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Abstract. We consider semilinear Robin problems near resonance with

respect to a nonprincipal eigenvalue λ̂m. We distinguish two cases. In

the first one the near resonance occurs from the right of λ̂m and in the
second from the left. For both cases, using variational tools, we produce
two smooth solutions. We also provide conditions for these solutions to
be nontrivial.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we

study the following semilinear Robin problem

− Δu(z) = λ̂mu(z) + f(z, u(z)) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω. (1)

In this problem, {λ̂m}m�1 is the sequence of distinct eigenvalues of −Δ
with Robin boundary condition. Depending on the asymptotic behavior of the
quotient f(z,x)

x as x → ±∞ and in particular on how these limits relate to
the eigenvalue λ̂m, we can have different existence and multiplicity results for
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problem (1). In the present work, we examine what happens when the reaction
term λ̂mx + f(z, x) asymptotically at ±∞ is near resonance with respect to
the eigenvalue λ̂m (m � 2) either from the right (that is, from above of λ̂m)
or from the left (that is, from below of λ̂m).

This problem was first investigated for ordinary Dirichlet differential
equations near resonance with respect to the principal eigenvalue, by Mawhin
and Schmitt [9]. Their work was extended to semilinear Dirichlet partial differ-
ential equations by Chiappinelli et al. [2]. In both works, the approach is based
on a combination of bifurcation theory and of degree theory. This method of
proof requires stronger conditions on the perturbation f(z, ·). A variational ap-
proach to the problem can be found in the works of Ma, Ramos and Sanchez
[7] and Ramos and Sanchez [20]. Both papers deal with semilinear Dirichlet
equations which are near resonance with respect to the principal eigenvalue.
Their work was extended to equations driven by the Dirichlet p-Laplacian by
Papageorgiou and Papalini [13]. Equations near resonance at higher eigenval-
ues, were investigated by Mawhin and Schmitt [10] and Lupo and Ramos [6]
(for ordinary differential equations) and more recently by de Paiva and Massa
[3] and Ke and Tang [5] (for semilinear elliptic equations). Both works deal
with Dirichlet equations, the limits as x → ±∞ exist and no interaction with
the eigenvalue λ̂m is allowed (strict nonresonance). Finally, we should mention
also the works of Mugnai [12] and Rabinowitz et al. [19], which study Dirich-
let elliptic equations near resonance at zero. To the best of our knowledge,
no such analysis exists for Robin problems. We stress that for such problems,
due to the failure of the Poincaré inequality on the Sobolev space H1(Ω), the
differential operator is not coercive.

First we deal with the situation in which the near resonance with respect
to λ̂m occurs from the right (that is, from values higher than λ̂m). We prove a
multiplicity theorem producing two smooth solutions. In fact the first solution
can be produced under conditions of resonance with respect to λ̂m. To obtain
the second solution, we need to have conditions of nonuniform nonresonance
with respect to λ̂m. Subsequently we deal with the case of near resonance from
the left of λ̂m (that is, from values smaller than λ̂m). Again we produce two
smooth solutions.

In the next section, for easy reference, we recall the main mathematical
tools which we will use in this work.

2. Mathematical Background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗,X). Suppose that ϕ ∈ C1(X,R). We say
that ϕ satisfies the “Cerami condition” (the “C-condition” for short), if the
following property holds:
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“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is
bounded and

(1 + ||un||)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.
The Cerami condition is a compactness-type condition on the functional ϕ

and it is weaker than the usual Palais–Smale condition. Nevertheless, if suffices
to prove a deformation theorem from which one can derive the minimax theory
of the critical values of ϕ (see, for example, Gasinski and Papageorgiou [4]).
The next notion is central in this theory.

Definition 1. Let Y be a Hausdorff topological space and let E0, E and D be
nonempty, closed subsets of Y such that E0 ⊆ E. We say that the pair {E0, E}
is linking with D in Y if:
(a) E0 ∩ D = ∅;
(b) for any γ ∈ C(E, Y ) such that γ|E0 = id|E0 we have γ(E) ∩ D 
= ∅.

Using this notion, we have the following general minimax theorem (see
Gasinski and Papageorgiou [4, p. 644]).

Theorem 2. Assume that X is a Banach space, E0, E and D are nonempty,
closed subsets of X such that {E0, E} is linking with D in X, ϕ ∈ C1(X,R)
satisfies the C-condition,

sup
E0

ϕ < inf
D

ϕ

and c = infγ∈Γ sup
u∈E

ϕ(γ(u)), where Γ = {γ ∈ C(E,X) : γ|E0 = id|E0}. Then

c � infD ϕ and c is a critical value of ϕ (that is, there exists u ∈ X such that
ϕ′(u) = 0, ϕ(u) = c).

With suitable choices of the linking sets, from Theorem 2 we have as
corollaries the main minimax theorems of the critical point theory. For future
use, we state the so-called “saddle point theorem” due to Rabinowitz [18]. In
what follows for R > 0, we define

BR = {u ∈ X : ||u|| < R} and ∂BR = {u ∈ X, ||u|| = R}.

Theorem 3. Assume that X = Y ⊕ V with dim Y < +∞, ϕ ∈ C1(X,R), there
exists R > 0 such that

max[ϕ(u) : u ∈ ∂BR ∩ Y ] < inf[ϕ(u) : u ∈ V ] = m

and c = infγ∈Γ max
u∈B̄R∩Y

ϕ(γ(u)) where

Γ = {γ ∈ C(B̄R ∩ Y,X) : γ|∂BR∩Y = id|∂BR∩Y }.

Then c � m and c is a critical value of ϕ.
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Remark 1. Theorem 3 follows from Theorem 2 by choosing

E0 = ∂BR ∩ Y,E = B̄R ∩ V and D = V

(see Gasinski and Papageorgiou [4, p. 649]).

Another abstract result which we will use, is the so-called “splitting
spheres theorem” of Marino, Micheletti and Pistoia [8].

Theorem 4. Assume that H is a Hilbert space, H = Y ⊕V with dim Y < +∞,
ϕ ∈ C1(X,R) satisfies the C-condition and there exist r, ρ > 0 such that

sup
u∈∂Br∩Y

ϕ(u) < a = inf
u∈B̄r∩V

ϕ(u) � b = sup
u∈B̄r∩Y

ϕ(u) < inf
u∈∂Bρ∩V

ϕ(u).

