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Abstract We consider a nonlinear, nonhomogeneous Robin problem with an indefi-
nite potential and a nonsmooth primitive in the reaction term. In fact, the right-hand
side of the problem (reaction term) is the Clarke subdifferential of a locally Lipschitz
integrand. We assume that asymptotically this term is resonant with respect the prin-
cipal eigenvalue (from the left). We prove the existence of three nontrivial smooth
solutions, two of constant sign and the third nodal. We also show the existence of
extremal constant sign solutions. The tools come from nonsmooth critical point the-
ory and from global optimization (direct method).
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1 Introduction

In this paper, we study a class of nonlinear elliptic partial differential inclusions with
Robin boundary condition and involving a nonhomogeneous differential operator. The
resulting inclusion is known in the literature as a “hemivariational inequality”. Hemi-
variational inequalities were introduced as an extension of the classical variational
inequalities, in order to deal with problems of mechanics and engineering, in which
the relevant energy functionals are neither convex nor smooth (the so-called super-
potentials). Many such applications can be found in the book by Panagiotopoulos [1].

Our aim is to prove a “three solutions theorem”, which provides regularity and
sign information for all of them. Such multiplicity results were proved by Liu [2], Liu
and Liu [3], Papageorgiou and Papageorgiou [4] for Dirichlet problems driven by the
p-Laplacian with zero potential and with a smooth primitive. However, none of the
aforementioned work allows for resonance to occur and they do not produce nodal
(that is, sign changing) solutions. Multiple nontrivial smooth solutions for Neumann
p-Laplacian hemivariational inequalities were obtained by Aizicovici et al. [5,6].
In [5] the potential function is identically zero and the multivalued nonlinearity is
crossing, but the situation is complementary to the one studied here. The authors,
using degree theory techniques, produce two nontrivial smooth solutions with no sign
information. In [6], the potential is positive and the multivalued reaction has a super-
linear growth. Finally, we also mention recent work on nonlinear Neumann and Robin
problems with a smooth primitive, by Papageorgiou and Rédulescu [7,8], Marano
and Papageorgiou [9,10], Papageorgiou and Rédulescu [11], and Papageorgiou and
Winkert [12].

2 Statement of the Problem

Let @ € RY be a bounded domain with a C2-boundary 9. In this paper, we study
the following nonlinear elliptic partial differential inclusion:

—diva(Du(z)) + @) |u(z)|?P2u(z) € dF(z, u(z)) in 2,
u

an + B(@)|u(z)|P*u(z) = 0 on IS2. D

In this inclusion, the map a : RY — R¥ involved in the definition of the differential
operator is a strictly monotone, continuous map, which satisfies certain other regularity
and growth conditions listed in hypotheses H (a) (see Sect. 3). These hypotheses are
general enough to incorporate in our framework many differential operators of interest,
such as the p-Laplacian. We stress that in our case the differential operators need not
be homogeneous. The potential function § € L°°(R) is, in general, sign changing
(indefinite potential). In the reaction term (right-hand side of (1)), F(z, x) is a real-
valued function on Q x R, which is measurable in z € 2 for every x € R and
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locally Lipschitz in x € R for p-a.a. z € Q. By dF(z, x) we denote the generalized
subdifferential in the sense of Clarke (see Sect. 3).

In the boundary condition, 37“ denotes the generalized normal derivative defined
by extension of the map ‘

A EN I u _ (a(Du), n)
O RN

ng

with n(-) being the outward unit normal on d€2. This kind of normal derivative is
dictated by the nonlinear Green’s identity (see, for example, Gasinski and Papageor-
giou [13], p. 210).

In this work, we assume that d F(z, -) exhibits sublinear growth as x — +o0 and
in the special case of the p-Laplace differential operator, the multivalued quotient

?j 1(,2;2’2 asymptotically as x — oo stays below the principal eigenvalue A1 of the

differential operator u +—> —A,u + E)|ulP"2u, u € W-P(Q) with the Robin
boundary condition. Here, A, denotes the p-Laplace differential operator defined by
Apu = div (|Du|P~2Du) forallu € W'P(Q), 1 < p < o0.

In fact, we allow for full interaction (resonance) with ):1 .So, the problem is resonant.
The resonance occurs from the left of A; and this makes the energy (Euler) functional
of the problem coercive. This allows for the use of global optimization techniques
(direct method of the calculus of variations) in order to obtain solutions of constant
sign. Near the origin, our conditions on d F(z, -) are such that, again in the special

case of the p-Laplace differential operator, they imply that the quotient ‘?j éfzxx) stays

above A1. So, we can say that we have a “crossing” multivalued reaction term, since

the quotient ‘fj ,(,Z_zxx) crosses at least A1 as we move from x = 0 to x = Fo00.

3 Mathematical Background

Let X be a Banach space and X* its topological dual. By (-, -) we denote the duality
brackets for the pair (X*, X). We say that ¢ : X — R is locally Lipschitz, if for every
x € X we can find a neighborhood U (x) of x and a constant k(x) > O such that

lp@u) — @) < k(X)|lu —vl| forallu,v e U(x). @)

If (2) is satisfied forall u, v € X and with k(x) = k > Oindependent of x € X, then
we have the usual Lipschitz continuous function. Note that, if ¢ : X — R is Lipschitz
continuous on every bounded set in X, then ¢ is locally Lipschitz. Moreover, if X is
finite dimensional, then the converse is also true. Finally, if ¢ : X — R is continuous,
convex or if ¢ € C'(X, R), then g is locally Lipschitz.

Given a locally Lipschitz function, the “generalized directional derivative” of ¢ at
x € X in the direction & € X, denoted by goo(x; h), is defined by

P+ 2h) — p(x)

goo(x; h) = lim sup .

x'—x
A—0F
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It is easy to see that

1) h— (po(x; h) is sublinear and Lipschitz continuous;
@) (x,h) — q)o(x; h) is upper semicontinuous on X x X;
(iii) ¢°(x; —h) = (—)%(x; h) forall x, h € X.

So, ¢%(x; ) is the support function of a nonempty, convex and w*-compact set
defined by

dp(x) = {x* € X* 1 (x*, h) < ¢°x; h) forall h € X}.

The multifunction x — d¢(x) is known as the generalized or Clarke subdifferential
ofp.Ifp e C 1 (X, R), then as we have already mentioned, ¢ is locally Lipschitz and
dp(x) = {¢'(x)}. Similarly, if ¢ : X — R is continuous convex, then ¢ is locally
Lipschitz and the generalized subdifferential coincides with the subdifferential in the
sense of convex analysis defined by d.¢(x) = {x* € X* : (x*, h) < ¢(x + h) —
p(x) forall h € X}.

For locally Lipschitz functions ¢, ¥ : X — R and A € R, we have

(1) (@ +¥)(x) € de(x) + 0¥ (x) for all x € X (equality holds if one of them is
a singleton);
(i) d9(Ap)(x) = Xdp(x) for all x € X.

The multifunction d¢ : X — 2% : \ ¥ is upper semicontinuous (usc for short) from
X, equipped with the norm topology into X*, furnished with the w*-topology. This
implies that Grdg = {(x,x*) € X x X* : x* € dp(x)} is closed in X x X7 .. For
a complete presentation of the subdifferential theory for locally Lipschitz functions,
we refer to Clarke [14].

Using the Clarke subdifferential theory, we can have a nonsmooth critical point
theory extending the classical theory for C'-functions. So, let ¢ : X — R be a locally
Lipschitz function. We say that x € X is a “critical point” of ¢, if 0 € d¢(x). By K,
we denote the set of critical points of ¢. Let

my(x) = inf [||x*|]x : x* € dp(x)]. 3)

We say that ¢ satisfies the “nonsmooth PS-condition”, if the following property
holds.

“Every sequence {x,},>1 € X such that
{o(xx)}n>1 € R is bounded and m(x,) — 0 asn — oo,
admits a strongly convergent subsequence”.

Evidently, this notion extends the classical C-condition for C!l-functions.

