ = 0.

Step 5 - Let αG
k be given as in (4.10). Then

αG
k < 0,

for every k ∈ N.
To prove this, let us fix k ∈ N. We introduce a class of functions belonging to H1,2

G (BN ) that will be
crucial along the proof of the main step. Since α ∈ L∞(BN ) \ {0} is nonnegative in BN , there are real
numbers ρ > r > 0 and α0 > 0 such that

essinf
σ∈A

ρ
r

α(σ) ≥ α0 > 0. (4.14)

Furthermore, for every 0 < a < b, define the following annular domain

b
Aa = BH(a + b) \ BH(b − a),
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where
dH(σ) := 2

∫ |σ|

0

dt

1 − t2 = log
(

1 + |σ|
1 − |σ|

)
,

denotes the geodesic distance of the point σ ∈ BN from the origin σ0 of BN .
With the above notations, fix ε ∈ (0, 1) and set wε

ρ,r ∈ H1,2(BN ) given by

wε
ρ,r(σ) :=

⎧⎪⎪⎨⎪⎪⎩
0 if σ ∈ BN \ Aρ

r

1 if σ ∈ Aρ
εr

r − |dH(σ) − ρ|
(1 − ε)r if σ ∈ Aρ

r \ Aρ
εr,

(4.15)

or every σ ∈ BN . Since the group G is a compact connected subgroup of the isometry group Isomg(BN ) such
hat FixG (BN ) = {σ0}, one has that the function wε

ρ,r ∈ H1,2(BN ), given in (4.15), belongs to H1,2
G (BN ).

irect computations yield

j1) supp(wε
ρ,r) ⊆ Aρ

r ;
j2) ∥wε

ρ,r∥∞ ≤ 1;
j3) wε

ρ,r(σ) = 1 for every σ ∈ Aρ
εr.

et gµ : (0, 1) → (0, ∞) be the real function defined by

gµ(ε) := µ(Aρ
εr)

µ(Aρ
r \ Aρ

εr) , ε ∈ (0, 1),

where µ is the Riemann measure on BN . Clearly, if ε → 1− then gµ(ε) → ∞ as well as gµ(ε) → 0 if ε → 0+.
Thus, there exists ε0 ∈ (0, 1) such that

µ(Aρ
ε0r)

µ(Aρ
r \ Aρ

ε0r) = M + 1,

where M > 0 is given in condition (f1).
By the former condition of (f1), there exists j0 ∈ N such that ηj ≤ ζk and∫ ηj

0
h(t)dt >

1
λ

(M + 1)∥wε0
ρ,r∥

α0µ(Aρ
ε0r)

η2
j

2 ,

or every j ≥ j0. On account of (j1)–(j3), the latter condition of (f1) and (4.14) yields

−
Ψ(ηjwε0

ρ,r)
∥ηjwε0

ρ,r∥2 = −

∫
A

ρ
ε0r

α(σ)
(∫ ηj

0
h(t)dt

)
dµ

η2
j ∥wε0

ρ,r∥2 −

∫
A

ρ
r\A

ρ
ε0r

α(σ)
(∫ ηjw

ε0
ρ,r(σ)

0
h(t)dt

)
dµ

η2
j ∥wε0

ρ,r∥2

≤ −α0

∫
A

ρ
ε0r

(∫ ηj

0
h(t)dt

)
dµ +

∫
A

ρ
r\A

ρ
ε0r

inf
t∈[0,ηj ]

(∫ t

0
h(s)ds

)
dµ

η2
j ∥wε0

ρ,r∥2

≤ α0

M

∫
A

ρ
r\A

ρ
ε0r

(∫ ηj

0
h(t)dt

)
dµ −

∫
A

ρ
ε0r

(∫ ηj

0
h(t)dt

)
dµ

η2
j ∥wε0

ρ,r∥2

= −
(

µ(Aρ
ε0r)

M + 1

)
α0

∥wε0
ρ,r∥2

∫ ηj

0
h(t)dt

η2
j

< − 1
2λ

,

or every j ≥ j0. Whence ηjwε0
ρ,r ∈ Ek,G and JG ,λ(ηjwε0

ρ,r) < 0, for j ≥ j0. Hence αk := infu∈Ek,G
JG ,λ(u) < 0

s claimed.
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Proof of Theorem 5 concluded. Taking into account that ∥uk∥∞ → 0, as k → ∞, there exists a
subsequence of (uG

k )k ⊂ H1,2
G (BN ), still denoted by (uk)k, of pairwise distinct elements with

0 ≤ ∥uG
k ∥∞ ≤ t0,

that weakly solves problem (4.4). Since the fixed point set of H1,2(BN ) under the action of the group G is
exactly H1,2

G (BN ), the symmetric criticality principle recalled in Theorem 4 ensures that (uG
k )k ⊂ H1,2(BN )

is a sequence of critical points for the C1–functional Jλ, i.e. weak solutions of (1.1). □

.1. Further remarks and perspectives

We conclude this paper with several remarks and examples.

emark 1. We notice that, in order to apply the Palais principle in Theorem 5, the functional Jλ defined
n (4.3) needs to be G –invariant. To prove this, let u ∈ H1,2(BN ) and g ∈ G be fixed. Since g ∈ G ⊆ SO(N)
s an isometry, on account of (3.1), it follows the chain rule