Then there exists a critical point u0 of ϕ such that ϕ(u0) ∈ [a, b].

In the study of problem (1) we will use the Sobolev space H1(Ω), the
Banach space C1(Ω) and the boundary Lebesgue spaces Lr(∂Ω), 1 � r � ∞.

By || · || we denote the norm of the Sobolev space H1(Ω) defined by

||u|| =
[||u||22 + ||Du||22

]1/2
for all u ∈ H1(Ω).

On ∂Ω we employ the (N − 1)-dimensional Hausdorff (surface) measure
σ(·). Using this measure we can define the Lebesgue spaces Lr(∂Ω) (1 � r �
∞) in the usual way. From the theory of Sobolev spaces, we know that there is
a compact linear map γ0 : H1(Ω) → L2(∂Ω) known as the “trace map”, such
that

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

In the sequel, for the sake of notational simplicity, we will drop the use of
the trace map γ0. The restrictions of Sobolev functions on ∂Ω are understood
in the sense of traces.

We will use the spectrum of −Δ with the Robin boundary condition, So,
we consider the following linear eigenvalue problem

− Δu(z) = λ̂u(z) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω. (2)

Here β ∈ W 1,∞(∂Ω) and β(z) � 0 for all z ∈ ∂Ω. Using the spectral
theorem for compact self-adjoint operators, we show that problem (2) has a
sequence {λ̂n}n�1 ⊆ R+ of eigenvalues such that λ̂n → +∞. Also, there is
a corresponding sequence {ûn}n�1 ⊆ H1(Ω) of eigenfunctions, which form
an orthonormal basis of H1(Ω) and an orthogonal basis of L2(Ω). For every
n ∈ N, by E(λ̂n) we denote the eigenspace corresponding to the eigenvalue λ̂n.
The following facts are known for these eigenspaces and their corresponding
eigenvalues (see Papageorgiou and Rădulescu [14,15]):

• E(λn) is finite dimensional and E(λn) ⊆ C1(Ω);
• The elements of E(λ̂n) have the so-called “unique continuation property”

(UCP for short), namely if u ∈ E(λ̂n) and u(·) vanishes on a set of positive
Lebesgue measure, then u ≡ 0;
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• λ̂1 is simple, the elements of E(λ̂1) do not change sign while the elements
of E(λ̂n)\{0} (n � 2) are nodal (sign changing) and

H1(Ω) = ⊕
n�1

E(λ̂n).

For every n ∈ N, let

H̄n =
n⊕

i=1
E(λ̂i) and Ĥn = ⊕

i�n
E(λ̂i)

and let ϑ : H1(Ω) → R be the C1-functional defined by

ϑ(u) = ||Du||22 +
∫

∂Ω

β(z)u2dσ for all u ∈ H1(Ω).

The eigenvalues {λ̂n}n�1 admit the following variational characteriza-
tions:

λ̂1 = inf
[

ϑ(u)
||u||22

: u ∈ H1(Ω), u 
= 0
]

(3)

λ̂n = inf
[

ϑ(u)
||u||22

: u ∈ Ĥn, u 
= 0
]

= sup
[

ϑ(u)
||u||22

: u ∈ H̄n, u 
= 0
]

, n � 2. (4)

In (3) the infimum is realized on the one dimensional eigenspace E(λ̂1).
In (4) both the infimum and the supremum are realized on the eigenspace
E(λ̂n).

In addition to (2), we will also consider the following linear eigenvalue
problem:

− Δu(z) = λ̃m(z)u(z) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω. (5)

In this problem, m ∈ L∞(Ω), m(z) � 0 for almost all z ∈ Ω, m 
≡ 0.
Again we have a sequence of eigenvalues {λ̃n(m)}n�1 such that λ̃n(m) → +∞
as n → ∞. In this case in the variational characterizations of the eigenvalues,
the Rayleigh quotient has the form

ϑ(u)∫
Ω

mu2dz
for all u ∈ H1(Ω), u 
= 0.

The following strict monotonicity property of the function m → λ̃n(m)
is an easy consequence of the UCP.

Lemma 5. If n � 2, m, m̂ ∈ L∞(Ω)+\{0}, m(z) � m̂(z) for almost all z ∈ Ω,
m 
≡ m̂, then λ̃n(m̂) < λ̃n(m).

Another straightforward consequence of the UCP is the following lemma
(see Papageorgiou and Rădulescu [16]).
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Lemma 6. (a) If η ∈ L∞(Ω), η(z) � λ̂n (n ∈ N) for almost all z ∈ Ω, η 
≡ λ̂n,
then there exists c1 > 0 such that

ϑ(u) −
∫

Ω

η(z)u2dz � −c1||u||2 for all u ∈ H̄n.

(b) If η ∈ L∞(Ω), η(z) � λ̂n (n ∈ N) for almost all z ∈ Ω, η 
≡ λ̂n, there
exists c2 > 0 such that

ϑ(u) −
∫

Ω

η(z)u2dz � c2||u||2 for all u ∈ Ĥn.

For X a Banach space, ϕ ∈ C1(X,R) and c ∈ R, we introduce the
following sets:

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),
Kc

ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c ∈ R),

ϕc = {u ∈ X : ϕ(u) � c} (the sublevel set of ϕ at c ∈ R).

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For every
k ∈ N0 by Hk(Y1, Y2) we denote the kth relative singular homology group for
the pair (Y1, Y2) with integer coefficients. Let u0 ∈ Kc

ϕ be isolated. Then the
critical groups of ϕ at u0 are defined by

Ck(ϕ, u0) = Hk(ϕc ∩ U,ϕc ∩ U\{u0}) for all k ∈ N0.

Here U is a neighborhood of u0 such that Kϕ ∩ ϕc ∩ U = {u0}. The
excision property of singular homology implies that this definition of critical
groups is independent of the choice of the neighborhood U .

Finally we mention that by | · |N we denote the Lebesgue measure on
R

N and for every u ∈ H1(Ω), u± = max{±u, 0} ∈ H1(Ω). Moreover, A ∈
L(H1(Ω),H1(Ω)∗) is the linear operator defined by

〈A(u), h〉 =
∫

Ω

(Du,Dh)RN dz for all u, h ∈ H1(Ω).

3. Near Resonance from the Right of λ̂m

In this section we examine what happens as we approach the eigenvalue λ̂m

from bigger values (from the right). So, we introduce the following condi-
tions on the perturbation term f(z, x). In what follows, we set F (z, x) =∫ x

0
f(z, s)ds.