Using this compactness-type condition on the functional ¢, one can prove a defor-
mation theorem from which follows the nonsmooth minimax theory of the critical
points of ¢. A basic result in that theory is the so-called mountain pass theorem (see
Chang [15], Gasinski and Papageorgiou [16], Radulescu [17]).
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Theorem 3.1 Let ¢ : X — R be a locally Lipschitz function which satisfies the
nonsmooth C-condition. Assume that there exist ug,u; € X and r > 0 with
llur — uoll > r, max{e(uo), p(u1)} < infle) : |lu — uoll = rl = m,, and
¢ = infyer maxo<; <1 @(y () with T = {y € C([0, 11, X) : ¥ (0) = uo, y (1) = uy).
Then ¢ > m, and c is a critical value of ¢ (that is, we can find u € K, such that
@(u) =c)

In the analysis of problem (1) we will use the following spaces:

— the Sobolev space W17 (); .
— the ordered Banach space C L),
— the boundary Lebesgue space L? (9€2).

In what follows, we denote by || - || the norm of the Sobolev space WLP(Q), defined

by ||ull = [lullh + ||Du||Z]l/p forallu € WP (). The positive (order) cone for the
ordered Banach space C!(Q) is givenby C = {u € C'(Q) : u(z) > Oforallz € Q}.
This cone has a nonempty interior that contains Dy = {u € C4 : u(z) > Oforall z €
Q}.

On 02 we consider the (N — 1)-dimensional Hausdorff (surface) measure o (-).
Using this measure, we can define in the usual way the Lebesgue spaces L9 (3€2), 1 <
g < oo. The theory of Sobolev spaces says that there exists a unique continuous linear
map yp : WlP(Q) — LP(3), known as the “trace map”, such that yp(u) = ulyq
forallu € WP () N C(RQ). In this way, we extend the notion of boundary values to

all Sobolev functions. The trace map is compact into L9 (92) for all ¢ € [1, vap—__;)
if N > 3, and into L9(2) for all ¢ € |1, oo[ if N = 1, 2. In the sequel, for the sake
of notational simplicity, we drop the use of the map yp. All restrictions of Sobolev
functions on 9€2 are understood in the sense of traces. Finally, we mention that the

trace map is not surjective on L”(9€2). We have
) Ly ) 1 1
imyy=Wr'"(0Q) with — + — = 1.
p P

Moreover, we have ker yy = Wé’p ().
Let d € C'(]0, oo[) with d(t) > 0 for all #+ > 0 and assume that there exist
c1, ¢2 > 0 such that

. td (1)
0<c<
d(t)

<co, cit?P ' <dt) <er(1+1P7Y forallt > 0. (4)

Our hypotheses on the map a(-), involved in the definition of the differential operator
in problem (1), are the following:
H(a): a(y) = ao(|y|)y for all y € RN with ag(¢) > 0 for all r > 0, and
(i) ap € C'(0, 00), t > tag(t) is strictly increasing on (]0, +-00[), tag(t) — 0% as
t - 0" and

tagy(t)
1m
=0t ap(t)
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(i) |Va(y)| < C3% for all y € RV\{0} and some c3 > 0;

(i) (Va(y)h, h)gy > dj');‘"“ |h|? for all y € RN\{0}, h € RV;

@(v) if Go(r) = fé sap(s)ds (for t > 0), then there exists g € (1, p] such that

t— Go(tl/q) is convex on (]0, co[); and
. qGo(t) .
im —— =¢

t—0t td

> 0.

Remark 3.1 Hypotheses H (a)(i), (ii), (iii) are designed so that we can use the non-
linear regularity theory of Lieberman [18] and the nonlinear maximum principle of
Pucci and Serrin [19], pp. 111, 120. Hypothesis H (a)(iv) serves the particular needs
of our problem, but it is very mild, and it is satisfied in most cases of interest, as the
examples which follow illustrate.

From hypotheses H (a), it follows that r — Gq(¢) is strictly convex and strictly
increasing. We set G(y) = Go(|y|) for all y € RV. Evidently, G(-) is convex and
G(0) = 0. We have

y

VG(y) = G6(|y|)|y_| =ap(lyDy = a(y) forally e RM\{0}, VG(0) =0.

Therefore, G (-) is the primitive of a(-). The convexity of G(-) and since G(0) = 0,

imply that
G(y) < (a(y), y)gv forall y e RV, 5)

Hypotheses H(a)(i), (ii), (iii) and (4), (5) lead to the following lemma which
summarizes the main properties of the map a(-).

Lemma 3.1 If hypotheses H(a)(i), (ii), (iii) hold, then

(a) the map y > a(y) is continuous and strictly monotone (hence maximally mono-
tone, t00);
(b) la(y)| < ca(1 + |y|P~Y) forall y € RN and some c4 > 0;

() (a(y), y)py = p"il [y|? forall y € RN,

This lemma and (5) give the following growth estimates for the primitive G(-).

Corollary 3.1 If hypotheses H(a)(i), (ii), (iii) hold, then ﬁmp < GO <
cs(1 4+ |y|?) forall y € RN and some c5 > 0.

Example The following maps satisfy hypotheses H (a) above (see [8]).

(@) a(y) = |y|P~2with 1 < p < oo. Then the differential operator is the p-Laplacian
Apu = div (|Du|P~2Du) for allu € WP (Q).

() a(y) = |y|P2y + |y|? 2y with | < g < p < oo. Then the differential operator
is the (p, g)-Laplacian A ,u + Ayu forall u € whr(Q).
Such operators arise in problems of mathematical physics, see Cherfils and
Ilyasov [20]. Recently, some existence and multiplicity results for such equa-
tions have been established. All these problems are with no potential (that is,
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& = 0) and with a smooth primitive F(z, -). We mention the works of Aizicovici
et al. [21], Cingolani and Degiovanni [22], Papageorgiou and Rédulescu [23],
Papageorgiou et al. [24], Sun [25], and Sun et al. [26].
-2
© aly) = (1 +| ylz)pTy with 1 < p < oo. Then the differential operator is

p=2
the generalized p-mean curvature operator div (( 1+ |Du|2) 2 Du) forall u

whp(Q).

P2 X
(d) a(y) = Iy|P2y + B with 1 < p < oo,

The hypotheses on the potential function &(-) and the boundary coefficient are the
following:

HE): £ € L¥(Q).
H(B): B e CO(DQ) with @ €]0, 1[ and B(z) = 0 for all z € 3.

Remark 3.2 When = 0, we have the usual Neumann problem.

Suppose that Fp : 2 x R — R is a locally Lipschitz integrand satisfying
|Fo(z, x)| < ao(z)(1 + |x|?) foralmostallz € Q andforallx € R, where ag e L®(Q).

Consider the functional ¢y : W7 () — R defined by

<p0(u)=/ G(Du)dz+l/$(z)|u|pdz+l/ B()|ul|Pdo
Q pPJo P Jaq

—f Fo(z,u)dz forallu € WP ().
Q

Then, ¢q is locally Lipschitz (see Clarke [14]). From Gasinski and Papageor-
giou [27] (see also Papageorgiou and Ridulescu [28] for the critical case), we have
the following property.

Proposition 3.1 Let ug € WVP(Q) be a local C'(Q)-minimizer of go, that is, there
exists pg > 0 such that

9o(uo) < @o(uo +h) forallh € C'(Q) with ||h]|c1 g < po-

Then, ug € CH*(Q) with0 < o < 1 and ug is also a local WP (Q)-minimizer of @o,
that is, there exists p; > 0 such that

@o(uo) < go(uo +h) forallh € WP(Q) with ||| < pi.

