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Abstract. We consider nonlinear elliptic equations driven by the sum of

a p-Laplacian (p > 2) and a Laplacian. We consider two distinct cases. In
the first one, the reaction f(z, · ) is (p−1)-linear near±∞ and resonant with

respect to a nonprincipal variational eigenvalue of (−∆p,W
1,p
0 (Ω)). We

prove a multiplicity theorem producing three nontrivial solutions. In the
second case, the reaction f(z, · ) is (p− 1)-superlinear but does not satisfy

the Ambrosetti–Rabinowitz condition. We prove two multiplicity theorems.

In the first main result we produce six nontrivial solutions all with sign
information and in the second theorem we have five nontrivial solutions.
Our approach uses variational methods combined with the Morse theory,

truncation methods, and comparison techniques.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper

we study the following nonlinear nonhomogeneous Dirichlet problem:

(1.1) −∆pu(z)−∆u(z) = f(z, u(z)) in Ω, u|∂Ω
= 0, 2 < p <∞.
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Here ∆p denotes the p-Laplace differential operator defined by

∆pu = div(|Du|p−2Du) for all u ∈W 1,p
0 (Ω).

If p = 2, then ∆2 = ∆ = the Laplace differential operator.

The reaction f is a Carathéodory function (that is, for all x ∈ R, the mapping

z 7→ f(z, x) is measurable and for almost all z ∈ Ω, x 7→ f(z, x) is continuous).

Additional regularity conditions on f(z, · ) are introduced in order to produce

extra solutions. We consider two distinct cases. In the first (Section 3), we

assume that f(z, · ) is (p − 1)-linear near ±∞ and interacts with a nonprin-

cipal variational eigenvalue of (−∆p,W
1,p
0 (Ω)) (resonant problem). We prove

a multiplicity theorem, producing three nontrivial solutions two of which have

constant sign. In the second case (Section 4), we deal with reaction f(z, · )
which is (p − 1)-superlinear near ±∞ but without satisfying the usual in such

cases Ambrosetti–Rabinowitz condition (AR-condition for short). We also as-

sume that f(z, · ) has z-dependent zeros of constant sign. We prove a multiplicity

theorem producing six nontrivial solutions, four of constant sign and two nodal

(sign changing).

Recently nonhomogeneous nonlinear equations driven by the sum of a p-

Laplacian and a Laplacian (a (p, 2)-equation for short), were studied by Cin-

golani and Degiovanni [7], Papageorgiou and Rădulescu [21], Papageorgiou and

Smyrlis [22] and Sun [24]. All these works deal with equations that have a (p−1)-

linear reaction and either they do not allow resonance (see [7]) or the resonance

is with respect to the principal eigenvalue of (−∆p,W
1,p
0 (Ω)) (see [21], [22], [24]).

Recall that for p 6= 2, we do not have a complete knowledge of the spectrum of

(−∆p,W
1,p
0 (Ω)), the eigenspaces are not linear subspaces and we do not have

a direct sum decomposition of W 1,p
0 (Ω) in terms of them. All these facts, make

problems resonant at higher parts of the spectrum difficult to deal with. On

the other hand, problems with reactions which have zeros of constant sign, were

investigated only in the context of p-Laplacian equations, by Bartsch, Liu and

Weth [5] (constant zeros) and by Iturriaga, Massa, Sanchez and Ubilla [17] (va-

riable zeros for a class of parametric equations). None of the aforementioned

works produces six nontrivial solutions all with sign information.

Our approach is a combination of variational methods based on the critical

point theory together with the Morse theory (critical groups) and truncation and

comparison techniques. In the next section, for the convenience of the reader,

we recall the main mathematical tools which we will use in the sequel.

2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈 · , · 〉 we denote

the duality brackets for the pair (X,X∗). Let ϕ ∈ C1(X). We say that ϕ satisfies

the Cerami condition (the C-condition for short), if the following holds:
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“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and

(1 + ‖un‖)ϕ′(un)→ 0 in X∗,

admits a strongly convergent subsequence”.

This is a compactness type condition on the functional ϕ which compensates

for the fact that the underlying space X is not locally compact (being in general

infinite dimensional). The C-condition is more general than the more familiar

Palais–Smale condition (PS-condition for short) and the two are equivalent if

ϕ is bounded below. The C-condition is a basic tool in proving a deformation

theorem from which we can derive the minimax theory of certain critical values

of ϕ. Prominent in that theory is the so-called “mountain pass theorem” due to

Ambrosetti and Rabinowitz [3]. Here the theorem is presented in a slightly more

general form with the C-condition replacing the PS-condition (see, for example,

Gasinski and Papageorgiou [15, p. 648]).

Theorem 2.1. Assume that ϕ ∈ C1(X) satisfies the C-condition, u0, u1 ∈ X,

‖u1 − u0‖ > ρ > 0,

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ‖u− u0‖ = ρ] = mρ

and c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}.
Then c ≥ mρ and c is a critical value of ϕ.

In what follows by | · | we denote the norm of RN and by ‖ · ‖ the norm of

the Sobolev space W 1,p
0 (Ω). By virtue of the Poincaré inequality, we have

‖u‖ = ‖Du‖p for all u ∈W 1,p
0 (Ω).

Let 1 < p <∞ and let Ap : W 1,p
0 (Ω)→W−1,p′(Ω) = W 1,p

0 (Ω)∗, 1/p+1/p′ =

1, be the nonlinear map defined by

〈Ap(u), y〉 =

∫
Ω

|Du|p−2(Du,Dy)RN dz for all u, y ∈W 1,p
0 (Ω).

When p = 2, then we write A2 = A and this map is linear. The next proposition

summarizes the main properties of this map (see, for example, Papageorgiou and

Kyritsi [20, p. 314]).

Proposition 2.2. The map Ap : W 1,p
0 (Ω)→W−1,p′(Ω) is bounded (that is,

maps bounded sets to bounded sets), demicontinuous, strictly monotone (hence

maximal monotone too) and of type (S)+, that is, if un
w−→ u in W 1,p

0 (Ω) and

lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0,

then un → u in W 1,p
0 (Ω).
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Also, we can view Ap defined on the bigger Sobolev space W 1,p(Ω), that is

Ap : W 1,p(Ω) → W 1,p(Ω)∗. With a slight abuse of notation, we still denote the

duality brackets by 〈 · , · 〉 and we have

〈A(u), y〉 =

∫
Ω

|Du|p−2(Du,Dy)RN dz for all u, y ∈W 1,p(Ω).

This map too is bounded, demicontinuous, maximal monotone and of type (S)+.

In addition to the Sobolev space W 1,p
0 (Ω), we will also use the Banach space

C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω

= 0}. This is an ordered Banach space with positive

cone C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty

interior, given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n
(z) < 0 for all z ∈ ∂Ω

}
,

where n( · ) denotes the outward unit normal on ∂Ω.

By p∗ we denote the critical Sobolev exponent. So,

p∗ =


Np

N − p
if p < N,

+∞ if N ≤ p.

Let f0 : Ω × R → R be a Carathéodory function with subcritical growth in

the x-variable, that is,

|f0(z, x)| ≤ a0(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R,

with a0∈L∞(Ω)+, 1<r<p∗. Let F0(z, x)=
∫ x

0
f0(z, s) ds and ϕ0 : W 1,p

0 (Ω)→R
(2 < p <∞) be the C1-functional defined by

ϕ0(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

F0(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

The following proposition is a special case of a more general result of Gasinski

and Papageorgiou [16] and essentially is a consequence of the regularity results

of Lieberman [19].

Proposition 2.3. Assume that u0 ∈ W 1,p
0 (Ω) is a local C1

0 (Ω)-minimizer

of ϕ0, that is, there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1
0 (Ω), ‖h‖C1

0 (Ω) ≤ ρ0.

Then u0 ∈ C1,α
0 (Ω) for some α ∈ (0, 1) and u0 is also a local W 1,p

0 (Ω)-minimizer

of ϕ0, that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p
0 (Ω), ‖h‖ ≤ ρ1.

Let η, η̂ ∈ L∞(Ω). We say η ≺ η̂ if and only if for every compact K ⊆ Ω, we

can find ε = εK > 0 such that

η(z) + ε ≤ η̂(z) for a.a. z ∈ K.
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Clearly, if η, η̂ ∈ C(Ω) and η(z) < η̂(z) for all z ∈ Ω, then η ≺ η̂.

A simple modification of the proof of Proposition 2.6 of Arcoya and Ruiz [4],

in order to accommodate the presence of the extra linear term −∆u, leads to

the following strong comparison property.

Proposition 2.4. Assume that β ≥ 0, η, η̂ ∈ L∞(Ω), η ≺ η̂ and u ∈ C1
0 (Ω),

v ∈ intC+ satisfy

−∆pu(z)−∆u(z) + β|u(z)|p−2u(z) = η(z) in Ω,

−∆pv(z)−∆v(z) + βv(z)p−1 = η̂(z) in Ω.

Then v − u ∈ intC+.

As we have already mentioned in Introduction, our approach will use also

the Morse theory (critical groups). So, next we recall some basic definitions and

facts from Morse theory. Given a topological pair (Y1, Y2) with Y2 ⊆ Y1 ⊆ X, for

every integer k ≥ 0 by Hk(Y1, Y2) we denote the kth-relative singular homology

group with integer coefficients for the pair (Y1, Y2). Given ϕ ∈ C1(X) and c ∈ R,

we introduce the following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c},

Kϕ = {u ∈ X : ϕ′(u) = 0},

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

If u ∈ Kc
ϕ is isolated, then the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U, ϕc ∩ U \ {u}) for all k ≥ 0,

where U is a neighbourhood of u such that Kϕ ∩ ϕc ∩ U = {u}. The excision

property of singular homology implies that the above definition of critical groups

is independent of the choice of the neighbourhood U .

Suppose that ϕ ∈ C1(X) satisfies the C-condition and inf ϕ(Kϕ) > −∞. Let

c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0.

The second deformation theorem (see, for example, Gasinski and Papageorgiou

[15, p. 628]) implies that the above definition of critical groups at infinity is

independent of the choice of the level c < inf ϕ(Kϕ).

Suppose that Kϕ is finite. We introduce

M(t, u) =
∑
k≥0

rankCk(ϕ, u)tk for all t ∈ R, all u ∈ Kϕ,

P (t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk for all t ∈ R.
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The Morse relation says that

(2.1)
∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t),

where Q(t) =
∑
k≥0

βkt
k is a formal series in t ∈ R with nonnegative integer

coefficients.

Next, let us recall some basic facts concerning the spectrum of (−∆p,W
1,p
0 (Ω)).

So, we consider the following nonlinear eigenvalue problem:

(2.2) −∆pu(z) = λ̂|u(z)|p−2u(z) in Ω, u|∂Ω
= 0.

A number λ̂ ∈ R is an eigenvalue of (−∆p,W
1,p
0 (Ω)), if problem (2.2) admits

a nontrivial solution û. The nontrivial solution û is an eigenfunction correspond-

ing to the eigenvalue λ̂. The smallest eigenvalue is denoted by λ̂1(p) and has the

following properties:

• λ̂1(p) > 0 and it is isolated;

• λ̂1(p) is simple (that is, if û, v̂ are eigenfunctions corresponding to the

eigenvalue λ̂1(p), then û = ξv̂ for some ξ 6= 0);

• we have

(2.3) λ̂1(p) = inf

[‖Du‖pp
‖u‖pp

: u ∈W 1,p
0 (Ω), u 6= 0

]
.