H1 : f : Ω × R → R is a Carathéodory function such that

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|f(z, x)| � aρ(z) for almost all z ∈ Ω, all |x| � ρ;
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(ii) there exists a function η ∈ L∞(Ω) such that

0 � η(z) � λ̂m+1 − λ̂m for almost all z ∈ Ω, η 
≡ λ̂m+1 − λ̂m (m � 2),

0 � lim infx→±∞
f(z, x)

x
� lim supx→±∞

f(z, x)
x

� η(z) uniformly for almost all z ∈ Ω;

(iii) there exist τ ∈ (1, 3) and functions η+, η− ∈ L∞(Ω) such that

η+(z) = lim inf
x→+∞

f(z, x)x − 2F (z, x)
xτ−1

uniformly for almost all z ∈ Ω,

η−(z) = lim sup
x→−∞

f(z, x)x − 2F (z, x)
|x|τ−2x

uniformly for almost all z ∈ Ω,

and for all u ∈ E(λ̂m), u 
= 0 we have

0 <

∫

Ω

η+(z)(u+)τ−1dz −
∫

Ω

η−(z)(u−)τ−1dz.

Remark 2. These hypotheses permit resonance at ±∞ with respect to λ̂m (see
hypothesis H1(ii)). Hypothesis H1(iii) is a kind of generalized Landesman–
Lazer condition and is more general than the condition used by Ke and Tang
[5] where τ = 2 (see hypothesis (F−) in [5]). Consider a function f(x) (for the
sake of simplicity, we drop the z-dependence) such that

f(x) =

{
ηx − 1

x1/2 for all x � 1

ηx + 1
|x|1/2 for all x � −1

with η ∈ [0, λ̂m+1 − λ̂m) (in the interval (−1, 1), f(·) can be anything that
preserves the continuity of f(·)). This function satisfies hypotheses H1 but
does not fit in the framework of [3,5]. Another possibility is the function
f(x) = −|x|q−2x with 1 < q < 2. Finally we mention that we do not need
any conditions on f(z, ·) near zero.

For the rest of the paper, the following hypothesis concerning the bound-
ary coefficient β(·) is in effect:

H(β) : β ∈ W 1,∞(∂Ω) and β(z) � 0 for all z ∈ ∂Ω.
Let ϕ : H1(Ω) → R be the energy (Euler) functional for problem (1)

defined by

ϕ(u) =
1
2
ϑ(u) − λ̂m

2
||u||22 −

∫

Ω

F (z, u)dz for all u ∈ H1(Ω).

Recall that ϑ(u) = ||Du||22 +
∫

∂Ω
β(z)u2dσ for all u ∈ H1(Ω). Evidently

ϕ ∈ C1(H1(Ω)).

Proposition 7. If hypotheses H(β), H1 hold, then the functional ϕ satisfies the
C-condition.
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Proof. Let {un}n�1 ⊆ H1(Ω) be a sequence such that

|ϕ(un)| � M1 for some M1 > 0, all n ∈ N, (6)
(1 + ||un||)ϕ′(un) → 0 in H1(Ω)∗ as n → ∞. (7)

From (7) we have

| 〈ϕ′(un), h
〉 | � εn||h||

1 + ||un|| for all h ∈ H1(Ω) with εn → 0+,

⇒
∣
∣∣
∣〈A(un), h〉 +

∫

∂Ω

β(z)unhdσ − λ̂m

∫

Ω

unhdz −
∫

Ω

f(z, un)hdz

∣
∣∣
∣ � εn||h||

1 + ||un||
for all n ∈ N. (8)

Claim 1. The sequence {un}n�1 ⊆ H1(Ω) is bounded.

Arguing by contradiction, suppose that the Claim is not true. By passing
to a subsequence if necessary, we may assume that ||un|| → ∞. Let yn =

un

||un|| , n � 1. Then ||yn|| = 1 for all n ∈ N and so we may assume that

yn
w→ y in H1(Ω) and yn → y in L2(Ω) and in L2(∂Ω). (9)

From (8) we have

∣
∣
∣
∣〈A(yn), h〉 +

∫

∂Ω

β(z)ynhdσ − λ̂m

∫

Ω

ynhdz −
∫

Ω

f(z, un)

||un|| hdz

∣
∣
∣
∣ � εn||h||

(1 + ||un||)||un||
for all n ∈ N. (10)

Hypotheses H1(i), (ii) imply that

|f(z, x)| � c3(1 + |x|) for almost all z ∈ Ω, all x ∈ R, some c3 > 0,

⇒
{

f(·, un(·))
||un||

}

n�1

⊆ L2(Ω) is bounded.

So, by passing to a subsequence if necessary and using hypothesis H1(ii),
we have
f(·, un(·))

||un||
w→ η0y in L2(Ω) with 0 � η0(z) � η(z) for almost all z ∈ Ω (11)

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 14). In (10)
we pass to the limit as n → ∞ and use (9), (11). We obtain

〈A(y), h〉 +
∫

∂Ω

β(z)yhdσ =
∫

Ω

[λ̂m + η0(z)]yhdz for all h ∈ H1(Ω),

⇒ −Δy(z) = (λ̂m + η0(z))y(z) for almost all z ∈ Ω,
∂y

∂n
+ β(z)y = 0 on ∂Ω

(see Papageorgiou and Rădulescu [14]). (12)
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First suppose that η0 
≡ 0. Then

λ̂m 
≡ λ̂m + η0 and λ̂m + η0 
≡ λ̂m+1 (see hypothesis H1(ii) and (11)). (13)

Using (13) and Lemma 5, we have

λ̃m(λ̂m + η0) < λ̃m(λ̂m) = 1 and 1 = λ̃m+1(λ̂m+1) < λ̃m+1(λ̂m + η0). (14)

From (12) and (14) it follows that y = 0.
On the other hand, if in (10) we choose h = yn − y ∈ H1(Ω), pass to the

limit as n → ∞ and use (9) and (11), then

lim
n→∞ 〈A(yn), yn − y〉 = 0,

⇒ ||Dyn||2 → ||Dy||2,
⇒ Dyn → Dy in L2(Ω,RN )

(by the Kadec–Klee property, see Gasinski and Papageorgiou [4, p. 911])
⇒ yn → y in H1(Ω) (see (9)), hence ||y|| = 1, a contradiction.

