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a b s t r a c t

We consider a double phase Dirichlet equation with a reaction which is asymp-
totically as x → ±∞, resonant with respect to the first eigenvalue of a related
eigenvalue problem. Using variational tools together with Morse theoretic argu-
ments, we prove the existence of at least two bounded nontrivial solutions for the
problem.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let Ω ⊆ RN (N ⩾ 2) be a bounded domain with a C2-boundary ∂Ω . In this paper, we study the following
ouble phase problem

− ∆a
pu(z) − ∆u(z) = f(z, u(z)) in Ω , u|∂Ω = 0, 2 < p. (1)

We denote by ∆a
p the weighted p-Laplace differential operator, which is defined by

∆a
pu = div (a(z)|Du|p−2

Du).

he special feature of this operator is that the function a(·) is not bounded away from zero. Hence the
ntegrand θ0(z, t) = 1

pa(z)tp+ 1
2 t

2 (t ⩾ 0) in the energy functional corresponding to this differential operator,
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exhibits unbalanced growth, namely we have

1
2 t

2 ⩽ θ0(z, t) ⩽ c0(1 + tp) for a.a. z ∈ Ω , all t ⩾ 0, some c0 > 0.

Such integral functionals were first investigated by Marcellini [1,2] and Zhikov [3,4], in the context of
roblems originating in nonlinear elasticity theory. We also refer to the recent contributions of Marcellini [5]
nd Eleuteri, Marcellini & Mascolo [6,7] to the regularity of weak solutions for nonlinear elliptic PDEs with
onstandard growth. The difficulty that we face when dealing with such differential operators, is that there is
o global regularity theory for the solutions. Recently there have been some local regularity results for local
inimizers of such functionals produced by Mingione et al.; see Baroni, Colombo & Mingione [8], Colombo
Mingione [9]. However, a global regularity theory for general solutions, remains elusive. So, we cannot

pply many of the techniques used in the context of (p, q)-equations; see, for example, Papageorgiou, Vetro
Vetro [10] and Papageorgiou & Zhang [11].
Recently there have been some existence and multiplicity results for double phase equations. We mention

he works of Colasuonno & Squassina [12], Gasinski & Winkert [13], Ge, Lv & Lu [14], Liu & Dai [15],
apageorgiou, Rădulescu & Repovš [16,17], Papageorgiou, Vetro & Vetro [18]. These works either deal with
roblems which have a (p−1)-superlinear reaction (see [14–18]) or examine parametric problems (see [12,13]).
e refer to Marcellini [5] and Mingione and Rădulescu [19] for overviews of recent results concerning elliptic

ariational problems with nonstandard growth conditions and related to different kinds of nonuniformly
lliptic operators.

The feature of this paper is that we consider resonant problems. To the best of our knowledge, this is
he first work dealing with resonant double phase problems. Finally, we also mention the work of Bahrouni,
ădulescu & Repovš [20], where the reader can find applications of double phase equations to transonic flow
roblems and the paper of Liu & Papageorgiou [21], where the authors, under symmetry conditions on the
eaction, produce a whole sequence of nodal solutions converging to zero.

In this paper, using a combination of variational and Morse theoretic techniques (critical groups), we show
hat problem (1) admits at least two nontrivial bounded solutions, when resonance occurs (see Section 5).

. Mathematical preliminaries

The unbalanced growth of the integrand corresponding to the differential operator, dictates that the
ppropriate functional framework for the study of double phase problems, is provided by the Musielak–
rlicz–Sobolev spaces.
We introduce the following hypotheses on the function a(z).

H0 : a : Ω ↦→ R is Lipschitz continuous (that is, a ∈ C0,1(Ω)), a(z) > 0 for all z ∈ Ω , a|∂Ω = 0, and
a ∈ Ap = the p-Muckenhoupt class (see [22, p.145]).

We stress that a(·) is not assumed to be bounded away from zero. This leads to the unbalanced growth
f the corresponding integrand

θ(z, t) = a(z)tp + t2 for all z ∈ Ω , all t ⩾ 0.

This in turn requires the use of Musielak–Orlicz–Sobolev spaces, which we introduce below. In order to
ave useful embeddings, for the relevant spaces, we need an additional restriction on the exponents 2 < p.

H1 : p
2 < 1 + 1

N .

emark 1. This hypothesis implies that p < 2∗ and leads to local regularity results for double phase
roblems (see Marcellini [5]).
2
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In addition to the integrand θ(z, t), we also consider the integrand

φ(z, t) = a(z)tp for all z ∈ Ω , all t ⩾ 0.

Both integrands θ and φ are uniformly convex in t ⩾ 0 (see Diening, Harjulehto, Hästö & Růžička
22, Remark 2.4.6, p. 41]). Also we have φ ⩽ θ.

Now, let k : Ω × [0,+∞) ↦→ [0,+∞) be a Carathéodory function (that is, for all t ⩾ 0 the mapping
↦→ k(z, t) is measurable and for a.a. z ∈ Ω the function t ↦→ k(z, t) is continuous). We assume the following

onditions on k:

• k(z, t) > 0 for a.a. z ∈ Ω , all t > 0 and k(z, 0) = 0 for a.a. z ∈ Ω .
• For a.a. z ∈ Ω , we have

lim
t→0+

k(z, t)
t

= 0 and lim
t→+∞

k(z, t)
t

= +∞.

• For all t > 0, k(·, t) ∈ L1(Ω).
• For a.a. z ∈ Ω , k(z, ·) satisfies the ∆2-condition, that is, there exist ĉ > 0 and β ∈ L1(Ω) such that

k(z, 2t) ⩽ ĉk(z, t) + β(z) for a.a. z ∈ Ω , all t ⩾ 0.

An integrand k(z, t) satisfying all the above conditions, is said to be a “generalized N-function” (N stands
or “nice”). By N(Ω) we denote the family of such integrands. Clearly we have θ, φ ∈ N(Ω).

Also let M(Ω) be the space of all measurable functions u : Ω ↦→ R. As usual, we identify two such
unctions when they differ only on a Lebesgue-null set. Given k ∈ N(Ω), the “Musielak–Orlicz space” Lk(Ω)
s defined by

Lk(Ω) = {u ∈ M(Ω) : ρk(u) < +∞} ,

here
ρk(u) =

∫
Ω

k(z, |u|)dz (the modular function).

We equip Lk(Ω) with the so-called “Luxemburg norm” ∥ · ∥k defined by

∥u∥k = inf
{
λ > 0 : ρk

(u
λ

)
⩽ 1
}
.