Let A : WP (Q) — WP (Q)* be the nonlinear map defined by
(A(u), h) = / (a(Du), Dh)gndz forallu,h € WP (Q).
Q
From Gasinski and Papageorgiou [29] (Problem 2.192), we have:
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Proposition 3.2 If hypotheses H (a) hold, then A : W-P(Q) — W1P(Q)* is con-
tinuous, monotone (hence maximally monotone, too) and of type (S)+, that is,

“Up = uin WHP(Q), limsup(A(un), tn — u) <0 => u, — uin WHP(Q).”

n—o00

We will also need some basic facts about the spectrum of the nonlinear operator
ur> —Apu+£(2) |u|P~2u with the Robin boundary condition. So, we consider the
following nonlinear eigenvalue problem:

—Apu(z) + E@Nu(2) P u(z) = Mu@)1P2u(z) in Q,
a_M‘|‘,3(Z)|M|‘n_2u=00n I, . (6)
onp

where %"p = |Du|P~2(Du, n)py. We say that A €Risan eigenvalue if problem (6)

admits a nontrivial solution i € WhP(Q), known as an eigenfunction corresponding
to A.

From Mugnai and Papageorgiou [30] (Neumann problem) and Papageorgiou and
Rédulescu [31] (Robin problem), we know that problem (6) has a smallest eigenvalue
A1(p, &, B) € R which has the following properties:

5\1 (p,é&, ,B)Ais isolated iIAl the spectrum & (p, &, B) of (6) (that is, we can find ¢ > 0
such that (A1(p, &, B), A1(p. &, B) +e) N6 (p, &, B) = 0);

r(p, &, B) is simple (that is, if i, 0 are two eigenfunctions corresponding to this
eigenvalue, then & = 0 with n € R\{0});

iﬂnéiﬂ=hﬁ[ﬁﬁ?:ueWLWQLu#O}, )
u

p

with k), : W1P(Q) — R being the C!-functional defined by

kp(u) = IIDMII§+/ S(Z)Iulpdz+/ B(@)|ulPdo.
Q a0

In (7) the infimum is realized on the one-dimensional eigenspace, corresponding to
the eigenvalue A1(p. &, B). It follows from the above properties that the elements of
this eigenspace do not change the sign. By i1 (p, &, B) we denote the L?-normalized
(thatis, ||1(p, &, B)I|l, = 1) positive eigenfunction. The nonlinear regularity theory
of Lieberman [18] implies that i1 (p, &, B) € C4. In fact, the nonlinear maximum
principle (see, for example, Gasinski and Papageorgiou [13], p. 738) implies that
u1(p, &, B) € Dy. The eigenfunctions corresponding to eigenvalues A * il(p, &, B)
are nodal (that is, sign changing). The spectrum & (p, &, B) is closed and il(p, £ B)
is isolated. So, the second eigenvalue ):z(p, &, B) is well-defined by iz(p, & B =
min{i € 6 (p, &, B) : & > hi(p, & ).

Additional eigenvalues can be generated by using the Ljusternik—Schnirelmann
minimax scheme. In this way, we produce a strictly increasing sequence {MJren of
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eigenvalues such that ik — 400. These are known as the “LS-eigenvalues” of (6), and
we do not know if they exhaust 6 (p, &, ). We know that they exhaust 6 (p, &, B) if
p = 2 (linear eigenvalue problem) or if N = 1 (ordinary differential equation). A vari-
ational characterization of A ( P, &, B) can be obtained using the minimax expression
of the Ljusternik—Schnirelmann minimax scheme. There is an alternative minimax
characterization which is more convenient for our purpose. So, we define

OBI" ={u e LP(Q): |lul, =1},
M=w"P(Q)naBL",
P={peCU=1,11, M) : p(=D) = —ii(p,&, B), P(1) = i1 (p, £, B)}.

_ From [30,31], we have the following alternative minimax characterization of
r(p, &, B).
Proposition 3.3 A2(p, &, B) = inf,_p max_1<r<1 kp(P(0)).

Finally, let us fix our notation. For x € R we set xE = max{tx, 0} and for
u € Wh7(Q) we define u™(-) = u(-)*. We have ut € W'P(Q), u = ut —
u™, lul =ut +u".Foru,v e Wl”’(Q), v < u, we introduce the order interval
[v,ul = {y € WHP(Q) : v(z) < y(z) < u(z) for almost all z € Q}.

4 Solutions of Constant Sign

In this section, we produce two nontrivial, constant sign smooth solutions. These
solutions are obtained by global optimization of suitable truncations and perturbations
of the energy functional. In addition, we establish the existence of extremal constant
sign solutions of (1), that is, we show that problem (1) has a smallest positive solution
and a biggest negative solution. These extremal constant sign solutions are crucial in
obtaining a nodal (sign changing) solution in Sect. 4.

The hypotheses on the nonsmooth primitive F (z, x) are the following:

Hy : F: Q xR — Ris alocally Lipschitz integrand (that is, z — F(z, x) is
measurable and for almost all z € Q, x — F(z, x) is locally Lipschitz) such that
F(z,0) = 0 for almost all z €  and

) v <al+ |x|1”1) for almost all z € Q and forall x € R, v € 9F (z, x),
witha € L®(Q)4;
(i) limsup,_, 4 W%zx < %):1 (p. &, B uniformly for almost all z € Q and for
allv € 0F (z, x), with ¢y > 0 as in (4), and Withé = pc—_]lé, ,é = pc—_ll,B;
(iii) limy_ +c[vx — pF(z, x)] = +o00 uniformly for almost all z € 2 and for all
veIF(z,x);
(iv) there exists a function ¥y € L°°(2) such that

Ehi(q, ET, B) < Do(z) foralmost all z € Q, B9 # (g, ET, ),

Yo(z) < lim i(I)lf uniformly for almost all z € 2, and for all v € dF (z, x)
x—

|x]9=2x
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with ¢ > 0 and ¢ € (1, p] as in hypothesis H (a)(iv), and € = L&, B = 1p.

Remark 4.1 1f a(y) = |y|?~2y forall y € RV (the case of the p-Laplace differential
operator), then c; = p — 1 (see (4)). So,é = 5,,3 = B (see hypothesis H; (i7)). Hence
in this special case, we see that hypothesis Hj(ii) incorporates in our framework
problems which are resonant at 0o with respect to the principal eigenvalue of the
differential operator u — —Apu + &(z)|ul? ~24 with Robin boundary condition.
Hypothesis H; (iii) says that this resonance occurs from the left of A 1(p, é , B) in the
sense that

1
—1

il(p, é, 3)|x|p — pF(z,x) - 400 asx — Fo00, uniformly for almostall z € Q2.

This fact makes the energy (Euler) functional of the problem coercive and so tech-
niques of global optimization can be used. To better understand hypothesis Hj (iv) it
is again helpful to consider the situation in the special case of the p-Laplacian (that
is, a(y) = |y|P~2y). Then we have q = p and ¢ = 1 (see hypothesis H (a)(iv)).
Hence, we see that hypothesis Hj(iv) implies that as x — 0, the quotient IX\1’+2X
stays above A ( p, &, B) and so we have a crossing reaction term. In fact, hypothesis
H (iv) permits also the presence of a concave (that is, of a (p — 1)-superlinear) term
near zero.

Let © > ||€]lco (see hypothesis H(£)) and consider the following truncations—
perturbations of the primitive F(z, x):

ﬁ, B 07 if x < 01
@O =\ P + Exlr, if 0 <,

. F(z,x)+ &x1?, if x <O,
= P
F-@x) {0, if 0<x. ®
Both Fy(z, x) are locally Lipschitz integrands, and we have
. 0 if x<O
OF (z,x) C{{roF(z,0):0<r <1} if x=0
F (z,x) + puxP~! if 0<x
R AF (z,x) 4+ plx|P2x if x<0
AF_(z,x) € { {roF(z,0): 0<r <1} if x=0 )
0 if 0<ux

(see Clarke [14], p. 42). Then we introduce the locally Lipschitz functionals ¢4 :
W1P(Q) — R defined by

1 1
G4(u) :f G(Du)dz+—f<s<z>+m|u|f’dz+—f B()lulPdo
Q P Ja P Joo

_/ ﬁi(z,u)dz forallu € leP(Q)'
Q
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Also, let ¢ : WhP(Q) — R be the energy (Euler) functional for problem (1)
defined by

1 1
¢<u>=/ G(Du)dz+—/ s<z)|u|f’dz+—f BO)luldo
Q P JQ P Jaq

_/ F(z,u)dz forallu € W7 (Q).
Q

This functional is also locally Lipschitz.