Next suppose that η0(z) = 0 for almost all z ∈ Ω. From the previous
argument we have that yn → y in H1(Ω) and so ||y|| = 1. Also, from (12) we
have y ∈ E(λ̂m)\{0}. So, by the UCP it follows that y(z) 
= 0 for almost all
z ∈ Ω and so

|un(z)| → +∞ for almost all z ∈ Ω as n → ∞. (15)

From (6) we have

||Du||22 +
∫

∂Ω

β(z)u2
ndσ − λ̂m||un||22 −

∫

Ω

2F (z, un)dz � 2M1 for all n ∈ N.

(16)
Also, in (8) we choose h = un ∈ H1(Ω). Then

− ||Dun||22 −
∫

∂Ω

β(z)u2
ndσ + λ̂m||un||22 +

∫

Ω

f(z, un)undz � εn for all n ∈ N.

(17)
We add (16) and (17) and multiply with 1

||un||τ−1 . Then

1
||un||τ−1

∫

Ω

[f(z, un)un−2F (z, un)]dz � M2

||un||τ−1
for some M2 > 0, all n ∈ N.

(18)
Note that

1
||un||τ−1

∫

Ω

[f(z, un)un − 2F (z, un)]dz

=
∫

{un>0}

f(z, un)un − 2F (z, un)
uτ−1

n

yτ−1
n dz

−
∫

{un<0}

f(z, un)un − 2F (z, un)
|un|τ−2un

|yn|τ−1dz.
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Using (15), hypothesis H1(iii) and Fatou’s lemma, we obtain

lim inf
n→∞

1
||un||τ−1

∫

Ω

[f(z, un)un − 2F (z, un)]dz

�
∫

Ω

η+(z)(y+)τ−1dz −
∫

∂Ω

η−(z)(y−)τ−1dz,

⇒
∫

Ω

η+(z)(y+)τ−1dz −
∫

Ω

η−(z)(y−)τ−1dz � 0, y ∈ E(λ̂m)\{0}
(see (18) and recall that ||un|| → ∞) (19)

Comparing (19) with hypothesis H1(iii), we reach a contradiction.
This proves the Claim.
Because of the Claim, we may assume that

un
w→ u in H1(Ω) and un → u in L2(Ω) and in L2(∂Ω). (20)

In (8) we choose h = un − u ∈ H1(Ω), pass to the limit as n → ∞ and
use (20). Then

lim
n→∞ 〈A(un), un − u〉 = 0,

⇒ un → u in H1(Ω) (as before via the Kadec-Klee property),
⇒ ϕ satisfies the C-condition.

�
Recall that H̄m−1 = ⊕m−1

k=1 E(λ̂k) and Ĥm+1 = ⊕
k�m+1

E(λ̂k). We have the

following orthogonal direct sum decomposition:

H1(Ω) = H̄m−1 ⊕ E(λ̂m) ⊕ Ĥm+1.

Proposition 8. If hypotheses H(β),H1 hold, then ϕ|H̄m−1
is anticoercive (that

is, ϕ(u) → −∞ as ||u|| → ∞, u ∈ H̄m−1).

Proof. Hypotheses H1(i), (ii) imply that given ε > 0, we can find c4 = c4(ε) > 0
such that

F (z, x) � − ε

2
x2 − c4 for almost all z ∈ Ω, all x ∈ R. (21)

Let u ∈ H̄m−1. Then

ϕ(u) =
1
2
ϑ(u) − λ̂m

2
||u||22 −

∫

Ω

F (z, u)dz

� 1
2
ϑ(u) − λ̂m − ε

2
||u||22 + c4|Ω|N .

Choosing ε ∈ (0, λ̂m − λ̂m−1), we have
ϕ(u) � −c0

2
||u||22 + c4|Ω|N (see Lemma 6(a)),

⇒ ϕ|H̄m−1
is anticoercive.

The proof is complete. �
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The above proposition implies that we can find c5 > 0 such that

sup[ϕ(u) : u ∈ H̄m−1] � c5.

Proposition 9. If hypotheses H(β), H1 hold, then we can find δ0 > 0 such that
when 0 � η(z) � δ0 for almost all z ∈ Ω and 0 < γ < 1

3−τ we have

ϕ(u) > c5 + 1 for all u ∈ E(λ̂m) ⊕ Ĥm+1, ||u|| =
1
δγ
0

.

Proof. We argue by contradiction. So, suppose that the proposition is not true.
Then for a sequence δn → 0+ we can find un ∈ E(λ̂m) ⊕ Ĥm+1 (n ∈ N) such
that

ϕ(un)�c5+1 and 0�η(z)�δn for almost all z∈Ω, ||un||= 1
δγ
n

for all n∈N.

(22)

Let yn = un

||un|| , n ∈ N. Then ||yn|| = 1 for all n ∈ N and so we may
assume that

yn
w→ y in H1(Ω) and yn → y in L2(Ω) and in L2(∂Ω). (23)

From (22) we have

1
2
ϑ(yn) − λ̂m

2
||yn||22 −

∫

Ω

F (z, un)
||un||2 dz � c5 + 1

||un||2 for all n ∈ N. (24)

Recall that

|F (z, x)| � c6(1 + x2) for almost all z ∈ Ω, all x ∈ R, some c6 > 0
(see hypotheses H1(i), (ii)),

⇒
{

F (·, un(·))
||un||2

}

n�1

⊆ L1(Ω) is uniformly integrable.

Then from the Dunford–Pettis theorem, we may assume that

F (·, un(·))
||un||2

w→ g in L1(Ω).

Moreover, since δn → 0+, from hypothesis H1(ii) and (22), we see that
g = 0. Hence, if in (24) we pass to the limit as n → ∞, then

ϑ(y) � λ̂m||y||22 (see (23)),

⇒ ϑ(y) = λ̂m||y||22 (since y ∈ E(λ̂m) ⊕ Ĥm+1, see (4)),

⇒ y ∈ E(λ̂m). (25)
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We have yn = y0
n + ŷn with y0

n ∈ E(λ̂m), ŷn ∈ Ĥm+1. Exploiting the
orthogonality of the component spaces, from (24) we have

1
2
ϑ(ŷn) − λ̂m

2
||ŷn||22 −

∫

Ω

F (z, un)
||un||2 dz � c5 + 1

||un||2 for all n ∈ N,

⇒ c1

2
||ŷn||2 −

∫

Ω

F (z, un)
||un||2 dz � c5 + 1

||un||2 for all n ∈ N (see Lemma 6(b)),

⇒ ŷn → 0 in H1(Ω).