Then Lk(Ω) is a Banach space and if k ⩽ k̂, then

Lk̂(Ω) ↪→ Lk(Ω) continuously.

Moreover, if k(z, ·) is uniformly convex, then the Banach space Lk(Ω) is uniformly convex (thus reflexive);
ee Diening, Harjulehto, Hästö & Růžička [22, Theorem 2.4.14 and Remark 2.4.15, p. 44] and Musielak
23, Corollary 11.7, p. 77].

There is a close relation between the norm ∥ · ∥k and the modular function ρk(·).

roposition 1.

(a) If u ∈ Lk(Ω), then ρk(u) < 1 (resp. = 1, > 1) ⇐⇒ ∥u∥k < 1 (resp. = 1, > 1).
(b) ∥u∥k → 0 ⇐⇒ ρk(u) → 0 and ∥u∥k → +∞ ⇐⇒ ρk(u) → +∞.

The related “Musielak–Orlicz–Sobolev space”, W 1,k(Ω) is defined by

W 1,k(Ω) =
{
u ∈ Lk(Ω) : |Du| ∈ Lk(Ω)

}
.

We equip W 1,k(Ω) with the norm
∥u∥ = ∥u∥ + ∥Du∥ ,
1,k k k

3
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where ∥Du∥k = ∥|Du|∥k. Similarly ρk(Du) = ρk(|Du|). Also

W 1,k
0 (Ω) = C∞

c (Ω)
∥·∥1,k

.

Then W 1,k(Ω) and W 1,k
0 (Ω) are both Banach spaces and if k(z, ·) is uniformly convex, then they are

uniformly convex Banach spaces, hence reflexive. Moreover, if k ⩽ k̂, then

W 1,k̂(Ω) ↪→ W 1,k(Ω) and W 1,k̂
0 (Ω) ↪→ W 1,k

0 (Ω) continuously.

Under some additional regularity and growth conditions on k, which are satisfied in the case of the double
ntegrand θ(z, t), we have that the Poincaré inequality holds for the space W 1,k

0 (Ω) (see Harjulehto &
ästö [24, p. 100]) and so we can use the norm

∥u∥1,k = ∥Du∥k for all u ∈ W 1,k
0 (Ω).

For x ∈ R, let x+ = max {x, 0}, x− = max {−x, 0}. Then for u ∈ M(Ω) we set u±(z) = u(z)± for all
∈ Ω . If u ∈ W 1,k

0 (Ω), then u± ∈ W 1,k
0 (Ω), u = u+ − u−, |u| = u+ + u−.

Following the proof of Theorem 6.3.5 of Harjulehto & Hästö [24, p. 142], we obtain the following compact
mbedding result.

emma 2. If hypotheses H0 hold, then W 1,φ
0 (Ω) ↪→ Lφ(Ω) compactly.

roof. Since we will use convolutions (mollifications) and a(z) = 0 for all z ∈ ∂Ω , we extend a(·) to all of
N by setting a(z) = 0 for all z ∈ RN \ Ω .
Suppose un

w−→ u in W 1,φ
0 (Ω). Let yn = un − u. We have yn

w−→ 0 in W 1,φ
0 (Ω). Hence we can find ĉ1 > 0

uch that
∥yn∥1,φ ⩽ ĉ1, ∀n ∈ N. (2)

We know that C∞
c (Ω) is dense in W 1,φ

0 (Ω). Hence we can find θn ∈ C∞
c (Ω) such that

∥un − θn∥1,φ ⩽
1
n
, ∀n ∈ N,

⇒ θn
w−→ 0 in W 1,φ

0 (Ω). (3)

Let {ηε}ε∈(0,1] be the standard mollifier. We have

∥θn∥φ ⩽ ∥θn − ηε ∗ θn + ηε ∗ θn∥φ
⩽ ∥θn − ηε ∗ θn∥φ + ∥ηε ∗ θn∥φ. (4)

Note that

(ηε ∗ θn) (s) − θn(s)

=
∫
RN

ηε(z) (θn(s− z) − θn(s)) dz
(

recall that
∫
RN

ηε(z)dz = 1
)

=
∫
RN

ηε(z)
∫ 1

0

d

dt
θn(s− tz)dtdz

=
∫
RN

ηε(z)
∫ 1

0
(Dθn(s− tz), z)RN dtdz (by the chain rule)

=
∫ 1

0

∫
RN

ηε(z) (Dθn(s− tz), z)RN dzdt (Fubini’s theorem)

=
∫ 1 ∫

ηεt(z)
(
Dθn(s− z), z

)
dzdt (change of variables). (5)
0 RN t RN

4
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We know that
ηεt(z) ̸= 0 if 1

t
|z| ⩽ ε. (6)

Then from (5) and (6) we have

| (ηε ∗ θn) (s) − θn(s)|

⩽ ε

∫ 1

0
ηε(z)|Dθn(s− tz)|dzdt

= ε

∫ 1

0
(ηεt ∗ |Dθn|) (s)dt,

⇒ ∥ (ηε ∗ θn) − θn∥φ ⩽ ĉ2ε

∫ 1

0
∥η∥1∥Dθn∥φdt

for some ĉ2 > 0 (see Harjulehto & Hästö [24, p. 91])
= ĉ2ε∥Dθn∥φ (recall that ∥η∥1 = 1). (7)

Returning to (4) and using (7), we have

∥θn∥φ ⩽ ĉ2ε∥Dθn∥φ + ∥ηε ∗ θn∥φ, ∀n ∈ N. (8)

From (3) we have
(ηε ∗ θn) (s) =

∫
RN

ηε(s− z)θn(z)dz → 0 as n → ∞. (9)

We set Ω−ε =
{
z ∈ RN : d(z,Ω) ⩽ ε

}
. Then

(ηε ∗ θn) (s) = 0 for all s ∈ RN \ Ω−ε. (10)

So, we have

| (ηε ∗ θn) (s)| ⩽
∫
RN

ηε(s− z)|θn(z)|dz

⩽ ĉ3∥ηε(s− ·)∥φ∗∥θn∥φ for some ĉ3 > 0
(by Hölder’s inequality, see [24, p. 54])

⩽ ĉ4
1
εN

∥χΩ−ε
∥φ∗ for some ĉ4 > 0 (see (10))

⩽
ĉ5

εN
for some ĉ5 > 0, all s ∈ Ω−ε, all n ∈ N,

⇒ | (ηε ∗ θn) (s)| ⩽ ĉ5

εN
χΩ−ε

(s),∀ s ∈ RN (see (10)). (11)

From (9), (11) and the dominated convergence theorem (see [24, p. 45]), we have

ηε ∗ θn → 0 in Lφ(Ω). (12)

