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Abstract We consider a nonlinear, nonhomogeneous Robin problem with an indefi-
nite potential and a nonsmooth primitive in the reaction term. In fact, the right-hand
side of the problem (reaction term) is the Clarke subdifferential of a locally Lipschitz
integrand. We assume that asymptotically this term is resonant with respect the prin-
cipal eigenvalue (from the left). We prove the existence of three nontrivial smooth
solutions, two of constant sign and the third nodal. We also show the existence of
extremal constant sign solutions. The tools come from nonsmooth critical point the-
ory and from global optimization (direct method).
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1 Introduction

In this paper, we study a class of nonlinear elliptic partial differential inclusions with
Robin boundary condition and involving a nonhomogeneous differential operator. The
resulting inclusion is known in the literature as a “hemivariational inequality”. Hemi-
variational inequalities were introduced as an extension of the classical variational
inequalities, in order to deal with problems of mechanics and engineering, in which
the relevant energy functionals are neither convex nor smooth (the so-called super-
potentials). Many such applications can be found in the book by Panagiotopoulos [1].

Our aim is to prove a “three solutions theorem”, which provides regularity and
sign information for all of them. Such multiplicity results were proved by Liu [2], Liu
and Liu [3], Papageorgiou and Papageorgiou [4] for Dirichlet problems driven by the
p-Laplacian with zero potential and with a smooth primitive. However, none of the
aforementioned work allows for resonance to occur and they do not produce nodal
(that is, sign changing) solutions. Multiple nontrivial smooth solutions for Neumann
p-Laplacian hemivariational inequalities were obtained by Aizicovici et al. [5,6].
In [5] the potential function is identically zero and the multivalued nonlinearity is
crossing, but the situation is complementary to the one studied here. The authors,
using degree theory techniques, produce two nontrivial smooth solutions with no sign
information. In [6], the potential is positive and the multivalued reaction has a super-
linear growth. Finally, we also mention recent work on nonlinear Neumann and Robin
problems with a smooth primitive, by Papageorgiou and Rădulescu [7,8], Marano
and Papageorgiou [9,10], Papageorgiou and Rădulescu [11], and Papageorgiou and
Winkert [12].

2 Statement of the Problem

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper, we study

the following nonlinear elliptic partial differential inclusion:

⎧
⎨

⎩

−div a(Du(z)) + ξ(z)|u(z)|p−2u(z) ∈ ∂F(z, u(z)) in �,
∂u

∂na
+ β(z)|u(z)|p−2u(z) = 0 on ∂�.

⎫
⎬

⎭
(1)

In this inclusion, the map a : RN → R
N involved in the definition of the differential

operator is a strictlymonotone, continuousmap,which satisfies certain other regularity
and growth conditions listed in hypotheses H(a) (see Sect. 3). These hypotheses are
general enough to incorporate in our frameworkmany differential operators of interest,
such as the p-Laplacian. We stress that in our case the differential operators need not
be homogeneous. The potential function ξ ∈ L∞(�) is, in general, sign changing
(indefinite potential). In the reaction term (right-hand side of (1)), F(z, x) is a real-
valued function on � × R, which is measurable in z ∈ � for every x ∈ R and
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locally Lipschitz in x ∈ R for μ-a.a. z ∈ �. By ∂F(z, x) we denote the generalized
subdifferential in the sense of Clarke (see Sect. 3).

In the boundary condition, ∂u
∂na

denotes the generalized normal derivative defined
by extension of the map

C1(�) � u �→ ∂u

∂na
= (a(Du), n)RN

with n(·) being the outward unit normal on ∂�. This kind of normal derivative is
dictated by the nonlinear Green’s identity (see, for example, Gasinski and Papageor-
giou [13], p. 210).

In this work, we assume that ∂F(z, ·) exhibits sublinear growth as x → ±∞ and
in the special case of the p-Laplace differential operator, the multivalued quotient
∂F(z,x)
|x |p−2x

asymptotically as x → ±∞ stays below the principal eigenvalue λ̂1 of the

differential operator u �→ −�pu + ξ(z)|u|p−2u, u ∈ W 1,p(�) with the Robin
boundary condition. Here, �p denotes the p-Laplace differential operator defined by
�pu = div (|Du|p−2Du) for all u ∈ W 1,p(�), 1 < p < ∞.

In fact,we allow for full interaction (resonance)with λ̂1. So, the problem is resonant.
The resonance occurs from the left of λ̂1 and this makes the energy (Euler) functional
of the problem coercive. This allows for the use of global optimization techniques
(direct method of the calculus of variations) in order to obtain solutions of constant
sign. Near the origin, our conditions on ∂F(z, ·) are such that, again in the special
case of the p-Laplace differential operator, they imply that the quotient ∂F(z,x)

|x |p−2x
stays

above λ̂1. So, we can say that we have a “crossing” multivalued reaction term, since
the quotient ∂F(z,x)

|x |p−2x
crosses at least λ̂1 as we move from x = 0 to x = ±∞.

3 Mathematical Background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). We say that ϕ : X → R is locally Lipschitz, if for every
x ∈ X we can find a neighborhood U (x) of x and a constant k(x) > 0 such that

|ϕ(u) − ϕ(v)| � k(x)||u − v|| for all u, v ∈ U (x). (2)

If (2) is satisfied for all u, v ∈ X andwith k(x) = k > 0 independent of x ∈ X , then
we have the usual Lipschitz continuous function. Note that, if ϕ : X → R is Lipschitz
continuous on every bounded set in X , then ϕ is locally Lipschitz. Moreover, if X is
finite dimensional, then the converse is also true. Finally, if ϕ : X → R is continuous,
convex or if ϕ ∈ C1(X,R), then ϕ is locally Lipschitz.

Given a locally Lipschitz function, the “generalized directional derivative” of ϕ at
x ∈ X in the direction h ∈ X , denoted by ϕ0(x; h), is defined by

ϕ0(x; h) = lim sup
x ′→x
λ→0+

ϕ(x ′ + λh) − ϕ(x ′)
λ

.
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It is easy to see that

(i) h �→ ϕ0(x; h) is sublinear and Lipschitz continuous;
(ii) (x, h) �→ ϕ0(x; h) is upper semicontinuous on X × X ;
(iii) ϕ0(x;−h) = (−ϕ)0(x; h) for all x, h ∈ X .

So, ϕ0(x; ·) is the support function of a nonempty, convex and w∗-compact set
defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 � ϕ0(x; h) for all h ∈ X}.

Themultifunction x �→ ∂ϕ(x) is known as the generalized or Clarke subdifferential
of ϕ. If ϕ ∈ C1(X,R), then as we have already mentioned, ϕ is locally Lipschitz and
∂ϕ(x) = {ϕ′(x)}. Similarly, if ϕ : X → R is continuous convex, then ϕ is locally
Lipschitz and the generalized subdifferential coincides with the subdifferential in the
sense of convex analysis defined by ∂cϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 � ϕ(x + h) −
ϕ(x) for all h ∈ X}.

For locally Lipschitz functions ϕ,ψ : X → R and λ ∈ R, we have

(i) ∂(ϕ + ψ)(x) ⊆ ∂ϕ(x) + ∂ψ(x) for all x ∈ X (equality holds if one of them is
a singleton);

(ii) ∂(λϕ)(x) = λ∂ϕ(x) for all x ∈ X .

The multifunction ∂ϕ : X → 2X
∗ \ ∅ is upper semicontinuous (usc for short) from

X , equipped with the norm topology into X∗, furnished with the w∗-topology. This
implies that Gr ∂ϕ = {(x, x∗) ∈ X × X∗ : x∗ ∈ ∂ϕ(x)} is closed in X × X∗

w∗ . For
a complete presentation of the subdifferential theory for locally Lipschitz functions,
we refer to Clarke [14].

Using the Clarke subdifferential theory, we can have a nonsmooth critical point
theory extending the classical theory for C1-functions. So, let ϕ : X → R be a locally
Lipschitz function. We say that x ∈ X is a “critical point” of ϕ, if 0 ∈ ∂ϕ(x). By Kϕ

we denote the set of critical points of ϕ. Let

mϕ(x) = inf
[||x∗||∗ : x∗ ∈ ∂ϕ(x)

]
. (3)

We say that ϕ satisfies the “nonsmooth PS-condition”, if the following property
holds.

“Every sequence {xn}n�1 ⊆ X such that
{ϕ(xn)}n�1 ⊆ R is bounded and mϕ(xn) → 0 as n → ∞,

admits a strongly convergent subsequence”.

Evidently, this notion extends the classical C-condition for C1-functions.
Using this compactness-type condition on the functional ϕ, one can prove a defor-

mation theorem from which follows the nonsmooth minimax theory of the critical
points of ϕ. A basic result in that theory is the so-called mountain pass theorem (see
Chang [15], Gasinski and Papageorgiou [16], Rădulescu [17]).
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Theorem 3.1 Let ϕ : X → R be a locally Lipschitz function which satisfies the
nonsmooth C-condition. Assume that there exist u0, u1 ∈ X and r > 0 with
||u1 − u0|| > r , max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ||u − u0|| = r ] = mr , and
c = infγ∈� max0�t�1 ϕ(γ (t))with� = {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) = u1}.
Then c � mr and c is a critical value of ϕ (that is, we can find u ∈ Kϕ such that
ϕ(u) = c).

In the analysis of problem (1) we will use the following spaces:

– the Sobolev space W 1,p(�);
– the ordered Banach space C1(�);
– the boundary Lebesgue space L p(∂�).