In (2.3) the infimum is realized on the one-dimensional eigenspace correspond-

ing to λ̂1(p) > 0. In what follows, by û1(p) we denote the Lp-normalized (that

is, ‖û1(p)‖p = 1) positive eigenfunction corresponding to λ̂1(p). The nonlinear

regularity theory and the nonlinear maximum principle (see, for example, Gasin-

ski and Papageorgiou [15, pp. 737–738]), imply that û1(p) ∈ int C+. Since the

spectrum σ(p) of (−∆p,W
1,p
0 (Ω)) is closed and λ̂1(p) > 0 is isolated, then the

second eigenvalue is well-defined by

λ̂2(p) = inf
[
λ̂ ∈ σ(p) : λ̂ > λ̂1(p)

]
.

Let ind (A) be the Z2-cohomological index introduced by Fadell and Ra-

binowitz [13]. Employing the Lusternik–Schnirelmann minimax scheme, we

can define a whole divergent sequence {λ̂k(p)}k≥1 of distinct eigenvalues of

(−∆p,W
1,p
0 (Ω)) by setting

λ̂k(p) = inf

[
sup
u∈A
‖Du‖pp : A ⊆M symmetric, ind(A) ≥ k

]
, k ≥ 1,

where M = {u ∈ W 1,p
0 (Ω) : ‖u‖p = 1} is a C1-Banach manifold. For k = 1, 2,

these eigenvalues are as above. We do not know if the sequence {λ̂k(p)}k≥1

exhausts σ(p). This is the case if N = 1 (ordinary differential equation) or if
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p = 2 and N ≥ 2 (linear eigenvalue problem). In the latter case, we have

H1
0 (Ω) =

⊕
k≥1

E(λ̂k(2)),

where E(λ̂k(2)) denotes the eigenspace corresponding to the eigenvalue λ̂k(2).

We know that for every k ≥ 1, E(λ̂k(2)) is finite dimensional, E(λ̂k(2)) ⊆ C1
0 (Ω)

and it has the “Unique Continuation Property” (UCP for short), that is, if

u ∈ E(λ̂k(2)) and vanishes on a set of positive measure, then u ≡ 0.

We mention that if û is an eigenfunction corresponding to an eigenvalue

λ̂m(p) with m ≥ 2, then û ∈ C1
0 (Ω) (nonlinear regularity theory) and û is

nodal (that is, sign changing). In fact, if p = 2, {ûn}n≥1 ⊆ H1
0 (Ω) are the

eigenfunctions corresponding to the eigenvalues {λ̂k(2)}k≥1 and Sn = {z ∈ Ω :

ûn(z) = 0}, then Ω \ Sn has at most n-components (the Courant nodal domain

theorem, see, for example, Gasinski and Papageorgiou [15, p. 797]).

For x ∈ R, let x± = max{±x, 0}. Then for u ∈ W 1,p
0 (Ω), we set u±( · ) =

u( · )±. We know that

u± ∈W 1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

By | · |N we denote the Lebesgue measure on RN . Finally, if h : Ω × R → R is

a measurable function (for example, a Carathéodory function), then we set

Nh(u)( · ) = h( · , u( · )) for all u ∈W 1,p
0 (Ω),

the Nemytskĭı (superposition) operator corresponding to the function h. Evi-

dently, z 7→ Nh(u)(z) = h(z, u(z)) is measurable.

3. Resonant problems

In this section we study problem (1.1) when the reaction f(z, · ) is (p− 1)-

linear near ±∞ and resonant with respect to a nonprincipal eigenvalue of (−∆p,

W 1,p
0 (Ω)). So, we impose the following conditions on the function f :

(H1) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for

almost all z ∈ Ω and

(i) |f(z, x)| ≤ a(z)(1 + |x|p−1) for almost all z ∈ Ω, all x ∈ R, with

a ∈ L∞(Ω)+;

(ii) lim
x→±∞

f(z, x)

|x|p−2x
= λ̂m(p) uniformly for almost all z ∈ Ω and with

m ≥ 2;

(iii) if F (z, x) =

∫ x

0

f(z, s)ds, then there exists τ ∈ (2, p) such that

0 < η0 ≤ lim inf
x→±∞

pF (z, x)− f(z, x)x

|x|τ
uniformly for almost all z ∈ Ω;
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(iv) there exists ϑ ∈ L∞(Ω)+ such that

ϑ(z) ≤ λ̂1(2) a.e. in Ω, ϑ 6≡ λ̂1(2),

lim sup
x→0

2F (z, x)

x2
≤ ϑ(z) uniformly for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξρ > 0 such that f(z, x)x+ ξρ|x|p ≥ 0

for almost all z ∈ Ω, all |x| ≤ ρ.

Remark 3.1. If there exists δ > 0 such that f(z, x)x ≥ 0 for almost all

z ∈ Ω, all |x| ≤ δ, then hypothesis (H1) (v) is automatically satisfied.

Example 3.2. The following function satisfies hypotheses (H1). For the sake

of simplicity we drop the z-dependence:

f(x) =

ϑx+ λ̂m(p)|x|q−2x if |x| ≤ 1,

λ̂m(p)|x|p−2x+ ϑ|x|τ−2x if |x| > 1,

with τ, q > 2, τ < p and ϑ ∈ (0, λ̂1(2)).

We set f±(z, x) = f(z,±x±). These are Carathéodory functions. Let

F±(z, x) =

∫ x

0

f±(z, s) ds

and let ϕ± : W 1,p
0 (Ω)→ R be the C1-functionals defined by

ϕ±(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

F±(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

Also, let ϕ : W 1,p
0 (Ω)→ R be the energy functional for problem (1.1) defined by

ϕ(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

F (z, u(z)) dz for all u ∈W 1,p
0 (Ω).

Evidently ϕ ∈ C1(W 1,p
0 (Ω)).

Proposition 3.3. Assume that hypotheses (H1) (i), (ii) hold. Then the func-

tionals ϕ± satisfy the C-condition.

Proof. We do the proof for ϕ+, the proof for ϕ− being similar. So, let

{un}n≥1 ⊆W 1,p
0 (Ω) be such that

|ϕ+(un)| ≤M1 for some M1 > 0, all n ≥ 1,(3.1)

(1 + ‖un‖)ϕ′(un)→ 0 in W−1,p′(Ω) as n→∞.(3.2)

From (3.2) we have

(3.3)

∣∣∣∣〈Ap(un), h〉+ 〈A(un), h〉 −
∫

Ω

f+(z, un)h dz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

for all h ∈W 1,p
0 (Ω) with εn → 0+.
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In (3.3) we choose h = −u−n ∈W
1,p
0 (Ω). Then

(3.4) ‖Du−n ‖pp + ‖Du−n ‖22 ≤ εn for all n ≥ 1

⇒ u−n → 0 in W 1,p
0 (Ω) as n→∞.

Claim. {u+
n }n≥1 ⊆W 1,p

0 (Ω) is bounded.

We argue indirectly. So, suppose that {u+
n }n≥1 ⊆ W 1,p

0 (Ω) is not bounded.

We may assume that ‖u+
n ‖ → ∞. Let yn = u+

n /‖u+
n ‖, n ≥ 1. Then ‖yn‖ = 1,

yn ≥ 0 for all n ≥ 1. So, by passing to a subsequence if necessary, we may

assume that

(3.5) yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω), with y ≥ 0.

From (3.3) and (3.4), we have

(3.6)

∣∣∣∣〈Ap(yn), h〉+
1

‖u+
n ‖p−2

〈A(yn), h〉 −
∫

Ω

f+(z, un)

‖u+
n ‖p−1

h dz

∣∣∣∣ ≤ ε′n‖h‖
with ε′n → 0+ as n→∞.

In (3.6) we choose h = yn − y ∈ W 1,p
0 (Ω), pass to the limit as n → ∞ and

use (3.5). Then

(3.7) lim
n→∞

〈Ap(yn), yn − y〉 = 0 (recall p > 2),

⇒ yn → y in W 1,p
0 (Ω) (see Proposition 2.2), hence ‖y‖ = 1, y ≥ 0.

Hypothesis (H1) (i) implies that{
Nf+

(un)

‖u+
n ‖p−1

=
Nf (u+

n )

‖u+
n ‖p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.

So, we may assume that

(3.8)
Nf+(un)

‖u+
n ‖p−1

w−→ g in Lp
′
(Ω) as n→∞.

By virtue of hypothesis (H1) (ii), we have

(3.9) g = λ̂m(p)yp−1

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 30). Then, if

in (3.6) we pass to the limit as n → ∞ and use (3.7)–(3.9) and the fact that

p > 2, we obtain

(3.10) 〈Ap(y), h〉 = λ̂m(p)

∫
Ω

yp−1h dz for all h ∈W 1,p
0 (Ω),

⇒ Ap(y) = λ̂m(p)yp−1.

Since m ≥ 2, from (3.10) we infer that y ≡ 0 or y is nodal, both cases contra-

dict (3.7). This proves Claim.
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From (3.4) and Claim, it follows that {un}n≥1 ⊆W 1,p
0 (Ω) is bounded and so

we may assume that

(3.11) un
w−→ u in W 1,p

0 (Ω) and un → u in Lp(Ω).

In (3.3) we choose h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n → ∞ and

use (3.11). Then

lim
n→∞

[〈Ap(un), un − u〉+ 〈A(un), un − u〉] = 0,

⇒ lim sup
n→∞

[〈Ap(un), un − u〉+ 〈A(u), un − u〉] ≤ 0 (since A is monotone),

⇒ lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0,

⇒un → u in W 1,p
0 (Ω) (see Proposition 2.2).

This proves that the functional ϕ+ satisfies the C-condition. Similarly for the

functional ϕ−. �

Proposition 3.4. If hypotheses (H1) (i)–(iii) hold, then the functional ϕ

satisfies the C-condition.

Proof. Let {un}n≥1 ⊆W 1,p
0 (Ω) be a sequence such that

|ϕ(un)| ≤M2 for some M2 > 0, all n ≥ 1,(3.12)

(1 + ‖un‖)ϕ′(un)→ 0 in W−1,p′(Ω) as n→∞.(3.13)

From (3.13) we have

(3.14)

∣∣∣∣〈Ap(un), h〉+ 〈A(un), h〉 −
∫

Ω

f(z, un)h dz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

for all h ∈ W 1,p
0 (Ω) with εn → 0+. In (3.14) we choose h = un ∈ W 1,p

0 (Ω) and

obtain

(3.15) ‖Dun‖pp + ‖Du‖22 −
∫

Ω

f(z, un)un dz ≤ εn for all n ≥ 1.

Also, from (3.12) we have

(3.16) −‖Dun‖pp −
p

2
‖Dun‖22 +

∫
Ω

pF (z, un) dz ≤ pM2 for all n ≥ 1.

Adding (3.15) and (3.16), we obtain

(3.17)

∫
Ω

[pF (z, un)− f(z, un)un] dz ≤M3 +

(
p

2
− 1

)
‖Dun‖22

for some M3 > 0, all n ≥ 1.
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By virtue of hypotheses (H1) (i),(iii), we can find η1 ∈ (0, η0) and c1 > 0 such

that

η1|x|τ − c1 ≤ pF (z, x) = f(z, x)x for a.a. z ∈ Ω, all x ∈ R,

⇒ η1‖un‖ττ ≤M4 +

(
p

2
− 1

)
‖Dun‖22 for some M4 > 0, all n ≥ 1(3.18)

(see (3.17)).

Claim {un}n≥1 ⊆W 1,p
0 (Ω) is bounded.