Proposition 4.1 If hypotheses H(a)(i)(ii)(iii), H (&), H(B), Hi hold, then the func-
tionals ¢ and ¢+ are coercive.

Proof We present the proof for the functional ¢; the proofs for ¢ are similar.

We proceed by contradiction. So, suppose that ¢ is not coercive. Then we can find
{tntn>1 € WP (Q) and ¢ > 0 such that

lunl| = +o0o and ¢@(u,) < cg foralln € N. (10)

We have

1 1
/ G(Dun)dz+—/ é(z)lunl”der—/ B(2)|u,|Pdo
Q p Q p Q2

—/ F(z,uy)dz < cg foralln € N. (11)
Q

We set y, = ﬁ, n € N. Then ||y,|| = 1 for all n € N and so by passing to a
suitable subsequence if necessary, we may assume that

yu — yin WHP(Q) and y, — yin LP() andin L?(39). (12)
From (11) and Corollary 3, we have

F(Zv un)
lleenll?

Cl 1 1
—IIDy;zIIZ-F—/ S(Z)Iynlpdz—i——/ B |yn|Pdo —/
p(p—1) P Ja pJa Q
< —— foralln e N.

llunl?

From hypothesis H;(i) and Lebourg’s nonsmooth mean value theorem (see
Clarke [14], p. 41), we obtain

|F(z,x)| < c7(1 + |x|P) for almost all z € R and some ¢7 > 0,
= {%} cL! (£2) is uniformly integrable (see (12)).
Un n>1
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Then the Dunford—Pettis theorem and hypothesis Hj (ii) imply (at least for a sub-
sequence) that

Foun() w €1
—
l[etn (17 pip—=1
n(z) < A1 (p, &, B) for almostall z € Q. (13)

nlyl? in LY(Q) with n e L®(RQ),

So, passing to the limit as n — oo in (13) and using (10), (12), (13), we obtain

1 1
C—1||Dy||§:+—/ §(Z)|y|pdz+—/ B)Iyl7do
p(p—1 pJo p Jaq

c1
< - i< pd 9
P(P—l)/san ‘
- [IID)’II§+/ é(z)lyl”dz+/ 3(Z)|M|pd0]
p(p—1) Q a0

c1
< ——— [ nlylPdz,
p(p— 1)/9

= ||Dy||z+/ §<z>|y|sz+/ ﬂ(z)|y|Pdo</ n@IylPdz. (14)
Q 02 Q

First, we assume that n # ai( D, é /§ ). Then from (14) and Lemma 4.11 of Mugnai
and Papageorgiou [30], we see that we can find cg > 0 such that cg||y||? < 0. It
follows that y = 0. We deduce that

I Dyullp — 0,
= y, — 0in WHP(Q) (see (12)),
which contradicts the fact that lyall =1 for alln e N.

Now, we assume that (z) = M(p é ,3) for almost all z € Q. Then from (14) and
(7) we have

||Dy||g+f9§(z)|y|vdz+/m,§(z)|y|pda =hi(p. E, By,

= y=r1i(p,& B) forsomer € R.

If t =0, then y = 0 and as above, we have y, — 0in wkp (€2), which contradicts
the fact that ||y, || = 1 for alln € N. Then t # 0 and in order to fix things, we assume
that T > O (the reasoning is similar if t < 0). Since u;(p, &, B) € D4, we have
y(z) > 0 for all z € Q. It follows that

uy(z) — +oo forall z € Q. (15)

Hypothesis Hj(iii) implies that given any i > 0, we can find c9g = co(u) > 0
such that
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vx — pF(z,x) > [t for almost all z € Q and forall x > ¢g, v € dF(z,x). (16)

For almost all z € €2, the function s +— r (Z 9 s locally Lipschitz on [cg, 4+00[.

So, using Proposition 2.3.14 of Clarke [14], p. 48 we have

sP §2P (7

3 (F(z,s)> c sPOF(z,5) — ps”le(z,s).

By Rademacher’s theorem (see Gasinski and Papageorgiou [13], Theorem 3.120,
p. 433), we know that for almost all z € €2 the function s £ ‘Z,,S) is differentiable
for almost all s € [cy, oo[ and at every such point s € [cg, oo[ of differentiability, we

have
<F(Z S)) (F(Z,S))
el —
ds sP sP
(see Clarke [14], Theorem 2.5.1, p. 63). So, from (17) we see that we can find v €
dF (z, s) such that

d (F(z,s)\ sPv-— psPLF(z, 5) _sv—pF(z,5)
ds sP - §2P - sp+l

A

= —Ifil for almost all z € 2 and for all s € [cg, 00) (see (16)),
s

F .
N (z,y)_F(z,x)>_g 1
yP xP p

1
— —] for almost all z € Q and forall y > x > c¢9.
yP xP

(18)

From hypothesis Hj (i) and using Lebourg’s mean value theorem (see Clarke [14],
Theorem 2.3.7, p. 41), we obtain

F ’
lim sup 2, %) < “

< )A»l(p, g, ,3) uniformly for almostall z € 2.  (19)
x—>4o00 XP p(p—1)

In (18) we pass to the limit as y — 400 and use (19). Then

N oA F
C—lk @ x) — — for almost all z € 2 and for all x > cy,
plp—1 xP p xp

! lil(p,é, ﬁ)xi7 — pF(z,x) > [ for almost all z € © and for all x > c¢g.
(20)

Recall that & > 0 is arbitrary. Then it follows from (20) that

lil(p, é B)xp — pF(z, x):| = 400 uniformly for almost all z € Q.
2D

. Cl
lim |:
X— 400 p—

@ Springer



306 J Optim Theory Appl (2017) 175:293-323

From (15), (21) and Fatou’s lemma, we have

n—o0

lim [pcllil(p,é,ﬁ)mn(z)w—pF(z,un(z»}dz=+oo. (22)
Q

From (11) and Corollary 3, we have

cl

pip—1

—/ F(z,u,)dz < cg forallm € N,
Q

[IIDunIIZvL/ §(Z)|un|”dz+/ B(Z)|Mn|pd0j|
Q Q2

:>/ [ °l 111(,),%, B)lunl? — pF(z, un)] dz < peg foralln € N (see (7).
alp—
(23)

Comparing (22) and (23), we reach a contradiction. This proves that ¢ is coercive.
Similarly, we show the coercivity of the functionals ¢ . O

Corollary 4.1 If hypotheses H(a)(i)(ii)(iii), H(§), H(B) and Hi hold, then the
Sfunctionals ¢ and ¢+ satisfy the nonsmooth C-condition.

Using Proposition 7 and global minimization of ¢ (the direct method of calculus
of variations), we can produce two nontrivial smooth solutions of constant sign.

Proposition 4.2 If hypotheses H (a), H(§), H(B) and H; hold, then problem (1) was
at least two nontrivial constant sign smooth solutions

up € D+ and wo € —D+,

which are local minimizers of ¢.

Proof First we establish the existence of a positive solution.