In what follows, we denote by || · || the norm of the Sobolev spaceW 1,p(�), defined

by ||u|| = [||u||pp + ||Du||pp
]1/p

for all u ∈ W 1,p(�).The positive (order) cone for the
ordered Banach spaceC1(�) is given byC+ = {u ∈ C1(�) : u(z) � 0 for all z ∈ �}.
This cone has a nonempty interior that contains D+ = {u ∈ C+ : u(z) > 0 for all z ∈
�}.

On ∂� we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·).
Using this measure, we can define in the usual way the Lebesgue spaces Lq(∂�), 1 �
q � ∞. The theory of Sobolev spaces says that there exists a unique continuous linear
map γ0 : W 1,p(�) → L p(∂�), known as the “trace map”, such that γ0(u) = u|∂�

for all u ∈ W 1,p(�) ∩C(�). In this way, we extend the notion of boundary values to

all Sobolev functions. The trace map is compact into Lq(∂�) for all q ∈
[
1, Np−p

N−p

)

if N � 3, and into Lq(∂�) for all q ∈ ]1,∞[ if N = 1, 2. In the sequel, for the sake
of notational simplicity, we drop the use of the map γ0. All restrictions of Sobolev
functions on ∂� are understood in the sense of traces. Finally, we mention that the
trace map is not surjective on L p(∂�). We have

im γ0 = W
1
p′ ,p(∂�) with

1

p
+ 1

p′ = 1.

Moreover, we have ker γ0 = W 1,p
0 (�).

Let d ∈ C1(]0,∞[) with d(t) > 0 for all t > 0 and assume that there exist
c1, c2 > 0 such that

0 < ĉ � td ′(t)
d(t)

� c0, c1t
p−1 � d(t) � c2(1 + t p−1) for all t > 0. (4)

Our hypotheses on themapa(·), involved in the definition of the differential operator
in problem (1), are the following:

H(a): a(y) = a0(|y|)y for all y ∈ R
N with a0(t) > 0 for all t > 0, and

(i) a0 ∈ C1(0,∞), t �→ ta0(t) is strictly increasing on (]0,+∞[), ta0(t) → 0+ as
t → 0+ and

lim
t→0+

ta′
0(t)

a0(t)
> −1;
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(ii) |∇a(y)| � c3
d(y)
|y| for all y ∈ R

N\{0} and some c3 > 0;

(iii) (∇a(y)h, h)RN � d(|y|)
|y| |h|2 for all y ∈ R

N\{0}, h ∈ R
N ;

(iv) if G0(t) = ∫ t
0 sa0(s)ds (for t > 0), then there exists q ∈ (1, p] such that

t �→ G0(t
1/q) is convex on (]0,∞[); and

lim
t→0+

qG0(t)

tq
= c̃ > 0.

Remark 3.1 Hypotheses H(a)(i), (i i), (i i i) are designed so that we can use the non-
linear regularity theory of Lieberman [18] and the nonlinear maximum principle of
Pucci and Serrin [19], pp. 111, 120. Hypothesis H(a)(iv) serves the particular needs
of our problem, but it is very mild, and it is satisfied in most cases of interest, as the
examples which follow illustrate.

From hypotheses H(a), it follows that t �→ G0(t) is strictly convex and strictly
increasing. We set G(y) = G0(|y|) for all y ∈ R

N . Evidently, G(·) is convex and
G(0) = 0. We have

∇G(y) = G ′
0(|y|)

y

|y| = a0(|y|)y = a(y) for all y ∈ R
N\{0}, ∇G(0) = 0.

Therefore, G(·) is the primitive of a(·). The convexity of G(·) and since G(0) = 0,
imply that

G(y) � (a(y), y)RN for all y ∈ R
N . (5)

Hypotheses H(a)(i), (i i), (i i i) and (4), (5) lead to the following lemma which
summarizes the main properties of the map a(·).
Lemma 3.1 If hypotheses H(a)(i), (i i), (i i i) hold, then

(a) the map y �→ a(y) is continuous and strictly monotone (hence maximally mono-
tone, too);

(b) |a(y)| � c4(1 + |y|p−1) for all y ∈ R
N and some c4 > 0;

(c) (a(y), y)RN � c1
p−1 |y|p for all y ∈ R

N .

This lemma and (5) give the following growth estimates for the primitive G(·).
Corollary 3.1 If hypotheses H(a)(i), (i i), (i i i) hold, then c1

p(p−1) |y|p � G(y) �
c5(1 + |y|p) for all y ∈ R

N and some c5 > 0.

Example The following maps satisfy hypotheses H(a) above (see [8]).

(a) a(y) = |y|p−2 with 1 < p < ∞. Then the differential operator is the p-Laplacian
�pu = div (|Du|p−2Du) for all u ∈ W 1,p(�).

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p < ∞. Then the differential operator
is the (p, q)-Laplacian �pu + �qu for all u ∈ W 1,p(�).

Such operators arise in problems of mathematical physics, see Cherfils and
Ilyasov [20]. Recently, some existence and multiplicity results for such equa-
tions have been established. All these problems are with no potential (that is,
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ξ ≡ 0) and with a smooth primitive F(z, ·). We mention the works of Aizicovici
et al. [21], Cingolani and Degiovanni [22], Papageorgiou and Rădulescu [23],
Papageorgiou et al. [24], Sun [25], and Sun et al. [26].

(c) a(y) = (1 + |y|2) p−2
2 y with 1 < p < ∞. Then the differential operator is

the generalized p-mean curvature operator div (
(
1 + |Du|2)

p−2
2 Du) for all u ∈

W 1,p(�).

(d) a(y) = |y|p−2y + |y|p−2 y
1+|y|p with 1 < p < ∞.

The hypotheses on the potential function ξ(·) and the boundary coefficient are the
following:

H(ξ): ξ ∈ L∞(�).

H(β): β ∈ C0,α(∂�) with α ∈]0, 1[ and β(z) � 0 for all z ∈ ∂�.

Remark 3.2 When β ≡ 0, we have the usual Neumann problem.

Suppose that F0 : � × R → R is a locally Lipschitz integrand satisfying

|F0(z, x)| � a0(z)(1 + |x |p) for almost all z ∈ � and for all x ∈ R, where a0 ∈ L∞(�).

Consider the functional ϕ0 : W 1,p(�) → R defined by

ϕ0(u) =
∫

�

G(Du)dz + 1

p

∫

�

ξ(z)|u|pdz + 1

p

∫

∂�

β(z)|u|pdσ

−
∫

�

F0(z, u)dz for all u ∈ W 1,p(�).

Then, ϕ0 is locally Lipschitz (see Clarke [14]). From Gasinski and Papageor-
giou [27] (see also Papageorgiou and Rădulescu [28] for the critical case), we have
the following property.

Proposition 3.1 Let u0 ∈ W 1,p(�) be a local C1(�)-minimizer of ϕ0, that is, there
exists ρ0 > 0 such that

ϕ0(u0) � ϕ0(u0 + h) for all h ∈ C1(�) with ||h||C1(�) � ρ0.

Then, u0 ∈ C1,α(�) with 0 < α < 1 and u0 is also a local W 1,p(�)-minimizer of ϕ0,
that is, there exists ρ1 > 0 such that

ϕ0(u0) � ϕ0(u0 + h) for all h ∈ W 1,p(�) with ||h|| � ρ1.

Let A : W 1,p(�) → W 1,p(�)∗ be the nonlinear map defined by

〈A(u), h〉 =
∫

�

(a(Du), Dh)RN dz for all u, h ∈ W 1,p(�).

From Gasinski and Papageorgiou [29] (Problem 2.192), we have:
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Proposition 3.2 If hypotheses H(a) hold, then A : W 1,p(�) → W 1,p(�)∗ is con-
tinuous, monotone (hence maximally monotone, too) and of type (S)+, that is,

“un
w−→ u in W 1,p(�), lim sup

n→∞
〈A(un), un − u〉 � 0 ⇒ un → u in W 1,p(�).”

We will also need some basic facts about the spectrum of the nonlinear operator
u �→ −�pu + ξ(z)|u|p−2u with the Robin boundary condition. So, we consider the
following nonlinear eigenvalue problem:

⎧
⎨

⎩

−�pu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in �,
∂u

∂n p
+ β(z)|u|p−2u = 0 on ∂�,

⎫
⎬

⎭
, (6)

where ∂u
∂n p

= |Du|p−2(Du, n)RN . We say that λ̂ ∈ R is an eigenvalue if problem (6)

admits a nontrivial solution û ∈ W 1,p(�), known as an eigenfunction corresponding
to λ̂.

From Mugnai and Papageorgiou [30] (Neumann problem) and Papageorgiou and
Rădulescu [31] (Robin problem), we know that problem (6) has a smallest eigenvalue
λ̂1(p, ξ, β) ∈ R which has the following properties:

λ̂1(p, ξ, β) is isolated in the spectrum σ̂ (p, ξ, β) of (6) (that is, we can find ε > 0
such that (λ̂1(p, ξ, β), λ̂1(p, ξ, β) + ε) ∩ σ̂ (p, ξ, β) = ∅);
λ̂1(p, ξ, β) is simple (that is, if û, v̂ are two eigenfunctions corresponding to this
eigenvalue, then û = ηv̂ with η ∈ R\{0});

λ̂1(p, ξ, β) = inf

[
kp(u)

||u||pp
: u ∈ W 1,p(�), u �= 0

]

, (7)

with kp : W 1,p(�) → R being the C1-functional defined by

kp(u) = ||Du||pp +
∫

�

ξ(z)|u|pdz +
∫

∂�

β(z)|u|pdσ.