Arguing by contradiction, suppose that Claim is not true. Then by passing to

a subsequence if necessary, we may assume that ‖un‖ → ∞. Let yn = un/‖un‖,
n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may assume that

(3.19) yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω) as n→∞.

From (3.14) we have

(3.20)

∣∣∣∣〈Ap(yn), h〉+
1

‖un‖p−2
〈A(yn), h〉 −

∫
Ω

f(z, un)

‖un‖p−1
h dz

∣∣∣∣
≤ εn‖h‖
‖un‖p−1(1 + ‖un‖)

for all h ∈ W 1,p
0 (Ω) and with εn → 0+. Hypothesis (H1) (i) implies that

{Nf (un)/‖un‖p−1}n≥1 ⊆ Lp
′
(Ω) is bounded. So, if in (3.20) we choose h =

yn − y ∈W 1,p
0 (Ω), pass to the limit as n→∞ and use (3.19), then

(3.21) lim
n→∞

〈Ap(yn), yn − y〉 = 0 (recall p > 2)⇒ yn → y in W 1,p
0 (Ω),

hence ‖y‖ = 1. From (3.18), we have

η1‖yn‖ττ ≤
M4

‖un‖τ
+

c2
‖un‖τ−2

with c2 =

(
p

2
− 1

)
> 0 (recall p > 2)

⇒ η1‖y‖ττ ≤ 0,

hence y = 0, contradicting (3.21). This proves Claim.

By virtue of Claim, we may assume that

(3.22) un
w−→ u in W 1,p

0 (Ω) and un → u in Lp(Ω) as n→∞.

In (3.14) we choose h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n → ∞ and

use (3.22). Then

lim
n→∞

[〈Ap(un), un − u〉+ 〈A(un), un − u〉] = 0,

⇒ lim sup
n→∞

[〈Ap(un), un − u〉+ 〈A(u), un − u〉] ≤ 0 (since A is monotone)

⇒ lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0

⇒un → u in W 1,p
0 (Ω) (see Proposition 2.2).
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Therefore ϕ satisfies the C-condition. �

Proposition 3.5. If hypotheses (H1) (i)–(iv) hold, then u = 0 is a local

minimizer for the functionals ϕ± and ϕ.

Proof. We do the proof for the functional ϕ+, the proofs for ϕ− and ϕ

being similar. By virtue of hypotheses (H1) (i),(iv) given ε > 0 we can find

c3 = c3(ε) > 0 such that

(3.23) F (z, x) ≤ 1

2
(ϑ(z) + ε)x2 + c3|x|p for a.a. z ∈ Ω, all x ∈ R.

Then, for all u ∈W 1,p
0 (Ω), we have

ϕ+(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

F+(z, u) dz

≥ 1

p
‖Du‖pp +

1

2
‖Du‖22 −

1

2

∫
Ω

(ϑ(z) + ε)(u+)2 dz − c3‖u+‖pp

(see (3.23))

≥ 1

2

[(
‖Du‖22 −

∫
Ω

ϑ(z)u2 dz

)
− ε

λ̂1(2)
‖Du‖22

]
− c4‖u‖p

for some c4 > 0 (see (2.3))

≥ 1

2

[
c5 −

ε

λ̂1(2)

]
‖u‖2 − c4‖u‖p for some c5 > 0

(see Papageorgiou and Kyritsi [20, p. 356]). Choosing ε ∈ (0, λ̂1(2)c5), we infer

that

(3.24) ϕ+(u) ≥ c6‖u‖2 − c4‖u‖p for some c6 > 0.

Since p > 2, from (3.24) we see that for ρ ∈ (0, 1) small, we have

ϕ+(u) ≥ 0 = ϕ+(0) for all u ∈W 1,p
0 (Ω) with ‖u‖ ≤ ρ,

⇒ u = 0 is a local minimizer for the functional ϕ+.

Similarly we show that u = 0 is also a local minimizer for the functionals ϕ−
and ϕ. �

Now we are ready to produce constant sign solutions.

Theorem 3.6. If hypotheses (H1) hold, then problem (1.1) admits at least

two nontrivial constant sign solutions

u0 ∈ int C+ and v0 ∈ −intC+.

Proof. First we produce a positive solution. From Proposition 3.5 we see

that we can find ρ ∈ (0, 1) small such that

(3.25) ϕ+(0) = 0 < inf[ϕ+(u) : ‖u‖ = ρ] = m+
ρ
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(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29). By virtue

of hypotheses (H1) (i),(ii), given ε > 0, we can find c7 = c7(ε) > 0 such that

(3.26) F (z, x) ≥ 1

p
(λ̂m(p)− ε)|x|p − c7 for a.a. z ∈ Ω, all x ∈ R.

Then, for t > 0, we have

ϕ+(tû1(p)) =
tp

p
λ̂1(p) +

t2

2
‖Dû1(p)‖22 =

∫
Ω

F (z, tû1) dz

≤ tp

p
[λ̂1(p)− λ̂m(p) + ε] +

t2

2
‖Dû1(p)‖22 + c7|Ω|N

(see (3.26)). Choose ε ∈ (0, λ̂m(p)− λ̂1(p)) (recall that m ≥ 2). Then

ϕ+(tû1(p)) ≤ − c8t
p

p
+
t2

2
‖Dû1(p)‖22 + c7|Ω|N (for some c8 > 0)(3.27)

⇒ ϕ+(tû1(p))

tp
≤ −c8

p
+

1

2tp−2
‖Dû1(p)‖22 +

c7
tp
|Ω|N

⇒ lim sup
t→+∞

ϕ+(tû1(p))

tp
≤ −c8

p
< 0 (recall p > 2)

⇒ lim
t→+∞

ϕ+(tû1(p)) = −∞.

From (3.25), (3.27) and Proposition 3.3, we see that we can apply Theorem 2.1

(the mountain pass theorem) and find u0 ∈W 1,p
0 (Ω) such that

(3.28) u0 ∈ Kϕ+
and m+

ρ ≤ ϕ+(u0).

From (3.25) and (3.28) it follows that u0 6= 0. Also

(3.29) ϕ′+(u0) = 0 (see (3.28)) ⇒ Ap(u0) +A(u0) = Nf+
(u0).

On (3.29) we act with −u−0 ∈W
1,p
0 (Ω) and obtain

‖Du−0 ‖pp + ‖Du−0 ‖22 = 0 ⇒ u0 ≥ 0, u0 6= 0.

Then from (3.29) we see that u0 is a nontrivial solution of (1.1). From La-

dyzhenskaya and Uraltseva [18, p. 286], we have u0 ∈ L∞(Ω). Then we can

apply Theorem 1 of Lieberman [19] and conclude that u0 ∈ C+ \ {0}. Let

ρ = ‖u0‖∞ and let ξρ > 0 be as postulated by hypothesis (H1) (v). Then

−∆pu0(z)−∆u0(z) + ξρu0(z)p−1 = f(z, u0(z)) + ξρu0(z)p−1 ≥ 0(3.30)

for a.a. z ∈ Ω

⇒ ∆pu0(z) + ∆u0(z) ≤ ξρu0(z)p−1 for a.a. z ∈ Ω.

Then from (3.30) and Pucci and Serrin [23, pp. 111, 120], we infer that u0 ∈
intC+.

Similarly, working with the functional ϕ−, via the mountain pass theorem,

we produce v0 ∈ −int C+ a negative solution of problem (1.1). �
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To produce a third nontrivial solution, we need to strengthen our hypotheses

on the reaction f(z, · ) and employ also tools from the Morse theory. The new

hypotheses on f , are the following:

(H2) f : Ω × R → R is a measurable function such that, for almost all z ∈ Ω

f(z, 0) = 0, f(z, · ) ∈ C1(R) and

(i) |f ′x(z, x)| ≤ a(z)(1+ |x|p−2) for almost all z ∈ Ω, all x ∈ R and with

a ∈ L∞(Ω)+;

(ii) lim
x→±∞

f(z, x)

|x|p−2x
= λ̂m(p) uniformly for almost all z ∈ Ω and with

m ≥ 2;

(iii) if F (z, x) =

∫ x

0

f(z, s) ds, then there exists τ ∈ (2, p) such that

lim
x→±∞

pF (z, x)− f(z, x)x

|x|τ
= +∞ uniformly for a.a. z ∈ Ω;

(iv) f ′x(z, 0) = lim
x→0

f(z, x)

x
uniformly for almost all z ∈ Ω and

f ′x(z, 0) ≤ λ̂1(2) for a.a. z ∈ Ω, f ′x( · , 0) 6≡ λ̂1(2);

(v) for every ρ > 0, there exists ξρ > 0 such that

f(z, x)x+ ξρ|x|p ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ.

Under these stronger conditions on the reaction, we can produce a third

nontrivial solution and have the following multiplicity theorem.

Theorem 3.7. If hypotheses (H2) hold, then problem (1.1) has at least three

nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ C1
0 (Ω) \ {0}.

Proof. The two nontrivial constant sign solutions u0 ∈ intC+ and v0 ∈
−intC+ are guaranteed by Theorem 3.6. From the proof of Theorem 3.6, we

know that u0 ∈ intC+ is a critical point of mountain pass type for the func-

tional ϕ+, while v0 ∈ −intC+ is a critical point of mountain pass type for the

functional ϕ−. Therefore we have

(3.31) C1(ϕ+, u0) 6= 0 and C1(ϕ−, v0) 6= 0.

We consider the homotopy

h(t, u) = (1− t)ϕ+(u) + tϕ(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

We assume that Kϕ is finite (otherwise we already have infinitely many distinct

solutions for problem (1.1)). Suppose that we can find {tn}n≥1 ⊆ [0, 1] and

{un}n≥1 ⊆W 1,p
0 (Ω) such that

(3.32) tn → t, un → u0 in W 1,p
0 (Ω) and h′u(tn, un) = 0 for all n ≥ 1.
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From (3.32), we have

Ap(un) +A(un) = (1− tn)Nf+
(un) + tnNf (un) for all n ≥ 1

⇒ −∆pun(z)−∆un(z) = (1− tn)f+(z, un(z)) + tnf(z, un(z))

for a.a. z ∈ Ω, all n ≥ 1.

From Ladyzhenskaya and Uraltseva [18, p. 286], we know that we can findM5 > 0

such that ‖un‖∞ ≤ M5 for all n ≥ 1 (see also (3.32)). Then Theorem 1 of

Lieberman [19] implies that there exist α ∈ (0, 1) and M6 > 0 such that

(3.33) un ∈ C1,α
0 (Ω) and ‖un‖C1,α

0 (Ω) ≤M6 for all n ≥ 1.

From (3.33) and the compact embedding of C1,α
0 (Ω) into C1

0 (Ω), we have un →
u0 in C1

0 (Ω) (see (3.32)). Since u0 ∈ intC+ (see Theorem 3.6), we infer that

un ∈ intC+ for all n ≥ 1 and so {un}n≥n0
is a sequence of distinct positive

solutions of problem (1.1), a contradiction to our hypothesis that Kϕ is finite.

So, (3.32) cannot occur and then the homotopy invariance of critical groups,

implies that

(3.34) Ck(ϕ+, u0) = Ck(ϕ, u0) for all k ≥ 0.

Similarly we show that

(3.35) Ck(ϕ−, v0) = Ck(ϕ, v0) for all k ≥ 0 (recall v0 ∈ −intC+).

From (3.31), (3.34) and (3.35), we have

(3.36) C1(ϕ, u0) 6= 0, C1(ϕ, v0) 6= 0.