Returning to (8), passing to the limit as n → ∞ and using (2) and (12), we obtain

lim sup
n→∞

∥θn∥φ ⩽ εĉ6 for some ĉ6 > 0,

⇒ θn → 0 in Lφ(Ω) (since ε > 0 is arbitrary),
⇒ yn → 0 in Lφ(Ω),
⇒ W 1,φ

0 (Ω) ↪→ Lφ(Ω) compactly.
The proof is now complete. □

5
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As we already mentioned in the proof of the multiplicity theorem (see Section 5), we also use Morse
theoretic tools (critical groups). So, below we recall some basic definitions and facts about them. Let X be

Banach space and (Y1, Y2) a topological pair such that Y2 ⊆ Y1 ⊆ X. For every k ∈ N0 by Hk(Y1, Y2)
e denote the kth-relative singular homology group with integer coefficients for the pair (Y1, Y2). Given
∈ C1(X,R) and c ∈ R, we introduce the following sets

ψc = {u ∈ X : ψ(u) ⩽ c} , Kψ = {u ∈ X : ψ′(u) = 0} , Kc
ψ = {u ∈ Kψ : ψ(u) = c} .

If u ∈ Kc
ψ is isolated, then the critical groups of ψ at u are defined by

Ck(ψ, u) = Hk (ψc ∩ U,ψc ∩ U \ {u}) for all k ⩾ 0,

with U being a neighborhood of u such that Kψ∩ψc∩U = {u}. The excision property of singular homology,
implies that the definition of critical groups is independent of the choice of the isolating neighborhood U .

If ψ ∈ C1(X,R) satisfies the C-condition (that is, every sequence {un}n⩾1 ⊆ X such that {ψ(un)} ⊆ R is
bounded and (1 + ∥un∥X)ψ′(un) → 0 in X∗, admits a strongly convergent subsequence), inf ψ(Kψ) > −∞
and c < inf ψ(Kψ), then the critical groups of ψ at infinity are defined by

Ck(ψ,∞) = Hk(X,ψc) for all k ⩾ 0.

On account of Corollary 5.3.13 of Papageorgiou, Rădulescu & Repovš [25, p. 392], we see that the above
definition is independent of the choice of the level c < inf ψ(Kψ).

Suppose that Kψ is finite. We introduce the following quantities

M(t, u) =
∑
k⩾0

rankCk(ψ, u)tk for all t ∈ R, all u ∈ Kψ,

P (t,∞) =
∑
k⩾0

rankCk(ψ,∞)tk for all t ∈ R.

The Morse relation says that ∑
u∈Kψ

M(t, u) = P (t,∞) + (1 + t)Q(t),

with Q(t) =
∑
k⩾0 βkt

k is a formal series in t ∈ R with nonnegative integer coefficients.
Finally we mention that by

{
λ̃k(2)

}
k∈N0

we denote the eigenvalues of
(
−∆, H1

0 (Ω)
)
. We know that

λ̃1(2) > 0 and λ̃k(2) → +∞ as k → ∞. Also by ũ1(2) we denote the positive, L2-normalized (that
is, ∥ũ1(2)∥2 = 1) eigenfunction corresponding to λ̃1(2) > 0. We know that ũ1(2) ∈ intC+, with C+ ={
u ∈ C1

0 (Ω) : u(z) ⩾ 0 for all z ∈ Ω
}

(the positive (order) cone of C1
0 (Ω)).

Throughout this work, by “solution” of problem (1) we understand a weak solution, that is a function
∈ W 1,θ

0 (Ω) satisfying for all h ∈ W 1,θ
0 (Ω)∫

Ω

a(z)|Du|p−2(Du,Dh)RN dz +
∫
Ω

(Du,Dh)RN dz =
∫
Ω

f(z, u)hdz .

. A maximum problem

In this section we prove a maximum principle for the weighted p-Laplacian ∆a
p (that is, for φ ∈ N(Ω)).

elated properties can be found in Zhang [26] (for anisotropic differential operators) and in Papageorgiou,
etro & Vetro [18] (double phase differential operators, that is, for θ ∈ N(Ω)).
6
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Proposition 3. If ξ ∈ L∞(Ω), ξ(z) ⩾ 0 for a.a. z ∈ Ω , u ∈ W 1,φ
0 (Ω) ∩ L∞(Ω), u ⩾ 0, u ̸= 0 and we have

in the weak sense)
−∆a

pu(z) + ξ(z)u(z)p−1 ⩾ 0 in Ω ,

hen u(z) > 0 for a.a. z ∈ Ω .

roof. First we assume that u ∈ C1(Ω). Arguing by contradiction, suppose that we can find z1, z2 ∈ Ω

nd an open ball B2r(z2) =
{
z ∈ RN : |z − z2| < 2r

}
(r > 0) such that

z1 ∈ ∂B2r(z2), u(z1) = 0, u|B2r(z2) > 0. (13)

By moving the center z2, we have r > 0 arbitrarily small. Then

u(z1) = min
Ω

u and Du(z1) = 0.

We define
m = min {u(z) : z ∈ ∂Br(z2)} > 0 (see (13)).

Using L’Hôpital’s rule, we see that

m,
m

r
→ 0+ as r → 0+. (14)

We introduce the following items

R = {z ∈ Ω : r < |z − z2| < 2r} (an open ring in B2r(z2)),
m̂ = sup {|Da(z)| : z ∈ R} , m0 = min

R
a > 0.

By hypothesis H0, the weight function a(·) is Lipschitz continuous, hence by Rademacher’s theorem (see
vans & Gariepy [27, p. 81]), a(·) is differentiable almost everywhere in Ω . Therefore m̂ is well defined and

ˆ < +∞. We set
τ = − ln m

r
+ N − 1

r
+ 3 m̂

m0
. (15)

We consider the function

w(t) =
m
(
e
τt
p−1 − 1

)
e
τr
p−1 − 1

for all t ∈ [0, r].

For r > 0 small, we have (see (14)){
0 < w(t), w′(t) < 1 for all 0 < t ⩽ r,

w′′(t) = τ

p− 1w
′(t) for all 0 ⩽ t ⩽ r.

}
(16)

To simplify the presentation, without any loss of generality, we assume that z2 = 0. Let l = |z|, t = 2r− l.
or t ∈ [r, 2r], we have

y(l) = w(2r − l) = w(t), (17)
⇒ y′(l) = −w′(t), y′′(l) = w′′(t).