In (7) the infimum is realized on the one-dimensional eigenspace, corresponding to
the eigenvalue λ̂1(p, ξ, β). It follows from the above properties that the elements of
this eigenspace do not change the sign. By û1(p, ξ, β) we denote the L p-normalized
(that is, ||û1(p, ξ, β)||p = 1) positive eigenfunction. The nonlinear regularity theory
of Lieberman [18] implies that û1(p, ξ, β) ∈ C+. In fact, the nonlinear maximum
principle (see, for example, Gasinski and Papageorgiou [13], p. 738) implies that
û1(p, ξ, β) ∈ D+. The eigenfunctions corresponding to eigenvalues λ̂ �= λ̂1(p, ξ, β)

are nodal (that is, sign changing). The spectrum σ̂ (p, ξ, β) is closed and λ̂1(p, ξ, β)

is isolated. So, the second eigenvalue λ̂2(p, ξ, β) is well-defined by λ̂2(p, ξ, β) =
min{λ̂ ∈ σ̂ (p, ξ, β) : λ̂ > λ̂1(p, ξ, β)}.

Additional eigenvalues can be generated by using the Ljusternik–Schnirelmann
minimax scheme. In this way, we produce a strictly increasing sequence {λ̂k}k∈N of

123



J Optim Theory Appl (2017) 175:293–323 301

eigenvalues such that λ̂k → +∞. These are known as the “LS-eigenvalues” of (6), and
we do not know if they exhaust σ̂ (p, ξ, β). We know that they exhaust σ̂ (p, ξ, β) if
p = 2 (linear eigenvalue problem) or if N = 1 (ordinary differential equation). A vari-
ational characterization of λ̂2(p, ξ, β) can be obtained using the minimax expression
of the Ljusternik–Schnirelmann minimax scheme. There is an alternative minimax
characterization which is more convenient for our purpose. So, we define

∂BL p

1 = {u ∈ L p(�) : ‖u‖p = 1},
M = W 1,p(�) ∩ ∂BL p

1 ,

�̂ = {γ̂ ∈ C([−1, 1], M) : γ̂ (−1) = −û1(p, ξ, β), γ̂ (1) = û1(p, ξ, β)}.

From [30,31], we have the following alternative minimax characterization of
λ̂2(p, ξ, β).

Proposition 3.3 λ̂2(p, ξ, β) = inf
γ̂∈�̂

max−1�t�1 kp(γ̂ (t)).

Finally, let us fix our notation. For x ∈ R we set x± = max{±x, 0} and for
u ∈ W 1,p(�) we define u±(·) = u(·)±. We have u± ∈ W 1,p(�), u = u+ −
u−, |u| = u+ + u−. For u, v ∈ W 1,p(�), v � u, we introduce the order interval
[v, u] = {y ∈ W 1,p(�) : v(z) � y(z) � u(z) for almost all z ∈ �}.

4 Solutions of Constant Sign

In this section, we produce two nontrivial, constant sign smooth solutions. These
solutions are obtained by global optimization of suitable truncations and perturbations
of the energy functional. In addition, we establish the existence of extremal constant
sign solutions of (1), that is, we show that problem (1) has a smallest positive solution
and a biggest negative solution. These extremal constant sign solutions are crucial in
obtaining a nodal (sign changing) solution in Sect. 4.

The hypotheses on the nonsmooth primitive F(z, x) are the following:
H1 : F : � × R → R is a locally Lipschitz integrand (that is, z �→ F(z, x) is

measurable and for almost all z ∈ �, x �→ F(z, x) is locally Lipschitz) such that
F(z, 0) = 0 for almost all z ∈ � and

(i) |v| � a(z)(1 + |x |p−1) for almost all z ∈ � and for all x ∈ R, v ∈ ∂F(z, x),
with a ∈ L∞(�)+;

(ii) lim supx→±∞ v
|x |p−2x

� c1
p−1 λ̂1(p, ξ̂ , β̂) uniformly for almost all z ∈ � and for

all v ∈ ∂F(z, x), with c1 > 0 as in (4), and with ξ̂ = p−1
c1

ξ , β̂ = p−1
c1

β;
(iii) limx→±∞[vx − pF(z, x)] = +∞ uniformly for almost all z ∈ � and for all

v ∈ ∂F(z, x);
(iv) there exists a function ϑ0 ∈ L∞(�) such that

c̃λ̂1(q, ξ̃+, β̃) � ϑ0(z) for almost all z ∈ �, ϑ0 �≡ c̃λ̂1(q, ξ̃+, β̃),

ϑ0(z) � lim inf
x→0

v

|x |q−2x
uniformly for almost all z ∈ �, and for all v ∈ ∂F(z, x)
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with c̃ > 0 and q ∈ (1, p] as in hypothesis H(a)(iv), and ξ̃ = 1
c̃ ξ , β̃ = 1

c̃β.

Remark 4.1 If a(y) = |y|p−2y for all y ∈ R
N (the case of the p-Laplace differential

operator), then c1 = p−1 (see (4)). So, ξ̂ = ξ , β̂ = β (see hypothesis H1(i i)). Hence
in this special case, we see that hypothesis H1(i i) incorporates in our framework
problems which are resonant at ±∞ with respect to the principal eigenvalue of the
differential operator u �→ −�pu + ξ(z)|u|p−2u with Robin boundary condition.
Hypothesis H1(i i i) says that this resonance occurs from the left of λ̂1(p, ξ̂ , β̂) in the
sense that

c1
p − 1

λ̂1(p, ξ̂ , β̂)|x |p − pF(z, x) → +∞ as x → ±∞, uniformly for almost all z ∈ � .

This fact makes the energy (Euler) functional of the problem coercive and so tech-
niques of global optimization can be used. To better understand hypothesis H1(iv) it
is again helpful to consider the situation in the special case of the p-Laplacian (that
is, a(y) = |y|p−2y). Then we have q = p and c̃ = 1 (see hypothesis H(a)(iv)).
Hence, we see that hypothesis H1(iv) implies that as x → 0, the quotient v

|x |p−2x

stays above λ̂1(p, ξ, β) and so we have a crossing reaction term. In fact, hypothesis
H1(iv) permits also the presence of a concave (that is, of a (p − 1)-superlinear) term
near zero.

Let μ > ‖ξ‖∞ (see hypothesis H(ξ)) and consider the following truncations–
perturbations of the primitive F(z, x):

F̂+(z, x) =
{
0, if x � 0,
F(z, x) + μ

p |x |p, if 0 < x,

F̂−(z, x) =
{
F(z, x) + μ

p |x |p, if x < 0,
0, if 0 � x .

(8)

Both F̂±(z, x) are locally Lipschitz integrands, and we have

∂ F̂+(z, x) ⊆
⎧
⎨

⎩

0 if x < 0
{r∂F(z, 0) : 0 � r � 1} if x = 0
∂F(z, x) + μx p−1 if 0 < x

∂ F̂−(z, x) ⊆
⎧
⎨

⎩

∂F(z, x) + μ|x |p−2x if x < 0
{r∂F(z, 0) : 0 � r � 1} if x = 0
0 if 0 < x

(9)

(see Clarke [14], p. 42). Then we introduce the locally Lipschitz functionals ϕ̂± :
W 1,p(�) → R defined by

ϕ̂±(u) =
∫

�

G(Du)dz + 1

p

∫

�

(ξ(z) + μ)|u|pdz + 1

p

∫

∂�

β(z)|u|pdσ

−
∫

�

F̂±(z, u)dz for all u ∈ W 1,p(�).
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Also, let ϕ : W 1,p(�) → R be the energy (Euler) functional for problem (1)
defined by

ϕ(u) =
∫

�

G(Du)dz + 1

p

∫

�

ξ(z)|u|pdz + 1

p

∫

∂�

β(z)|u|pdσ

−
∫

�

F(z, u)dz for all u ∈ W 1,p(�).

This functional is also locally Lipschitz.

Proposition 4.1 If hypotheses H(a)(i)(i i)(i i i), H(ξ), H(β), H1 hold, then the func-
tionals ϕ and ϕ̂± are coercive.

Proof We present the proof for the functional ϕ; the proofs for ϕ̂± are similar.
We proceed by contradiction. So, suppose that ϕ is not coercive. Then we can find

{un}n�1 ⊆ W 1,p(�) and c6 > 0 such that

‖un‖ → +∞ and ϕ(un) � c6 for all n ∈ N. (10)

We have

∫

�

G(Dun)dz + 1

p

∫

�

ξ(z)|un|pdz + 1

p

∫

∂�

β(z)|un|pdσ

−
∫

�

F(z, un)dz � c6 for all n ∈ N. (11)

We set yn = un‖un‖ , n ∈ N. Then ‖yn‖ = 1 for all n ∈ N and so by passing to a
suitable subsequence if necessary, we may assume that

yn
w−→ y in W 1,p(�) and yn → y in L p(�) and in L p(∂�). (12)

From (11) and Corollary 3, we have

c1
p(p − 1)

‖Dyn‖p
p + 1

p

∫

�

ξ(z)|yn|pdz + 1

p

∫

�

β(z)|yn|pdσ −
∫

�

F(z, un)

‖un‖p
dz

� c6
‖un‖p

for all n ∈ N.