From Proposition 4.1 we know that ¢ is coercive. Using the Sobolev embedding
theorem and the compactness of the trace map, we see that ¢ is sequentially weakly
lower semicontinuous. So, by the Weierstrass—Tonelli theorem, we know that we can
find ug € W' () such that

Gy (uo) = inf[@y (u) : u € WHP(Q)]. (24)

Hypotheses H (a)(iv) and H;(iv) imply that given € > 0, we can find § = §(¢) €
(0, 1] such that

1
G(y) < —[c+e€]ly|? forally e RY with ly| <6, (25)
q

(Vo(2) — e)xq*1 < vforalmostallz € Qandforall0 < x <6, vedF(z,x).
(26)
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Recall that i1 (p, §, ﬁ) € D, . Therefore, we can find ¢ € ]0, 1[ small such that
ti1(q, &, B)(z) €[0,8] and 1|Dii1(q.E7,B)(z)| <8 forallze Q. (27)

Then we have

o . 1 -
¢+(l‘ﬁ1(q,§,,3))<%[5+€]||Dﬁ1(q,5+7/3)||2+;/QS(Z)ltﬁl(q,EJr,ﬁ)lde

1 ~, o~ 1 .
+—/ Bltii1 (q. 5+, B)Pdo — —/(z%(z)—e)|rﬁ1<q,s+,ﬂ>|qdz
P Joo qJQ
(see (8), (25). (26), (27))
q - - q - -
< %[5+e]llDﬁ1(q,§+,ﬁ)||Z +%/Qs+<z)ﬁ1<q,s+,ﬂ)wz
q - - q - ~
+t—/ B (g. &+, Bido — = [/ ﬂo(z)ﬁ1<q,s+,ﬂ)qdz—e]
q JoQ q Q
(recall that 0 < § < 1, ¢ < pand ||d1(q,&F, B)ll; = 1)
q - - - - -
< %E[IIDﬁl(q,EJ“,ﬂ)IIZ +/Qs+(z)ﬁ1<q,s+,ﬁ)qdz
+/ ﬂ(z)m(q,%*,ﬁ)qaa}
Q2

q A - - q - -
+ el B B+ 11— ’—/ Po(2)it1 (g, E+, Bdz
q q JQ

’ A £ 3 Pt ot o ~ ~
= % [/SZ(E)LI(Q’ $+, ,3) - '19()(Z))1:21(q7 %‘+’ ﬁ)dZ + 6()»1(11, %--i-’ ﬁ) + 1):| .

(28)
By hypothesis Hj (iv) and since i) (q, ET, 3) € D4, we have
i = [ 00— Ehata. B BrinGa. £ fraz > 0.
Then from (28) we see that
Aoa o E4 G Y N
b0l (@ 8 By < [+ eCa@ R p+ 1] 29)

Choosing € €10, 1[ small, we infer from (29) that ¢, (tii1(q, €*, B)) < 0, hence
@+ () < 0= @4(0) (see (24)). We deduce that ug # 0.
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By (24) we have

0 € 394 (up),
= (A(uo), h) + / (E(2) + w)luolP"2uohdz +/ B(@)|uolP*uohdo
Q B1o)

- / hdz (30)
Q

forallh € WhP(Q), with v(z) € 8ﬁ+ (z, uo(z)) for almost all z € 2 (see Clarke [14],
Theorem 2.7.3, p. 80).
In (30) we choose h = —u, € WP (). We obtain

1 _ _
b1 | Dug |1} +/Q(S(z) + 1) (ug)Pdz <0
(see Lemma 3.1, hypothesis H(f) and (9)),
= clo||u6||p < 0 for some c1g > 0 (recall that u > ||€]]c0),
= ug = 0,ug #0.

From (30), (9), Stampacchia’s theorem (see Gasinski and Papageorgiou [13],
Remark 2.4.16, p. 195) and Papageorgiou and Radulescu [31], we have

—diva(Dug(z)) + é(z)uo(z)fl”1 € 0F(z,up(z)) foralmostall z € 2,
0 _
- + B(2uf =0 on d%2,

ong
= u( is a positive solution of (1). 31D

From (31) and Papageorgiou and Ridulescu [28], we have ug € L°°(2). So, by
the nonlinear regularity theory of Lieberman [18] (p. 320), we have

uo € C4\{0}. (32)
Hypotheses Hj (i), (iv) imply that given p > 0, we can find ji, > 0 such that
v+ /lpxp_l > O foralmostallz € Q andforall0 < x < p, vedIF(z,x). (33)

Now let p = [|ug||oo and let 1, > O as postulated by (33). Then from (31) and
(33) we have

—diva(Dug(z)) + (£(z) + /lp)uo(z)p_1 > 0 for almost all z € €2,
= diva(Duo(z)) < [|1€]]loo + /lp]u()(z)p_1 foralmostallz € 2. (34)

Let o (t) = tap(t) for all t > 0. We have

1 (t) = t2ay(t) + tag(r) > c11t? =" for some ¢q; > 0 and for all £ > 0
(see hypotheses H(a)(i),(iii) and (4)). (35)

@ Springer



J Optim Theory Appl (2017) 175:293-323 309

Integrating by parts, we obtain
t ) t 5 11

f Spg(s)ds = 1p0(1) —f po(s)ds = t7ao(t) — Go(t) = —1t” (see (35)). (36)
0 0 4

Let H (1) = t2ag(t) — Go(r) and Hy(r) = ‘%tl’ for all r > 0. Pick 6 € (0, 1) and
s > 0 and consider the sets

Ci={rel0,1[: H@) =s}, Co={re]0,1[: Ho(t) > s}.
From (36) we see that C», € Cj, hence inf C; < inf C;. So, from Gasinski and

Papageorgiou [29] (Proposition 1.55, p. 12), we have H -1 < Hy ! (s).
Then for u3 = [[€]|ec + /iy, We have

V

) 1 S 1 * ] d
/i———fr—@s//'———fr—@szﬁﬁf Yt 37
0 H-! (%Sp) o Hy! ("_pﬂsp) cintJo s

Inequalities (34), (37) permit the use of the nonlinear strong maximum principle
of Pucci and Serrin [19], p. 111. We deduce that ug(z) > 0 for all z € Q. Invoking
the boundary point of the theorem of Pucci and Serrin [19] (p. 120), we obtain that
up € D+.

Note that ¢4 |c, = ¢|c, (see (8)). So, it follows that u is a local C!(Q)-minimizer
of ¢ (see (24)). By Proposition 3.1, we deduce that u is a local WP (Q)-minimizer
of ¢.

Similarly, working with the functional ¢_ we obtain a negative solution wg € —D4
which is a local minimizer of ¢.

In fact, we can show that problem (1) admits extremal constant sign solutions, that
is, there are a smallest positive solution &y € D, and a biggest negative solution
u_ € D+.

To this end, note that hypotheses H; (i), (iv) imply that givene > Oandr € (p, p*)

i} L ifp < N .
(recall that p* = r , the critical Sobolev exponent), we can find
4+oo fN<p

c12 = c12(€, r) > 0 such that

vx = (9o(2) — €)|x|? —crzlx|’
for almost all z € Q and forall x € R, v € dF (z, x). (38)

This unilateral growth estimate for d F(z, -) leads to the following auxiliary non-
linear Robin problem

—diva(Du(2)) + £ @ u@)|P " uz) = @Wo(2) — Ou@)192u(z) — ci2lu(@)|" 2u(z) in Q,
U B@)uIP2u = 0 on 592

ang

(39)
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Proposition 4.3 If hypotheses H(a), H (§), H(B) hold, then for e > 0 small problem
(39) has a unique positive solution

u* € D+
and since (39) is odd, v* = —v* € — D is the unique negative solution of (39).

Proof First, we prove the existence of a positive solution for problem (39). For this
purpose, we introduce the C'-functional v/, : W7 (Q) — R defined by

- 1 1 _ 1
w+<u>=/ G(Du)dz+—/ £+ @)lulPdz + lu ||§+—/ B()lul"do

1
——/(l?o(z) —e)w)4dz + cﬁ||u+||; forallu € Wh?(Q).
qJa r

Using Corollary 3.1, we have

- cq B 1 B 1
Fa) > Dl 4 [ £ @z
p(p—1) rJe p
1 1 c12
+————I|1Du™|h + —/ EF@@)Pdz + —[luT|l} — ci3llu||
pip—1 P Ja r
for some c13 > 0 (since ¥y € L (R)). (40)

Recall that ¢ < p < r. So, from (40) it follows that 1/7+ is coercive. Also, it is
sequentially weakly lower semicontinuous. So, by the Weierstrass—Tonelli theorem
we can find i* € W7 (Q) such that

Y (@) = inf [Py u) 1 u € WHP(Q)]. 1)

As in the proof of Proposition 4.2, and since ¢ < p < r, we show that Ui (i*) <
0 = ¥4 (0), hence u* # 0.
Also, from (41) we have

v (i) = 0,
= (A@"), h)+ / 5 (@)a* P a* hdz — / (@7~ hdz
Y Q
+ / B@(@)H)" hdo
Q2

—/ (M0(z) — (@) ") hdz + 612/ (@M thdz =0
Q Q

forallh € WhP(Q). (42)
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In (42) we choose h = — (%)~ € WL-P(Q). Then
Cl

p—1

=u">0, a*#£0.

