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Abstract: We study a parametric Robin problem driven by a nonlinear nonhomogeneous differential operator
and with a superlinear Carathéodory reaction term. We prove a bifurcation-type theorem for small values of
the parameter. Also, we show that as the parameter A > 0 approaches zero, we can find positive solutions
with arbitrarily big and arbitrarily small Sobolev norm. Finally, we show that for every admissible parameter
value, there is a smallest positive solution u; of the problem, and we investigate the properties of the map
A uj.
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1 Introduction

Let Q ¢ RN be a bounded domain with a C?-boundary 0Q. In this paper, we study the following nonlinear,
nonhomogeneous parametric Robin problem:

—diva(Du(z)) + é’(z)u(z)l"‘1 =Af(z,u(z)) inQ,
0 (1.1)

u p1_ 0
o, + B(2)u 0 on 0Q,

withu > 0,4 > 0and 1 < p < co.In this problem, the map a: R¥Y — RY is monotone continuous (hence max-
imal monotone, too) and satisfies certain other regularity and growth conditions, listed in Hypotheses 2.3 be-
low. These conditions on a( - ) are general enough to incorporate in our framework many differential operators
of interest such as the p-Laplacian (1 < p < oo) and the (p, q)-Laplacian (1 < g < p < o). The differential op-
eratorin (1.1)is notin general (p — 1)-homogeneous and this is a source of technical difficulties in the analysis
of problem (1.1). Also ¢ € L*°(Q) and ¢ > 0. In the reaction term (right-hand side of the equation) A > 0 is a
parameter and f(z, x) is a Carathéodory function (that is, for all x € R, the mapping z — f(z, x) is measurable
and for almost all z € Q, the mapping x — f(z, x) is continuous) which exhibits (p — 1)-superlinear growth
in the x-variable near +oo, but without satisfying the usual for superlinear problems Ambrosetti-Rabinowitz
condition (AR-condition for short). Instead we use a more general condition, which permits the consideration
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of (p — 1)-superlinear functions with “slower” growth near +oo which fail to satisfy the AR-condition (see the
examples below). Also near 0%, the nonlinearity f(z, - ) has a concave term (that is, a (p — 1)-sublinear term).
In the boundary condition, U Janotes the generalized normal derivative (the conormal derivative) of u,

ong
defined by the extension of
ou

ong
with n(-) being the outward unit normal on 0Q. This kind of directional derivative on the boundary 0Q is
dictated by the nonlinear Green’s identity (see [15, p.210]), and is also used by Lieberman [23]. For the
boundary coefficient B(z), we assume that

= (a(Du), n)gv forallu € C1(Q),

BeC>(0Q) forsomeae (0,1), P(z)>0 forallzedQ.

We assume also that
&+0 or B+0.

If B = 0, then we recover the Neumann problem.
Our aim in this paper is to study the precise dependence of the set of positive solutions on the parameter
A > 0. In this direction, we prove a bifurcation-type theorem for small values of the parameter, that is, we
show that there exists a critical parameter value A* € (0, +0o) such that
o forall A € (0, A*), problem (1.1) admits at least two positive solutions;
o for A = A*, problem (1.1) has at least one positive solution;
o forall A > A*, problem (1.1) has no positive solutions.
Moreover, we show that if A, — 0%, then we can find pairs {u,,, i, }nen Of positive solutions such that

lur,l » 0 and |yl —» +c0 asn — oo.

Here || - | denotes the norm of the Sobolev space WP (Q).

Finally, if A € (0, A*), then we show that problem (1.1) has a smallest positive solution u; and we inves-
tigate the monotonicity and continuity properties of the map A — uj.

Parametric problems with competing nonlinearities (“concave-convex” problems), were first investigated
by Ambrosetti, Brezis and Cerami [4] for semilinear Dirichlet problems driven by the Laplacian (that is, p = 2)
and with zero potential (that is, ¢ = 0). Their work was extended to Dirichlet problems driven by the p-
Laplacian (1 < p < co0) by Garcia Azorero, Peral Alonso and Manfredi [14], Guo and Zhang [19], and Hu and
Papageorgiou [21]. All the aforementioned papers consider “concave-convex” reaction terms modeled after
the function

A4 14 x™1 forallx =0,

with g < p < r < p*. So, in their equations the concave and convex inputs in the reaction are decoupled and
the parameter A > 0 multiplies only the concave term.

Closer to problem (1.1) are the works of Gasinski and Papageorgiou [17], Papageorgiou and Radulescu
[30], and Aizicovici, Papageorgiou and Staicu [3]. All three papers deal with equations driven by the
p-Laplacian and have a reaction term of the form Af(z, x) (as is the case here). In [17] the problem is Dirichlet,
and bifurcation-type results for small and big values of the parameter A > 0 are proved. In [30] the problem
is Robin (with £ = 0 and S # 0), and a bifurcation-type result for large values of the parameter is proved.
Finally, we mention also the related recent work of Papageorgiou and Smyrlis [39], who deal with singular
Dirichlet problems, and of Papageorgiou and Radulescu [31], dealing with p-Laplacian Robin problems with
competing nonlinearities.

We denote by | - [, the usual LP-norm in LP(Q) and by | - | the Euclidean norm on RY. Throughout this
paper, the symbol 2, is used for the weak convergence.
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2 Mathematical background - auxiliary results

Let X be a Banach space and X* its topological dual. By (-, -) we denote the duality brackets for the pair
(X*, X). If ¢ € C1(X, R), we say that ¢ satisfies the “Cerami condition” (the “C-condition” for short), if the
following property holds:

o Every sequence {un},>1 € X such that {¢(un)}n=1 € Ris bounded and

(1 + lunl)e'(uy) - 0 inX*asn — oo

admits a strongly convergent subsequence.
This compactness-type condition on the functional ¢ leads to a deformation theorem from which one can
derive the minimax theory of the critical values of ¢. Central in that theory is the well-known “mountain pass
theorem” due to Ambrosetti and Rabinowitz [5], stated here in a slightly more general form (see [15, p. 648]).