From hypothesis H1(i) and Lebourg’s nonsmooth mean value theorem (see
Clarke [14], p. 41), we obtain

|F(z, x)| � c7(1 + |x |p) for almost all z ∈ R and some c7 > 0,

⇒
{
F(·, un(·))

‖un‖p

}

n�1
⊆ L1(�) is uniformly integrable (see (12)).
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Then the Dunford–Pettis theorem and hypothesis H1(i i) imply (at least for a sub-
sequence) that

F(·, un(·))
‖un‖p

w−→ c1
p(p − 1)

η|y|p in L1(�) with η ∈ L∞(�),

η(z) � λ̂1(p, ξ̂ , β̂) for almost all z ∈ �. (13)

So, passing to the limit as n → ∞ in (13) and using (10), (12), (13), we obtain

c1
p(p − 1)

‖Dy‖p
p + 1

p

∫

�

ξ(z)|y|pdz + 1

p

∫

∂�

β(z)|y|pdσ

� c1
p(p − 1)

∫

�

η|y|pdz,

⇒ c1
p(p − 1)

[

‖Dy‖p
p +

∫

�

ξ̂(z)|y|pdz +
∫

∂�

β̂(z)|u|pdσ
]

� c1
p(p − 1)

∫

�

η|y|pdz,

⇒ ‖Dy‖p
p +

∫

�

ξ̂(z)|y|pdz +
∫

∂�

β(z)|y|pdσ �
∫

�

η(z)|y|pdz. (14)

First, we assume that η �≡ λ̂1(p, ξ̂ , β̂). Then from (14) and Lemma 4.11 of Mugnai
and Papageorgiou [30], we see that we can find c8 > 0 such that c8‖y‖p � 0. It
follows that y = 0. We deduce that

‖Dyn‖p → 0,

⇒ yn → 0 in W 1,p(�) (see (12)),

which contradicts the fact that ‖yn‖ = 1 for all n ∈ N.
Now, we assume that η(z) = λ̂1(p, ξ̂ , β̂) for almost all z ∈ �. Then from (14) and

(7) we have

‖Dy‖p
p +

∫

�

ξ̂(z)|y|pdz +
∫

∂�

β̂(z)|y|pdσ = λ̂1(p, ξ̂ , β̂)‖y‖p
p,

⇒ y = τ û1(p, ξ̂ , β̂) for some τ ∈ R.

If τ = 0, then y = 0 and as above, we have yn → 0 inW 1,p(�),which contradicts
the fact that ‖yn‖ = 1 for all n ∈ N. Then τ �= 0 and in order to fix things, we assume
that τ > 0 (the reasoning is similar if τ < 0). Since û1(p, ξ̂ , β̂) ∈ D+, we have
y(z) > 0 for all z ∈ �. It follows that

un(z) → +∞ for all z ∈ �. (15)

Hypothesis H1(i i i) implies that given any μ̂ > 0, we can find c9 = c9(μ) > 0
such that
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vx − pF(z, x) � μ̂ for almost all z ∈ � and for all x � c9, v ∈ ∂F(z, x). (16)

For almost all z ∈ �, the function s �→ F(z,s)
s p is locally Lipschitz on [c9,+∞[.

So, using Proposition 2.3.14 of Clarke [14], p. 48, we have

∂

(
F(z, s)

s p

)

⊆ s p∂F(z, s) − ps p
−1
F(z, s)

s2p
. (17)

By Rademacher’s theorem (see Gasinski and Papageorgiou [13], Theorem 3.120,
p. 433), we know that for almost all z ∈ � the function s �→ F(z,s)

s p is differentiable
for almost all s ∈ [c9,∞[ and at every such point s ∈ [c9,∞[ of differentiability, we
have

d

ds

(
F(z, s)

s p

)

∈ ∂

(
F(z, s)

s p

)

(see Clarke [14], Theorem 2.5.1, p. 63). So, from (17) we see that we can find v ∈
∂F(z, s) such that

d

ds

(
F(z, s)

s p

)

= s pv − ps p−1F(z, s)

s2p
= sv − pF(z, s)

s p+1

� μ̂

s p+1 for almost all z ∈ � and for all s ∈ [c9,∞) (see (16)),

⇒ F(z, y)

y p
− F(z, x)

x p
� − μ̂

p

[
1

y p
− 1

x p

]

for almost all z ∈ � and for all y � x � c9.

(18)

From hypothesis H1(i i) and using Lebourg’s mean value theorem (see Clarke [14],
Theorem 2.3.7, p. 41), we obtain

lim sup
x→+∞

F(z, x)

x p
� c1

p(p − 1)
λ̂1(p, ξ̂ , β̂) uniformly for almost all z ∈ �. (19)

In (18) we pass to the limit as y → +∞ and use (19). Then

c1
p(p − 1)

λ̂1(p, ξ̂ , β̂) − F(z, x)

x p
� μ̂

p

1

x p
for almost all z ∈ � and for all x � c9,

⇒ c1
p − 1

λ̂1(p, ξ̂ , β̂)x p − pF(z, x) � μ̂ for almost all z ∈ � and for all x � c9.

(20)

Recall that μ̂ > 0 is arbitrary. Then it follows from (20) that

lim
x→+∞

[
c1

p − 1
λ̂1(p, ξ̂ , β̂)x p − pF(z, x)

]

= +∞ uniformly for almost all z ∈ �.

(21)
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From (15), (21) and Fatou’s lemma, we have

lim
n→∞

∫

�

[
c1

p − 1
λ̂1(p, ξ̂ , β̂)|un(z)|p − pF(z, un(z))

]

dz = +∞. (22)

From (11) and Corollary 3, we have

c1
p(p − 1)

[

‖Dun‖p
p +

∫

�

ξ̂(z)|un|pdz +
∫

∂�

β̂(z)|un|pdσ
]

−
∫

�

F(z, un)dz � c6 for all n ∈ N,

⇒
∫

�

[
c1

p − 1
λ̂1(p, ξ̂ , β̂)|un|p − pF(z, un)

]

dz � pc6 for all n ∈ N (see (7)).

(23)

Comparing (22) and (23), we reach a contradiction. This proves that ϕ is coercive.
Similarly, we show the coercivity of the functionals ϕ̂±. ��
Corollary 4.1 If hypotheses H(a)(i)(i i)(i i i), H(ξ), H(β) and H1 hold, then the
functionals ϕ and ϕ̂± satisfy the nonsmooth C-condition.

Using Proposition 7 and global minimization of ϕ̂± (the direct method of calculus
of variations), we can produce two nontrivial smooth solutions of constant sign.

Proposition 4.2 If hypotheses H(a), H(ξ), H(β) and H1 hold, then problem (1)was
at least two nontrivial constant sign smooth solutions

u0 ∈ D+ and w0 ∈ −D+,

which are local minimizers of ϕ.

Proof First we establish the existence of a positive solution.
From Proposition 4.1 we know that ϕ̂+ is coercive. Using the Sobolev embedding

theorem and the compactness of the trace map, we see that ϕ̂+ is sequentially weakly
lower semicontinuous. So, by the Weierstrass–Tonelli theorem, we know that we can
find u0 ∈ W 1,p(�) such that

ϕ̂+(u0) = inf[ϕ̂+(u) : u ∈ W 1,p(�)]. (24)

Hypotheses H(a)(iv) and H1(iv) imply that given ε > 0, we can find δ = δ(ε) ∈
(0, 1] such that

G(y) � 1

q
[c̃ + ε] |y|q for all y ∈ R

N with |y| � δ, (25)

(ϑ0(z) − ε)xq−1 � v for almost all z ∈ � and for all 0 � x � δ, v ∈ ∂F(z, x).

(26)

123



J Optim Theory Appl (2017) 175:293–323 307

Recall that û1(p, ξ̃ , β̃) ∈ D+. Therefore, we can find t ∈ ]0, 1[ small such that

t û1(q, ξ̃ , β̃)(z) ∈ [0, δ] and t |Dû1(q, ξ̃+, β̃)(z)| � δ for all z ∈ �. (27)

Then we have

ϕ̂+(t û1(q, ξ̃ , β̃)) � tq

q
[c̃ + ε]||Dû1(q, ξ̃+, β̃)||qq + 1

p

∫

�

ξ(z)|t û1(q, ξ̃+, β̃)|pdz

+ 1

p

∫

∂�

β(z)|t û1(q, ξ̃+, β̃)|pdσ − 1

q

∫

�

(ϑ0(z) − ε)|t û1(q, ξ̃+, β̃)|qdz
(see (8), (25), (26), (27))

� tq

q
[c̃ + ε]||Dû1(q, ξ̃+, β̃)||qq + tq

q

∫

�

ξ+(z)û1(q, ξ̃+, β̃)qdz

+ tq

q

∫

∂�

β(z)û1(q, ξ̃+, β̃)qdσ − tq

q

[∫

�

ϑ0(z)û1(q, ξ̃+, β̃)qdz − ε

]

(recall that 0 < δ � 1, q � p and ||û1(q, ξ̃+, β̃)||q = 1)

� tq

q
c̃

[

||Dû1(q, ξ̃+, β̃)||qq +
∫

�

ξ̃+(z)û1(q, ξ̃+, β̃)qdz

+
∫

∂�

β(z)û1(q, ξ̃+, β̃)qdσ

]

+ tq

q
ε[λ̂1(q, ξ̃+, β̃) + 1] − tq

q

∫

�

ϑ0(z)û1(q, ξ̃+, β̃)dz

= tq

q

[∫

�

(c̃λ̂1(q, ξ̃+, β̃) − ϑ0(z))û1(q, ξ̃+, β̃)dz + ε(λ̂1(q, ξ̃+, β̃) + 1)

]

.

(28)

By hypothesis H1(iv) and since û1(q, ξ̃+, β̃) ∈ D+, we have

μ̂∗ =
∫

�

(ϑ0(z) − c̃λ̂1(q, ξ̃+, β̃))û1(q, ξ̃+, β̃)dz > 0.