∇H(g ⊛G u)(σ) = Dgg−1·σ∇Hu(g−1 · σ), (4.16)

or a.e. σ ∈ BN , where Dgg−1·σ : Tg−1·σ(BN ) → Tσ(BN ) denotes the differential of g ∈ G at the point g−1 ·σ.
etting z := g−1 · σ, it follows that

∥g ⊛G u∥2 =
∫
BN

(
|∇H(g ⊛G u)(σ)|2σ + |(g ⊛G u)(σ)|2

)
dµ(σ)

=
∫
BN

(
|∇Hu(g−1 · σ)|2g−1·σ + |u(g−1 · σ)|2

)
dµ(σ) (4.17)

=
∫
BN

(
|∇Hu(z)|2z + |u(z)|2

)
dµ(z)

= ∥u∥2
,

where we have made use of (4.16) and the fact that the map Dgg−1·σ is inner product-preserving. Moreover,
since α ∈ L1(BN ) ∩ L∞(BN ) is radially symmetric respect to the origin σ0 ∈ BN , one has∫

BN
α(σ)

(∫ (g⊛G u)(σ)

0
h(t)dt

)
dµ(σ) =

∫
BN

α(σ)
(∫ u(g−1·σ)

0
h(t)dt

)
dµ(σ) (4.18)

=
∫
BN

α(z)
(∫ u(z)

0
h(t)dt

)
dµ(z).

hus, by (4.17) and (4.18) we infer

Jλ(g ⊛G u) = 1
2λ

∥g ⊛G u∥2 −
∫
BN

α(σ)
(∫ (g⊛G u)(σ)

0
h(t)dt

)
dµ = Jλ(u),

hich proves the claim; see [12] and references therein for additional comments and remarks.

emark 2. We point out that Theorem 1 in Introduction is a direct consequence of Theorem 5. Indeed if
f ′

0) holds, condition (f0) is automatically verified. On the other hand, hypothesis (f ′
1) implies (f1). To prove

his, assume that condition (f ′
1) holds. Since lim supt→0+ F (t)/t2 = ∞, there exists a sequence (ηk)k ⊂ (0, ∞)

uch that limk→∞ ηk = 0 and
lim sup F (ηk)

2 = ∞.

k→∞ ηk



16 G. Molica Bisci and V.D. Rădulescu / Nonlinear Analysis 201 (2020) 111812

t

T

E

n

N

t

w

Moreover, owing to lim inft→0+ F (t)/t2 > −∞, there exist M, δ > 0 such that F (t) ≥ −Mt2, for every
∈ (0, δ). Since limk→∞ ηk = 0, there is ν ∈ N such that ηk ∈ (0, δ) and F (ηk) ≥ −MF (ηk), for every k ≥ ν.
hus, condition (f1) is verified as claimed.

The following model equation illustrates how our result can be applied.

xample 1. Let us consider the problem⎧⎪⎪⎨⎪⎪⎩
− ∆Hu + u = λ

(
1 − |σ|2

2

)N

f(u) in BN

u ∈ H1,2(BN ),

(4.19)

where f : R → R is the function defined by

f(t) :=

⎧⎨⎩ 15 3√
t2 sin 1

3√t
− 3 3√

t cos 1
3√t

if t > 0

0 if t ≤ 0.

Owing to Theorem 5, for every G ∈ F and λ > 0, there exists a sequence (uG
k )k ⊂ H1,2(BN ) of

onnegative and nonzero G –invariant weak solutions of problem (4.19) such that

lim
k→∞

∥uG
k ∥ = lim

k→∞
∥uG

k ∥∞ = 0.

ow, a direct computation ensures that

F (t) :=

⎧⎨⎩ 9 3√
t5 sin 1

3√t
if t > 0

0 otherwise,

and
lim inf
t→0+

F (t)
t2 = −∞.

Thus, Theorem 1 cannot be applied in this case; see [1, Example 3.1] for additional comments and remarks.

Remark 3. As a biproduct of the results contained in [10] the bottom of the spectrum of −∆H in BN is
given by

λ1(−∆H) = inf
H1,2(BN )\{0}

∫
BN

|∇u(σ)|2dµ∫
BN

|u(σ)|2dµ

= (N − 1)2

4 ,

see also [24] for related topics and direct applications. This variational characterization of the first eigenvalue
λ1(−∆H) ensures that, for every µ < (N−1)2

4 , the norm

∥u∥µ :=
(∫

BN
|∇Hu(σ)|2dµ − µ

∫
BN

|u(σ)|2dµ

)1/2
, u ∈ C∞

0 (BN )

is equivalent to the H1,2–norm displayed in (2.1). Taking into account the above remarks it is easily seen
hat the validity of the main results can be checked for the following semilinear problem{

− ∆Hu − µu = λα(σ)f(u) in BN

u ∈ H1,2(BN ),
(4.20)

here µ < (N−1)2
.
4
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Remark 4. Problem (1.1) is a reasonably useful generalization of most studied elliptic problems with
subcritical nonlinearities, which naturally arise in different branches of mathematics. For instance, an
important incentive to the study of Kirchhoff-type problems was recently provided in [3,4,13,14], and
[26–28,44]. Along this direction, in [33] Theorem 5 has been proved for Kirchhoff equations on the hyperbolic
space BN ; see [17–20,31] as well as [7,23,34] for related topics.
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