[[D@*)~ || + [1@*)~ || < 0 (see Lemma 3.1),

So, equation (42) becomes

(A@™), h) + f Y () @*)Phdz + / B (@*)")P~hdo
Q Q2

—/(90@) —e)(ﬁ*)‘f”hdz—l—cu/ @Y 'hdz =0 forallh e WP (Q),
Q Q

= ii* is a positive solution of problem (39).

As before (see the proof of Proposition 4.2), using the nonlinear regularity theory
and the nonlinear maximum principle, we have u* € D_.

Next, we show the uniqueness of this positive solution. To this end, we introduce
the integral functional j : LI(Q) — R = R U {+o00} defined by

1 1

, / G(Du'/%)dz + —/ et (@uP/1dz + —/ B(uPide if u>0,u1 e WP (Q)

Jjw) =14 Ja rJa P Jaa
+00 otherwise.

Suppose that uy, ur € {u € L1(R2) : j(u) < oo} (the effective domain of j(-)).

Lety; = ui/q and y, = u;/q. By definition yi, y» € WLP(Q). We set y = [tu; +

(1 — Huz]"? with ¢ € [0, 1]. Then y € Wl’p(Q) and using Lemma 1 of Diaz and
Saa [32], we have

IDy@)| < [t1Dy1(2)|? + (1 — )| Dy>(2)[1]'/4,
= Go(IDy(2)]) < Go([t|Dy1(2)|4 + (1 — 1)|Dy2(2)|4]'/4)
(since Go(+) is increasing)
< tGo(IDy1(2)]) + (1 — £)Go(|Dy2(z)|) for almost all z € Q
(see hypothesis H(a)(iv)),
= G(Dy(2)) < tG(Du1(2)"/%) 4+ (1 — 1)G(Duz(z)'/9) for almost all z € 2,

= u> / G(Du'/1)dz is convex.
Q
Since €T > 0, B > 0 (see hypothesis H(8)) and ¢ < p, we see that

domj > u / et (DuP/1dz —i—/ B(z)uP’do is convex.
Q a0

Therefore, the integral functional j (-) is convex. By Fatou’s lemma, it is also lower
semicontinuous.
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Suppose that uy, up are two positive solutions of (39). From the first part of the
proof, we have u1, uy € Dy. Then for h € C 1(Q) and sufficiently small |t| > 0, we
have u(f + th, ug +th € dom j.

Since j(-) is convex, we can easily check that j(-) is Gateaux differentiable at
u? and at ug in the direction 4. Moreover, using the nonlinear Green’s identity (see
Gasinski and Papageorgiou [13], p. 210), we have

—di + p—1
Py = 1 dlva(Dul)j-E (2)ul s
: qJQ q-1

uy

—di +(yy P!
j/(ug)(h):l/ dlva(Duzlj-lf (2)uy
qJa u

hdz forall h € C1(Q).

Since j(-) is convex, j’(-) is monotone. Therefore,

q—1 q—1

0 < / (—diva(Du1)+s+(z>u‘{‘1_—diva(Du2)+s+<z>u§‘1>(Mq ;
Q uj u

= c12/ (ug_q - ui_q) (uf — uf)dz <0 (recall that r > gq),
Q

= Ul = Uj.

This proves the uniqueness of the positive solution it* € D of (39).
Problem (39) is odd. Therefore, v* = —u* € —D_ is the unique negative solution
of (39). O

Let S+ be the set of positive solutions of (1) and S_ the set of negative solutions
of (1). From Proposition 4.2 and its proof, we know that Sy # ¢, S € D, and
S_ # 0¥, S_ € —D4. Moreover, as in Filippakis and Papageorgiou [33] (see also
Papageorgiou et al. [34]), we have that

S+ is downward directed (that is, if u1, u» € S4, then we can find u € Sy such that

u<uy, u<u);

S_ is upward directed (that is, if v, vo € S—, then we can find v € S_ such that
vp < v, 12 <)

Proposition 4.4 If hypotheses H(a), H(&), H(B), H| hold, then u*™ < u forall u €
Sy andv < v* forallv € S_.

Proof Letu € S; and consider the following Carathéodory function

0 if x <O
(2, x) = { Wo2) —e)xd 1 —cppx" 4 xP7! if 0<x<u()
0(2) — u@)? ' — cou) N +u@P! if u(z) < x.
(43)
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Let T (z,x) = f(f 74 (z, s)ds and consider the C'-functional x, : W'7(Q) — R
defined by

X+(u)=/ G(Du)dz+1f(s+<z>+1>|u|”dz+lf B()ulPdo
Q PJQ P Jag

—f Ty (z,u)dz forall u € WP (Q).
Q

Corollary 3.1 and (43) imply that x4 is coercive. Also, it is sequentially weakly
lower semicontinuous. So, by the Weierstrass—Tonelli theorem we can find 4* €
WLP(Q) such that

X+ (@%) = inflx4 () : u € WHP(Q)]. (44)

As in the proof of Proposition 4.2, using hypothesis H (iv), we see that x4 (&) <
0 = x4(0), hence a* # 0.
From (44) we have

= (A(ﬁ*),h)+/($+(z)+ 1)|12*|1’_212*hdz+/ B P20 hdo
Q 0
= f T4 (z, 1%)hdz forallh € WhP(Q). (45)
Q
In (45) we first choose h = — (%)~ € WhP(Q). Using Lemma 3.1 and (43), we
obtain
cl

p—1
=u*">0, u*#0.

D@ ™11 + G711, <0,

Next, in (45) we choose h = (i* — u)* € WP (Q). Using (43), we obtain

(A@®), @* —uw)*)+ / EY@) + H@HP @ —uytdz
Q
+f B()@HP~ N @* — u)thdo
0
- / 0(z) — ud~'@* —u)tdz — clzf uNaF —w)Tdz
Q Q

n / WL — wytdz, (46)
Q
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Sinceu € Sy, wecanfindv € LP/(SZ) (% + # = 1) such that

v(z) € dF(z, u(z)) for almost all z € €2,
—diva(Du(z)) + S(z)u(z)"’_l = v(z) for almost all z € €,

du 1
+ B()uP’~™ =0ondQ.
dang

(47)

Using (38), (46), (47), we have

(AG). @* — ) + f EH@ + D@ @ — uytdz
Q
+ / BE@)" @ — uytdo < / o(@* — u)*dz + f WP @ - uytdz
Q2 Q Q
= (Aw), @* —u)+)+/(s(z) + DuP~ V@ —wytdz
Q

+/ B(uP~ (@* —u)tdo
0
(sinceu € Sy)

< (A, &* —uw)*) + / @) + DuP 1@ — u)tdz
Q
+/ B(uP ' @* — u)Tdo,
Q2
= (A@") — A@w), @ —w*) + / ET @)+ D@ —uP™H@* - u)tdz
Q

/ B@)(@HP~! —uP~N@* —uytdo <0,
< u (see Lemma 3.1 and hypothesis H(8)).

Therefore, we have proved that
i € [0,u], @*#£0. (48)

It follows from (43) and (48) that u* is a positive solution of (39), hence u* = i* €
D+ (see Proposition 4.3). We conclude that u* < u forallu € Sy. A similar argument
shows that v < v* forallv € S_. O

Now we can produce extremal constant sign solutions for problem (1). These solu-
tions play an important role in the argument of Sect. 4, where we establish the existence
of nodal solutions.

Proposition 4.5 If hypotheses H(a), H (), H(B), Hy hold, then problem (1) admits
a smallest positive solution il € D, and a biggest negative solution i € D.