Then from (28) we see that

ϕ̂+(t û1(q, ξ̃+, β̃)) � tq

q

[
−μ̂∗ + ε(λ̂1(q, ξ̃+, β̃) + 1)

]
. (29)

Choosing ε ∈ ]0, 1[ small, we infer from (29) that ϕ̂+(t û1(q, ξ̃+, β̃)) < 0, hence
ϕ̂+(u0) < 0 = ϕ̂+(0) (see (24)). We deduce that u0 �= 0.
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By (24) we have

0 ∈ ∂ϕ̂+(u0),

⇒ 〈A(u0), h〉 +
∫

�

(ξ(z) + μ)|u0|p−2u0hdz +
∫

∂�

β(z)|u0|p−2u0hdσ

=
∫

�

v̂hdz (30)

for all h ∈ W 1,p(�), with v(z) ∈ ∂ F̂+(z, u0(z)) for almost all z ∈ � (see Clarke [14],
Theorem 2.7.3, p. 80).

In (30) we choose h = −u−
0 ∈ W 1,p(�). We obtain

c1
p − 1

||Du−
0 ||pp +

∫

�

(ξ(z) + μ)(u−
0 )pdz � 0

(see Lemma 3.1, hypothesis H(β) and (9)),

⇒ c10||u−
0 ||p � 0 for some c10 > 0 (recall that μ > ||ξ ||∞),

⇒ u0 � 0, u0 �= 0.

From (30), (9), Stampacchia’s theorem (see Gasinski and Papageorgiou [13],
Remark 2.4.16, p. 195) and Papageorgiou and Rădulescu [31], we have

⎧
⎨

⎩

−div a(Du0(z)) + ξ(z)u0(z)p−1 ∈ ∂F(z, u0(z)) for almost all z ∈ �,
∂u

∂na
+ β(z)u p−1

0 = 0 on ∂�,

⎫
⎬

⎭

⇒ u0 is a positive solution of (1). (31)

From (31) and Papageorgiou and Rădulescu [28], we have u0 ∈ L∞(�). So, by
the nonlinear regularity theory of Lieberman [18] (p. 320), we have

u0 ∈ C+\{0}. (32)

Hypotheses H1(i), (iv) imply that given ρ > 0, we can find μ̃ρ > 0 such that

v + μ̃ρx
p−1 � 0 for almost all z ∈ � and for all 0 � x � ρ, v ∈ ∂F(z, x). (33)

Now let ρ = ||u0||∞ and let μ̃ρ > 0 as postulated by (33). Then from (31) and
(33) we have

− div a(Du0(z)) + (ξ(z) + μ̃ρ)u0(z)
p−1 � 0 for almost all z ∈ �,

⇒ div a(Du0(z)) � [||ξ ||∞ + μ̃ρ]u0(z)p−1 for almost all z ∈ �. (34)

Let μ0(t) = ta0(t) for all t > 0. We have

tμ′
0(t) = t2a′

0(t) + ta0(t) � c11t
p−1 for some c11 > 0 and for all t > 0

(see hypotheses H(a)(i),(iii) and (4)). (35)
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Integrating by parts, we obtain

∫ t

0
sμ′

0(s)ds = tμ0(t) −
∫ t

0
μ0(s)ds = t2a0(t) − G0(t) � c11

p
t p (see (35)). (36)

Let H(t) = t2a0(t) − G0(t) and H0(t) = c11
p t p for all t > 0. Pick δ ∈ (0, 1) and

s > 0 and consider the sets

C1 = {t ∈ ]0, 1[ : H(t) � s}, C2 = {t ∈ ]0, 1[ : H0(t) � s}.

From (36) we see that C2 ⊆ C1, hence inf C1 � inf C2. So, from Gasinski and
Papageorgiou [29] (Proposition 1.55, p. 12), we have H−1(s) � H−1

0 (s).
Then for μ∗

ρ = ||ξ ||∞ + μ̃ρ , we have

∫ δ

0

1

H−1
(

μ∗
ρ

p s p
)ds �

∫ δ

0

1

H−1
0

(
μ∗

ρ

p s p
)ds = μ∗

ρ

c11

∫ δ

0

ds

s
= +∞. (37)

Inequalities (34), (37) permit the use of the nonlinear strong maximum principle
of Pucci and Serrin [19], p. 111. We deduce that u0(z) > 0 for all z ∈ �. Invoking
the boundary point of the theorem of Pucci and Serrin [19] (p. 120), we obtain that
u0 ∈ D+.

Note that ϕ̂+|C+ = ϕ|C+ (see (8)). So, it follows that u0 is a localC1(�)-minimizer
of ϕ (see (24)). By Proposition 3.1, we deduce that u0 is a local W 1,p(�)-minimizer
of ϕ.

Similarly, working with the functional ϕ̂− we obtain a negative solutionw0 ∈ −D+
which is a local minimizer of ϕ.

In fact, we can show that problem (1) admits extremal constant sign solutions, that
is, there are a smallest positive solution û+ ∈ D+ and a biggest negative solution
û− ∈ D+.

To this end, note that hypotheses H1(i), (iv) imply that given ε > 0 and r ∈ (p, p∗)

(recall that p∗ =
{

Np
N−p if p < N
+∞ if N � p

, the critical Sobolev exponent), we can find

c12 = c12(ε, r) > 0 such that

vx � (ϑ0(z) − ε)|x |q − c12|x |r
for almost all z ∈ � and for all x ∈ R, v ∈ ∂F(z, x). (38)

This unilateral growth estimate for ∂F(z, ·) leads to the following auxiliary non-
linear Robin problem
⎧
⎨

⎩

−div a(Du(z)) + ξ+(z)|u(z)|p−1u(z) = (ϑ0(z) − ε)|u(z)|q−2u(z) − c12|u(z)|r−2u(z) in �,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂�.

⎫
⎬

⎭

(39)
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Proposition 4.3 If hypotheses H(a), H(ξ), H(β) hold, then for ε > 0 small problem
(39) has a unique positive solution

ũ∗ ∈ D+

and since (39) is odd, ṽ∗ = −ṽ∗ ∈ −D+ is the unique negative solution of (39).

Proof First, we prove the existence of a positive solution for problem (39). For this
purpose, we introduce the C1-functional ψ̃+ : W 1,p(�) → R defined by

ψ̃+(u) =
∫

�

G(Du)dz + 1

p

∫

�

ξ+(z)|u|pdz + 1

p
||u−||pp + 1

p

∫

∂�

β(z)|u|pdσ

− 1

q

∫

�

(ϑ0(z) − ε)(u+)qdz + c12
r

||u+||rr for all u ∈ W 1,p(�).

Using Corollary 3.1, we have

ψ̃+(u) � c1
p(p − 1)

||Du−||pp + 1

p

∫

�

ξ+(z)(u−)pdz + 1

p
||u−||pp

+ c1
p(p − 1)

||Du+||pp + 1

p

∫

�

ξ+(z)(u+)pdz + c12
r

||u+||rr − c13||u+||q

for some c13 > 0 (since ϑ0 ∈ L∞(�)). (40)

Recall that q � p < r . So, from (40) it follows that ψ̃+ is coercive. Also, it is
sequentially weakly lower semicontinuous. So, by the Weierstrass–Tonelli theorem
we can find ũ∗ ∈ W 1,p(�) such that

ψ̃+(ũ∗) = inf[ψ̃+(u) : u ∈ W 1,p(�)]. (41)

As in the proof of Proposition 4.2, and since q � p < r , we show that ψ̃+(ũ∗) <

0 = ψ̃+(0), hence ũ∗ �= 0.
Also, from (41) we have

ψ̃ ′+(ũ∗) = 0,

⇒ 〈
A(ũ∗), h

〉 +
∫

�

ξ+(z)|ũ∗|p−2ũ∗hdz −
∫

�

((ũ∗)−)p−1hdz

+
∫

∂�

β(z)((ũ∗)+)p−1hdσ

−
∫

�

(ϑ0(z) − ε)((ũ∗)+)q−1hdz + c12

∫

�

((ũ∗)+)r−1hdz = 0

for all h ∈ W 1,p(�). (42)
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In (42) we choose h = −(ũ∗)− ∈ W 1,p(�). Then

c1
p − 1

||D(ũ∗)−||pp + ||(ũ∗)−||pp � 0 (see Lemma 3.1),

⇒ ũ∗ � 0, ũ∗ �= 0.

So, equation (42) becomes

〈
A(ũ∗), h

〉 +
∫

�

ξ+(z)(ũ∗)p−1hdz +
∫

∂�

β(z)((ũ∗)+)p−1hdσ

−
∫

�

(ϑ0(z) − ε)(ũ∗)q−1hdz + c12

∫

�

(ũ∗)r−1hdz = 0 for all h ∈ W 1,p(�),

⇒ ũ∗ is a positive solution of problem (39).

As before (see the proof of Proposition 4.2), using the nonlinear regularity theory
and the nonlinear maximum principle, we have ũ∗ ∈ D+.

Next, we show the uniqueness of this positive solution. To this end, we introduce
the integral functional j : Lq(�) → R̄ = R ∪ {+∞} defined by

j (u) =
⎧
⎨

⎩

∫

�

G(Du1/q )dz + 1

p

∫

�

ξ+(z)u p/qdz + 1

p

∫

∂�

β(z)u p/qdσ if u � 0, u1/q ∈ W 1,p(�)

+∞ otherwise.