Since ϕ ∈ C2(W 1,p
0 (Ω)) (see hypotheses (H2)), from (3.36) and Papageorgiou

and Smyrlis [22] (see also Papageorgiou and Rădulescu [21]), it follows that

(3.37) Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ≥ 0.

Also, Proposition 3.5 implies that

(3.38) Ck(ϕ, 0) = δk,0Z for all k ≥ 0.

Hypothesis (H2) (iii) implies that given ξ > 0, we can find M7 = M7(ξ) > 0 such

that

(3.39) pF (z, x)− f(z, x)x ≥ ξ|x|τ for a.a. z ∈ Ω, all |x| ≥M7.

For almost all z ∈ Ω and for s 6= 0, we have

d

ds

F (z, s)

|s|p
=
f(z, s)|s|p − p|s|p−2sF (z, s)

|s|2p

≤ |s|
p−2s[f(z, s)s− pF (z, s)]

|s|2p
=
f(z, s)s− pF (z, s)

|s|ps
.
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Then for s > 0, we have

(3.40)
d

ds

F (z, s)

sp
=
f(z, s)s− pF (z, s)

sp+1
≤ −ξsτ−p−1

for a.a. z ∈ Ω, all s ≥M7 (see (3.39))

⇒ F (z, y)

yp
−F (z, x)

xp
≤ ξ

p− τ

[
1

yp−τ
− 1

xp−τ

]
for a.a. z ∈ Ω, all y ≥ x ≥M7.

Note that hypothesis (H2) (ii) implies that

(3.41) lim
s→±∞

pF (z, s)

|s|p
= λ̂m(p) uniformly for a.a. z ∈ Ω.

Recall that τ < p (see hypothesis (H2) (iii)). So, if in (3.40) we let y → +∞ and

use (3.41), then

λ̂m(p)

p
− F (z, x)

xp
≤ − ξ

p− τ
1

xp−τ
for a.a. z ∈ Ω, all x ≥M7

⇒ λ̂m(p)

p
xp − F (z, x) ≤ − ξ

p− τ
xτ for a.a. z ∈ Ω, all x ≥M7

⇒ λ̂m(p)xp − pF (z, x)

xτ
≤ −ξ p

p− τ
for a.a. z ∈ Ω, all x ≥M7.

Since ξ > 0 is arbitrary, it follows that

lim
x→+∞

λ̂m(p)xp − pF (z, x)

xτ
= −∞ uniformly for a.a. z ∈ Ω.

For s < 0, we have

d

ds

F (z, s)

|s|p
=
f(z, s)s− pF (z, s)

|s|ps
≥ − ξ

|s|p−τs
for a.a. z ∈ Ω, all s ≤ −M7 (see (3.39) and recall that s < 0)

⇒ F (z, x)

|x|p
− F (z, y)

|y|p
≥ − ξ

p− τ

[
1

|y|p−τ
− 1

|x|p−τ

]
for a.a. z ∈ Ω, all y ≤ x ≤ −M7.

Letting y → −∞ and using (3.41), we obtain

F (z, x)

|x|p
− λ̂m(p)

p
≥ ξ

p− τ
1

|x|p−τ
for a.a. z ∈ Ω, all x ≤ −M7 (see (3.41))

⇒ λ̂m(p)|x|p − pF (z, x)

|x|τ
≤ −ξ p

p− τ
for a.a. z ∈ Ω, all x ≤ −M7.

Since ξ > 0 is arbitrary, we infer that

lim
x→−∞

λ̂m(p)|x|p − pF (z, x)

|x|τ
= −∞ uniformly for a.a. z ∈ Ω.
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Therefore we have proved that

(3.42) lim
x→±∞

λ̂m(p)|x|p − pF (z, x)

|x|τ
= −∞ uniformly for a.a. z ∈ Ω.

We introduce the following two sets:

Sr = {u ∈W 1,p
0 (Ω) : ‖u‖p = rp, ‖Du‖pp ≤ λ̂m(p)‖u‖pp},

A = {u ∈W 1,p
0 (Ω) : ‖Du‖pp ≥ λ̂m+1(p)‖u‖pp}.

Note that Sr is a C1-Banach manifold with boundary.

From Degiovanni and Lancelotti [9, Theorem 3.2], we have

ind (Sr) = ind(W 1,p
0 (Ω) \A) = m.

Also, from Cingolani and Degiovanni [7, Theorem 3.6] we know that the sets S

and A homologically link in dimension m.

Hypotheses (H2) (i),(ii) imply that given ε > 0, we can find c9 = c9(ε) > 0

such that

F (z, x) ≤ λ̂m(p) + ε

p
|x|p + c9 for a.a. z ∈ Ω, all x ∈ R.

Recall that λ̂m(p) < λ̂m+1(p). Then, for all u ∈ A, we have

ϕ(u) ≥ λ̂m+1(p)− λ̂m(p)− ε
p

‖u‖pp − c9|Ω|N .

Choosing ε ∈ (0, λ̂m+1(p)− λ̂m(p)), we obtain inf
A
ϕ > −∞. Also, we claim that

sup
Sr

ϕ < inf
A
ϕ for r > 0 big enough. Arguing by contradiction, suppose that we

can find {un}n≥1 ⊆ S and ξ > 0 such that

(3.43) −ξ ≤ ϕ(un) for all n ≥ 1 and ‖un‖ → +∞.

Let yn = un/‖un‖, n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1. So, we may assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω) as n→∞.

We have

1 = ‖Dyn‖pp ≤ λ̂m(p)‖yn‖pp (recall un ∈ S for all n ≥ 1)

⇒ 1 ≤ λ̂m(p)‖y‖pp (see (3.42))

⇒ y 6= 0.

Therefore |un(z)| → +∞ for almost all z ∈ Ω0 = {z ∈ Ω : y(z) 6= 0} and

|Ω0|N > 0. We have (see (3.43))

− pξ

‖un‖τ
≤
∫

Ω

λ̂m(p)|un|p − pF (z, un)

|un|τ
|yn|τ dz +

p

2

1

‖un‖τ−2
‖Dyn‖22.

Since τ > 2, passing to the limit as n → ∞ and since ‖un‖ → ∞, we reach

a contradiction to (3.42). This proves the claim, namely that ϕ(u) → −∞ as
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‖u‖ → +∞ with u ∈ S. Therefore choosing r > 0 big enough, we can have

sup
S
ϕ < inf

A
ϕ. So, we can apply Theorem 3.2 of Cingolani and Degiovanni [7]

and infer that there exists y0 ∈ W 1,p
0 (Ω) such that y0 ∈ Kϕ and Cm(ϕ, y0) 6=

0. Comparing with (3.37) and (3.38), we obtain y0 /∈ {0, u0, v0}. Also, since

y0 ∈ Kϕ, y0 is a nontrivial solution of problem (1.1) and as before the nonlinear

regularity theory implies that y0 ∈ C1
0 (Ω). �

Remark 3.8. Is it possible to show that y0 is nodal?

4. Superlinear problems

In this section, we assume that the reaction f(z, · ) is (p−1)-superlinear near

±∞ without satisfying the AR-condition and has z-dependent zeros of constant

sign. For such problems, we prove a multiplicity theorem producing six nontrivial

solutions all with sign information and a second multiplicity theorem producing

five solutions.

The hypotheses on the reaction f are the following:

(H3) f : Ω × R → R is a measurable function such that for almost all z ∈ Ω,

f(z, 0) = 0, f(z, · ) ∈ C1(R) and

(i) |f ′x(z, x)| ≤ a(z)(1 + |x|r−2) for almost all z ∈ Ω, all x ∈ R, with

a ∈ L∞(Ω)+ and r ∈ (p, p∗);

(ii) lim
x→±∞

F (z, x)

|x|p
= +∞ uniformly for almost all z ∈ Ω;

(iii) there exist τ ∈ (max{1, (r − p)N/p}, r) and η0 > 0 such that

η0 ≤ lim inf
x→±∞

f(z, x)x− pF (z, x)

|x|τ
uniformly for almost all z ∈ Ω;

(iv) f ′x(z, 0) = lim
x→0

f(z, x)

x
uniformly for almost all z ∈ Ω and for some

m ≥ 2, we have

f ′x(z, 0) ∈ [λ̂m(2), λ̂m+1(2)] for almost all z ∈ Ω,

f ′x( · , 0) 6= λ̂m(2), f ′x( · , 0) 6= λ̂m+1(2);

(v) there exist functions w± ∈W 1,p(Ω) ∩ C(Ω) such that

w−(z) ≤ c− < 0 < c+ ≤ w+(z) for all z ∈ Ω,

f(z, w+(z)) ≤ 0 ≤ f(z, w−(z)) for a.a. z ∈ Ω,

and

〈Ap(w−), ϑ〉+ 〈A(w−), ϑ〉 ≤ 0 ≤ 〈Ap(w+), ϑ〉+ 〈A(w+), ϑ〉

for all ϑ ∈W 1,p(Ω) with ϑ ≥ 0;
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(vi) for every ρ > 0, there exists ξρ > 0 such that for almost all z ∈ Ω

the map x→ f(z, x) + ξρ|x|p−2x is nondecreasing on [−ρ, ρ].

Remark 4.1. We stress that now the regularity condition on f(z, · ) is stron-

ger, namely f(z, · ) ∈ C1(R). Hypothesis (H3) (ii) implies that the potential

F (z, · ) is p-superlinear near ±∞. This hypothesis together with (H3) (iii) imply

that the reaction f(z, · ) is (p− 1)-superlinear near ±∞. Note that, unlike most

works on superlinear problems, we do not employ the AR-condition. We recall

that this condition says that there exist q > p and M > 0 such that

0 < qF (z, x) ≤ f(z, x)x for a.a. z ∈ Ω, all |x| ≥M,

0 < ess inf
Ω

F ( · ,±M).

The AR-condition implies the following weaker unilateral growth condition:

c10|x|q ≤ F (z, x) for a.a. z ∈ Ω, all |x| ≥M and some c10 > 0.

From this, we have the much weaker condition

lim
x→±∞

F (z, x)

|x|p
= +∞ uniformly for a.a. z ∈ Ω.

Here we employ the above asymptotic condition and hypothesis (H3) (iii), which

together are weaker than the AR-condition and incorporate in our framework

superlinear reactions with “slower” growth near ±∞ which fail to satisfy the

AR-condition (see the example below). Hypothesis (H3) (iv) implies that asymp-

totically at 0 we have nonuniform nonresonance with respect to the spectral

interval [λ̂m(2), λ̂m+1(2)]. Finally hypothesis (H3) (v) implies the existence of

z-dependent zeros of constant sign. Evidently this hypothesis is satisfied if there

exist c− < 0 < c+ such that

f(z, c+) ≤ 0 ≤ f(z, c−) for a.a. z ∈ Ω.

As a final remark concerning hypotheses (H3), we mention that by virtue of

hypotheses (H3) (i),(iv), we can find ξ0 > λ̂1(2) and ξ1 > 0 such that

(4.1) f(z, x)x ≥ ξ0x2 − ξ1|x|r for a.a. z ∈ Ω, all x ∈ R.

Example 4.2. The following function satisfies hypotheses (H3). For the sake

of simplicity we drop the z-dependence

f(x) = |x|p−2x

(
ln |x|+ 1

p

)
+ ϑx− c|x|τ−2x

with τ ∈ (λ̂m, λ̂m+1) (m ≥ 2), c ≥ 1/p + ϑ, 2 < τ < p. Note that this function

does not satisfy the AR-condition.
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First we will produce constant sign solutions. As before ϕ : W 1,p
0 (Ω)→ R is

the energy functional for problem (1.1) defined by

ϕ(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

F (z, u(z)) dz for all u ∈W 1,p
0 (Ω).