Theorem 2.1. Assume that X is a Banach space, ¢ € C L(X, R) satisfies the C-condition, ug, u; € X, |lu1 — uo| >
p >0,
max{p(uo), e(u1)} < inf{epu) : lu - uol = p} = m,

and c¢ = infyer maxog<1 @(y(t)) with T = {y € C([0, 1], X) : y(0) = uo, y(1) = u1}. Then ¢ > my,, and c is a crit-
ical value of ¢.

Remark 2.2. The result is in fact more generally true in Banach-Finsler manifolds.

By || - || we denote the norm of the Sobolev space WP(Q), defined by
lull = [l + 1Dulb]*?  forall u e WHP(Q).

In addition to the Sobolev space W7 (Q), we will also use the Banach space C1(Q) and certain closed sub-
spaces of it, and the “boundary” Lebesgue spaces LI(0Q) (1 < g < o). The space C1(Q) is an ordered Banach
space, with a positive (order) cone given by

Cy={ueClQ):u(z)>0forallz € Q}.
The cone has a nonempty interior containing
D, ={ueCYQ): u(z)>0forall z € Q}.

On 0Q we consider the (N - 1)-dimensional Hausdorff (surface) measure o(-). Using this measure, we
can define in the usual way the boundary Lebesgue spaces L9(0Q) (1 < g < 00). From the theory of Sobolev
spaces, we know that there exists a unique continuous linear map yo: WP (Q) — LP(0Q), known as the
“trace map”, such that

Yo(uw) = ulya forallu e WHP(Q) n C(Q).
We know that

: 11
imyo = WP"P(3Q) (1—9 + o= 1) and keryo = WyP(Q).

The trace map yq is compact into L9(0Q) forall g € [1, (N"fp)p) if N > p,and into L9(0Q) forallg > 1if p > N.
In the sequel, for the sake of notational simplicity, we will drop the use of the map y,. The restrictions of all
Sobolev functions on 0Q are understood in the sense of traces.

Let 9 € C1(0, +00) with 9(¢) > O for all ¢ > 0, and assume that

9'(t)t

90 <co and 1P 1< I < (1 + P71 forallt > 0, (2.1)

0<cC<

for some c1, c; > 0.
Our hypotheses on the map a( - ) are the following.
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Hypotheses 2.3. Assumethata(y) = ao(ly|)y forally € RY, with ag(t) > Oforallt > 0, and that the following
hold:
(i) ao € CY0, 00), t — ap(t)t, is strictly increasing on (0, +00), ao(t)t — 0* as t — 0%, and

ay(tt
im
t—0* ao(t)

(ii) There exists c3 > 0 such that

[Va(y)| < c3 S(Il/)]l) forall y € RV \ {0}.
(iii) We have
(Va(y)é, Hry = %mz forally e R \ {0} and all & € RV,

(iv) If Go(¢t) = jé ao(s)s ds, then there exist 1 < g < p < rg < p* (recall that p* = NN—zj if N> p, and p* = +c0
if N < p) such that

lim sup qGo(®)

<c*
t—0* tq - ’

t — Go(t/?) is convex and
roGo(t) — ap(t)t? = ct?, pGo(t) — ao(t)t? = —¢o forallt > 0,

for some ¢, ¢g > 0.

Remark 2.4. Hypotheses 2.3 (i)—(iii) are motivated by the nonlinear regularity theory of Lieberman [25] and
the nonlinear maximum principle of Pucci and Serrin [41]. Hypothesis 2.3 (iv) serves the particular needs
of our problem, but it is not restrictive and it is satisfied in many cases of interest as the examples below
illustrate. Similar conditions were also used in recent works of the authors, see [33, 34, 37].

Hypotheses 2.3 (i)—(iii) imply that Go(-) is strictly convex and strictly increasing. We set G(y) = Go(|y|) for all
y € RY. So, G(-) is convex, G(0) = 0 and

VG(y) = Gé(l)’l)l =ao(lyly forally e RV\{0},  VG(0)=0.

lyl

Therefore, G(-) is the primitive of a(-). From the convexity of G(-) and since G(0) = 0, we have
G(y) < (a(y),y)gv forally e RV, (2.2)

The next lemma summarizes the main properties of the map a( - ), which we will use in the sequel. These
properties are straightforward consequences of Hypotheses 2.3 (i)-(iii) and of (2.1).

Lemma 2.5. Under Hypotheses 2.3 (i)-(iii), the following hold:

(a) y ~ a(y) is continuous and strictly monotone (hence maximal monotone, too),
(b) law)| < cs(1 + |ylP~Y) forally € RV, for some c, > 0,

© (@), y)wv = 3% lylP forally € RV

This lemma and (2.2) lead to the following growth estimates for the primitive G(-).

Corollary 2.6. If Hypotheses 2.3 (i)-(iii) hold, then

C1

P < G(y) <cs(l+|ylP) forally e RY,
p(p_l)lyl () <cs(L+1yl?) forally

for some c5 > 0.

The examples which follow confirm the generality of Hypotheses 2.3.
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Examples. The following maps satisfy Hypotheses 2.3:
(@) a(y) = |ylP~2y, with 1 < p < co. The corresponding differential operator is the p-Laplacian defined by

Apu = div(]DulP?Du) forallu € WHP(Q).

(b) a(y) = |ylP~2y + |y|92y, with 1 < g < p < co, and the corresponding differential operator is the (p, q)-
Laplacian defined by
Apu+ADqu  forallu e WHP(Q).

Such operators arise in problems of mathematical physics, see [7] (quantum physics) and [9] (plasma
physics). Recently, there have been some existence and multiplicity results for such equations. We men-
tion the papers [1, 2, 10, 27, 29, 32, 35, 38, 40, 42].

(©) a(y)=@1+|yl>)?=2/2y, with 1 < p < co. The corresponding differential operator is the generalized p-
mean curvature differential operator defined by

div((1 + |Dul>)®=22Dpy) forallu € WHP(Q).

(d) aly) =|ylP~2y + %, with 1 < p < co. The corresponding differential operator is defined by

|DulP-2Du

Apu + le( 15 1Dup

) for allu € WHP(Q).

This operator arises in problems of plasticity (see [13]).
Let A: WHP(Q) — WLP(Q)* be the nonlinear map defined by
(Au), h = J(a(Du),Dh)RN dz forallu, h e W-P(Q).
Q

The next proposition is a particular case of a more general result due to Gasinski and Papageorgiou [16].