Suppose that u1, u2 ∈ {u ∈ Lq(�) : j (u) < ∞} (the effective domain of j (·)).
Let y1 = u1/q1 and y2 = u1/q2 . By definition y1, y2 ∈ W 1,p(�). We set y = [tu1 +
(1 − t)u2]1/q with t ∈ [0, 1]. Then y ∈ W 1,p(�) and using Lemma 1 of Diaz and
Saa [32], we have

|Dy(z)| � [t |Dy1(z)|q + (1 − t)|Dy2(z)|q ]1/q ,
⇒ G0(|Dy(z)|) � G0([t |Dy1(z)|q + (1 − t)|Dy2(z)|q ]1/q)

(since G0(·) is increasing)
� tG0(|Dy1(z)|) + (1 − t)G0(|Dy2(z)|) for almost all z ∈ �

(see hypothesis H(a)(iv)),

⇒ G(Dy(z)) � tG(Du1(z)
1/q) + (1 − t)G(Du2(z)

1/q) for almost all z ∈ �,

⇒ u �→
∫

�

G(Du1/q)dz is convex.

Since ξ+ � 0, β � 0 (see hypothesis H(β)) and q � p, we see that

dom j � u �→
∫

�

ξ+(z)u p/qdz +
∫

∂�

β(z)u p/qdσ is convex.

Therefore, the integral functional j (·) is convex. By Fatou’s lemma, it is also lower
semicontinuous.
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Suppose that u1, u2 are two positive solutions of (39). From the first part of the
proof, we have u1, u2 ∈ D+. Then for h ∈ C1(�) and sufficiently small |t | > 0, we
have uq1 + th, uq2 + th ∈ dom j.

Since j (·) is convex, we can easily check that j (·) is Gâteaux differentiable at
uq1 and at uq2 in the direction h. Moreover, using the nonlinear Green’s identity (see
Gasinski and Papageorgiou [13], p. 210), we have

j ′(uq1)(h) = 1

q

∫

�

−div a(Du1) + ξ+(z)u p−1
1

uq−1
1

hdz

j ′(uq2)(h) = 1

q

∫

�

−div a(Du2) + ξ+(z)u p−1
2

uq−1
2

hdz for all h ∈ C1(�).

Since j (·) is convex, j ′(·) is monotone. Therefore,

0 �
∫

�

(
−div a(Du1) + ξ+(z)uq−1

1

uq−1
1

− −div a(Du2) + ξ+(z)uq−1
2

uq−1
2

)
(
uq1 − uq2

)
dz

= c12

∫

�

(
ur−q
2 − ur−q

1

) (
uq1 − uq2

)
dz � 0 (recall that r > q),

⇒ u1 = u2.

This proves the uniqueness of the positive solution ũ∗ ∈ D+ of (39).
Problem (39) is odd. Therefore, ṽ∗ = −ũ∗ ∈ −D+ is the unique negative solution

of (39). ��
Let S+ be the set of positive solutions of (1) and S− the set of negative solutions

of (1). From Proposition 4.2 and its proof, we know that S+ �= ∅, S+ ⊆ D+ and
S− �= ∅, S− ⊆ −D+. Moreover, as in Filippakis and Papageorgiou [33] (see also
Papageorgiou et al. [34]), we have that

S+ is downward directed (that is, if u1, u2 ∈ S+, then we can find u ∈ S+ such that
u � u1, u � u2);

S− is upward directed (that is, if v1, v2 ∈ S−, then we can find v ∈ S− such that
v1 � v, v2 � v).

Proposition 4.4 If hypotheses H(a), H(ξ), H(β), H1 hold, then ũ∗ � u for all u ∈
S+ and v � ṽ∗ for all v ∈ S−.

Proof Let u ∈ S+ and consider the following Carathéodory function

τ+(z, x) =
⎧
⎨

⎩

0 if x < 0
(ϑ0(z) − ε)xq−1 − c12xr−1 + x p−1 if 0 � x � u(z)
(ϑ0(z) − ε)u(z)q−1 − c12u(z)q−1 + u(z)p−1 if u(z) < x .

(43)
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Let T+(z, x) = ∫ x
0 τ+(z, s)ds and consider the C1-functional χ+ : W 1,p(�) → R

defined by

χ+(u) =
∫

�

G(Du)dz + 1

p

∫

�

(ξ+(z) + 1)|u|pdz + 1

p

∫

∂�

β(z)|u|pdσ

−
∫

�

T+(z, u)dz for all u ∈ W 1,p(�).

Corollary 3.1 and (43) imply that χ+ is coercive. Also, it is sequentially weakly
lower semicontinuous. So, by the Weierstrass–Tonelli theorem we can find û∗ ∈
W 1,p(�) such that

χ+(û∗) = inf[χ+(u) : u ∈ W 1,p(�)]. (44)

As in the proof of Proposition 4.2, using hypothesis H1(iv), we see that χ+(û∗) <

0 = χ+(0), hence û∗ �= 0.
From (44) we have

χ ′+(û∗) = 0,

⇒ 〈
A(û∗), h

〉 +
∫

�

(ξ+(z) + 1)|û∗|p−2û∗hdz +
∫

∂�

β(z)|û∗|p−2û∗hdσ

=
∫

�

τ+(z, û∗)hdz for all h ∈ W 1,p(�). (45)

In (45) we first choose h = −(û∗)− ∈ W 1,p(�). Using Lemma 3.1 and (43), we
obtain

c1
p − 1

||D(û∗)−||pp + ||(û∗)−||pp � 0,

⇒ û∗ � 0, û∗ �= 0.

Next, in (45) we choose h = (û∗ − u)+ ∈ W 1,p(�). Using (43), we obtain

〈
A(û∗), (û∗ − u)+

〉 +
∫

�

(ξ+(z) + 1)(û∗)p−1(û∗ − u)+dz

+
∫

∂�

β(z)(û∗)p−1(û∗ − u)+hdσ

=
∫

�

(ϑ0(z) − ε)uq−1(û∗ − u)+dz − c12

∫

�

ur−1(û∗ − u)+dz

+
∫

�

u p−1(û∗ − u)+dz. (46)
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Since u ∈ S+, we can find v ∈ L p′
(�)

(
1
p + 1

p′ = 1
)
such that

⎧
⎪⎪⎨

⎪⎪⎩

v(z) ∈ ∂F(z, u(z)) for almost all z ∈ �,

−div a(Du(z)) + ξ(z)u(z)p−1 = v(z) for almost all z ∈ �,
∂u

∂na
+ β(z)u p−1 = 0 on ∂�.

⎫
⎪⎪⎬

⎪⎪⎭

(47)

Using (38), (46), (47), we have

〈
A(û∗), (û∗ − u)+

〉 +
∫

�

(ξ+(z) + 1)(û∗)p−1(û∗ − u)+dz

+
∫

∂�

β(z)(û∗)p−1(û∗ − u)+dσ �
∫

�

v(û∗ − u)+dz +
∫

�

u p−1(û∗ − u)+dz

= 〈
A(u), (û∗ − u)+

〉 +
∫

�

(ξ(z) + 1)u p−1(û∗ − u)+dz

+
∫

∂�

β(z)u p−1(û∗ − u)+dσ

(since u ∈ S+)

�
〈
A(u), (û∗ − u)+

〉 +
∫

�

(ξ+(z) + 1)u p−1(û∗ − u)+dz

+
∫

∂�

β(z)u p−1(û∗ − u)+dσ,

⇒ 〈
A(û∗) − A(u), (û∗ − u)+

〉 +
∫

�

(ξ+(z) + 1)((û∗)p−1 − u p−1)(û∗ − u)+dz

+
∫

∂�

β(z)((û∗)p−1 − u p−1)(û∗ − u)+dσ � 0,

⇒ û∗ � u (see Lemma 3.1 and hypothesis H(β)).

Therefore, we have proved that

û∗ ∈ [0, u], û∗ �= 0. (48)

It follows from (43) and (48) that û∗ is a positive solution of (39), hence û∗ = ũ∗ ∈
D+ (see Proposition 4.3). We conclude that ũ∗ � u for all u ∈ S+. A similar argument
shows that v � ṽ∗ for all v ∈ S−. ��

Now we can produce extremal constant sign solutions for problem (1). These solu-
tions play an important role in the argument of Sect. 4, wherewe establish the existence
of nodal solutions.

Proposition 4.5 If hypotheses H(a), H(ξ), H(β), H1 hold, then problem (1) admits
a smallest positive solution û+ ∈ D+ and a biggest negative solution û− ∈ D+.

Proof Recalling that S+ is downward directed and using Lemma 3.10 of Hu and
Papageorgiou [35] (p. 178), we can find a decreasing sequence {un}n�1 ⊆ S+ such
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that infn�1 un = inf S+. Evidently, {un}n�1 ⊆ W 1,p(�) is bounded. So, we may
assume that

un
w→ û+ in W 1,p(�) and un → û+ in L p(�) and in L p(∂�). (49)

For every n ∈ N, we can find vn ∈ L p′
(�) such that

vn(z) ∈ ∂F(z, un(z)) for almost all z ∈ � (50)

〈A(un), h〉 +
∫

�

ξ(z)u p−1
n hdz +

∫

∂�

β(z)u p−1
n hdσ

=
∫

�

vnhdz for all h ∈ W 1,p(�). (51)

From (50), (49) and hypothesis H1(i), we see that {vn}n�1 ⊆ L p′
(�) is bounded.