To produce the first two constant sign solutions, the asymptotic condition on

f(z, · ) at ±∞ is irrelevant (that is, we do not need hypotheses (H3) (ii),(iii)).

Proposition 4.3. If hypotheses (H3) (i), (iv)–(vi) hold, then problem (1.1)

has two nontrivial constant sign solutions

u0 ∈ intC+ and v0 ∈ −intC+

such that −c− ≤ w−(z) ≤ v0(z) ≤ 0 ≤ u0(z) ≤ w+(z) ≤ c+ for all z ∈ Ω.

Proof. First we produce the positive solution. To this end, we introduce

the following truncation of f(z, · ):

(4.2) f̂+(z, x) =


0 if x < 0,

f(z, x) if 0 ≤ x ≤ w+(z),

f(z, w+(z)) if w+(z) < x.

This is a Carathéodory function. Let

F̂+(z, x) =

∫ x

0

f̂+(z, s) ds

and consider the C1-functional ϕ̂+ : W 1,p
0 (Ω)→ R defined by

ϕ̂+(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

F̂+(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

It is clear from (4.2) that ϕ̂+ is coercive. Also, it is sequentially weakly lower

semicontinuous. So, by the Weierstrass theorem, we can find u0 ∈ W 1,p
0 (Ω)

such that

(4.3) ϕ̂+(u0) = inf[ϕ̂+(u) : u ∈W 1,p
0 (Ω)] = η̂+.

Hypothesis (H3) (iv) implies that, given ε > 0, we can find δ ∈ (0, c+) such that

(4.4) f(z, x) ≥ (f ′x(z, 0)− ε)x for a.a. z ∈ Ω, all x ∈ [0, δ]

⇒ F (z, x) ≥ 1

2
(f ′x(z, 0)− ε)x2 for a.a. z ∈ Ω, all x ∈ [0, δ].

Let û1(2) ∈ intC+ be the L2-normalized principal eigenfunction of (−∆, H1
0 (Ω))

and let t ∈ (0, 1) be small such that tû1(2)(z) ∈ [0, δ] for all z ∈ Ω. Then

ϕ̂+(tû1(2)) ≤ tp

p
‖Dû1(2)‖pp +

t2

2

[ ∫
Ω

(λ̂1(2)− f ′x(z, 0))û1(2)2 dz + ε

]
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(see (4.4) and recall that ‖û1(2)‖2 = 1). Note that

ξ∗ =

∫
Ω

[f ′x(z, 0)− λ̂1(2)]û1(2)2 dz > 0

(see hypothesis (H3) (iv)). We have

ϕ̂+(tû1(2)) ≤ tp

p
‖Dû1(2)‖pp −

t2

2
[ξ∗ − ε].

Choosing ε ∈ (0, ξ∗) and since p > 2, for t ∈ (0, 1) even smaller if necessary, we

have

ϕ̂+(tû1(2)) < 0 ⇒ ϕ̂+(u0) < 0 = ϕ̂+(0)

(see (4.2)), hence u0 6= 0. From (4.2), we have

(4.5) ϕ̂′+(u0) = 0 ⇒ Ap(u0) +A(u0) = Nf̂+
(u0).

On (4.5) we act with −u−0 ∈ W 1,p
0 (Ω) and obtain ‖Du−0 ‖pp + ‖Du−0 ‖22 = 0

(see (4.2)), hence u0 ≥ 0, u0 6= 0. Also, on (4.4) we act with (u0 − w+)+

in W 1,p
0 (Ω) and obtain

〈Ap(u0), (u0 − w+)+〉+ 〈A(u0), (u0 − w+)+〉 =

∫
Ω

f̂+(z, u0)(u0 − w+)+ dz

=

∫
Ω

f(z, w+)(u0 − w+)+ dz (see (4.2))

≤〈Ap(w+), (u0 − w+)+〉+ 〈A(w+), (u0 − w+)+〉 (see hypothesis (H3) (v))

⇒〈Ap(u0)−Ap(w+), (u0 − w+)+〉+ 〈A(u0)−A(w+), (u0 − w+)+〉 ≤ 0

⇒|{u0 > w+}|N = 0,

hence u0 ≤ w+. So, we have proved that

u0 ∈ [0, w+] = {u ∈W 1,p
0 (Ω) : 0 ≤ u(z) ≤ w+(z) a.e. in Ω}.

Then from (4.2) and (4.5) it follows that u0 is a positive solution of problem (1.1).

As before the nonlinear regularity theory (see Lieberman [19]) and the nonlinear

maximum principle (see Pucci and Serrin [23, pp. 111, 120]), imply u0 ∈ intC+.

Similarly, we consider the following truncation of f(z, · ):

f̂−(z, x) =


f(z, w−(z)) if x < w−(z),

f(z, x) if w−(z) ≤ x ≤ 0,

0 if 0 < x.

This is a Carathéodory function. We set

F̂−(z, x) =

∫ x

0

f̂−(z, s) ds
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and consider the C1-functional ϕ̂− : W 1,p
0 (Ω)→ R defined by

ϕ̂−(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

F̂−(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

Reasoning as above, via the direct method, we produce a negative solution v0 ∈
−intC+ with c− ≤ w−(z) ≤ v0(z) ≤ 0 for all z ∈ Ω. �

Using these two constant sign solutions and the asymptotic conditions at ±∞
(see hypotheses (H3) (ii),(iii)), we can generate two more nontrivial solutions of

constant sign.

Proposition 4.4. If hypotheses (H3) hold, then problem (1.1) has two addi-

tional constant sign solutions

û ∈ intC+ and v̂ ∈ −intC+

such that û− u0 ∈ intC+ and v0 − v̂ ∈ intC+.

Proof. Again, first we show the existence of the second positive solution.

To this end, let u0 ∈ intC+ be the positive solution produced in Proposition 4.3.

We introduce the following truncation of the reaction f(z, · ):

(4.6) g+(z, x) =

f(z, u0(z)) if x ≤ u0(z),

f(z, x) if u0(z) < x.

This is a Carathéodory function. We set

G+(z, x) =

∫ x

0

g+(z, s) ds

and consider the C1-functional ψ+ : W 1,p
0 (Ω)→ R defined by

ψ+(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

G+(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

From Aizicovici, Papageorgiou and Staicu [2] (proof of Proposition 4), we know

that

(4.7) ψ+ satisfies the C-condition.

Claim. We may assume that u0 ∈ intC+ is a local minimizer of ψ+.

We consider the following truncation of g+(z, · ) (recall that u0 ≤ w+, see

Proposition 4.3):

(4.8) ĝ+(z, x) =

g+(z, x) if x ≤ w+(z),

g+(z, w+(z)) if w+(z) < x.

This is a Carathéodory function. We set

Ĝ+(z, x) =

∫ x

0

ĝ+(z, s) ds
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and consider the C1-functional ψ̂ : W 1,p
0 (Ω)→ R defined by

ψ̂+(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

Ĝ+(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

From (4.6) and (4.8) it is clear that ψ̂+ is coercive. Also, it is sequentially weakly

lower semicontinuous. So, we can find û0 ∈W 1,p
0 (Ω) such that

(4.9) ψ̂+(û0) = inf[ψ̂+(u) : u ∈W 1,p
0 (Ω)]

⇒ ψ̂′+(û0) = 0 ⇒ Ap(û0) +A(û0) = Nĝ+
(û0).

On (4.9) first we act with (u0 − û0)+ ∈W 1,p
0 (Ω) and obtain

〈Ap(û0), (u0 − û0)+〉+ 〈A(û0), (u0 − û0)+〉 =

∫
Ω

ĝ+(z, û0)(u0 − û0)+ dz

=

∫
Ω

f(z, u0)(u0 − û0)+ dz (see (4.8) and (4.6))

= 〈Ap(u0), (u0 − û0)+〉+ 〈A(u0), (u0 − û0)+〉 (see Proposition 4.3)

⇒ 〈Ap(u0)−Ap(û0), (u0 − û0)+〉+ 〈A(u0)−A(û0), (u0 − û0)+〉 = 0

⇒ |{u0 > û0}|N = 0,

hence u0 ≤ û0. Also, on (4.9) we act with (û0 − w+)+ ∈W 1,p
0 (Ω). Then

〈Ap(û0), (û0 − w+)+〉+ 〈A(û0), (û0 − w+)+〉 =

∫
Ω

ĝ+(z, û0)(û0 − w+)+ dz

=

∫
Ω

f(z, w+)(û0 − w+)+ dz (see (4.8) and (4.6))

≤ 〈Ap(w+), (û0 − w+)+〉+ 〈A(w+), (û0 − w+)+〉 (see hypothesis (H3) (v))

⇒ 〈Ap(û0)−Ap(w+), (û0 − w+)+〉+ 〈A(û0)−A(w+), (û0 − w+)+〉 ≤ 0

⇒ |{û0 > w+}|N = 0,

hence û0 ≤ w+. So, we have proved that

û0 ∈ [u0, w+] = {u ∈W 1,p
0 (Ω) : u0(z) ≤ u(z) ≤ w+(z) a.e. in Ω}.

Then from (4.6), (4.8) and (4.9) it follows that û0 is a positive solution of prob-

lem (1.1) and as before the nonlinear regularity theory and the nonlinear maxi-

mum principle imply û0 ∈ intC+.

If û0 6= u0, then this is the desired second positive solution of (1.1).

If û0 = u0 ∈ intC+, then for ρ = ‖w+‖∞, let ξρ > 0 be as postulated by

hypothesis (H3) (vi). We have

−∆pu0(z)−∆u0(z) + ξρu0(z)p−1 = f(z, u0(z)) + ξρu0(z)p−1

≤ f(z, w+(z)) + ξρw+(z)p−1
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(recall that u0 ≤ w+ and see hypothesis (H3 (vi)). It follows that

(4.10) 〈Ap(u0), ϑ〉+ 〈A(u0), ϑ〉 −
∫
Ω

f(z, u0)ϑ dz ≤ 0

≤ 〈Ap(w+), ϑ〉+ 〈A(w+), ϑ〉 −
∫

Ω

f(z, w+)ϑ dz

for all ϑ ∈W 1,p(Ω) with ϑ ≥ 0 (see hypothesis (H3) (v)).

Let a(y) = |y|p−2y + y for all y ∈ RN . Then a ∈ C1(RN ) (recall p > 2) and

∇a(y) = |y|p−2

(
I + (p− 2)

y ⊗ y
|y|2

)
+ I for all y ∈ RN

⇒ (∇a(y)ξ, ξ)RN ≥ (1 + |y|p−2)|ξ|2 for all y, ξ ∈ RN .

So, by virtue of (4.10), we can apply Theorem 2.5.2 of Pucci and Serrin [23,

p. 35] (the tangency principle) and infer that

(4.11) u0(z) < w+(z) for all z ∈ Ω ⇒ u0 ∈ intC1
0 (Ω)[0, w+].

But from (4.6) and (4.8) it is clear that ψ̂+|[0,w+] = ψ+|[0,w+]. So, (4.11) implies

that u0 ∈ intC+ is a local C1
0 (Ω)-minimizer of ψ+, hence it is also a local

W 1,p
0 (Ω)-minimizer of ψ+ (see Proposition 2.3). This proves Claim.