Proposition 2.7. If Hypotheses 2.3 (i)-(iii) hold, then the map A: WP (Q) — WP (Q)* is continuous, mono-
tone (hence maximal monotone too) and of type (S)., that is,

Up —u inW2(Q) and limsup(A(up), un-u) <0 = u, »u in WHP(Q).
n—.,oo

We introduce the following conditions on the coefficient functions &(-) and S(-):
(C1) & € L*(Q), &(z) = 0 for almost all z € Q.

(C2) B e C™*(0Q), witha € (0, 1), and B(z) = 0 for all z € 9Q.

(C3) £+00rfB+0.

Lemma 2.8. If%’ € L*°(Q) and é’(z) > 0 foralmostall z € Q, 3’ + 0, then there exists cg > 0 such that

1Dl + J E@)ulP dz > celulP  forallu € W“P(Q).
Q

Proof. Lety: WLP(Q) — R, be the C!-functional defined by

Y(u) = ||Du||§ + Jé’(z)lulp dz forallu e WHP(Q).
Q

Arguing by contradiction, suppose that the lemma is not true. Since ¥( - ) is p-homogeneous, we can find
{unlns1 € WHP(Q) such that

lunll =1 foralln e N, Y(uy) - 0" asn — oo. (2.3)
Since {up}n=1 € WHP(Q) is bounded, we may assume that
Up — u  in WHP(Q), U, - u inLP(Q). (2.4)
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The functional ¥ (-) is sequentially weakly lower semicontinuous. So, from (2.3) and (2.4), we obtain
Y(u) < 0, which implies
IDul} < - [ E@lup dz <o, 2.5)
Q
hence u = n € R.If 1 = 0, then from (2.4) we see that [ Du,[, — 0, and thus

U, — 0 in WHP(Q),

a contradiction to the fact that |u,|| = 1 for all n € N. If  # O, then from (2.5) we have

0 < —|n? j &(z)dz <0,
)

a contradiction. O

Lemma 2.9. IfB € L*®(0Q), B(z) > 0 for g-almost all z € aQ,B # 0, then there exists c; > O such that

IDullh + J B@)ulP do = c7|ullP  forallu e WHP(Q).
0Q

Proof. Leto: WHP(Q) — R, be the C!-functional defined by

Yo(u) = [Dul? + J B@)ul do forallu e WP (Q).
0Q

We claim that we can find ¢o > O such that
lully < opo(u) forallu e WHP(Q). (2.6)
Arguing by contradiction, suppose that (2.6) is not true. Then we can find {u}n=1 € WHP(Q) such that
lunly > npo(un) foralln e N.

Since Y is p-homogeneous, we normalize in LP(Q) and have
1
Pol(uy) < = and |unl, =1 forallneN, 2.7)

and thus o(un) — 0" asn — oco. From (2.7), it follows that | Dun|l, — 0asn — oo, hence {un}tns1 € WHP(Q)
is bounded.
So, by passing to a suitable subsequence if necessary, we may assume that

Up — u in WHP(Q), u, —» u inLP(Q) and LP(0Q). (2.8)

From (2.7), (2.8) and the sequential weak lower semicontinuity of o( - ), we have o (u) < 0, hence
1Dl + J B@)ul do <o. (2.9)
20
Therefore, u = 1o € R. If ng = 0, then from (2.8) we have u, — 0 in L?(Q), a contradiction with the fact that
lunlp = 1foralln € N.If no # O, then from (2.9) we have
0<inol” [ pzrdo <o,
20

again a contradiction. Therefore, (2.6) holds and from this it follows that we can find ¢; > 0 such that
crllull’ < po(u) forallu e WHP(Q).
The proof is completed. O

Authenticated | vicentiu.radulescu@math.cnrs.fr
Download Date | 4/26/18 8:24 AM



DE GRUYTER N. S. Papageorgiou et al., Nonlinear nonhomogeneous parametric Robin problems = 559

Next we prove a strong comparison result which will be useful in what follows. This proposition was inspired
by analogous comparison results for Dirichlet problems with the p-Laplacian as established by Guedda and
Véron (see [18, Proposition 2.2]), and Arcoya and Ruiz (see [6, Proposition 2.6]).

Proposition 2.10. Assume that Hypotheses 2.3 (i)—(iii) hold, %’ € L®(Q), é(z) > 0 for almost all z € Q, and
hq, hy € L*®(Q) are such that

0<cg <hy(z)-hi(z) foralmostallz € Q.
Letu,v € C1(Q) \ {0}, u < v, satisfy

—diva(Du(z)) + é“(z)lu(z)lp‘zu(z) =hi(z) foralmostallz € Q,

—diva(Dv(2)) + é(z)lv(z)lp‘zv(z) =hy(z) foralmostallz € Q.

Then (v —u)(z) >0 forallz € Q,and if £y = {z € 0Q : u(z) = v(2)}, then

o(v—-u)

0.
on 2o <

Proof. We have
—div(a(Dv(2)) — a(Du(z))) = hy(z) — h1(z) - é’(z)(lv(z)lpfzv(z) ~[u(2)lP~%u(z)) foralmostall z € Q. (2.10)

Leta = (a k)f(\’=1 with ai: RV — R being the kth component function, k € {1, ..., N}. From the mean value
theorem, we have

=

O'—n—-

ar(y) - ar(y") Z

31)/+ay—y5Xw—ybdt

forally = (y)¥, e RY,y’ = (y)¥, e RN and all k € {1, ..., N}
Consider the functions

1
@A@=Ja

3 (Du(z) + t(Dv(z) - Du(2)))(Div(z) — Diu(z))dt, zeQ, ke{l,...,N}.
o l

Then ¢x,; € C (Q), and using these functions we introduce the following linear differential operator in diver-
gence form:

Noo /., ow L
L(w) = —dlv(ZCkl(z) ) —kz a_m((ck’i(z)a_zi)’ we H(Q).

i=1 ,i=1

Wesety =v—u € C, \{0}. From (2.10) we have
L(y) = ha(2) - h1(2) - E@)(V(2)IP2v(2) - lu(2)P2u(z)) for almostall z € Q. (2.11)

Suppose that at zg € Q, we have u(zo) = v(zo). Exploiting the uniform continuity of the map x — |x|P~2x and
the fact that é:’ € L*°(Q), from (2.11) we see that for § > 0 sufficiently small, we have

L(y) > — >0 foralmostall z € Bs(zp).