For z ∈ R with |z| = l we write

ŷ(z) = y(l),
⇒ ŷ ∈ C2(R).
7
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w

We have

div (a(z)|Dŷ|p−2
Dŷ)

= a(z)(p− 1)w′(t)p−2w′′(t) − a(z)N − 1
r

w′(t)p−1

− w′(t)p−1
N∑
k=1

∂a

∂zk

zk
r

(z = (zk)Nk=1)

⩾ a(z)
(
τ − N − 1

r

)
w′(t)p−1 − 2m̂w′(t)p−1

= a(z)
(

− ln m
r

+ 3 m̂
m0

)
w′(t) − 2m̂w′(t)p−1

⩾
(
a(z)

(
− ln m

r

)
+ m̂

)
w′(t)p−1

⩾
(
η
(

− ln m
r

)
+ m̂

)
w′(t)p−1 (18)

(for r > 0 small and with 0 < η ⩽ a(z) for all z ∈ R, see (14)).

Note that 0 < w′(0) ⩽ w′(t) for all t ∈ [0, r] and w(·) is increasing. So, for r > 0 even smaller if necessary,
e will have (

η
(

− ln m
r

)
+ m̂

)
w′(t)p−1

⩾
(
η
(

− ln m
r

)
+ m̂

)
w′(0)p−1

⩾ ∥ξ∥∞w(r)p−1

⩾ ξ(z)w(t)p−1 for a.a. z ∈ Ω ( see (14)). (19)

Using (19) in (18), we obtain that

div (a(z)|Dŷ|p−2
Dŷ) ⩾ ξ(z)ŷ in R.

This means that ŷ is a lower solution of the equation

−∆a
pu(z) + ξ(z)u(z)p−1 = 0 in R.

From (17) we see that ŷ ⩽ u on ∂R. Hence by the weak comparison principle (see Pucci & Serrin [28,
Theorem 3.4.1, p. 61]), we have

ŷ ⩽ u in R.

Then we have

lim
s→0+

u(z1 + s(z2 − z1)) − u(z1)
s

= lim
s→0+

u(z1 + s(z2 − z1))
s

(see 3)

⩾ lim
s→0+

ŷ(z1 + s(z2 − z1)) − ŷ(z1)
s

= w′(0) > 0.

But this contradicts the fact that Du(z1) = 0.
So, we have proved that

u(z) > 0 for all z ∈ Ω , when u ∈ C1(Ω).

Now remove the requirement that u ∈ C1(Ω). For this purpose we introduce the following set

Ω̂ =
{
z ∈ Ω : there exists an open ball B (z) ⊆ Ω such that u| = 0 a.e.

}
.
r Br(z)

8
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Also let Ω+ = Ω \ Ω̂ .
Consider z0 ∈ Ω+. We can find a ball B2r(z0) ⊆ Ω such that u|∂B2r(z0) is not identically zero. We consider

the following nonhomogeneous Dirichlet problem

− ∆a
pw(z) + ξ(z)w(z)p−1 = 0 in B2r(z0), w|∂B2r(z0) = u|∂B2r(z0). (20)

Since a|B2r(z0) > 0 (see hypothesis H0), using Theorem 1 of Lieberman [29], we have that if w ∈
1,p(B2r(z0)) is a solution of (20), then

w ∈ C1(B2r(z0)), w ⩾ 0, w ̸= 0.

Then we can argue as in the first part of the proof and infer that

w(z) ⩾ cr > 0 for all z ∈ Br(z0). (21)

By the weak comparison principle (see Pucci & Serrin [28, Theorem 3.4.1, p. 61]) we have

w(z) ⩽ u(z) for a.a. z ∈ B2r(z0),
⇒ 0 < cr ⩽ u(z) for a.a. z ∈ Br(z0) (see (21)).

The set Ω̂ ⊆ Ω is a strict open subset of Ω (recall u ̸= 0). Therefore, if Ω̂ ̸= ∅, then we can find
0 ∈ Ω+ ∩ ∂Ω̂ . From the above argument, we infer that for r > 0 small we will have

u(z) > 0 for a.a. z ∈ Ω̂ ∩Br(z0),

hich contradicts the definition of Ω̂ . Therefore Ω̂ = ∅ and so Ω = Ω+. Then by a standard compactness
rgument, we conclude that u(z) > 0 for a.a. z ∈ Ω .

This proof is now complete. □

. A weighted eigenvalue problem

In this section we study the following eigenvalue problem for the operator ∆a
p.

− ∆a
pu(z) = λ̂a(z)|u(z)|p−2

u(z) in Ω , u|∂Ω = 0. (22)

We say that λ̂ ∈ R is an “eigenvalue” of the Dirichlet ∆a
p operator, if problem (22) admits a nontrivial

olution û ∈ W 1,φ
0 (Ω), called an “eigenfunction” corresponding to λ̂.

In the next proposition, we show the existence of a smallest eigenvalue λ̂1 and determine a sign property
or the corresponding eigenfunctions.

roposition 4. If hypotheses H0, H1 hold, then the eigenvalue problem (22) has a smallest eigenvalue and
very corresponding eigenfunction û1 ∈ W 1,φ

0 (Ω) satisfies û1 ∈ L∞(Ω) and either û1(z) > 0 for a.a. z ∈ Ω

r û1(z) < 0 for a.a. z ∈ Ω (that is, û1(·) has fixed sign).

roof. Let
λ̂1 = inf

{∫
Ω
a(z)|Du|pdz∫

Ω
a(z)|u|pdz

: u ∈ W 1,φ
0 (Ω), u ̸= 0

}
. (23)

Exploiting the homogeneity of both integrals, we can write

λ̂1 = inf
{
ρφ(Du) : u ∈ W 1,φ(Ω), ρφ(u) = 1

}
.
0

9
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Consider a sequence {un}n⩾1 ⊆ W 1,φ
0 (Ω) such that

ρφ(un) = 1 for all n ∈ N0, ρφ(Dun) ↓ λ̂1 as n → ∞.

Evidently {un}n⩾1 ⊆ W 1,φ
0 (Ω) is bounded and so by passing to a suitable subsequence if necessary, we

may assume that
un

w−→ û1 in W 1,φ
0 (Ω). (24)

From Lemma 2, we know that W 1,φ
0 (Ω) ↪→ Lφ(Ω) compactly (see hypotheses H1). Therefore from (24)

t follows that

un → û1 in Lφ(Ω),
⇒ ρφ(û1) = 1. (25)

Note that the modular function ρφ(·) is continuous, convex, hence it is sequentially weakly lower
emicontinuous. So, from (24), we have

ρφ(Dû1) ⩽ lim inf
n→∞

ρφ(Dun),

⇒ ρφ(Dû1) ⩽ λ̂1 and ρφ(û1) = 1, (see (25)),
⇒ ρφ(Dû1) = λ̂1, ρφ(û1) = 1,
⇒ λ̂1 > 0.