Recalling that E(λ̂m) is finite dimensional, we finally have

yn → y = y0 ∈ E(λ̂m) in H1(Ω) (see (25)),

⇒ ||y|| = 1 and so y ∈ E(λ̂m)\{0}.

The UCP implies that y(z) 
= 0 for almost all z ∈ Ω and so it follows that

|un(z)| → +∞ for almost all z ∈ Ω.

Hypothesis H1(iii) implies that given ε > 0, we can find M3 = M3(ε) > 0
such that

f(z, x)x−2F (z, x) � (η+(z)−ε)xτ−1 for almost all z ∈ Ω, all x � M3, (26)
f(z, x)x − 2F (z, x) � (η−(z) + ε)|x|τ−2x for almost all z ∈ Ω, all x � −M3.

(27)

For almost all z ∈ Ω and all x � M3, we have

d

dx

(
F (z, x)

x2

)
=

f(z, x)x2 − 2F (z, x)x
x4

=
f(z, x)x − 2F (z, x)

x3

� η+(z) − ε

x4−τ
(see (26))

=
η+(z) − ε

3 − τ

d

dx

(
− 1

x3−τ

)
,

⇒ F (z, x)
x2

− F (z, y)
y2

� η+(z) − ε

3 − τ
[
− 1

x3−τ
+

1
y3−τ

]
for almost all z ∈ Ω,

all x � y � M3.

Letting x → +∞ and using hypothesis H1(ii), we obtain
1

2
η(z) − F (z, x)

y2
� η+(z) − ε

3 − τ

1

y3−τ
for almost all z ∈ Ω, all y � M3,

⇒ 1

2
η(z)y2 − F (z, y) � η+(z) − ε

3 − τ
yτ−1 for almost all z ∈ Ω, all y � M3.

(28)
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Hypothesis H1(i) implies that

1
2
η(z)y2 − F (z, y) � −c7 for almost all z ∈ Ω, all y ∈ [0,M3]. (29)

For almost all z ∈ Ω and all x � −M3 we have

d

dx

(
F (z, x)

x2

)
=

f(z, x)x − 2F (z, x)
|x|2x

� η−(z) + ε

|x|4−τ
(see (27)),

=
η−(z) + ε

3 − τ

d

dx

(
− 1

|x|2−τx

)

⇒ F (z, x)
x2

− F (z, y)
y2

� η−(z) + ε

3 − τ

[
− 1

|x|2−τx
+

1
|y|2−τy

]

for almost all z ∈ Ω, all y � x � −M3.

Letting y → −∞ and using hypothesis H1(ii), we obtain

F (z, x)

x2
− 1

2
η(z) � η−(z) + ε

3 − τ

(
− 1

|x|2−τx

)
for almost all z ∈ Ω, all x � −M3,

⇒ 1

2
η(z)x2 − F (z, x) � −η+(z) + ε

3 − τ
|x|τ−1 for almost all z ∈ Ω, all x � −M3.

(30)

In addition hypothesis H1(i) implies that

1
2
η(z)x2 − F (z, x) � −c8 for almost all z ∈ Ω, all x ∈ [−M3, 0], some c8 > 0.

(31)
From (21) we have

1
||un||τ−1

[
1
2
ϑ(un) − λ̂m

2
||un||22 −

∫

Ω

F (z, un)dz

]

� c5 + 1
||un||τ−1

,

⇒ 1
||un||τ−1

[

−
∫

{un�M3}
F (z, un)dz −

∫

{0�un<M3}
F (z, un)dz

−
∫

{−M3<un<0}
F (z, un)dz −

∫

{un�−M3}
F (z, un)dz

]

� c5 + 1
||un||τ−1

(since un ∈ E(λ̂m) ⊕ Ĥn+1, see (4))

⇒ − 1
2||un||τ−1

∫

Ω

η(z)u2
ndz +

∫

{un�M3}

η+(z) − ε

3 − τ
yτ−1

n dz − c7|Ω|N
||un||τ−1

−
∫

{un�−M3}

η−(z) + ε

3 − τ
|yn|τ−1dz − c8|Ω|

||un||τ−1
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� c5 + 1
||un||τ−1

for all n ∈ N (see (28), (29), (30), (31)). (32)

Note that
1

2||un||τ−1

∫

Ω

η(z)u2
ndz � δn

2||un||τ−1
||un||2 =

1
2
δn||un||3−τ

=
1
2
δn

1

δ
(3−τ)γ
n

(see (22)).

Since γ < 1
3−τ it follows that

1
2||un||τ−1

∫

Ω

η(z)u2
2dz → 0.

So, if in (32) we pass to the limit as n → ∞ and recall that |un(z)| → +∞
for almost all z ∈ Ω, then we obtain

1
3 − τ

[∫

Ω

(η+(z) − ε)(y+)τ−1dz −
∫

Ω

(η−(z) + ε)(y−)τ−1dz

]
� 0.

Since ε > 0 is arbitrary, we let ε → 0+ and have

1
3 − τ

[∫

Ω

η+(z)(y+)τ−1dz −
∫

Ω

η−(z)(y−)τ−1dz

]
� 0, y ∈ E(λ̂m)\{0},

which contradicts hypothesis H1(iii). This proves the proposition. �

Proposition 10. If hypotheses H(β), H1 hold and δ0 > 0 is as postulated by
Proposition 9, then for every η ∈ L∞(Ω) satisfying 0 � η(z) � δ0 for almost
all z ∈ Ω, problem (1) admits a solution u0 ∈ C1(Ω) such that ϕ(u0) � c5.

Proof. Let R0 = 1
δγ
0
. Invoking Proposition 8 we can find r0 > 0 such that

sup
[
ϕ(u) : u ∈ H̄m−1, ||u|| = r0

]

< a = inf
[
ϕ(u) : u ∈ E(λ̂m) ⊕ Ĥm+1, ||u|| � R0

]

� b = sup
[
ϕ(u) : u ∈ H̄m−1, ||u|| � r0

]
(since a � ϕ(0) � b)

� sup
[
ϕ(u) : u ∈ H̄m−1

]

� c5 < c5 + 1 � inf
[
ϕ(u) : u ∈ E(λ̂m) ⊕ Ĥm+1 : ||u|| = R0

]
(see Proposition 9).