Then invoking Harnack’s inequality (see [26, p. 212]) or alternatively using the tangency principle of Pucci
and Serrin [41, p. 35], we have
(v-u)(z) >0 forallz € Bs(zp),

a contradiction since u(zgp) = v(zp). Therefore, we must have that

(v-u)(z) >0 forallz e Q.
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Next suppose that 2, € Zy. Since 0Q is a C?-manifold, for p > 0 small, there exists a p-ball B, such that
B, cQ and Zo € 0QnoB,.

Choosing p > 0 small, from (2.11) and since u(2y) = v(2o) (recall that zg € Zp), we see that L(-) is strictly
elliptic. Then, from Hopf’s theorem (see [26, p.217] and [41, p. 120]), we have

o(v—u)
on

0
a—fl(z(» = (o) < 0,

and hence
o(v—u)

0. O
on %o <

Remark 2.11. With £y = {z € 0Q : u(z) = v(z)}, we introduce the following Banach spaces:
_ _ —l
Cl@) ={heCl(Q):hly, =0}, WiP(Q) =CLQ)

(recall that || - || is the norm of WP (Q)).
From Proposition 2.10, we have

o(v—-u)
o s, S n<o0
Let U be a neighborhood of %4 in Q such that
o(v - u)| n
on U S 2 <0

Then we can find € > 0 small such that h € C1(Q) and ||h||C1@ < €. Therefore,

o(v—(u+h)) n
T < —Z <0 (212)
and

(v—(uo + g,y =1 > 0. (2.13)

From (2.12) we see that for € > 0 small, we have
v(z) - (u+h)(z) 20 forallze Uandall h € CL(Q), Ihlg <e€.

Comparing this with (2.13), we see thatu + BS € v — C%(Zo), with BE being the e-ball centered at zero in C? (Q),
and C*(Zo) is the positive cone of CL (Q). This cone has a nonempty interior given by

int Ci (%) = {h €C;:h(z)>0forallz € Q, % < 0}.
Zo

on

If¥y=0,thenv-ueD,.

The next result is an outgrowth of the nonlinear regularity theory of Lieberman [25] and can be found in [28]
(subcritical case) and in [36] (critical case).

So, let V and X be two Banach subspaces of C1(Q) and W'?(Q), respectively, such that V is dense in X.
Suppose that fp: Q x R — Ris a Carathéodory function such that

Ifo(z, x)| < ao(z)(1 + |x|""t) foralmostallz € Qandall x € R,

withag € L®(Q), 1 < r < p*. Weset Fo(z, x) = J'(ffo(z, s) ds, and consider the C!-functional ¢g: WP(Q) —» R
defined by

po(u) = JG(Du) dz+% J B@)|ul? do - JFo(Z, w)dz, ueWbHP(Q).
Q 20 Q
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Proposition 2.12. Assume that ug € WHP(Q) is a local V-minimizer of @, that is, there exists po > 0 such that
Po(uo) < @o(uo +h) forallh € V, ||kl g, < po-

Then ug € C14(Q) forsome a € (0, 1) and uy is also a local X-minimizer of @y, that is, there exists p; > 0 such
that
®o(uo) < @o(uo +h) forallh € X, |hll < p1.

We conclude this section with some notation that we will use throughout this work. For every x € R, let
x* = max{tx, 0}. Then, for u € WHP(Q), we set u*(-) = u(-)*. We know that

u=ut-u, |ul=u"+u, u",u e W P(Q).

By | - |y we denote the Lebesgue measure on RY. Finally, if X is a Banach space and @ € CY(X, R), then
by K, we denote the critical set of ¢, that is,

Kp={ueX:¢'(u=0}

3 Bifurcation-type theorem

In this section we prove a bifurcation-type theorem for problem (1.1) for small values of the parameter A > 0.
We introduce the following conditions on the reaction term f{(z, x).

Hypotheses 3.1. Assume that f: Q x R is a Carathéodory function such that for almost all z € Q, f(z, 0) = 0O,
f(z, x) > 0 for all x > 0, and that the following hold:

(i) flz,x) <a(z)( +x"1) foralmost all z € Qand all x > 0, with a € L®(Q), p < r < p*.

(i) IfF(z,x) = jg f(z, s) ds, then

lim Fz

X—+00 X

(iii) If e(z, x) = f(z, X)x — pF(z, x), then there exists d € L1(Q) such that

=+o0o uniformly for almost all z € Q.

e(z,x) < e(z,y)+d(z) foralmostallze QandallO<x<y.
(iv) For every s > 0, we can find ns > 0 such that
ns < inf{f(z,x) : x > s} foralmostall z € Q,

and there exist o > 0, 7, o > O and 7 € (1, g) (see Hypothesis 2.3 (iv)) such that

T-1

Aox™ 1 < flz, x) < fix for almostall z € Qand all 0 < x < 8p.

(v) For every p > 0, there exists Ep > 0 such that for almost all z € Q, the function x — f(z, x) + SPXIH is
nondecreasing on [0, p].

Remark 3.2. Since we are looking for positive solutions and the above hypotheses concern the positive semi-
axis, without any loss of generality, we may assume that f(z, x) = O for almost all z € Q and all x < 0. Hy-
potheses 3.1 (ii)—(iii) imply that

. Z, X
lim {&%)
x—+o00 xP-1

=+oo uniformly for almost all z € Q.

So, the reaction term f(z,-) is (p — 1)-superlinear. However, we stress that we do not use the usual AR-
condition for “superlinear” problems. We recall that the AR-condition (unilateral version, since we deal only
with the positive semiaxis) says that there exist 9 > p and M > 0 such that

0 < 9F(z,x) < f(z,x)x foralmostallz € Qandallx > M, (3.1)

and (see [5])
0< essQian(~,M). (3.2)
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Integrating (3.1) and using (3.2), we obtain the weaker condition
cox? < F(z,x) foralmostallz € Q and all x > M, (3.3)

for some c9 > 0. Therefore, the AR-condition implies that f(z, - ) has at least (9 — 1)-polynomial growth near
+00. This excludes from consideration (p — 1)-superlinear nonlinearities with “slower” growth near +oo (see
the examples below). For this reason, in this work we use the less restrictive Hypothesis 3.1 (iii). This is a
quasimonotonicity condition on the function e(z, -). This is a slightly more general version of a condition
used by Li and Yang [24]. If there exists M > 0 such that for almost all z € Q, the function x +— f% is nonde-
creasing on [M, +co), then Hypothesis 3.1 (iii) is satisfied (see [24]). Evidently, this property is weaker than
condition (3.3).