From the Lagrange multiplier theorem (see Papageorgiou, Rădulescu & Repovš [25, Theorem 5.5.9, p.
22]), we have

− ∆a
pû1(z) = λ̂1a(z)|û1(z)|p−2

û1(z) in Ω , û1|∂Ω = 0. (26)

Suppose that û+
1 ̸= 0. Acting on (26) with û+

1 ∈ W 1,φ
0 (Ω), we obtain

ρφ(Dû+
1 ) = λ̂1ρφ(û+

1 ),
⇒ û+

1 realizes the infimum in (23),
⇒ û+

1 is an eigenfunction corresponding to λ̂1 > 0.

From Colasuonno & Squassina [12, pp. 1933–1934], we have that û+
1 ∈ W 1,φ

0 (Ω) ∩ L∞(Ω). Also by
Proposition 2 (the maximum principle) we have û+

1 > 0 for a.a. z ∈ Ω . If û+
1 = 0, then û1 = −û−

1 ⩽ 0
nd so −û1 ⩾ 0 is also an eigenfunction corresponding to λ̂1 > 0 and we are back to the previous case and
btain û1 < 0 for a.a. z ∈ Ω .

This proof is now complete. □

Using these properties of λ̂1 > 0 and of the corresponding eigenfunctions, we can prove the following
seful result.

roposition 5. If hypotheses H0, H1 hold, η ∈ L∞(Ω)+ and

η(z) ⩽ λ̂1a(z) for a.a. z ∈ Ω , η ̸≡ λ̂1a,

then there exists c∗ > 0 such that

c∗∥u∥p1,φ ⩽ ρφ(Du) −
∫

η(z)|u|pdz for all u ∈ W 1,φ
0 (Ω).
Ω

10
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Proof. We consider the C1-functional σ : W 1,φ
0 (Ω) ↦→ R defined by

σ(u) = ρφ(Du) −
∫
Ω

η(z)|u|pdz for all u ∈ W 1,φ
0 (Ω).

On account of (23) and using the hypothesis on η(·), we have

0 ⩽ σ(u) for all u ∈ W 1,φ
0 (Ω).

Arguing by contradiction, suppose that the assertion of the proposition is not true. Then we can find
un}n∈N0

⊆ W 1,φ
0 (Ω) such that

0 ⩽ σ(un) = ρφ(Dun) −
∫
Ω

η(z)|un|pdz < 1
n

∥un∥p1,φ for all n ∈ N0. (27)

Let yn = un
∥un∥1,φ

, n ∈ N0. Then ∥yn∥1,φ = 1 for all n ∈ N0 and so we may assume that

yn
w−→ y in W 1,φ

0 (Ω) and yn → y in Lφ(Ω) (28)

recall that W 1,φ
0 (Ω) ↪→ Lφ(Ω) compactly). From (27), we have

0 ⩽ ρφ(Dyn) −
∫
Ω

η(z)|yn|pdz < 1
n

for all n ∈ N0. (29)

On account of (28) and by passing to a subsequence if necessary, we may assume that

yn(z) → y(z) for a.a. z ∈ Ω , |yn(z)| ⩽ h(z) for a.a. z ∈ Ω , all n ∈ N0 (30)

ith h ∈ Lφ(Ω)+ (see Diening, Harjulehto, Hästö & Růžička [22, Lemma 2.3.15, p. 37] and Colasuonno &
quassina [12, Lemma 2.16]).

We have

0 ⩽ η(z)|yn|p ⩽ λ̂1a(z)|yn|p ⩽ λ̂1a(z)h(z) for a.a. z ∈ Ω , all n ∈ N0 (see (30)). (31)

From (30), (31) and the Lebesgue dominated convergence theorem, we have∫
Ω

η(z)|yn|pdz →
∫
Ω

η(z)|y|pdz as n → ∞. (32)

Also, from the sequential weak lower semicontinuity of the modular function ρφ(·) and (28), we have

ρφ(Dy) ⩽ lim inf
n→∞

ρφ(Dyn). (33)

We return to (29), pass to the limit as n → ∞ and use (32) and (33). We obtain

ρφ(Dy) ⩽
∫
Ω

η(z)|y|pdz. (34)

If y = 0, then we have

ρφ(Dyn) → 0 (see (29) and (32)),
⇒ ∥yn∥1,φ → 0 (see Proposition 1(b)).

But this contradicts the fact that ∥yn∥1,φ = 1 for all n ∈ N0.
If y ̸= 0, then from (34), the hypothesis on η(·) and (23), it follows that

ρ (Dy) = λ̂ ρ (y).
φ 1 φ

11
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By the Lagrange multiplier rule, this means that y ∈ W 1,φ
0 (Ω) is an eigenfunction corresponding to λ̂1.

rom Colasuonno & Squassina [12, p. 1933], we have that y ∈ W 1,φ
0 (Ω) ∩L∞(Ω), while from Proposition 2,

e have that |y(z)| > 0 for a.a. z ∈ Ω . Then (34) and the hypothesis on η(·), imply

ρφ(Dy) < λ̂1ρφ(y),

hich contradicts (23).
This proof is now complete. □

Using these results, we can now treat resonant double phase problems.

. A multiplicity theorem

In this section we prove a multiplicity theorem for problem (1), when the reaction f(z, ·) is resonant with
espect to λ̂1 > 0 as x → ±∞. Our method of proof combines variational techniques and Morse theoretic
critical groups) arguments.