By virtue of Claim, we can find ρ ∈ (0, 1) small such that

(4.12) ψ+(u0) < inf[ψ+(u) : ‖u− u0‖ = ρ] = m+

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).

Hypothesis (H3) (ii) implies that for any ũ ∈ intC+, we have

(4.13) ψ+(tũ)→ −∞ as t→ +∞.

Then (4.7), (4.12) and (4.13) permit the use of Theorem 2.1 (the mountain pass

theorem) and obtain û ∈W 1,p
0 (Ω) such that

(4.14) û ∈ Kψ+
and m+ ≤ ψ+(û).

From (4.12) and (4.14), we see that û 6= u0. Also, since û ∈ Kψ+ (see (4.14)),

we have that

(4.15) Ap(û) +A(û) = Ng+
(û).

Acting on (4.15) with (u0 − û)+ ∈W 1,p
0 (Ω) and using (4.6), as before we obtain

that u0 ≤ û and so û is a positive solution of problem (1.1) (see (4.6) and (4.15)).

As before the nonlinear regularity theory implies that û ∈ intC+.
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Let ρ = ‖û‖∞ and let ξρ > 0 be as postulated by hypothesis (H3) (vi). Then

for ξ̂ρ > ξρ we have

−∆pu0(z)−∆u0(z) + ξ̂ρu0(z)p−1 = f(z, u0(z)) + ξ̂ρu0(z)p−1(4.16)

≤ f(z, û(z)) + ξ̂ρû(z)p−1 (since u0 ≤ û, see hypothesis (H3) (vi))

= −∆pû(z)−∆û(z) + ξ̂ρû(z)p−1 a.e. in Ω.

Once again the tangency principle of Pucci and Serrin [23, Theorem 2.5.2, p. 35]

implies that u0(z) < û(z) for all z ∈ Ω. Hence, from (4.16) and Proposition 2.4

(recall ξ̂ρ > ξρ) we infer that û− u0 ∈ intC+.

Similarly, for the second negative solution we introduce the truncation

g−(z, x) =

f(z, x) if x ≤ v0(z),

f(z, v0(z)) if v0(z) < x.

This is a Carathéodory function. We set

G−(z, x) =

∫ x

0

g−(z, s) ds

and introduce the C1-functional ψ− : W 1,p
0 (Ω)→ R defined by

ψ−(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

G−(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

Working as above, this time using the functional ψ−, we produce a second neg-

ative solution v̂ ∈ −intC+ such that v0 − v̂ ∈ intC+. �

Next we look for nodal (sign changing) solutions. We will employ tools from

the Morse theory.

Let dm = dim
m⊕
i=1

E(λ̂i(2)) (recall that E(λ̂i(2)) denotes the eigenspace of

(−∆, H1
0 (Ω)) corresponding to the eigenvalue λ̂i(2); see Section 2).

Proposition 4.5. If hypotheses (H3) hold, then Ck(ϕ, 0) = δk,dmZ for all

k ≥ 0.

Proof. Let τ : W 1,p
0 (Ω)→ R be the C2-functional defined by

τ(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

1

2

∫
Ω

f ′x(z, 0)u(z)2 dz for all u ∈W 1,p
0 (Ω).

We consider the affine homotopy

h(t, u) = (1− t)ϕ(u) + tτ(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Suppose that we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W 1,p
0 (Ω) such that

(4.17) tn → t ∈ [0, 1], un → 0 in W 1,p
0 (Ω) and h′u(tn, un) = 0 for all n ≥ 1.

We have

(4.18) Ap(un) +A(un) = (1− tn)Nf (un) + tnf
′
x( · , 0)un for all n ≥ 1.
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Let yn = un/‖un‖, n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may assume

that

(4.19) yn → y in W 1,p
0 (Ω) and yn → y in Lr(Ω).

From (4.18) we have

(4.20) ‖un‖p−2Ap(yn) +A(yn) = (1− tn)
Nf (un)

‖un‖
+ tnf

′
x( · , 0)yn

for all n ≥ 1. From hypotheses (H3) (i),(iv), we have

|f(z, x)| ≤ c10(|x|+ |x|r−1) for a.a. z ∈ Ω, all x ∈ R, some c10 > 0.

Note that (4.18) and Ladyzhenskaya and Uraltseva [18, p. 286], imply that

{un}n≥1 ⊆ L∞(Ω) is bounded. So, it follows that {Nf (un)/‖un‖}n≥1 ⊆ Lr(Ω)

is bounded. Thus by passing to a subsequence if necessary and using hypothesis

(H3) (iv), we have

(4.21)
Nf (un)

‖un‖
w−→ f ′x( · , 0)y in Lr(Ω) as n→∞.

Since {Ap(yn)}n≥1⊆W−1,p′(Ω) is bounded (see Proposition 2.2) and ‖un‖p−2→0

(recall p > 2 and see (4.17)), we have

(4.22) ‖un‖p−2Ap(yn)→ 0 in W−1,p′(Ω) as n→∞.

So, if in (4.20) we pass to the limit as n→∞ and use (4.21) and (4.22), then

A(y) = f ′x( · , 0)y ⇒ −∆y(z) = f ′x(z, 0)y(z) a.e. in Ω, y|∂Ω = 0.

Hypothesis (H3) (iv) implies that y = 0. On the other hand, from (4.20) and

Theorem 2.1 of Lieberman [19], we know that there exist α ∈ (0, 1) and M > 0

such that

(4.23) yn ∈ C1,α
0 (Ω) and ‖yn‖C1,α

0 (Ω) ≤M for all n ≥ 1.

Exploiting the compact embedding of C1,α
0 (Ω) into C1

0 (Ω) and using (4.19), we

have

yn → y in C1
0 (Ω) ⇒ ‖y‖ = 1,

contradiction since y = 0. So, (4.17) cannot occur and then the homotopy

invariance of the critical groups implies that

(4.24) Ck(ϕ, 0) = Ck(τ, 0) for all k ≥ 0.

From Theorem 1 of Cingolani and Vannella [8], we have

Ck(τ, 0) = δk,dmZ for all k ≥ 0 ⇒ Ck(ϕ, 0) = δk,dmZ for all k ≥ 0

(see (4.24)). �

Proposition 4.6. Assume that hypotheses (H3) (i)–(iii) hold and inf ϕ(Kϕ)

> −∞. Then Ck(ϕ,∞) = 0 for all k ≥ 0.
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Proof. Note that ϕ satisfies the C-condition (see Aizicovici, Papageorgiou

and Staicu [2]). Hypotheses (H3) (i),(ii) imply that given ξ > 0, we can find

c11 = c11(ξ) > 0 such that

(4.25) F (z, x) ≥ ξ

p
|x|p − c11 for a.a. z ∈ Ω, all x ∈ R.

Let u ∈ ∂B1 = {u ∈W 1,p
0 (Ω) : ‖u‖ = 1} and t > 0. Then

ϕ(tu) ≤ tp

p
[1− ξ‖u‖pp] +

t2

2
‖Du‖22 + c11|Ω|N .

Choosing ξ > 1/‖u‖pp and since p > 2, we infer that

(4.26) ϕ(tu)→ −∞ as t→ +∞.

By virtue of hypotheses (H3) (i),(iii), we can find η1 ∈ (0, η0) and c12 > 0 such

that

(4.27) f(z, x)x− pF (z, x) ≥ η1|x|τ − c12 for a.a. z ∈ Ω, all x ∈ R.

Then for all v ∈W 1,p
0 (Ω), we have (see (4.27))

(4.28)

∫
Ω

[pF (z, v)− f(z, v)v] dz ≤ −η1‖v‖ττ + c12|Ω|N .

Let ϑ < min[−c12|Ω|N − 1, inf ϕ(Kϕ)]. From (4.26), we see that for every u ∈
W 1,p

0 (Ω) \ {0} we can find t ≥ 1 such that

(4.29) ϕ(tu) ≤ ϑ

p
.

Then, for such big t ≥ 1, we have

d

dt
ϕ(tu) = 〈ϕ′(tu), u〉(4.30)

=
1

t

[
tp‖Du‖pp + t2‖Du‖22 −

∫
Ω

f(z, tu)(tu) dz

]
≤ 1

t

[
tp‖Du‖pp + t2‖Du‖22 −

∫
Ω

pF (z, tu) dz + c12|Ω|N
]

(see (4.28))

≤ 1

t
[pϕ(tu) + c12|Ω|N ] (since p > 2)

≤ 1

t
[ϑ+ c12|Ω|N ] < 0.

Given u ∈ W 1,p
0 (Ω) \ {0}, let τ(u) ≥ 1 be the first t ≥ 1 such that (4.29)

holds. Then by virtue of (4.30) and the implicit function theorem, we have

τ ∈ C1(W 1,p
0 (Ω) \ {0}). Let h ∈ C([0, 1] × (W 1,p

0 (Ω) \ {0}),W 1,p
0 (Ω) \ {0}) be

defined by

h(t, u) = (1− t+ tτ(u))u for all (t, u) ∈ [0, 1]× (W 1,p
0 (Ω) \ {0}).
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Note that

h(0, u) = u, h(1, u) = τ(u)u ∈ ϕϑ for all u ∈W 1,p
0 (Ω) \ {0},

h(t, u) = u for all (t, u) ∈ [0, 1]× ϕϑ.

These facts imply that ϕϑ is a strong deformation retract of W 1,p
0 (Ω)\{0}. Using

the radial retraction and Dugundji [11, Theorem 6.5, p. 325], we see that ∂B1 is

a deformation retract of W 1,p
0 (Ω) \ {0}. It follows that the sets ϕϑ and ∂B1 are

homotopy equivalent and so we have

(4.31) Hk(W 1,p
0 (Ω), ∂B1) = Hk(W 1,p

0 (Ω), ϕϑ) for all k ≥ 0.

The choice of ϑ implies that

(4.32) Hk(W 1,p
0 (Ω), ϕϑ) = Ck(ϕ,∞) for all k ≥ 0.

Also, since W 1,p
0 (Ω) is infinite dimensional, the boundary ∂B1 is contractible in

itself (see, for example, Gasinski and Papageorgiou [15, p. 691]). Therefore

(4.33) Hk(W 1,p
0 (Ω), ∂B1) = 0 for all k ≥ 0.

From (4.31), (4.32) and (4.33) we conclude that Ck(ϕ,∞) = 0 for all k ≥ 0. �

Next we compute the critical groups of the functional ϕ at û ∈ Kϕ and at

v̂ ∈ Kϕ.

Proposition 4.7. If hypotheses (H3) hold and Kϕ is finite, then Ck(ϕ, û) =

Ck(ϕ, v̂) = δk,1Z for all k ≥ 0.

Proof. We do the proof for the pair (ϕ, û), the proof for the pair (ϕ, v̂)

being similar. Let ψ+ : W 1,p
0 (Ω) → R be the functional introduced in the proof

of Proposition 4.4. We consider the homotopy h+ : [0, 1]×W 1,p
0 (Ω)→ W 1,p

0 (Ω)

defined by

h+(t, u) = (1− t)ϕ(u) + tψ+(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Suppose we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W 1,p
0 (Ω) such that

(4.34) tn → t ∈ [0, 1], un → û in W 1,p
0 (Ω) and (h+)′u(tn, un) = 0 for all n ≥ 1.