From Proposition 7 we know that ϕ satisfies the C-condition. So, we can
apply Theorem 4 and find u0 ∈ H1(Ω) such that

u0 ∈ Kϕ and ϕ(u0) ∈ [a, b]. (33)

From (33) and Green’s identity, we conclude that u0 is a solution of (1)
(see Papageorgiou and Rădulescu [14]) and the regularity theory implies that
u0 ∈ C1(Ω). �
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By strengthening hypothesis H1(ii) we can produce a second solution
û 
= u0.

The new conditions on the perturbation term f(z, x), are the following:
H2 : f : Ω × R → R is a Carathéodory function, hypotheses H2(i), (iii)

are the same as the corresponding hypotheses H1(i), (iii) and
(ii) there exist functions η̂, η ∈ L∞(Ω) such that

0 � η̂(z) � η(z) � λ̂m+1 − λ̂m for almost all z ∈ Ω, η̂ 
≡ 0, η 
≡ λ̂m+1 − λ̂m,

η̂(z) � lim inf
x→±∞

f(z, x)
x

� lim sup
x→±∞

f(z, x)
x

� η(z) uniformly for almost all z ∈ Ω.

Proposition 11. If hypotheses H(β), H2 hold, then there exists δ0 > 0 such
that if η(z) � δ0 for almost all z ∈ Ω, problem (1) admits a second solution
û ∈ C1(Ω), û 
= u0.

Proof. By virtue of hypotheses H2(i), (ii), given ε > 0, we can find c8 = c8(ε) >
0 such that

1
2
(η̂(z) − ε)x2 − c8 � F (z, x) for almost all z ∈ Ω, all x ∈ R. (34)

Let u ∈ H̄m−1 ⊕ E(λ̂m). We have

ϕ(u) =
1
2
ϑ(u) − λ̂m

2
||u||22 −

∫

Ω

F (z, u)dz

� 1
2
ϑ(u) − 1

2

∫

Ω

(λ̂m + η̂(z))u2dz +
ε

2
||u||2 + c8|Ω|N . (35)

Note that

λ̂m � λ̂m + η̂(z) for almost all z ∈ Ω and λ̂m + η̂ 
≡ λ̂m.

Since u ∈ H̄m−1 ⊕ E(λ̂m) = H̄m, invoking Lemma 6(a) we have

ϑ(u) −
∫

Ω

(λ̂m + η(z))u2dz � −c1||u||2.

Using this in (35) we obtain

ϕ(u) � −c1 + ε

2
||u||2 + c8|Ω|N .

Choosing ε ∈ (0, c1), we infer that

ϕ|H̄m−1⊕E(λ̂m)=H̄m
is anticoercive. (36)

On the other hand in a similar fashion since

λ̂m + η(z) � λ̂m+1 for almost all z ∈ Ω and λ̂m + η 
≡ λ̂m+1

and using Lemma 6(b), we infer that

ϕ|Ĥm+1
is coercive. (37)
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On account of (36) and (37) and by choosing δ0 > 0 form Proposition 9
even smaller if necessary, we can find R̂ > R0 = 1

δγ
0

such that

ϕ(u) � c5 + 1 for all u ∈ Ĥm+1 with ||u|| � R0, (38)

ϕ(u) � c5 for all u ∈ H̄m−1 ⊕ E(λ̂m) with ||u|| = R̂. (39)

We introduce the following sets

E0 = {u ∈ H̄m−1 ⊕ E(λ̂m) : ||u|| = R̂}, E = {u ∈ H̄m−1 ⊕ E(λ̂m) : ||u|| � R̂},

D = {u ∈ H̄m+1 : ||u|| � R0} ∪ {u ∈ E(λ̂m) ⊕ Ĥm+1 : ||u|| = R0}.

From Lemma 4.6 of de Paiva and Massa [3], we know that {E0, E} is
linking with D in W 1,p(Ω). Also, if η(z) � δ0 for almost all z ∈ Ω, from
Proposition 9 and (38), (39) we have

sup
E0

ϕ � c5 < c5 + 1 � inf
D

ϕ.

Recall that ϕ satisfies the C–condition (see Proposition 7). So, we can
apply Theorem 2 and find û ∈ H1(Ω) such that

û ∈ Kϕ and ϕ(û) � c5 + 1. (40)

From (40) it follows that û solves problem (1) and û ∈ C1(Ω) (regularity
theory). Moreover, from Proposition 10 we have

ϕ(u0) � c5 < c5 + 1 � ϕ(û),
⇒ û 
= u0.

The proof is complete. �

So, we can state the following multiplicity theorem for problems near
resonance from the right of λ̂m, m � 2.

Theorem 12. If hypotheses H(β), H2 hold, then there exists δ0 > 0 such that
if η(z) � δ0 for almost all z ∈ Ω, problem (1) admits at least two distinct
solutions u0, û ∈ C1(Ω).

4. Near Resonance from the Left of λ̂m

In this section we examine what happens as we approach λ̂m from the left
(that is from smaller values). In this case, we impose the following conditions
on the perturbation term f(z, x):

H3 : f : Ω × R → R is a Carathéodory function such that

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|f(z, x)| � aρ(z) for almost all z ∈ Ω, all |x| � ρ;
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(ii) there exist functions η̂, η ∈ L∞(Ω) and an integer m � 2 such that

λ̂m−1 − λ̂m � η̂(z) � η(z) � 0 for almost all z ∈ Ω, η̂ 
≡ λ̂m−1 − λ̂m, η 
≡ 0,

η̂(z) � lim inf
x→±∞

f(z, x)
x

� lim sup
x→±∞

f(z, x)
x

� η(z) uniformly for almost all z ∈ Ω.

Remark 3. In this case we do not allow any resonance at ±∞ with respect to
the eigenvalue λ̂m. Only nonuniform nonresonance (see hypothesis H3(ii) and
compare with hypothesis H1(ii)). On the other hand, hypotheses H3 above
are simpler that hypotheses H2.

Proposition 13. If hypotheses H(β), H3 hold, then ϕ|Ĥm
is coercive.