The hypotheses on the reaction f(z, ·) are the following:
H2 : f : Ω × R ↦→ R is a measurable function such that for a.a. z ∈ Ω , f(z, 0) = 0, f(z, ·) ∈ C1(R) and

(i) |f ′
x(z, x)| ⩽ a(z)

(
1 + |x|r−2

)
for a.a. z ∈ Ω , all x ∈ R, with a ∈ L∞(Ω) and

p ⩽ r < 2∗ =
{

2N
N−2 if N ⩾ 3
+∞ if N = 2

;

ii) if F (z, x) =
∫ x

0 f(z, s)ds, then lim supx→∞
pF (z,x)
a(z)|x|p ⩽ λ̂1 uniformly for a.a. z ∈ Ω ;

iii) there exists β0 > 0 such that

−β0 ⩽ f(z, x)x− pF (z, x) for a.a. z ∈ Ω , all x ∈ R;

iv) there exists m ∈ N0 such that

f ′
x(z, 0) = lim

x→0

f(z, x)
x

uniformly for a.a. z ∈ Ω ,

f ′
x(z, 0) ∈

[
λ̃m(2), λ̃m+1(2)

]
for a.a. z ∈ Ω ,

f ′
x(·, 0) ̸≡ λ̃m(2), f ′

x(·, 0) ̸≡ λ̃m+1(2).

emark 2. Hypothesis H2(ii) implies that the problem can be resonant with respect to λ̂1 > 0 as x → ±∞.
s we will show in the process of the proof, hypothesis H2(iii) implies that the resonance occurs from the

eft of λ̂1 > 0, making the problem coercive.

xample 1. The following function satisfies hypotheses H2 (for the sake of simplicity we drop the
-dependence)

f(x) =

⎧⎪⎨⎪⎩
λ̂1|x|p−2

x− c ln |x| if x < −1,
θx+ (λ̂1 − θ)|x|r−2

x if |x| ⩽ 1,
λ̂1x

p−1 + c ln x if 1 < x,

ith r > 1 and θ ∈
(
λ̃m(2), λ̃m+1(2)

)
, where m ∈ N0 is large enough so that

c = λ̂1(r − p) − θ(r − 2) < 0.
12
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Let ψ : W 1,θ
0 (Ω) ↦→ R be the energy (Euler) functional for problem (1) defined by

ψ(u) = 1
p

∫
Ω

a(z)|Du|pdz + 1
2∥Du∥2

2 −
∫
Ω

F (z, u)dz for all u ∈ W 1,θ
0 (Ω).

Evidently, ψ ∈ C2(W 1,θ
0 (Ω)).

roposition 6. If hypotheses H0, H1, H2 hold, then the functional ψ(·) is coercive.

roof. For x ̸= 0, we have

d

dx

(
F (z, x)

|x|p
)

= f(z, x)|x|p − p|x|p−2
xF (z, x)

|x|2p

= f(z, x)x− pF (z, x)
|x|px{

⩾ β0
xp+1 if x > 0

⩽ − β0
|x|px if x < 0

for a.a. z ∈ Ω (see hypothesis H2(iii)),

⇒ F (z, v)
|v|p

− F (z, x)
|x|p

⩾
β0

p

(
1

|v|p
− 1

|x|p
)

for a.a. z ∈ Ω , all 0 < |x| < |v|.

We let v → ±∞ and using hypothesis H2(ii), we obtain

1
p
λ̂1a(z) − F (z, x)

|x|p
⩾ − β0

|x|p
for a.a. z ∈ Ω , all |x| > 0,

⇒ λ̂1a(z)|x|p − pF (z, x) ⩾ −pβ0 for a.a. z ∈ Ω , all x ∈ R. (35)

Arguing by contradiction, suppose that ψ(·) is not coercive. Then we can find {un}n∈N0
⊆ W 1,θ

0 (Ω) such
hat

∥un∥1,θ → +∞ and φ(un) ⩽ c0 for some c0 > 0, all n ∈ N0. (36)

First suppose that ∥un∥1,φ → +∞ as n → ∞. Then let yn = un
∥un∥1,φ

, n ∈ N0. We have ∥yn∥1,φ = 1 for
ll n ∈ N0. So, we may assume that

yn
w−→ y in W 1,φ

0 (Ω) and yn → y in Lφ(Ω) as n → ∞. (37)

From (36) we have

1
p

∫
Ω

a(z)|Dun|pdz −
∫
Ω

F (z, un)dz ⩽ c0 for all n ∈ N0,

⇒ 1
p

(
ρφ(Dyn) −

∫
Ω

pF (z, un)
∥un∥p1,φ

dz

)
⩽

c0

∥un∥p1,φ
for all n ∈ N0. (38)

On account of hypothesis H2(ii), we have

lim sup
n→∞

pF (z, un(z))
∥un∥p1,φ

⩽ η(z)|y|p for a.a. z ∈ Ω , (39)

ith η ∈ L∞(Ω)+, η(z) ⩽ λ̂1a(z) for a.a. z ∈ Ω (see Aizicovici, Papageorgiou & Staicu [30], proof of
roposition 16). If in (38) we pass to the limit as n → ∞ and use (37), (39) and use the sequential weak

ower semicontinuity of the modular function ρφ(·), we obtain

ρφ(Dy) ⩽
∫

η(z)|y|pdz. (40)

Ω

13
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If η ̸= λ̂1a, then from (40) and Proposition 5, we have

c∗∥y∥p1,φ ⩽ 0,
⇒ y = 0.

From (39) it follows that

ρφ(Dyn) → 0,
⇒ ∥yn∥1,φ → 0 (see Proposition (1)),

a contradiction since ∥yn∥1,φ = 1 for all n ∈ N0.
If η = λ̂1a, then from (40) we have

ρφ(Dy) ⩽
∫
Ω

λ̂1a(z)|y|pdz,

⇒ ρφ(Dy) = λ̂1ρφ(y) (see (23)). (41)

From (41) we see that y = 0 or y ∈ W 1,φ
0 (Ω) ∩ L∞(Ω) is an eigenfunction corresponding to λ̂1 > 0. If

y = 0, then the previous argument leads to a contradiction of the fact that ∥yn∥1,φ = 1 for all n ∈ N0. So,
y is an eigenfunction corresponding to λ̂1 > 0. By Proposition 3, |y(z)| > 0 for a.a. z ∈ Ω and so

|un(z)| → +∞ for a.a. z ∈ Ω , as n → ∞. (42)

We have
1
p

(
ρφ(Dun) −

∫
Ω

pF (z, un)dz
)

+ 1
2∥Dun∥2

2 ⩽ c0 for all n ∈ N0 (see (36)),

⇒ 1
p

(
λ̂1ρφ(un) −

∫
Ω

pF (z, un)dz
)

+ 1
2∥Dun∥2

2 ⩽ c0 for all n ∈ N0 (see (23)),

⇒ 1
p

∫
Ω

(
λ̂1a(z)|un|p − pF (z, un)

)
dz + λ̃1(2)

2 ∥un∥2
2 ⩽ c0,

⇒ λ̃1(2)∥un∥2
2 ⩽ c1 for some c1 > 0, all n ∈ N0 (see (35)). (43)

From (42), (43) and Fatou’s lemma, we reach a contradiction.
Therefore, by passing to a subsequence if necessary, we may assume that

∥un∥1,φ ⩽ c2 for some c2 > 0, all n ∈ N0,

⇒ ρφ(Dun) ⩽ c3 for some c3 > 0, for all n ∈ N0 (see Proposition 1). (44)

From (36) we have that ρθ(Dun) → +∞. Note that

ρθ(Dun) = ρφ(Dun) + ∥Dun∥2
2 for all n ∈ N0.