So, we may also assume that

vn
w→ v̂ in L p′

(�) as n → ∞. (52)

From (49), (52) and Proposition 3.9 of Hu and Papageorgiou [35] (p. 694), we have

v̂(z) ∈ ∂F(z, û+(z)) for almost all z ∈ �. (53)

In (51) we choose h = un − û+ ∈ W 1,p(�), pass to the limit as n → ∞ and use
(49), (52). Then we obtain

lim
n→∞

〈
A(un), un − û+

〉 = 0,

⇒ un → û+ in W 1,p(�) (see Proposition 3.2). (54)

From Proposition 4.4 we have

ũ∗ � un for all n ∈ N

⇒ ũ∗ � û+. (55)

In (51) we pass to the limit as n → ∞ and use (52) and (54). Then

〈
A(û+), h

〉 +
∫

�

ξ(z)û p−1
+ hdz +

∫

∂�

β(z)û p−1
+ hdσ =

∫

�

v̂hdz for all h ∈ W 1,p(�),

⇒ û+ ∈ S+ (see (53), (55)) and û+ = inf S+.

Similarly, we can produce û− ∈ S− such that û− = sup S+. ��
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5 Nodal Solutions

In this section, we produce a nodal (sign changing) solution for problem (1). The idea
is simple. Having the extremal constant sign solutions û± (see Proposition 4.5), by
suitable truncation–perturbation techniques we restrict ourselves to the order interval
[û−, û+]. Using variational arguments (Theorem 3.1) and Proposition 3.3, we show
that problem (1) has a solution y0 ∈ [û−, û+]\{0, û±}. The extremality of û± implies
that y0 is nodal. For this strategy to work, we need to strengthen the hypotheses on the
primitive F(z, x). So, we now assume that F(z, x) = ∫ x

0 f (z, s)ds, with the integrand
f (z, s) being measurable with possible jump discontinuities in s ∈ R. We set

fl(z, x) = lim inf
x ′→x

f (z, x ′) and fu(z, x) = lim sup
x ′→x

f (z, x ′).

The precise hypotheses on the integrand f (z, x) are the following;
H2 : f : � × R → R is a measurable function, for almost all z ∈ �, f (z, ·) is

continuous at x = 0, it has only jump discontinuities and

(i) | f (z, x)| � a(z)(1 + |x |p−1) for almost all z ∈ � and all x ∈ R, with a ∈
L∞(�);

(ii) lim supx→±∞
fu(z,x)
|x |p−2x

� c1
p−1 λ̂1(p, ξ̂ , β̂) uniformly for almost all z ∈ �;

(iii) limx→+∞[ fl(z, x)x − pF(z, x)] = limx→−∞[ fu(z, x)x − pF(z, x)] = +∞
uniformly for almost all z ∈ �;

(iv) there exists c∗ > c̃λ̂2(q, ξ̃+, β̃) such that

c∗ � lim inf
x→0+

fl(z, x)

x p−1 , lim inf
x→0−

fu(z, x)

|x |p−2x
uniformly for almost all z ∈ �.

Remark 5.1 The above hypotheses imply that the primitive F(z, x) = ∫ x
0 f (z, s)ds

is a locally Lipschitz integrand and ∂F(z, x) = [ fl(z, x), fu(z, x)] (see Clarke [14],
p. 34 and Chang [15]). Therefore, hypotheses H2 are a more restrictive version of
hypotheses H1 used in Sect. 3.

Using these new stronger conditions on the reaction term, we now prove the exis-
tence of nodal (that is, sign changing) solutions.

Proposition 5.1 If hypotheses H(a), H(ξ), H(β), H2 hold, then problem (1) admits
a nodal solution

y0 ∈ [û−, û+] ∩ C1(�).

Proof Let û+ ∈ D+ and û− ∈ −D+ be the two extremal constant sign solu-
tions of problem (1) produced in Proposition 4.5. Then we can find v+, v− ⊆
L p′

(�)
(
1
p + 1

p′ = 1
)
such that
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v+(z) ∈ ∂F(z, û+(z)), v−(z) ∈ ∂F(z, û−(z)) for almost all z ∈ �, (56)
〈
A(û+, h)

〉 +
∫

�

ξ(z)û p−1
+ hdz +

∫

∂�

β(z)û p−1
+ hdσ =

∫

�

v+hdz, (57)

〈
A(û−, h)

〉 +
∫

�

ξ(z)|û−|p−2û−hdz +
∫

∂�

β(z)|û−|p−2û−hdσ

=
∫

�

v−hdz for all h ∈ W 1,p(�). (58)

As before, let μ > ||ξ ||∞ (see hypothesis H(ξ)) and consider the following mea-
surable functions

f̂+(z, x) =
⎧
⎨

⎩

0 if x < 0
f (z, x) + μx p−1 if 0 � x � û+(z)
v+(z) + μû+(z)p−1 if û+(z) < x,

(59)

f̂−(z, x) =
⎧
⎨

⎩

v−(z) + μ|û−(z)|p−2û−(z) if x < û−(z)
f (z, x) + μ|x |p−2x if û−(z) � x � 0
0 if 0 < x,

(60)

f̂ (z, x) =
⎧
⎨

⎩

v−(z) + μ|û−(z)|p−2û−(z) if x < û−(z)
f (z, x) + μ|x |p−2x if û−(z) � x � û+(z)
v+(z) + μû+(z)p−1 if û+(z) < x .

(61)

Let F̂±(z, x) = ∫ x
0 f̂±(z, s)ds and F̂(z, x) = ∫ x

0 f̂ (z, s)ds.
We also consider the corresponding truncation of the boundary term. So, we con-

sider the Carathéodory function

β̂(z, x) =
⎧
⎨

⎩

β(z)|û−(z)|p−2û−(z) if x < û−(z)
β(z)|x |p−2x if û−(z) � x � û+(z)
β(z)û+(z)p−1 if û+(z) < x

for all (z, x)∈ ∂�×R.

(62)
We set B̂(z, x) = ∫ x

0 β̂(z, s)ds for all (z, x) ∈ ∂� × R.
We introduce the locally Lipschitz functionals ψ̂±, ψ̂ : W 1,p(�) → R defined by

ψ̂±(u) =
∫

�

G(Du)dz + 1

p

∫

�

(ξ(z) + μ)|u|pdz +
∫

∂�

B̂(z,±u±)dσ

−
∫

�

F̂±(z, u)dz

ψ̂(u) =
∫

�

G(Du)dz + 1

p

∫

�

(ξ(z) + μ)|u|pdz +
∫

∂�

B̂(z, u)dσ −
∫

�

F̂(z, u)dz

for all u ∈ W 1,p(�).

Also, we consider the following order intervals in W 1,p(�) T+ = [0, û+], T− =
[û−, 0], T = [û−, û+].
Claim K

ψ̂
⊆ T, K

ψ̂+ = {0, û+}, K
ψ̂− = {0, û−}.
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Let u ∈ K
ψ̂
. We have

0 ∈ ∂ψ̂(u),

⇒ 〈A(u), h〉 +
∫

�

(ξ(z) + μ)|u|p−2uhdz +
∫

∂�

β̂(z, u)hdσ =
∫

�

v̂hdz

(63)

for all h ∈ W 1,p(�), with v̂ ∈ L p′
(�), v̂(z) ∈ ∂ F̂(z, u(z)) for almost all z ∈ �.

In (63) we choose h = (u − û+)+ ∈ W 1,p(�). Using (61) and (62), we have

〈
A(u), (u − û+)+

〉 +
∫

�

(ξ(z) + μ)u p−1(u − û+)+dz

+
∫

∂�

β(z)û p−1
+ (u − û+)+dσ

=
∫

�

(v+(z) + μû p−1
+ )(u − û+)+dz

= 〈
A(û+), (u − û+)+

〉 +
∫

�

(ξ(z) + μ)û p−1
+ (u − û+)+dz

+
∫

∂�

β(z)û p−1
+ (u − û+)+dσ

(see (56), (57)),

⇒ 〈
A(u) − A(û+), (u − û+)+

〉 +
∫

�

(ξ(z) + μ)(u p−1 − û p−1
+ )(u − û+)+dz = 0,

⇒ u � û (recall that μ > ||ξ ||∞).

In a similar fashion, choosing h = (û−−u)+ ∈ W 1,p(�) in (63) and using (58) and
(60), we obtain û− � u, hence u ∈ T . We deduce that K

ψ̂
⊆ T . Arguing similarly,

we show that K
ψ̂+ ⊆ T+ and K

ψ̂− ⊆ T−.

From (56), (59), (60) and the extremality of the solutions û+ ∈ D+ and û− ∈ −D+,
we conclude that K

ψ̂+ = {0, û+} and K
ψ̂− = {0, û−}. This proves Claim 5.

Claim û+ and û− are local minimizers of ψ̂ .
It is clear from Corollary 3.1, (59) and the fact that μ > ||ξ ||∞, that ψ̂+ is coer-

cive. Moreover, using the Sobolev embedding theorem and the compactness of the
trace map, we see that ψ̂+ is sequentially weakly lower semicontinuous. So, by the
Weierstrass–Tonelli theorem, we can find ũ+ ∈ W 1,p(�) such that

ψ̂+(ũ+) = inf[ψ̂+(u) : u ∈ W 1,p(�)] = m̂+ (64)

Hypothesis H2(iv), as in the proof of Proposition 4.2, implies that m̂+ =
ψ̂+(ũ+) < 0 = ψ̂+(0), hence ũ+ �= 0. We deduce that ũ+ = û+ (see Claim 5
and recall that ũ+ ∈ K

ψ̂+ , see (64)).

123



J Optim Theory Appl (2017) 175:293–323 319

Note that ψ̂+|C+ = ψ̂ |C+ (see (59), (61)) and recall that û+ ∈ D+. So, it follows
that û+ is a local C1(�)-minimizer of ψ̂ . By Proposition 3.1 we deduce that û+ is a
local W 1,p(�)-minimizer of ψ̂ .