Proof Recalling that S is downward directed and using Lemma 3.10 of Hu and
Papageorgiou [35] (p. 178), we can find a decreasing sequence {u,},>1 € S+ such
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that inf,>1 u, = inf Sy. BEvidently, {u,},>1 C WP () is bounded. So, we may
assume that

Up — iy in WhP(Q) and u, — i4 in LP(Q) andin LP(3).  (49)
For every n € N, we can find v,, € Lp/(Q) such that

v, (z) € 0F (z, u,(z)) for almost all z € @ (50)
(Aup), h) +/ E@ul " hdz +/ B@ul " hdo
Q a0

=/ vyhdz forall h € WhP(Q). (51)
Q

From (50), (49) and hypothesis H; (i), we see that {v,},>1 C L”,(Q) is bounded.
So, we may also assume that

vp = Din LP(Q) as n — oo. (52)
From (49), (52) and Proposition 3.9 of Hu and Papageorgiou [35] (p. 694), we have
0(z) € 0F (z,u4(z)) for almost all z € Q. (53)

In (51) we choose h = u,, — it € WP (Q), pass to the limit as n — oo and use
(49), (52). Then we obtain

lim (A(up), up —iig) =0,
n—0oo

= u, — G4 in WHP(Q) (see Proposition 3.2). (54)
From Proposition 4.4 we have

u, forallnm eN
7 (55)

In (51) we pass to the limit as n — oo and use (52) and (54). Then

(A1), h)+ /E(z) b hdz—i—/ Bl hdo_/ dhdz forall h € WhP(Q),
= i, € S; (see (53), (55)) and it = inf S..

Similarly, we can produce @i € S_ such that ii_ = sup Sy. o
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5 Nodal Solutions

In this section, we produce a nodal (sign changing) solution for problem (1). The idea
is simple. Having the extremal constant sign solutions &1 (see Proposition 4.5), by
suitable truncation—perturbation techniques we restrict ourselves to the order interval
[Zi_, ii4]. Using variational arguments (Theorem 3.1) and Proposition 3.3, we show
that problem (1) has a solution yy € [u_, 4+]\{0, @i+ }. The extremality of 74 implies
that yg is nodal. For this strategy to work, we need to strengthen the hypotheses on the
primitive F'(z, x). So, we now assume that F(z, x) = f(;‘ f(z, s)ds, with the integrand
f(z, s) being measurable with possible jump discontinuities in s € R. We set

fi(z,x) =liminf f(z,x") and f,(z, x) = limsup f(z, x').
x'—x

x'—x

The precise hypotheses on the integrand f(z, x) are the following;
Hy : f:Q xR — Ris ameasurable function, for almost all z € 2, f(z, ) is
continuous at x = 0, it has only jump discontinuities and

Q) |f(z,x)| < a(z)(1 + |x|P~1) for almost all z € Q and all x € R, witha €
L>(Q);
(i1) limsup,_, 4 Ifx“‘ﬁfji < %il(p, é, 3) uniformly for almost all z € ;
(i) limy— ool fi(z, X)X — pF(z, x)] = limy—s o[ fu(z, x)x — pF(z,x)] = +00
uniformly for almost all z € €;
(iv) there exists ¢* > FA»(q, ET, B) such that

L Jix) (z,x
c* <liminf Ji€ — liminf fu 2)
x—0t  xP~ x—0- |x|P7*x

uniformly for almost all z € Q.

Remark 5.1 The above hypotheses imply that the primitive F(z, x) = fox f(z,s)ds
is a locally Lipschitz integrand and 0 F (z, x) = [ fi(z, x), fu(z, x)] (see Clarke [14],
p. 34 and Chang [15]). Therefore, hypotheses H» are a more restrictive version of
hypotheses Hj used in Sect. 3.

Using these new stronger conditions on the reaction term, we now prove the exis-
tence of nodal (that is, sign changing) solutions.

Proposition 5.1 If hypotheses H (a), H(§), H(B), H» hold, then problem (1) admits
a nodal solution

yo € [, i1 N CHR).

Proof Let iy € Dy and i € —Dy be the two extremal constant sign solu-
tions of problem (1) produced in Proposition 4.5. Then we can find vy,v_ C

LY (Q) (% +1= 1) such that
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v1(z) € 0F(z,14(2)), v—_(z) € 0F(z,1i_(z)) foralmostall z € Q, (56)
(A(u+, h) / E(ul, T 1hdz —I—/ B(uy T hda = / v4hdz, 57

Q

(A(ﬁ_,h))+/ s(z)|:2_|P—2ﬁ_hdz+/ B@)i_|P2i_hdo
Q Q2

=/ v_hdz forallh € WhP(Q). (58)
Q

As before, let & > ||£]|co (see hypothesis H (£)) and consider the following mea-
surable functions

0 if x <O
fr@x) = fz,x) + pxP~! if 0<x<iyq(z) (59
V4 (2) + piy (P71 i d4(2) < x,

v_(2) +uli_ @) (z) if x <i_(2)

f-@x) =] fz. %)+ plx|P2x if i-(z)<x<0 (60)
0 if 0<ux,
. v_(2) + plia—(@)IP 20— (z) if x <i_(z)
fz.x) =1 fz, %)+ plx|P2x if 4-(z) <x<is(m (61
v4(2) + pity ()P if i4(z) <x.

Let Fi(z, x) = Iy fi(z, s)ds and F(z, x) = IS f(z, s)ds.
We also consider the corresponding truncation of the boundary term. So, we con-
sider the Carathéodory function

B@Ia- ()P 2i-(z) if x <id_(z)
Bz, x) ={ B)|x|P2x if 4-(z) <x<iip(z) forall(z, x)€dIQxR.
B(2)iy(z)P~! if 4,(z) <x
(62)
We set B(z,x) = [ Bz, s)ds forall (z,x) € 92 x R.
We introduce the locally Lipschitz functionals 1/A/i, 1/7 - whep (2) — R defined by

U (u) =/ G(DM)dZ+l/(%‘(z)+u)|u|pdz+/ B(z, u®)do
Q P JQ 02
—/ Fi(z, u)dz
Q
n 1 ~ ~
) =/ G(Du)dz+—f(é(z)+m|u|f’dz+/ B(z,u>da—/ Pz, wdz
forallu e WhP(Q).

Also, we consider the following order intervals in Whre(Q) Ty = (0,441, T- =
[12—1 0]’ T = [ﬁ—v ﬁ-l—]

Claim K, CT, K. =1{0, a4}, K ={0,a_}.
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Letu € K;],- We have

0 € Y (u),
= (A(u), h) +/(S(Z) +,u)|u|P*2uhdz+/ B(z,u)hda :/ vhdz
Q aQ

Q
(63)

forall h € WIP(Q), with € LP (Q), 0(z) € dF (z, u(z)) for almost all z € .
In (63) we choose h = (u — i )" € wlr(Q). Using (61) and (62), we have

(A@), u—a)")+ /Q(é(z) +wu? N — i)tz
+/ B)a" " —iy)tdo
IR
=f04@rwmg5w—ﬁgﬂh
Q
=@Miﬁiu—ﬁn+H1L@&)+Mﬁf4w—ﬁw+M

+/ B)ia" " u —iy)tdo

R

(see (56), (57)).

:Cﬁw—Amgwu—auﬂ+/Yaw+uxw4 a2 — i)tz =0,
Q

= u < i (recall that > [|&|[00)-

In a similar fashion, choosing h = (i —u)™* € WP () in (63)and using (58) and
(60), we obtain i_ < u, hence u € T. We deduce that K " C T. Arguing similarly,
we show that K s C Ty and K . cT_.

From (56), (59), (60) and the extremality of the solutions i+ € Dy andu_ € —Dy,
we conclude that K > =1{0,u4}and K = {0, iz_}. This proves Claim 5.

Claim 14 and ii_ are local minimizers of .