Then from (44), we infer that
∥Dun∥2 → +∞ as n → ∞. (45)

Also again from (44) we see that by passing to a subsequence if necessary we may assume

un
w−→ u in W 1,φ

0 (Ω) and un → u in Lφ(Ω). (46)

Hypotheses H2(i), H2(ii) imply that we can find c4 > 0 such that

F (z, x) ⩽ c + (λ̂ + 1)|x|p for a.a. z ∈ Ω , all x ∈ R. (47)
4 1

14
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f

From (36) we

∥Dun∥2
2 ⩽ 2c0 + 2

∫
Ω

F (z, un)dz

⩽ c5 + 2(λ̂1 + 1)ρφ(un) for some c5 > 0, all n ∈ N0 (see (47))
⩽ c6 for some c6 > 0, all n ∈ N0 (see (43)). (48)

Comparing (45) and (48), we have a contradiction which proves that ψ(·) is coercive.
This proof is now complete. □

Using Proposition 6 and the direct method of the calculus of variationals, we can produce a first nontrivial
solution of problem (1).

Proposition 7. If hypotheses H0, H1, H2 hold, then problem (1) admits a nontrivial solution

u0 ∈ W 1,θ
0 (Ω) ∩ L∞(Ω).

Proof. From Proposition 6 we know that ψ(·) is coercive. Also, since r < 2∗ we have that W 1,θ
0 (Ω) ↪→

Lr(Ω) compactly. Hence, it follows that ψ(·) is sequentially weakly lower semicontinuous. So, by the
Weierstrass–Tonelli theorem, we can find u0 ∈ W 1,θ

0 (Ω) such that

ψ(u0) = min
{
ψ(u) : u ∈ W 1,θ

0 (Ω)
}
. (49)

On account of hypothesis H2(iv) given ε > 0, we can find δ > 0 such that

1
2 (f ′

x(z, 0) − ε)x2 ⩽ F (z, x) for a.a. z ∈ Ω , all |x| ⩽ δ. (50)

Recall that ũ1(2) ∈ intC+ (see Section 2). So, we can find t ∈ (0, 1) small such that 0 ⩽ tũ1(2)(z) ⩽ δ

or all z ∈ Ω . We have

ψ(tũ1(2)) = tp

p
ρφ(Dũ1(2)) + t2

2 λ̃1(2) − 1
2

∫
Ω

(f ′
x(z, 0) − ε) ũ1(2)2dz

(see (50) and recall that ∥ũ1(2)∥2 = 1)

= tp

p
ρφ(Dũ1(2)) + t2

2

∫
Ω

(
λ̃1(2) − f ′

x(z, 0)
)
ũ1(2)2dz + ε

2 .

Note that

γ0 =
∫
Ω

(
f ′
x(z, 0) − λ̃1(2)

)
ũ1(2)2dz > 0

(see hypothesis H2(iv) and recall that ũ1(2) ∈ intC+).

So, choosing ε ∈ (0, γ0), we have that

ψ(tũ1(2)) ⩽ c7t
p − c8t

2 for some c7, c8 > 0.

Since 2 < p, choosing t ∈ (0, 1) even smaller if necessary, we have

ψ(ũ1(2)) < 0
⇒ ψ(u0) < 0 = ψ(0) (see (49)),
⇒ u0 ̸= 0.
15
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P

From (49) we have

ψ′(u0) = 0,

⇒
∫
Ω

a(z)|Du0|p−2(Du0, Dh)RN dz +
∫
Ω

(Du0, Dh)RN dz =
∫
Ω

f(z, u0)hdz

for all h ∈ W 1,θ
0 (Ω),

⇒ u0 ∈ W 1,θ
0 is a nontrivial solution of problem (1).

From Colasuonno & Squassina [12, pp. 1933–1934], we have that

u0 ∈ W 1,θ
0 (Ω) ∩ L∞(Ω).

This proof is now complete. □

Next, using Morse theoretic tools, we will generate a second nontrivial bounded solution for problem (1).
Let ξ̂ : H1

0 (Ω) ↦→ R be the functional defined by

ξ̂(u) = 1
2∥Du∥2

2 −
∫
Ω

F (z, u)dz for all u ∈ H1
0 (Ω).

We have ξ̂ ∈ C2 (H1
0 (Ω)

)
.

In what follows by E(λ̃k(2)) we denote the eigenspace of
(
−∆, H1

0 (Ω)
)

corresponding to λ̃k(2), k ∈ N0.
We know that E(λ̃k(2)) is finite dimensional. We set Hm =

⨁m
k=1 E(λ̃k(2)) and Ĥm+1 = H

⊥
m =⨁

k⩾m+1 E(λ̃k(2)). We have H1
0 (Ω) = Hm

⨁
Ĥm+1.

Proposition 8. If hypotheses H2(i), (iv) hold, then Ck(ξ̂, 0) = δk,dmZ for all k ∈ N0, with dm = dimHm.

roof. Consider the orthogonal direct sum decomposition

H1
0 (Ω) = Hm

⨁
Ĥm+1.

On account of hypothesis H2(iv), given ε > 0, we can find δ > 0 such that

1
2 (f ′

x(z, 0) − ε)x2 ⩽ F (z, x) ⩽ 1
2 (f ′

x(z, 0) + ε)x2 for a.a. z ∈ Ω , all |x| ⩽ δ. (51)

Since Hm is finite dimensional, all norms are equivalent. So, we can find δ1 > 0 such that

u ∈ Hm, ∥u∥1,2 ⩽ δ1 ⇒ |u(z)| ⩽ δ for a.a. z ∈ Ω . (52)

Then for u ∈ Hm with ∥u∥1,2 ⩽ δ1, we have

ξ̂(u) ⩽ 1
2∥Du∥2

2 − 1
2

∫
Ω

f ′
x(z, 0)u2dz + ε

2∥u∥2
2 (see (51), (52))

⩽

(
−c9 + ε

λ̃1(2)

)
∥Du∥2

2 for some c9 > 0

(see D’Agui, Marano & Papageorgiou [31, Lemma 2.2]).