Examples. The following functions satisfy Hypotheses 3.1; for the sake of simplicity, we drop the z-
dependence:

X1 ifxe[0,1], . i
filx) = withl<7t<g<p<r<p®,
x1if1 < x,

X1 x571 ifx € [0, 1],
frlx) = [0. 1] withl<7<p,s.
xP1lnx if1<x,

Note that f>(-) does not satisfy the AR-condition.
Hypotheses 3.1 (i), (iv) imply that

1

0<flz,x) <Ax" !+ ciox™ ! foralmostallz € Qandall x >0, (3.4)

for some c19 > 0. This growth estimate on f(z, - ) leads to the following auxiliary Robin problem:

—diva(Du(z2)) + &z)u(z)’ 1 = A{Hu2)" + crou(z) ') inQ,
0 (3.5)

a—;a +BzuP =0 on 0Q,

withu >0and A > 0.

Proposition 3.3. If Hypotheses 2.3 and conditions (C1)—(C3) hold, and 1 < T < g < p <r < p*, thenfor A > 0
small, problem (3.5) admits a positive solution ity € D,.

Proof. For A > 0, we consider the C'-functional 5 : WP(Q) — R defined by

Acio

1 1 AR
Pa(u) = JG(Du) dz + > j &2)|ulP dz + > J B(2)|ulP do - 7nllu+lli - lutlly, ueW-P(Q).

Q Q EYo)
Claim 1. For every A > 0, the functional i, satisfies the C-condition.
We consider a sequence {uy}ns1 € WHP(Q) such that

[Yr(un)l < My forall n € N (for some M; > 0), (3.6)
1+ IIunII)l/)j\(un) -0 in WHP(Q)* asn — oo. (3.7)

From (3.7) we have

l(A(un), hy + j ED)unl?2unh dz + J B unlP~2unh do - AR j(u;)Hh dz - ~Acto j(u;)Hh dz‘
Q 0Q Q
enllhll

< forallh € WHP(Q)as n — oo. (3.8)
1+ [lunll
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In (3.8) we choose h = —u;, €¢ WP (Q). Then
J(a(—Du;), —Duy,)gry dz + J E2)(uy)?P dz + J Bz)(uy)’ do<e, forallneN,
Q Q 20
and thus (see Lemma 2.5)
%IlDu;Hg + J &2)(uy)? dz + J B(z)(uy)P do<e, forallneNN.
Q 20

Hence, c11lluj [P < €, forall n € N, for some c1; > O (see (C3) and Lemmata 2.8 and 2.9), and therefore
u, -0 in W-?(Q). (3.9)

We can always assume that rg < r < p* (see Hypotheses 2.3 (iv) and 3.1 (i)). From (3.6) and (3.9), we have
that
+ r + r + Aflr +IT +.r
J rGDuy) dz + % j D+ j BE P do - 1 Juif -~ Acsoluzlly < My forallne N, (3.10)
Q Q FYo)

for some M, > 0.In (3.8) we choose h = u}, € WLP(Q). Then
- J(a(Du;), Dut)pe dz - j H2)ul)P dz— I B2) W) do+ AQIIT + Acioluill < en foralln e N. (3.11)
Q Q 0Q
We add (3.10) and (3.11), and obtain
[1r6w) - @Du;), D) dz + (5 - V)| [ @iy dz+ | gy do

Q Q 20
< Ms3(1 + Au;|f) foralln € N,

for some M3 > 0. Therefore, by Hypothesis 2.3 (iv), condition (C3), Lemmata 2.8 and 2.9, and the fact that
r > p, we have
crallufllP < Ms(1 + Allu;||*) foralln e N, (3.12)

for some cq, > 0. Since T < p, from (3.12) it follows that {u};},>1 < W'P(Q) is bounded, which implies that
{unlns1 € WHP(Q) is bounded (see (3.9)). So, we may assume that

Un — u  in WHP(Q), U, —» u inL(Q)andin LP(0Q). (3.13)
In (3.8) we choose h = u, — u € WHP(Q), pass to the limit as n — oo and use (3.13). Then
Jim (A(un), un - u) =0,

hence (see (3.13) and Proposition 2.7)
U, - u in WhP(Q).

Therefore, for every A > 0, 1, satisfies the C-condition.
This proves claim 1.

Claim 2. There exist p > 0 and Ay > 0 such that for every A € (0, Ap), we have
inf{yr(w) : lull = p} = my > 0 = P,(0).
For every u € WHP(Q), we have (see Corollary 2.6, Lemmata 2.8 and 2.9, and (C3))
Yaw) = casllul? = Acia(lul™ + lull") = [c13 = Acaa(lul™P + JullP)]ull?, (3.14)
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for some c13, €14 > 0. Let I(¢t) =t™ P + P, t > 0. Since T < p < r, we have
J(t) - +oo ast— 0" andast — +oo.

Therefore, we can find ty € (0, +00) such that J(tp) = infso J.
From (3.14) we see that

Pa() = [c13 — Acrs TulllllulP  forallu e WhP(Q).

C

If ||u|| = to, then we set Ag = C14]1§t0> > 0and forall A € (0, Ag), we see that

inf{a(u) : lull = p = to} = ma > 0 = Pa(0).

This proves claim 2.