It is clear from Corollary 3.1, (59) and the fact that u > |[|&||so, that g@+ is coer-
cive. Moreover, using the Sobolev embedding theorem and the compactness of the
trace map, we see that 1ﬂ+ is sequentially weakly lower semicontinuous. So, by the
Weierstrass—Tonelli theorem, we can find 74 € WP (Q) such that

Vi (iiy) = inf[Yq(u) 1 u € WP ()] = iy (64)

Hypothesis H>(iv), as in the proof of Proposition 4.2, 1mphes that my =
1//+(u+) < 0= 1//+(O) hence i1 # 0. We deduce that iy = 4 (see Claim 5
and recall that i € K , see (64)).
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Note that Y |c, = ¥lc, (see (59), (61)) and recall that i € D.. So, it follows
that i is a local C'(Q)-minimizer of V. By Proposition 3.1 we deduce that i is a
local W7 (§2)-minimizer of 1&

Similarly for &i_ € — D, using this time the functional Yr_ and (60).

This proves Claim 5.

Without any loss of generality, we may assume that 1} @) < 1} (ti4+). Thereasoning
is similar if the opposite inequality holds.

We assume that K 7 is finite. Otherwise on account of (61), Claim 5 and the extremal-

ity of i1, we already have an infinity of nodal solutions. Claim 5 implies that we can
find small p € (0, 1) such that

Y(a-) <yig) <inf[f @) : |lu— iyl = pl =ri,, p<l|li-—dgll (65

(see Aizicovici et al. [36], proof of Proposition 29). From (61) and Corollary 3.1 it is
clear that . .
Y is coercive =  satisfies the nonsmooth C-condition. (66)

Then (65) and (66) permit the use of Theorem 3.1. Therefore, we can find yg €
WP () such that

o € Kj €T (see Claim 5) and i, < U (v0). (67)

It follows from (62), (63) and (61) that yy is a solution of (1) and yo ¢ {i4, i_}.
Evidently, if we show that yp # 0, then yg is a nodal solution of (1) (see (67)).
From Theorem 3.1, we have

J(yo) = inf by (t 68
¥ (yo) inf max Yy () (68)
withT = {y € C([0, 1], W'P(Q)) : y(0) = i, y (1) = i1 }.

According to (68), to show the nontriviality of yo, it suffices to produce a path
v« € I' such that ¥|,, < 0. In what follows, we construct such a pathin I".

Recall (see Sect. 2) that 8Bqu ={uecLP(Q) :]|ully =1}and M = whr(Q)n
Z)Bqu. Also, we define M. = M N CH(Q).
We consider the following two sets of paths:

e C(—1,11, M) : p(=1) = —iay(q, ET, B), p(1) = i1 (g, &, B)},

M ={y
Co={peCU-1,11, M) : p(=1) = =ity (¢, EF, B), p(1) = i1 (g, €T, ).

From Papageorgiou and Réddulescu [37], we know that [, is dense in I". Then Propo-
sition 6 implies that given § > 0, we can find yy € I'; such that

(Do) < Balq B, By +3 6
Jmax 2y (Fo(0) < Falg. 67, ) + (69)
with k() = || Dullg + [o §F @ulPdo + [y B(2)lu|Pdo forallu € WP (%),
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Hypothesis H (a)(iv) implies that given € > 0, we can find §; = 81(¢) € (0, 1)
such that

G(y) < ﬁmq forall y € RN with |y| < ;. (70)
q

Hypothesis H>(iv) say that we can find ¢} € (Eiz(q, ET,B),c*)and & = 81(€) €
(0, 1) such that

1
—c}lx|? < F(z, x) for almost all z € Q and for all |x| < 85. (71)
q

Let 0 < § < min{8y, 82, ming i1, ming(—i_)} (recall that iy € Dy, ii_ €
—D,). Since Py € ['c,liy € Dy and ii- € —D, we can find 9 € (0, 1) small such
that

Vypo() e T =la—,iy], Dpo@)(2)| <8, ?IDpo()(2)] <6
forallt € [—1,1], z € . (72)

Then for every ¢t € [—1, 1] we have

¥ (@ 90(1)
N g . vr .
=/ G(l‘/‘DVo(t))dZJr—/ E(Z)Iyo(t)lpd1+—/ B@)Po(1)|Pdo
Q P Ja P Jaq
—/ F(z, 9yy(t))dz (see (61), (62), (67) and recall the choice of § > 0)
Q

c+e
<

. c? [ - .
ﬁqIIDVo(I)IIZJrT/QEJF(Z)IVO(t)quZ

*.94
v

cv ~ . q N q
+— B@)Iyo()|?do — [1Vo(D)1lg
q JaQ
(see (70)—(72) and recall that 6, 9 € (0, 1), 9 < p)
AN - o~ A
< —[(Er2(q, €T, B) +8) + €c13 — ¢} for some c13 > 0
q

(see (69), (72) and recall that ||yo(#)||; = 1 for some c13 > 0). (73)
We choose small €, § > 0 so that
1/3(19)90(1)) <0 forall 7re[—1,1] (see(73)). (74)

We set yp = ﬁ)?q. This isa continu0~us pgth in WP () (in fact in C!(£2)), which
connects —%i11 (g, €T, B) and ¥i1(g, ET, B). Along this path we have

Uly <O, (75)
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Recall that 1ﬁ+(12+) =my <0= 1ﬁ+(0) (see (64)). The functional 1ﬁ+ is coercive
(see Corollary 3.1 and (59)). So, it satisfies the nonsmooth C-condition. Let 1,@1 ={u e
whr(Q) : 1}+ (u) < n} for any n € R. Invoking the nonsmooth second deformation

theorem of Corvellec [38], we can find a deformation A : [0, 1] x 1/}2 — 1/}2 such
that

o At -)|K$I = id|K§: ( = [u €Ky, 1) = m+}) (76)

o n(1.9%) C YU Kg” — (i} (see Claim 5 and (64)); (77)
+

o U (h(t,u)) < vp(u) forallr €[0,1], u e wi (78)

Let y, (1) = h(t,901(q,ET, B))T for all t € [0, 1]. This is a well-defined path
(see (75)) and of course it is continuous. Also, we have

— y4(0) = h(0, 9i1(q, ET, B))T = Vi1(q, ET, B) (since h is a deformation, see
[13], Definition 4.11.2, p. 645);
- v+(1) = h(1, % (q, Et, ,3))+ = ii4 (see (77) and recall that ity € D);

— V) = Y+ (0) < Y1 @ii(g, EF, ) = v @ii(g, ET, ) (see (59),
(61), (78)).

So, ;4 is a continuous path in W'7(2) connecting 9ii1(g, €t, B) and iy (see
(76)), and along this path we have

¥l,, <O. (79)

SimilarNIy, we produce another continuous path y_ in WP () which connects
—%ii1(g, &Y, B) and ii_ and along which we have

¥l,_ <O. (80)

We concatenate y_, yp, ¥+ and generate y; € I' such that |, < 0 (see (75), (79),
(80)). We conclude that yq is nodal. As before (see the proof of_Proposition 4.2), using
the nonlinear regularity theory, we have yo € [ii_, ] N C'(Q). O

Summarizing, we have established the following multiplicity theorem for prob-
lem (1).

Theorem 5.1 Ifhypotheses H(a), H(§), H(B), H hold, then problem (1) has at least
three nontrivial smooth solutions

ug € Dy, vo € =Dy and yg € [vo, uo] N C'(R) nodal.

6 Conclusions and Open Problems

In this paper we have examined hemivariational inequalities which are resonant at
Fo0 with respect to the first eigenvalue. The resonance occurs from left, making
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the problem coercive. This permits the use of the direct method of the calculus of
variations. At this point two interesting questions arise.

(a) What can be said if the resonance is from the right of A (namely, in Hj(iii)
the limit is —00)? In this case the problem is not coercive and so the direct method is
no longer applicable.

(b) Inthe particular case of the p-Laplacian, what happens if we have resonance with
respect to a nonprincipal variational eigenvalue? We know that, due to the nonlinearity
of the differential operator, the eigenspaces are only cones (hence, not linear subspaces)
and we cannot decompose W -7 () in terms of these eigenspaces. So the problem of
higher resonance is more complicated and new tools are needed.
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