Proof. Hypotheses H3(i), (ii) imply that given ε > 0, we can find c9 = c9(ε) > 0
such that

F (z, x) � 1
2
(η(z) + ε)x2 + c9 for almost all z ∈ Ω, all x ∈ R. (41)

For u ∈ Ĥm we have

ϕ(u) =
1
2
ϑ(u) − λ̂m

2
||u||22 −

∫

Ω

F (z, u)dz

� 1
2
ϑ(u) − 1

2

∫

Ω

(λ̂m + η(z))u2dz − ε

2
||u||2 − c9|Ω|N (see (41)). (42)

Note that

λ̂m + η(z) � λ̂m for almost all z ∈ Ω, λ̂m + η 
≡ λ̂m.

So, from Lemma 6(b) and (42) we have

ϕ(u) � c2 − ε

2
||u||2 − c9|Ω|N . (43)

Choosing ε ∈ (0, c2), from (43) we conclude that ϕ|Ĥm
is coercive. �

Proposition 14. If hypotheses H(β), H3 hold, then ϕ|H̄m−1
is anticoercive.

Proof. Hypotheses H3(i), (ii) imply that given ε > 0, we can find c10 = c10(ε) >
0 such that

F (z, x) � 1
2
(η̂(z) − ε)x2 − c10 for almost all z ∈ Ω, all x ∈ R. (44)

Then for u ∈ H̄m−1 we have

ϕ(u) =
1
2
ϑ(u) − λ̂m

2
||u||22 −

∫

Ω

F (z, u)dz

� 1
2

∫

Ω

[λ̂m−1 − λ̂m − η̂(z)]u2dz +
ε

2
||u||2 + c10|Ω|N (see (4) and (44)).

(45)
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Note that

λ̂m−1 � λ̂m + η̂(z) for almost all z ∈ Ω, λ̂m−1 
≡ λ̂m + η̂.

So, from Lemma 6(a) and (45) we have

ϕ(u) � −c1 + ε

2
||u||2 + c10|Ω|N . (46)

Choosing ε ∈ (0, c1) from (46) we infer that ϕ|H̄m−1
is anticoercive. �

Since hypothesis H3(ii) does not allow complete resonance with respect
to λ̂m, but only nonuniform nonresonance, a simplified version of the proof of
Proposition 7 leads to the following result.

Proposition 15. If hypotheses H(β), H3 hold, then the energy functional ϕ
satisfies the C-condition.

Now we are ready to generate the first solution. Note that for this solution
we do not require to be close to λ̂m (no restriction on η̂).

Proposition 16. If hypotheses H(β), H3 hold, then problem (1) has a solution
u0 ∈ C1(Ω).

Proof. Proposition 13 implies that

m0 = inf[ϕ(u) : u ∈ Ĥm] > −∞. (47)

On the other hand Proposition 14 implies that for R > 0 big we have

sup[ϕ(u) : u ∈ H̄m−1, ||u|| = R] < m0. (48)

Then Proposition 15 and (47) and (48) above, permit the use of Theorem
3 (the saddle point theorem). So, we can find u0 ∈ H1(Ω) such that

u0 ∈ Kϕ and m0 � ϕ(u0).

Hence u0 is a solution of (1) and u0 ∈ C1(Ω) (regularity theory). �

Next, using again a variational argument based on the saddle point the-
orem (see Theorem 3), we will produce a second smooth solution û for (1). To
do this, we need to impose a restriction on η̂ (see hypothesis H3(ii); equation
near resonance).

Proposition 17. If hypotheses H(β), H3 hold, then we can find δ0 > 0 and
R0 > 0 such that when −δ0 � η̂(z) for almost all z ∈ Ω we have

ϕ(u) < m0 for all u ∈ H̄m, ||u|| = R0 (see (47)).

Proof. We argue by contradiction. Assuming that the proposition is not true
for δn → 0+ and Rn → +∞, we can find un ∈ H̄m such that

m0 � ϕ(un), ||un|| = Rn for all n ∈ N. (49)
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Let yn = un

||un|| , n ∈ N. Then ||yn|| = 1 for all n ∈ N and exploiting the
fact that H̄m is finite dimensional, we have (at least for a subsequence) that

yn → y in H1(Ω). (50)

From (49) we have

m0

||un||2 � 1
2
ϑ(yn) − λ̂m

2
||yn||22 −

∫

Ω

F (z, un)
||un||2 dz for all n ∈ N. (51)

As before (see the proof of Proposition 9) we have that
{

F (·, un(·))
||un||2

}

n�1

⊆ L1(Ω) is uniformly integrable.

So, by the Dunford–Pettis theorem, we may assume that

F (·, un(·))
||un||2

w→ g in L1(Ω). (52)

Hypothesis H3(ii) implies that

g =
1
2
η0y

2 with η̂(z) � η0(z) � η(z) for almost all z ∈ Ω (53)

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 14). So, pass-
ing to the limit as n → ∞ in (51) and using (50), (52), (53), we obtain

ϑ(y) −
∫

Ω

(λ̂m + η0(z))y2dz � 0 (recall that ||un|| → ∞, see (49)). (54)

We have

λ̂m + η0(z) � λ̂m for almost all z ∈ Ω, λ̂m + η0 
≡ λ̂m.

From Lemma 6(a) and (54), we have

c1||y||2 � 0,

⇒ y = 0.

But from (50) it follows that ||y|| = 1, a contradiction. �

Using Theorem 3 (the saddle point theorem) we will produce another
solution û of (1). A priori we cannot say that û 
= u0. This will be shown in
the proof of Theorem 19. The new solution is valid only when we are near
resonance.

Proposition 18. If hypotheses H(β), H3 hold, then there exists δ0 > 0 such
that when −δ0 � η̂(z), problem (1) has a solution û ∈ C1(Ω).

Proof. Let m0 > −∞ be as in (47). Proposition 13 implies that ϕ|Ĥm+1
is

coercive. So, we have

m1 = inf[ϕ(u) : u ∈ Ĥm+1] � m0 > −∞. (55)
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Let δ0, R0 > 0 as postulated by Proposition 17. We have

ϕ(u) < m0 for all u ∈ H̄m, ||u|| = R0. (56)

From Proposition 15 we know that ϕ satisfies the C-condition. This fact
together with (55), (56) permit the use of Theorem 3 (the saddle point theo-
rem). So, we can find û ∈ H1(Ω) such that

û ∈ Kϕ and m1 � ϕ(û).

Then û solves (1) and û ∈ C1(Ω) (regularity theory). �

Next we show that û 
= u0 and we have the multiplicity theorem when
we are near resonance from the left of λ̂m.