Sincer > p,ifu € D,, then
Ya(tu) — —co  ast — +oo. (3.15)

Claims 1 and 2 and (3.15) permit the use of Theorem 2.1 (the mountain pass theorem). So, for every
A € (0, Ap), we can find i1, € WP(Q) such that

iy € Ky, and my < Ya(ip). (3.16)

From (3.16) and claim 2, it follows that ity # 0 and tpjl(il,\) = 0. Therefore,

(A, By + j £k dz + j B@\inP2azh do

Q 0Q
~ A @) thdz + Acwo (@) hdz forall h e WHP(@). (3.17)
Q Q

In (3.17) we choose h = —u; € WP (Q). Then, by Lemma 2.5,

C1
p-1

Dl + [ @) dz + [ B do<o.
Q 00
Hence, ci5lit) [P < 0 for some cq5 > O (see (C3) and Lemmata 2.8 and 2.9), and thus iy > 0, iy # 0. Then
(3.17) becomes
(), h) + J £ hdz + J B hdo = j[/\ﬁa;-l +Acyoit hdz forall h € WHP(Q),
Q PY Q
which implies (see [28])
—div a(Diip(2)) + &2)iia(2)P ! = A[fita(z)" ! + c1oiia(2)""!] foralmostall z € Q,
(3.18)

ou) ~p-1 _
o, +B)uy =0 on 0Q.

From (3.18), [22] (subcritical case), and [36] (critical case), we have i1y € L®(Q). Then, from [25], we
infer that ity € C, \ {0}. From (3.18), (C1) and (C2), we have

diva(Diij(z)) < ||.§'||00ﬂ,1(z)1"‘1 for almost all z € Q.
Therefore, iiy € D, (see [41, pp. 111, 120]). O

In fact, we can show that for every A € (0, Ag), problem (3.5) admits a smallest positive solution.
Let S’} be the set of positive solutions of problem (3.5). We have seen in Proposition 3.3 and its proof that

0+5'cD, forallAe(0,A).

Moreover, as in [12], we have that §} is downward directed (that is, if it1, i1, € S}, then we can find it € §}
such that &t < &ty and @ < i15).
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Proposition 3.4. If Hypotheses 2.3 and 3.1, and conditions (C1)—(C3) hold, and A € (0, Ay), then problem (3.5)
admits a smallest positive solution ii) € S c D, (thatis, iy < uforallu € §* “).
Proof. We consider the following Robin problem:

—diva(Du(z)) + &z)u(z)’ ! = AMju(z)™! inQ,
(3.19)

aa:a +B2uP =0 on 0Q,
withu >0, A > 0.

Since 7 < p, a straightforward application of the direct method of the calculus of variations reveals that
for every A > 0, problem (3.19) admits a positive solution u, € D, (nonlinear regularity theory and the non-
linear maximum principle).

Claim 3. u, € D, is the unique positive solution of problem (3.19).

Consider the integral functional j: L1(Q) — R = RU {+oo} defined by
j G(DuY9) dz + ~ Jg(z)(up/q) dz+ ~ J BP9y do ifu >0, wh e WhP(Q),

jw) =14 Q aQ

+ 00 otherwise.
Let uy, u» € domj = {u € LY(Q) : j(u) < +oo} (the effective domain of the functional j(-)) and set
u=(1-tu; +tuy)’, telo,1].
Using [11, Lemma 1], we have
IDu(z)| < [(1 - 6)|Duy(2)Y9)9 + t|Du,(2)*9)9]  for almost all z € Q.

Then, by Hypothesis 2.3 (iv) and since Go(-) is increasing, we have

Go(IDu(2)]) < Go((1 - t)|Dux ()91 + t|Duy(2)"/9)%)

< (1 - 8)Go(|Duy(2)9)) + tGo(|Duy(2)|*9)  for almost all z € Q.

Therefore,
G(Du(2)) < (1 - t)G(Du1(2))? + tG(Dua(z)"9) for almostall z € Q,

and thus j(-) is convex (recall that g < p and see (C1)—(C2)).

By Fatou’s lemma, we see that j( - ) is also lower semicontinuous.

Let vy € WHP(Q) be another positive solution of problem (3.19). Again we have vy € D,.If h e C 1(5),
then for t > 0 small, we have ﬂz + th € domjand V,‘{ + th € dom j. Then we can easily show that j( - ) is Gateaux
differentiable at ﬂz and at Vz in the direction h. Moreover, via the chain rule and the nonlinear Green’s theorem
(see [15, p. 210]), we have

p-1
)(h) lj chva(DLiA)Irf(z)u hdz,
q q
Q
1 [ —divaDv) + &2V !
J @ = EJ o hdz

forall h € WHP(Q). The convexity of j( - ) implies the monotonicity of j'( - ). So (see problem (3.19))

-9 _ 54
_q 1 —q-1 17 VA) dz

J —diva(Duy) + {(z)u;l L _div a(Dvy) + .{(Z)V’;r1 )(
- u
Q VA

<A H—fq _1q](ﬂj—vj)dz,

Va

and hence u) = v, (since T < q).
This proves claim 3.
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Claim 4. wy <uforallu e SL.
Let u € §}. We introduce the following Carathéodory function:
0 ifx <0,
ki(z,x) = { Afpx™1 if 0 < x < u(z), (3.20)

Au(z)™ ' ifu(z) < x,

for (z,x) e Q x R.
We set Kj(z, x) = fg ka(z, s) ds and consider the C*-functional ¥ JE WHP(Q) — R defined by

DY) = j G(Dy)dz + - Jé’(z)lylp dz+ j BEyPP do - jKA(z, y)dz, ye WHP(Q).
Q Q BQ Q

From (3.20), Lemma 2.5 and (C3), together with Lemmata 2.8 and 2.9, we see that the functional %\ is coer-
cive. Also, the Sobolev embedding theorem and the compactness of the trace map, imply that i, is sequen-
tially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find u) € WP (Q) such that

W, (@}) = inf{,(u) : u e WHP(Q)}. (3.21)
Hypothesis 2.3 (iv) and Corollary 2.6 imply that
G(y) < cs(lyl? +Iyl”) forally e RY, (3.22)

for some c1¢ > 0.Since 7 < g < p, if v € D,, then for t € [0, 1] small (such that tv < u, recall that u € D), we
have

$(tv) < c16t‘1(||Dv||Z + ||Dv||§) + %p[ J &z)wvP dz + J B2)v? do] - gllvlli <0
Q

0Q

Therefore, by (3.21), l/)/\(ﬂ;) <0= l/)A(O), and hence uj # 0.
From (3.21) we have l/)A(uA) 0. Thus,

(AGE)), hy +J£(z)|u/\|p 2hdz+ jﬁ(z)mm 2Tt hdo = jk,\(z,ﬂj)h dz forallh e W'(Q). (3.23)
Q 0Q Q