Choosing ε ∈ (0, λ̃1(2)c9), we have that

ξ̂(u) ⩽ 0 for all u ∈ H with ∥u∥ ⩽ δ . (53)
m 1,2 1

16
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s

W
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On the other hand from (51) and hypothesis H2(i), we have

F (z, x) ⩽ 1
2 (f ′

x(z, 0) + ε)x2 + c10|x|r for a.a. z ∈ Ω , all x ∈ R, some c10 > 0. (54)

Then for u ∈ Ĥm+1, we have

ξ̂(u) ⩾ 1
2

(
∥Du∥2

2 −
∫
Ω

f ′
x(z, 0)u2dz − ε

λ̃1(2)
∥Du∥2

2

)
− c11∥Du∥r2

for some c11 > 0 ( see (54))

⩾
1
2

(
c12 − ε

λ̃1(2)

)
∥Du∥2

2 − c11∥Du∥r2 for some c12 > 0

(see D’Agui, Marano & Papageorgiou [31]).

Choosing ε ∈ (0, λ̃1(2)c12), we obtain

ξ̂(u) ⩾ c13∥Du∥2
2 − c11∥Du∥r2 for some c13 > 0, all u ∈ Ĥm+1.

Since 2 < p < r, we see that we can find δ2 > 0 such that

ξ̂(u) > 0 for all u ∈ Ĥm+1 with 0 < ∥u∥1,2 ⩽ δ2. (55)

From (53) and (55), we infer that ξ̂(·) has local linking at u = 0 with respect to the decomposition
(Hm, Ĥm+1).

We show that 0 ∈ Kξ̂ is isolated. Arguing by contradiction suppose we could find {un}n∈N0
⊆ H1

0 (Ω)
uch that

un → 0 and ξ̂′(un) = 0 for all n ∈ N0.

e have
− ∆un(z) = f(z, un(z)) in Ω , un|∂Ω = 0, n ∈ N0. (56)

Standard semilinear regularity theory (see, for example, Gilbarg & Trudinger [32, p. 241]), implies that
here exist α ∈ (0, 1) and c14 > 0 such that

un ∈ C1,α
0 (Ω) = C1,α(Ω) ∩ C1

0 (Ω), ∥un∥
C

1,α
0 (Ω) ⩽ c14 for all n ∈ N0.

Exploiting the compact embedding of C1,α
0 (Ω) into C1

0 (Ω), we have

un → 0 in C1
0 (Ω) as n → ∞. (57)

Let yn = un
∥un∥1,2

, n ∈ N0. Then ∥yn∥1,2 = 1 for all n ∈ N0. So, we may assume that

yn
w−→ y in H1

0 (Ω) and yn → y in L2(Ω) as n → ∞. (58)

From (56) we have

− ∆yn = f(z, un)
∥un∥1,2

in Ω , yn|∂Ω = 0, n ∈ N0, (59)

⇒
∫
Ω

(Dyn, D(yn − y))RN dz =
∫
Ω

f(z, un)
∥un∥1,2

(yn − y)dz.
17
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Hypotheses H2(i), (iv) imply that
{
f(·,un(·))
∥un∥1,2

}
n∈N0

⊆ L2(Ω) is bounded. Hence we have
∫
Ω
f(z,un)
∥un∥1,2

(yn −
y)dz → 0. Then

lim
n→∞

∫
Ω

(Dyn, D(yn − y))RN dz = 0,

⇒ ∥Dyn∥2 → ∥Dy∥2. (60)

From (58), (60) and the Kadec–Klee property of Hilbert spaces we have that

yn → y in H1
0 (Ω), hence ∥y∥1,2 = 1. (61)

Returning to (59), passing to the limit as n → ∞ and using (61), (57) and hypothesis H2(iv), we obtain

− ∆y = f ′
x(z, 0)y2 in Ω ,

⇒ y = 0,

hich contradicts (61).
Therefore 0 ∈ Kξ̂ is isolated and so we use Proposition 6.6.19 of Papageorgiou, Rădulescu & Repovš

25, p. 539], to conclude that
Ck(ξ̂, 0) = δk,dmZ for all k ∈ N0.

This proof is now complete. □

Recall that
W 1,θ

0 (Ω) ↪→ H1
0 (Ω) densely.

Let ξ = ξ̂|
W

1,θ
0 (Ω). Then Theorem 6.6.26 of Papageorgiou, Rădulescu & Repovš [25, p. 545], gives us the

ollowing result.

roposition 9. If hypotheses H2(i), (iv) hold, then Ck(ξ, 0) = δk,dmZ for all k ∈ N0.

Note that
ψ(u) = 1

p
ρφ(Du) + ξ(u) for all u ∈ W 1,θ

0 (Ω).

Then Proposition 1, the continuous embedding of W 1,θ
0 (Ω) into W 1,φ

0 (Ω) and the C1-continuity property
of critical groups (see Papageorgiou, Rădulescu & Repovš [25, Theorem 6.3.4, p. 503]), imply that

Proposition 10. If hypotheses H0, H1, H2 hold, then Ck(ψ, 0) = δk,dmZ for all k ∈ N0.

Now we can produce the second nontrivial solution of problem (1).

roposition 11. If hypotheses H0, H1, H2 hold, then problem (1) admits a second nontrivial solution

û ∈ W 1,θ
0 (Ω) ∩ L∞(Ω).

roof. From Proposition 7 we already have a nontrivial solution u0 ∈ W 1,θ
0 (Ω) ∩L∞(Ω) which is a global

inimizer of the energy functional ψ(·). Hence

Ck(ψ, u0) = δk,0Z for all k ∈ N0. (62)

From Proposition 10, we know that

C (ψ, 0) = δ Z for all k ∈ N . (63)
k k,dm 0

18
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We know that ψ(·) is coercive (see Proposition 6). Hence ψ(·) is bounded below and satisfies the C-
ondition (see [25, Proposition 5.1.15, p. 369]). Invoking Proposition 6.2.24 of Papageorgiou, Rădulescu &
epovš [25, p. 491], we have

Ck(ψ,∞) = δk,0Z for all k ∈ N0. (64)

Suppose that Kψ = {0, u0}. Then from (62), (63), (64) and the Morse relation with t = −1 (see Section 2),
e have

(−1)dm + (−1)0 = (−1)0,

⇒ (−1)dm = 0, a contradiction.

So, there exists û ∈ Kψ, û ̸∈ {0, u0}. This is the second nontrivial solution of problem (1) and as before
ˆ ∈ W 1,θ

0 (Ω) ∩ L∞(Ω).
This proof is now complete. □

We can state the following multiplicity theorem for problem (1).

heorem 12. If hypotheses H0, H1, H2 hold, then problem (1) admits two distinct nontrivial solutions

u0, û ∈ W 1,θ
0 (Ω) ∩ L∞(Ω).
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