Theorem 19. If hypotheses H(β), H3 hold, then there exists δ0 > 0 such that
when −δ0 � η̂(z) for almost all z ∈ Ω, problem (1) has at least two distinct
smooth solutions

u0, û ∈ C1(Ω), u0 
= û.

Proof. Propositions 16 and 18 produced two solutions u0, û ∈ C1(Ω). We need
to show that they are distinct.

Both solutions where produced via an application of the saddle point
theorem (see Theorem 3). More precisely, we have

ϕ(u0) = inf
γ∈Γ1

sup[ϕ(γ(u)) : u ∈ H̄m−1, ||u|| = R], (57)

with

Γ1 =
{

γ ∈ C(B̄m−1
R ,H1(Ω)) : γ|∂Bm−1

R
= id|∂Bm−1

R

}

and B̄m−1
R = {u ∈ H̄m−1 : ||u|| � R}, ∂Bm−1

R = {u ∈ H̄m−1 : ||u|| = R} (see
the proof of Proposition 16).

Also, from the proof Proposition 18, we have

ϕ(û) � m1 � m0 (see (56), (55)). (58)

We can always assume that R > R0. Let w0 ∈ E(λ̂m) with ||w0|| = 1 and
consider the map γ : B̄m−1

R → H1(Ω) defined by

γ̂(u) =
{

u +
√

R2
0 − ||u||2w0 if u ∈ H̄m−1, ||u|| � R0

u if u ∈ H̄m−1, R0 < ||u|| � R.

Evidently γ̂ ∈ Γ1 and so from Proposition 17 (see also (56)), we have

supϕ(γ̂(u)) < m0,

⇒ ϕ(u0) < m0 (see (57)),
⇒ u0 
= û (see (58)).

The proof is complete. �
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If there is a set Ω0 ⊆ Ω with |Ω0|N > 0 and f(z, 0) 
= 0 for all z ∈ Ω0,
then u0, û are nontrivial. However, if f(z, 0) = 0 for almost all z ∈ Ω, then we
cannot guarantee the nontriviality of the solutions. To achieve this, we need
to impose a condition on f(z, ·) near zero.

So, the new hypotheses on the perturbation term f(z, x) are the following:
H4 : f : Ω × R → R is a Carathéodory function such that hypotheses

H4(i), (ii) are the same as the corresponding hypotheses H3(i), (ii) and

(iii) there exist δ̂ > 0, τ ∈ (1, 2) and c11 > 0 such that

c11x
2 � f(z, x)x � τF (z, x) for almost all z ∈ Ω, all |x| � δ̂

0 < ess infΩF (·,±δ̂).

Theorem 20. If hypotheses H(β), H4 hold, then there exists δ0 > 0 such that
when −δ0 � η̂(z) for almost all z ∈ Ω, problem (1) has at least two nontrivial
smooth solutions

u0, û ∈ C1(Ω), u0 
= û.

Proof. From Theorem 19 we already have two distinct smooth solutions

u0, û ∈ C1(Ω), u0 
= û.

From hypothesis H4(iii) and Proposition 8 of Papageorgiou and Rădulescu
[15] (see also Proposition 6 of [17]) we have

Ck(ϕ, 0) = 0 for all k ∈ N0. (59)

On the other hand, we know that both u0, û were produced via the saddle
point theorem (see the proofs of Propositions 16 and 18). So, from Proposition
6.80, p. 168 of Motreanu, Motreanu and Papageorgiou [11], we have

Cdm−1(ϕ, u0) 
= 0 and Cdm
(ϕ, û) 
= 0 (60)

with dm−1 = dim H̄m−1, dm = dim H̄m. Comparing (59) and (60) we conclude
that

u0 
= 0, û 
= 0.

The proof is now complete. �

The nontriviality of u0, û can be established, if instead we impose the
following conditions on f(z, x).

H5 : f : Ω × R → R is a Carathéodory function such that hypotheses
H5(i), (ii) are the same as the corresponding hypotheses H3(i), (ii) and
(iii) there exists a function ξ ∈ L∞(Ω) such that

ξ(z) � λ̂1 − λ̂m for almost all z ∈ Ω, ξ 
≡ λ̂1 − λ̂m

lim sup
x→0

2F (z, x)
x2

� ξ(z) uniformly for almost all z ∈ Ω.

We have the following result.
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Theorem 21. If hypotheses H(β), H5 hold, then there exists δ0 > 0 such that
when −δ0 � η̂(z) for almost all z ∈ Ω, problem (1) has at least two nontrivial
smooth solutions

u0, û ∈ C1(Ω), u0 
= û.

Proof. From Theorem 19 we already have two distinct smooth solutions

u0, û ∈ C1(Ω), u0 
= û.

Hypothesis H5(iii) implies that given ε > 0, we can find δ > 0 such that

F (z, x) � 1
2
(ξ(z) + ε)x2 for almost all z ∈ Ω, |x| � δ. (61)

Then for u ∈ C1(Ω) with ||u||C1(Ω) � δ, we have

ϕ(u) =
1
2
ϑ(u) − λ̂m

2
||u||22 −

∫

Ω

F (z, u)dz

� 1
2
ϑ(u) − 1

2

∫

Ω

(λ̂m + ξ(z))u2 − ε

2
||u||2. (62)

Note that

λ̂m + ξ(z) � λ̂1 for almost all z ∈ Ω, λ̂m + ξ 
≡ λ̂1.

So, using Lemma 6(b), we have

ϑ(u) −
∫

Ω

(λ̂m + ξ(z))u2dz � c12||u||2 for all u ∈ H1(Ω), some c12 > 0. (63)

Using (63) in (62) we obtain

ϕ(u) � c12 − ε

2
||u||2. (64)

Choosing ε ∈ (0, c12), from (64) we infer that u = 0 is a local C1(Ω)-
minimizer of ϕ. Proposition 3 of Papageorgiou and Rădulescu [14] implies
that u = 0 is a local H1(Ω)-minimizer of ϕ. Hence

Ck(ϕ, u) = δk,0Z for all k ∈ N0. (65)

Here δk,0 is the Kronecker symbol defined by

δk,0 =
{

1 if k = 0
0 if k 
= 0.

Comparing (65) with (60) and since m � 2, we conclude that u0, û ∈
C1(Ω) are nontrivial smooth solutions of (1). �
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