In (3.23) we first choose —(uj)~ € W1P(Q). Then, by (3.21), Lemmata 2.5, 2.8 and 2.9, and (C3), we have
c17luy)7I” <0 for some cy7 > O,

hence uy >0, u; # 0.
Next, in (3.23) we choose h = (4} — u)* € WP(Q). Then, by (3.20) and since u € SA, we have

AGL), @ - w)*) + j )@@ - w)* dz + J B (@, - w)* do

Q 0Q
- JAfluT_l(ﬂ;{ )t dz
Q
< J[Aflur‘l +Aciou (@) - w)*t dz
Q
- (A), @ - w)') + I WP @ - ) dz + J B2l — u)* do.
Q 0Q

Therefore, u) < u
So, we have proved that

u; e[0,u] ={y e WhP(Q) : 0 < y(2) < u(z) foralmost all z € Q}, uj #0,

that is, u; is a positive solution of (3.19), and hence, by claim 3, u; = u;. Therefore, uy < u for all u € S’},
which proves claim 4.
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Invoking [20, Lemma 3.10], we can find a decreasing sequence {uy,}n>1 S S’l such that
inf $* = }g{ Un.

Evidently, {uy}ns1 € WHP(Q) is bounded, and so we may assume that

Up > @ inWHP(Q),  up— i} inL'(Q)andinLP(0Q). (3.24)
In (3.23) we choose h = u, - it} € WLP(Q), pass to the limit as n — co and use (3.24). Then

Jim (A(un), un - ;) =0,
and therefore (see (3.24) and Proposition 2.7)
Uy — & in WHP(Q). (3.25)

So, if in (3.23) we pass to the limit as n — co and use (3.25), then

(A(T), h) + j £ hdz + j @)Y hdo = J[Afl(a;)f-l + Acro(i) 1 h dz (3.26)
Q 0Q Q

forall h e WHP(Q). Also, from claim 4, we have u) < uy, for all n € N, and thus

uy < ﬂ;. (3.27)

From (3.26) and (3.27) it follows that i} € §and i} = inf SA O

Let
L ={A > 0: problem (1.1) admits a positive solution}.

Proposition 3.5. If Hypotheses 2.3 and 3.1, and conditions (C1)—(C3) hold, then £ + 0.

Proof. Letuy € S/l ¢ D, be the minimal positive solution of problem (3.5) (A € (0, Ag)), see Proposition 3.4.
We introduce the following truncation of the reaction term in problem (1.1):

(3.28)

AM(z, x) if x < y(2),
yalz, x) = 3 o
Mz, uj(2)) ifiiy(2) < x.

This is a Carathéodory function. We set ' (z, x) = j; ¥a(z, s)ds and consider the C*-functional ¢ : WP (Q)— R
defined by

1 1
G = | 6w dz+ = Pdz+ = Pdo—- | Ta(z, u)dz, WhP(Q).
Pa(u) i (Du) z+p£$<z)|u| Z+pa£ﬁ(2)|m o i Az wdz, ue WWP(Q)

From (3.28), Corollary 2.6, (C3), and Lemmata 2.8 and 2.9, we see that ¢,(-) is coercive. Also, it is sequen-
tially weakly lower semicontinuous. So, we can find uy € WP(Q) such that

daup) = inf{@a(u) : u e WHP(Q)}. (3.29)
Let §p > 0 be as postulated by Hypothesis 3.1 (iv). Given u € D,, we can find ¢ € (0, 1) small such that
tu(z) € (0, 89] forallz e Q.

Then Hypothesis 3.1 (iv) implies that

F(z, tu(z)) = %(tu(z))r for almostall z € Q.
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We have (see (3.22) and recall that t € (0, 1))
P q 4 tP tP /\fIO T T
@a(tu) < c16t?(|Dullg + IDully) + rl J &P dz + i J B()uP do - Tt lullf < c1gt? — Aciot?  (3.30)
20

for some c1g, c19 > 0. Since T < g < p, from (3.30) it follows that by choosing t € (0, 1) even smaller if neces-
sary, we have @(tu) < 0, and thus, by (3.29), pa(up) < 0 = Pa(0). Therefore, u, + 0.
From (3.29) we have ¢} (uy) = 0, hence

(Aup), h) + J ED)ualP2uph dz + J B@NurlP2uph do = Jy,\(z, wohdz forallh e WP(Q).  (3.31)
Q 0Q Q

In (3.31) we choose h = —u; € WLP(Q). Then, as before,
caolluz P <0 for some cy0 > O,

and thus u, > 0, uy # 0.
Also, in (3.31) we choose h = (ux — it})* € WP (Q). Then, by (3.28), (3.4) and since uy € Sﬁ, we have

(A(up), (up - &)%) + Jf(z)u;“(w — ) dz + j Bl (uy - )" do

Q 0Q
- JAf(z, L)y - )" dz
Q
< jA (@)™ + cro(@)) ] (ua - i})* dz
Q
(A, (ur - D)) + j @) Ny - ) dz + J B up - )" do.
Q 0Q

Therefore, u) < ﬂj

So, we have proved that u, € [0, it;], ux # 0, and hence u, is a positive solution of problem (1.1) (see
(3.28)). As before, the nonlinear regularity theory implies that u € C, \ {0}.

Let p = [ualloo and let Ep > 0 be as postulated by Hypothesis 3.1 (v). Then

—diva(Dua(2)) + (é(z) + %’p)uA(z)If’*1 >0 foralmostallz € Q
and thus, by (C1), we have
div a(Dup(2)) < [I€llco + &lua(z)P~!  for almost all z € Q.

Hence, u) € D, (see [41, pp. 111, 120]).
Therefore, we infer that (0, Ag) € £, and so £ + @. O

Let S! be the set of positive solutions of problem (1.1). A byproduct of the proof of Proposition 3.5 is the
following corollary.

Corollary 3.6. If Hypotheses 2.3 and 3.1, and conditions (C1)—(C3) hold, then Shcp,.
The next proposition reveals a basic property of the set £ of admissible parameter values.
Proposition 3.7. If Hypotheses 2.3 and 3.1, and conditions (C1)—(C3) hold, A € £ and a € (0, A), then a € L.