From (4.34) we have

(4.35) −∆pun(z)−∆un(z) = (1− tn)f(z, un(z)) + tng+(z, un(z))

for almost all z ∈ Ω. From Ladyzhenskaya and Uraltseva [18, p. 286], we know

that there exists M8 > 0 such that ‖un‖∞ ≤ M8 for all n ≥ 1. Then applying

Theorem 2.1 of Lieberman [19], we can find α ∈ (0, 1) and M9 > 0 such that

un ∈ C1,α
0 (Ω) and ‖un‖C1,α

0 (Ω) ≤M9 for all n ≥ 1.

The compact embedding of C1,α
0 (Ω) into C1

0 (Ω) and (4.34) imply

un → û in C1
0 (Ω) as n→∞.
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From Proposition 4.4 we know that û−u0 ∈ intC+. Therefore we can find n0 ≥ 1

such that un ≥ u0 for all n ≥ n0. Then from (4.6) and (4.35) it follows that

{un}n≥n0
⊆ Kϕ, which contradicts our hypothesis that Kϕ is finite. Therefore,

we can find ρ ∈ (0, 1) small such that û ∈ intC+ is the only critical point of

{h+(t, · )}t∈[0,1] in Bρ(û) = {u ∈ W 1,p
0 (Ω) : ‖u − û‖ ≤ ρ}. Then the homotopy

invariance of critical groups implies that

(4.36) Ck(ϕ, û) = Ck(ψ+, û) for all k ≥ 0.

From the proof of Proposition 4.4, we know that û ∈ intC+ is a critical point of

mountain pass type for the functional ψ+. Therefore

(4.37) C1(ψ+, û) 6= 0 ⇒ C1(ϕ, û) 6= 0

(see (4.36)). Since ϕ ∈ C2(W 1,p
0 (Ω)) (see hypotheses (H3)), from (4.37) and

Papageorgiou and Smyrlis [22] (see also Papageorgiou and Rădulescu [21]), we

have

Ck(ϕ, û) = δk,1Z for all k ≥ 0.

In a similar fashion, we show that Ck(ϕ, v̂) = δk,1Z for all k ≥ 0. �

Our strategy in order to generate nodal solutions is the following. First we

show that problem (1.1) admits extremal constant sign solutions, that is there

exist a smallest positive solution u+ ∈ intC+ and a biggest negative solution

v− ∈ −intC+. Having the extremal constant sign solutions, we focus on the order

interval [v−, u+]={u ∈W 1,p
0 (Ω) : v−(z)≤u(z)≤u+(z) almost everywhere in Ω}.

Through a combination of variational methods and of Morse theory, we show

that the problem has a nontrivial solution in [v−, u+] distinct from v− and u+.

The extremality of v− and u+, implies that this solution must be nodal. The

nonhomogeneity of the differential operator, is the source of difficulties in the

execution of this solution strategy. In this respect, the unilateral growth estimate

in (4.1), will help us to overcome these difficulties. So, motivated by (4.1), we

consider the following auxiliary Dirichlet problem:

(4.38) −∆pu(z)−∆u(z) = ξ0u(z)− ξ1|u(z)|r−2u(z) in Ω, u|∂Ω = 0.

Proposition 4.8. Problem (4.38) admits a unique positive solution u∗ ∈
intC+ and since the equation in (4.38) is odd, v∗ = −u∗ ∈ −intC+ is the unique

negative solution of (4.38).

Proof. Let µ+ : W 1,p
0 (Ω)→ R be the C1-functional defined by

µ+(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

ξ0
2
‖u+‖22 +

ξ1
p
‖u+‖rr for all u ∈W 1,p

0 (Ω).

Since r > p > 2, it is clear that µ+ is coercive. Also, it is sequentially weakly

lower semicontinuous. So, we can find u∗ ∈W 1,p
0 (Ω) such that

(4.39) µ+(u∗) = inf[µ+(u) : u ∈W 1,p
0 (Ω)].
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Since ξ0 > λ̂1(2) and p > 2, we see that for t ∈ (0, 1) small enough, we have

µ+(tû1(2)) < 0 ⇒ µ+(u∗) < 0 = µ+(0)

(see (4.39)), hence u∗ 6= 0. From (4.39) we have

(4.40) µ′+(u∗) = 0 ⇒ Ap(u∗) +A(u∗) = ξ0u
+
∗ − ξ1(u+

∗ )r−1.

On (4.40) we act with −u−∗ ∈W
1,p
0 (Ω) and obtain u∗ ≥ 0, u∗ 6= 0. So, it follows

that u∗ is a positive solution of the auxiliary problem (4.38). The nonlinear

regularity theory (see [19]) and the nonlinear maximum principle (see Pucci and

Serrin [23, pp. 111, 120]) imply that u∗ ∈ intC+.

We need to show the uniqueness of this positive solution. To this end, let

G0(t) = tp/p+t2/2 for all t ≥ 0. We set G(y) = G0(|y|) and consider the integral

functional j : L1(Ω)→ R = R ∪ {+∞} defined by

j(u) =


∫

Ω

G(Du1/2) dz if u ≥ 0, u1/2 ∈W 1,p
0 (Ω),

+∞ otherwise.

We claim that j( · ) is convex. So, let u1, u2 ∈ dom j = {u ∈ W 1,p
0 (Ω) : j(u) <

+∞} and let v1 = u
1/2
1 , v2 = u

1/2
2 ∈W 1,p

0 (Ω). We define

v3 = ((1− t)u1 + tu2)1/2 with t ∈ [0, 1].

From Lemma 1 of Benguria, Brezis and Lieb [6] (see also Diaz and Saa [10,

Lemma 1]), we have

|Dv3(z)| ≤ [(1− t)|Dv1(z)|2 + t|Dv2(z)|2]1/2 for a.a. z ∈ Ω.

Note that t→ G0(t) is increasing and t→ G0(t1/2) is convex on [0,+∞]. So, we

obtain

G0(|Dv3(z)|)

≤G0([(1− t)|Dv1(z)|2 + t|Dv2(z)|2]1/2) (the monotonicity of G0( · ))

≤ (1− t)G0(|Dv1(z)|2) + tG0(|Dv2(z)|) (the convexity of t→ G0(t1/2))

⇒G(Dv3(z)) ≤ (1− t)G(Dv1(z)) + tG(Dv2(z)) a.e. in Ω

⇒ j( · ) is convex.

Let u, v be two positive solutions of auxiliary problem (4.38). Then from

the first part of the proof we have u, v ∈ intC+. So, for all h ∈ C1
0 (Ω) and for

t ∈ [0, 1] small, we have u2 ± th, v2 ± th ∈ dom j. Then by the chain rule, we

have

j′(u2)(h) =

〈
Ap(u) +A(u),

h

u

〉
,

j′(v2)(h) =

〈
Ap(v) +A(v),

h

v

〉
for all h ∈W 1,p

0 (Ω)
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(recall C1
0 (Ω) is dense in W 1,p

0 (Ω)). The convexity of j, implies the monotonicity

of j′(y)( · ) for all y ∈ dom j. Hence

0 ≤〈j′(u2)− j′(v2), u2 − v2〉

=

∫
Ω

(
−∆pu−∆u

u
− −∆pv −∆v

v

)
(u2 − v2) dz

=

∫
Ω

ξ1(vr−2 − ur−2)(u2 − v2) dz ≤ 0

⇒ u = v ⇒ u∗ ∈ intC+ is the unique positive solution of (4.38).

Since the equation is odd, we deduce that v∗ = −u∗ ∈ −intC+ is the unique

negative solution of problem (4.38). �

Now let S+ (resp. S−) denote the set of positive (resp. negative) solutions

of problem (1.1) belonging in the order interval [0, w+] (resp. [w−, 0]). From

Proposition 4.3 we know that

S+, S− 6= ∅ and S+ ⊆ intC+, S− ⊆ −intC+.

Proposition 4.9. If hypotheses (H3) hold and u ∈ S+ (resp. v ∈ −S−),

then u∗ ≤ u and v ≤ v∗.

Proof. We do the proof for u ∈ S+, the proof for v ∈ S− being similar. We

introduce the following Carathéodory function:

(4.41) γ+(z, x) =


0 if x < 0,

ξ0x− ξ1xr−1 if 0 ≤ x ≤ u(z),

ξ0u(z)− ξ1u(z)r−1 if u(z) < x.

Let

Γ+(z, x) =

x∫
0

γ+(z, s) ds

and consider the C1-functional ξ+ : W 1,p
0 (Ω)→ R defined by

ξ+(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

Γ+(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

It is clear from (4.41) that ξ+ is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find ũ∗ ∈W 1,p
0 (Ω) such that

(4.42) ξ+(ũ∗) = inf[ξ+(u) : u ∈W 1,p
0 (Ω)].

As before (see the proof of Proposition 4.8), for t ∈ (0, 1) small (at least such

that tû1(2) ≤ u; recall that u ∈ intC+ and see Lemma 3.3 of Filippakis, Kristaly

and Papageorgiou [14]), we have ξ+(tû1(2)) < 0. Therefore ξ+(ũ∗) < 0 (see

(4.42)), hence ũ∗ 6= 0. Also, from (4.42) we have

(4.43) ξ′+(ũ∗) = 0 ⇒ Ap(ũ∗) +A(ũ∗) = Nγ+(ũ∗).
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On (4.43) we act with −ũ−∗ ∈ W
1,p
0 (Ω) and obtain ũ∗ ≥ 0, ũ∗ 6= 0. Also, we act

with (ũ∗ − u)+ ∈W 1,p
0 (Ω) and have

〈Ap(ũ∗), (ũ∗−u)+〉+ 〈A(ũ∗), (ũ∗ − u)+〉 =

∫
Ω

γ+(z, ũ∗)(ũ∗ − u)+ dz

=

∫
Ω

[ξ0u− ξ1ur−1](ũ∗ − u)+ dz (see (4.41))

≤
∫

Ω

f(z, u)(ũ∗ − u)+ dz (see (4.1))

= 〈Ap(u), (ũ∗ − u)+〉+ 〈A(u), (ũ∗ − u)+〉 (since u ∈ S+),

⇒ 〈Ap(ũ∗)−Ap(u), (ũ∗ − u)+〉+ 〈A(ũ∗)−A(u), (ũ∗ − u)+〉 ≤ 0

⇒ |{ũ∗ > u}|N = 0,

hence ũ∗ ≤ u. So, we have proved that

ũ∗ ∈ [0, u] = {y ∈W 1,p
0 (Ω) : 0 ≤ y(z) ≤ u(z) for a.a. z ∈ Ω}, ũ∗ 6= 0

⇒ ũ∗ is a nontrivial positive solution of problem (4.38)

(see (4.41) and (4.43))

⇒ ũ∗ = u∗ ∈ intC+ (see Proposition 4.8)

⇒ u∗ ≤ u.

Similarly we show that v ≤ v∗. �

Now we can establish the existence of extremal constant sign solutions for

problem (1.1).

Proposition 4.10. If hypotheses (H3) hold, then problem (1.1) admits a

smallest positive solution u+ ∈ intC+ and a biggest negative solution v− ∈
−intC+.

Proof. As in Filippakis, Kristaly and Papageorgiou [14], we can show that

the set of positive solutions of (1.1) is downward directed, that is, if u, y are two

positive solutions, then there exists a third positive solution of (1.1) such that

w ≤ u, w ≤ y. So, in order to produce the smallest positive solution, we can

restrict ourselves to the set S+. Then from Dunford and Schwartz [12, p. 336],

we know that we can find {un}n≥1 ⊆ S+ such that

inf S+ = inf
n≥1

un.