Similarly for û− ∈ −D+, using this time the functional ψ̂− and (60).
This proves Claim 5.
Without any loss of generality,wemay assume that ψ̂(û−) � ψ̂(û+).The reasoning

is similar if the opposite inequality holds.
Weassume that K

ψ̂
is finite.Otherwise on account of (61),Claim5and the extremal-

ity of û±, we already have an infinity of nodal solutions. Claim 5 implies that we can
find small ρ ∈ (0, 1) such that

ψ̂(û−) � ψ̂(û+) < inf[ψ̂(u) : ||u − û+|| = ρ] = m̂ρ, ρ < ||û− − û+|| (65)

(see Aizicovici et al. [36], proof of Proposition 29). From (61) and Corollary 3.1 it is
clear that

ψ̂ is coercive ⇒ ψ̂ satisfies the nonsmooth C-condition. (66)

Then (65) and (66) permit the use of Theorem 3.1. Therefore, we can find y0 ∈
W 1,p(�) such that

y0 ∈ K
ψ̂

⊆ T (see Claim 5) and m̂ρ � ψ̂(y0). (67)

It follows from (62), (63) and (61) that y0 is a solution of (1) and y0 /∈ {û+, û−}.
Evidently, if we show that y0 �= 0, then y0 is a nodal solution of (1) (see (67)).

From Theorem 3.1, we have

ψ̂(y0) = inf
γ∈�

max
0�t�1

ψ̂(γ (t)) (68)

with � = {γ ∈ C([0, 1],W 1,p(�)) : γ (0) = û−, γ (1) = û+}.
According to (68), to show the nontriviality of y0, it suffices to produce a path

γ∗ ∈ � such that ψ̂ |γ∗ < 0. In what follows, we construct such a path in �.
Recall (see Sect. 2) that ∂BLq

1 = {u ∈ L p(�) : ||u||q = 1} and M = W 1,p(�) ∩
∂BLq

1 . Also, we define Mc = M ∩ C1(�).

We consider the following two sets of paths:

�̂ = {γ̂ ∈ C([−1, 1], M) : γ̂ (−1) = −û1(q, ξ̃+, β̃), γ̂ (1) = û1(q, ξ̃+, β̃)},
�̂c = {γ̂ ∈ C([−1, 1], Mc) : γ̂ (−1) = −û1(q, ξ̃+, β̃), γ̂ (1) = û1(q, ξ̃+, β̃)}.

From Papageorgiou and Rădulescu [37], we know that �̂c is dense in �̂. Then Propo-
sition 6 implies that given δ̂ > 0, we can find γ̂0 ∈ �̂c such that

max
0�t�1

c̃k̃+
q (γ̂0(t)) � c̃λ̂2(q, ξ̃+, β̃) + δ̂ (69)

with k̃+
q (u) = ||Du||qq + ∫

�
ξ̃+(z)|u|pdσ + ∫

∂�
β̃(z)|u|pdσ for all u ∈ W 1,p(�).
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Hypothesis H(a)(iv) implies that given ε > 0, we can find δ1 = δ1(ε) ∈ (0, 1)
such that

G(y) � c̃ + ε

q
|y|q for all y ∈ R

N with |y| � δ1. (70)

Hypothesis H2(iv) say that we can find c∗
1 ∈ (c̃λ̂2(q, ξ̃+, β̃), c∗) and δ2 = δ2(ε) ∈

(0, 1) such that

1

q
c∗
1 |x |q � F(z, x) for almost all z ∈ � and for all |x | � δ2. (71)

Let 0 < δ � min{δ1, δ2,min� û+,min�(−û−)} (recall that û+ ∈ D+, û− ∈
−D+). Since γ̂0 ∈ �̂c, û+ ∈ D+ and û− ∈ −D+, we can find ϑ ∈ (0, 1) small such
that

ϑγ̂0(t) ∈ T = [û−, û+], ϑ |γ̂0(t)(z)| � δ, ϑ |Dγ̂0(t)(z)| � δ

for all t ∈ [−1, 1], z ∈ �. (72)

Then for every t ∈ [−1, 1] we have

ψ̂(ϑγ̂0(t))

=
∫

�

G(ϑDγ̂0(t))dz + ϑ p

p

∫

�

ξ(z)|γ̂0(t)|pdz + ϑ p

p

∫

∂�

β(z)|γ̂0(t)|pdσ

−
∫

�

F(z, ϑγ̂0(t))dz (see (61), (62), (67) and recall the choice of δ > 0)

� c̃ + ε

q
ϑq ||Dγ̂0(t)||qq + c̃ϑq

q

∫

�

ξ̃+(z)|γ̂0(t)|qdz

+ c̃ϑq

q

∫

∂�

β̃(z)|γ̂0(t)|qdσ − c∗
1ϑ

q

q
||γ̂0(t)||qq

(see (70)–(72) and recall that δ, ϑ ∈ (0, 1), q � p)

� ϑq

q
[(c̃λ̂2(q, ξ̃+, β̃) + δ̂) + εc13 − c∗

1] for some c13 > 0

(see (69), (72) and recall that ||γ̂0(t)||q = 1 for some c13 > 0). (73)

We choose small ε, δ̂ > 0 so that

ψ̂(ϑγ̂0(t)) < 0 for all t ∈ [−1, 1] (see (73)). (74)

We set γ0 = ϑγ̂0. This is a continuous path in W 1,p(�) (in fact in C1(�)), which
connects −ϑ û1(q, ξ̃+, β̃) and ϑ û1(q, ξ̃+, β̃). Along this path we have

ψ̂ |γ0 < 0. (75)
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Recall that ψ̂+(û+) = m̂+ < 0 = ψ̂+(0) (see (64)). The functional ψ̂+ is coercive

(seeCorollary 3.1 and (59)). So, it satisfies the nonsmoothC-condition. Let ˙̂
ψ

η
+ = {u ∈

W 1,p(�) : ψ̂+(u) < η} for any η ∈ R. Invoking the nonsmooth second deformation

theorem of Corvellec [38], we can find a deformation h : [0, 1] × ˙̂
ψ0+ → ˙̂

ψ0+ such
that

• h(t, ·)|
K

m̂+
ψ̂+

= id|
K

m̂+
ψ̂+

(
Km̂+

ψ̂+
=
{
u ∈ K

ψ̂+ : ψ̂+(u) = m̂+
})

; (76)

• h(1, ˙̂
ψ0+) ⊆ ˙̂

ψ
m̂++ ∪ Km̂+

ψ̂+
= {û+} (see Claim 5 and (64)); (77)

• ψ̂+(h(t, u)) � ψ̂+(u) for all t ∈ [0, 1], u ∈ ˙̂
ψ

0

+. (78)

Let γ+(t) = h(t, ϑ û1(q, ξ̃+, β̃))+ for all t ∈ [0, 1]. This is a well-defined path
(see (75)) and of course it is continuous. Also, we have

– γ+(0) = h(0, ϑ û1(q, ξ̃+, β̃))+ = ϑ û1(q, ξ̃+, β̃) (since h is a deformation, see
[13], Definition 4.11.2, p. 645);

– γ+(1) = h(1, ϑ û1(q, ξ̃+, β̃))+ = û+ (see (77) and recall that û+ ∈ D+);
– ψ̂(γ+(t)) = ψ̂+(γ+(t)) � ψ̂+(ϑ û1(q, ξ̃+, β̃)) = ψ̂(ϑ û1(q, ξ̃+, β̃) (see (59),
(61), (78)).

So, γ+ is a continuous path in W 1,p(�) connecting ϑ û1(q, ξ̃+, β̃) and û+ (see
(76)), and along this path we have

ψ |γ+ < 0. (79)

Similarly, we produce another continuous path γ− in W 1,p(�) which connects
−ϑ û1(q, ξ̃+, β̃) and û− and along which we have

ψ |γ− < 0. (80)

We concatenate γ−, γ0, γ+ and generate γ∗ ∈ � such that ψ |γ∗ < 0 (see (75), (79),
(80)). We conclude that y0 is nodal. As before (see the proof of Proposition 4.2), using
the nonlinear regularity theory, we have y0 ∈ [û−, û+] ∩ C1(�). ��

Summarizing, we have established the following multiplicity theorem for prob-
lem (1).

Theorem 5.1 If hypotheses H(a), H(ξ), H(β), H2 hold, then problem (1) has at least
three nontrivial smooth solutions

u0 ∈ D+, v0 ∈ −D+ and y0 ∈ [v0, u0] ∩ C1(�) nodal.

6 Conclusions and Open Problems

In this paper we have examined hemivariational inequalities which are resonant at
±∞ with respect to the first eigenvalue. The resonance occurs from left, making
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the problem coercive. This permits the use of the direct method of the calculus of
variations. At this point two interesting questions arise.

(a) What can be said if the resonance is from the right of λ̂1 (namely, in H1(i i i)
the limit is −∞)? In this case the problem is not coercive and so the direct method is
no longer applicable.

(b) In the particular case of the p-Laplacian,what happens ifwe have resonancewith
respect to a nonprincipal variational eigenvalue?We know that, due to the nonlinearity
of the differential operator, the eigenspaces are only cones (hence, not linear subspaces)
and we cannot decompose W 1,p(�) in terms of these eigenspaces. So the problem of
higher resonance is more complicated and new tools are needed.
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7. Papageorgiou, N.S., Rădulescu, V.D.: Bifurcation near infinity for the Robin p-Laplacian. Manuscr.
Math. 148, 415–433 (2015)
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