We have

(4.44) Ap(un) +A(un) = Nf (un), un ∈ [0, w+] for all n ≥ 1

⇒ {un}n≥1 ⊆W 1,p
0 (Ω) is bounded.
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So, we may assume that

(4.45) un
w−→ u+ in W 1,p

0 (Ω) and un → u+ in Lr(Ω) as n→∞.

Acting on the equation in (4.44) with un − u+ ∈ W 1,p
0 (Ω), passing to the limit

as n→∞ and using (4.45), we obtain

(4.46) lim
n→∞

[〈Ap(un), un−u+〉+ 〈A(un), un−u+〉] = 0⇒ un → u+ in W 1,p
0 (Ω)

(as before, see the proof of Proposition 3.3). So, if in (4.44) we pass to the limit

as n→∞ and use (4.46), then

Ap(u+) +A(u+) = Nf (u+).

From Proposition 4.9, we have u∗ ≤ un for all n ≥ 1, hence u∗ ≤ u+ (see

(4.46)) and so u+ ∈ S+ and u+ = inf S+, that is u+ ∈ intC+ is the smallest

positive solution of problem (1.1). Similarly we produce v− ∈ −intC+ the

biggest negative solution of problem (1.1). �

Now we are ready for the second multiplicity theorem. It generates six non-

trivial solutions, all with sign information.

Theorem 4.11. If hypotheses (H3) hold, then problem (1.1) admits at least

six nontrivial solutions

u0, û ∈ intC+, û− u0 ∈ intC+,

v0, v̂ ∈ −intC+, v0 − v̂ ∈ intC+,

and y0, ŷ ∈ C1
0 (Ω) \ {0} nodal.

Proof. The four nontrivial constant sign solutions

u0, û ∈ intC+ and v0, v̂ ∈ −intC+, û− u0 ∈ intC+, v0 − v̂ ∈ intC+

come from Propositions 4.3 and 4.4. So, we need to produce the two nodal

solutions. By virtue of Proposition 4.10 without any loss of generality, we

may assume that u0 ∈ intC+ and v0 ∈ −intC+ are extremal. Let g∗ be the

Carathéodory function defined by

(4.47) g∗(z, x) =


f(z, v0(z)) if x < v0(z),

f(z, x) if v−(z) ≤ x ≤ u0(z),

f(z, u0(z)) if u0(z) < x.

Let

G∗(z, x) =

∫ x

0

g∗(z, s) ds

and consider the C1-functional τ∗ : W 1,p
0 (Ω)→ R defined by

τ∗(u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

G∗(z, u(z)) dz for all u ∈W 1,p
0 (Ω).
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Also, we consider the positive and negative truncations of g∗(z, · ), namely the

Carathéodory functions

g±∗ (z, x) = g∗(z,±x±).

We set

G±∗ (z, x) =

∫ x

0

g±∗ (z, s) ds

and consider the C1-functionals τ±∗ : W 1,p
0 (Ω)→ R defined by

τ±∗ (u) =
1

p
‖Du‖pp +

1

2
‖Du‖22 −

∫
Ω

G±∗ (z, u(z)) dz for all u ∈W 1,p
0 (Ω).

It is easy to see that

Kτ∗ ⊆ [v0, u0], Kτ+
∗
⊆ [0, u0], Kτ−∗

⊆ [v0, 0]

(see the proof of Proposition 4.3). The extremality of u0 and v0, implies that

(4.48) Kτ∗ ⊆ [v0, u0], Kτ+
∗

= {0, u0}, Kτ−∗
= {v0, 0}.

Claim. u0 ∈ intC+ and v0 ∈ −intC+ are local minimizers of the func-

tional τ∗.

From (4.47) it is clear that τ+
∗ is coercive. Also, it is sequentially weakly

lower semicontinuous. So, we can find ũ0 ∈W 1,p
0 (Ω) such that

(4.49) τ+
∗ (ũ0) = inf[τ+

∗ (u) : u ∈W 1,p
0 (Ω)].

As before (see the proof of Proposition 4.3), we have τ+
∗ (ũ0) < 0 = τ+

∗ (0), hence

ũ∗ 6= 0. Since ũ0 ∈ Kτ+
∗

(see (4.49)), we have ũ0 = u0 (see (4.48)). Recall

that u0 ∈ intC+. Because τ+
∗ |C+

= τ∗|C+
, it follows that u0 ∈ intC+ is a local

C1
0 (Ω)-minimizer of τ∗. Invoking Proposition 2.3, we infer that u0 ∈ intC+ is

a local W 1,p
0 (Ω)-minimizer of τ∗. Similarly, for v0 ∈ −intC+, using this time the

functional τ−∗ . This proves Claim.

Without any loss of generality, we may assume that τ∗(v0) ≤ τ∗(u0) (the

analysis is similar, if the opposite inequality holds). By virtue of Claim, we can

find ρ ∈ (0, 1) small enough (ρ < ‖u0 − v0‖) such that

(4.50) τ∗(v0) ≤ τ∗(u0) < inf[τ∗(u) : ‖u− u0‖ = ρ] = mρ

(see [1]). Since τ∗ is coercive (see (4.47)), it satisfies the C-condition. This fact

and (4.50), permit the use of Theorem 2.1 (the mountain pass theorem). So, we

can find y0 ∈W 1,p
0 (Ω) such that

(4.51) y0 ∈ Kτ∗ and mρ ≤ τ∗(y0).

From (4.50) and (4.51) it follows that y0 /∈ {v0, u0}. If we can show that y0 6= 0,

then we infer that y0 is nodal. Reasoning as in the proof of Proposition 4.4,

using hypothesis (H3) (vi) and Proposition 2.4, we show that

(4.52) u0 − y0 ∈ intC+ and y0 − v0 ∈ intC+.



Resonant and Superlinear Nonhomogeneous Elliptic Equations 317

Since y0 is a critical point of τ∗ of mountain pass type, we have

(4.53) C1(τ∗, y0) 6= 0.

Note that τ∗|[v0,u0] = ϕ|[v0,u0] (see (4.47)). From this fact and (4.52), via a ho-

motopy invariance argument, as in the proof of Proposition 4.7, we obtain

(4.54) Ck(τ∗, y0) = Ck(ϕ, y0) for all k ≥ 0 ⇒ C1(ϕ, y0) 6= 0

(see (4.53)). But ϕ ∈ C2(W 1,p
0 (Ω)). Hence

(4.55) Ck(ϕ, y0) = δk,1Z for all k ≥ 0

(see [22], [21]). From Proposition 4.5, we know that

(4.56) Ck(ϕ, 0) = δk,dmZ for all k ≥ 0, with dm ≥ 2

(recall m ≥ 2). Comparing (4.55) and (4.56), we have y0 6= 0, hence y0 is nodal

and y0 ∈ C1
0 (Ω) (nonlinear regularity theory). From (4.54)–(4.56), we have

Ck(τ∗, y0) = δk,1Z for all k ≥ 0,(4.57)

Ck(τ∗, 0) = δk,dmZ for all k ≥ 0.(4.58)

By virtue of Claim, we have

(4.59) Ck(τ∗, u0) = Ck(τ∗, v0) = δk,0Z for all k ≥ 0.

Finally, the coercivity of τ∗ implies

(4.60) Ck(τ∗,∞) = δk,0Z for all k ≥ 0.

Suppose Kτ∗ = {v0, u0, 0, y0}. Then from (4.57)–(4.60) and the Morse relation

with t = −1 (see (2.1)), we have

2(−1)0 + (−1)dm + (−1)1 = (−1)0 ⇒ (−1)dm = 0,

a contradiction. So, there exists ŷ ∈ Kτ∗ , ŷ /∈ {v0, u0, 0, y0}. From (4.48) it

follows that ŷ is a second nodal solution and by nonlinear regularity, we have

ŷ ∈ C1
0 (Ω). �

It is natural to ask what happens if in (H3) (iv), m ≥ 1. In this case the uni-

lateral growth estimate (4.1) is not valid. Therefore, we cannot generate extremal

solutions and so Theorem 4.11 fails. Nevertheless, we still have a multiplicity

theorem producing five nontrivial solutions, but we are unable to determine the

sign of the fifth solution.

The new hypotheses on the reaction f are the following:

(H4) f : Ω × R → R is a measurable function such that for almost all z ∈ Ω,

f(z, 0) = 0, f(z, · ) ∈ C1(R), hypotheses (H4) (i)–(v) are the same as the

corresponding hypotheses (H3) (i)–(iii),(v),(vi) and
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(iv) f ′x(z, 0) = lim
x→0

f(z,x)
x uniformly for almost all z ∈ Ω and for some

m ≥ 1, we have

f ′x(z, 0) ∈ [λ̂m(2), λ̂m+1(2)] for a.a. z ∈ Ω

and f ′x( · , 0) 6≡ λ̂m(2), f ′x( · , 0) 6≡ λm+1(2).

Theorem 4.12. If hypotheses (H4) hold, then problem (1.1) has at least five

nontrivial solutions

u0, û ∈ intC+ with û− u0 ∈ intC+,

v0, v̂ ∈ −intC+ with v0 − v̂ ∈ intC+,

y0 ∈ C1
0 (Ω).

Proof. A careful reading of the proofs of Propositions 4.3 and 4.4, reveals

that by virtue of the UCP, the results remain valid under the new set of hypothe-

ses (H4). Therefore we can say that problem (1.1) has at least four nontrivial

solutions of constant sign

u0, û ∈ intC+ with û− u0 ∈ intC+,

v0, v̂ ∈ −intC+ with v0 − v̂ ∈ intC+.

From the proof of Proposition 4.3, we know that u0 is a minimizer of ϕ̂+

(see (4.3)). From (4.11) we have u0 ∈ intC1
0 (Ω)[0, w+]. Since ϕ̂+|[0,w+] = ϕ|[0,w+]

(see (4.2)), it follows that u0 is a local C1
0 (Ω)-minimizer of ϕ, hence by Propo-

sition 2.3 it is also a local W 1,p
0 (Ω)-minimizer of ϕ. Similarly we show that

v0 ∈ −intC+ too is a local minimizer of ϕ. Therefore, we have

(4.61) Ck(ϕ, u0) = Ck(ϕ, v0) = δk,0Z for all k ≥ 0.

From the proof of Proposition 4.4, we know that û ∈ intC+ is a critical point of

ψ+ of mountain pass type. Hence

(4.62) C1(ψ+, û) 6= 0.

Since û − u0 ∈ intC+, via a homotopy invariance argument as in the proof of

Proposition 4.7, we show that

Ck(ψ+, û) = Ck(ϕ, û) for all k ≥ 0(4.63)

⇒ C1(ϕ, û) 6= 0 (see (4.62))

⇒ Ck(ϕ, û) = δk,1Z for all k ≥ 0 (see [22], [21]).

Similarly we show that

(4.64) Ck(ϕ, v̂) = δk,1Z for all k ≥ 0.
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From Propositions 4.5 and 4.6, we have

Ck(ϕ, 0) = δk,dmZ for all k ≥ 0,(4.65)

Ck(ϕ,∞) = 0 for all k ≥ 0.(4.66)

Suppose Kϕ = {v0, u0, v̂, û, 0}. Then from (4.61), (4.63)–(4.66) and the Morse

relation with t = −1 (see (2.1)), we have

2(−1)0 + 2(−1)1 + (−1)dm = 0 ⇒ (−1)dm = 0,

a contradiction. So, there exists y0 ∈ Kϕ, y0 /∈ {v0, u0, v̂, û, 0}, hence y0 is

a fifth nontrivial solution for problem (1.1) and y0 ∈ C1
0 (Ω) (nonlinear regularity

theory). �
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