Proof. Since A € £, we can find u, € Sﬁ ¢ D, (see Corollary 3.6). We introduce the Carathéodory function
Ue: Q x R — R defined by

(3.32)

af(Za X) ifx < u(z),
Malz, x) = { )
af(z, up(z)) ifup(z) < x.
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We set My(z, x) = fg Uq(z, s) ds and consider the C!-functional w,: WP (Q) — R defined by

_ 1 Py L Pdg 1,p
Wqe(U) = J G(Du) dz + > !.{(z)lul dz + P a!) B@)|ul? do ([Ma(z, u)dz, ueW>?(Q).

Clearly, wq(-) is coercive (see (3.32)) and sequentially weakly lower semicontinuous. So, we can find
Uy € WHP(Q) such that
Wa(Uug) = inf{we(u) : u e WHP(Q)}. (3.33)
As before (see the proof of Proposition 3.4), using Hypothesis 3.1 (iv), we have w,(uy) < 0 = wy(0), hence
Uy # 0.
From (3.33), we have w),(u4) = 0. Thus,

(A(ug), hy + j E2)|uglP2ugh dz + J B2)|uglPushdo = jya(z, ug)hdz forallh e WhP(Q). (3.34)
Q 0Q Q

In (3.34), we first choose h = —u, € WP(Q). Then we obtain 0 < ug, uy # 0.
Next we choose h = (ug — uy)* € WHP(Q). Then, by (3.32) and sincef > 0, a < Aand u, € S’l, we have

(A(uq), (ug —uD)*) + I 2l (ug —up)t dz + J BUE (uq - up)* do

Q 20
= j af(z, up)(ug —up)* dz
Q
< Jilf(z, up)(ug —up)* dz
Q
— (A, (e = u)) + [ §@ e = w)" dz + [ B e - u)* do
Q 00
Therefore, u, < uj,.
So, we have proved that u, € [0, ua], ug # 0, hence u, € S§ € D, (see (3.32)),and so a € L. O

Remark 3.8. Proposition 3.7 implies that £ is an interval.

Corollary 3.9. If Hypotheses 2.3 and 3.1, and conditions (C1)-(C3) hold, A € £, a € (0,A) and uy € S* < D,
then we can find u, € S% such that

Uy — Uq €It C1(Zp), WithZo = {z € 0Q : uA(2) = ua(2)}.
Proof. From the proof of Proposition 3.7, we know that we can find u, € S such that
uy —ugy € Cy \ {0}.

Letp = |luplleo and let ;fp > 0 be as postulated by Hypothesis 3.1 (v). Then, by Hypotheses 3.1 (iv)—(v) and
the fact that u, < uy and uy € D, we have

—diva(Duy) + (&(z) + aé’p)uﬁ_l = af(z, ug) + a%”puﬁ_l
< afiz,up) + adoul !
= Mz, wp) - (A - )f(z, up) + adpud !
<Mz, up) - A - @)ns + a&oul ™!
< —diva(Duy) + aépuf{_l for almost all z € Q,
with s = ming u, > 0. It follows that (see Proposition 2.10)

Uy — Uq € Int CE(Zp), with Zp = {z € 0Q : up(z) = uqs(2)}-

The proof is now complete. O
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Now let A* =sup L.
Proposition 3.10. If Hypotheses 2.3 and 3.1, and conditions (C1)—(C3) hold, then A* < +co.
Proof. Hypotheses 3.1 (i), (iv) and (C1) imply that we can find A > 0 big such that
Az, x) - &z)xP~t = xP~1 foralmostall z € Q and all x > 0. (3.35)
Let A > A and suppose that A € £. Then we can find uy € S c D,. So, we have

my =minu, > 0.
Q

For 6 > 0, we set mg =my + 6 € D;. Also, for p = [uplleo, let ;fp > 0 be as postulated by Hypothesis 3.1 (v).
Then, by Hypotheses 3.1 (iv), (v), (3.35) and the fact that A > A, we have

—diva(Dm}) + (&(z) + A&,)(m5)P~?
< (&) + A&)mE ™+ x(8) (with x(6) — 0* as 6 — 0%)
<&M+ (1L +A&)mE T+ x(8)
<Az, mp) + A&mE ™ + x(8)
< Mz, m) - A= Df(z, wp) + Apmh " + x(8)
< Af(z, my) + /\Epmﬁ_l —(A=)ns +x(6) (with s = my > 0)
<Az, mp) + Aép,mp(9) - 9 (for some 9 > 0 and all 6 > 0 small)
<Mz, up) + A&up - 9
<Af(z,uy) + Aé'pu,\
= —diva(Du,) + (é(2) +A$p)uﬁ_1 for almost all z € Q. (3.36)
If B = 0 (Neumann problem), then by acting on (3.36) with (mg —uy)*t e WHP(Q), we obtain

mﬁ <up foré > 0small,

a contradiction to the definition of m,.
If B # 0, then from the boundary condition we infer that Xy = {z € 0Q : uj(z) = my} # 0Q. Then, from
(3.36) and Proposition 2.10, we have
uy —my € int C; (o),

which again contradicts the definition of m,.
So, it follows that A ¢ £, and we have A* = sup £ < A < oco. O

In what follows, for every A > 0, ¢;: WP(Q) — R is the C'-energy (Euler) functional for problem (1.1), de-

fined by
oA() = j G(Du)dz + = j E)\ulP dz + % j B@)ulP do - A j Fz,u)dz, ue W P(Q).

p
Q Q 20 Q

Proposition 3.11. If Hypotheses 2.3 and 3.1, and conditions (C1)-(C3) hold, then A* € L.

Proof. Let {A;}n>1 € £ be an increasing sequence such that A, — A~. We can find u, ¢ Sﬁl" (n € IN) such that

o, (up) <0 forallnme N (3.37)
(see the proof of Proposition 3.7).
Also, we have
(A(un), hY + J £l hdz + j Bl hdo = A, J f(z, up)h dz (3.38)
Q 20 Q

forallh e WHP(Q)and alln € N.
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Claim. {uplns1 € WHP(Q) is bounded.

Arguing by contradiction, suppose that the claim is not true. Then we may assume that [Ju,| — +oco.
From (3.37) we have

JpG(Dun) dz + J &b dz + J Bk do - Ay, JpF(z, uy)dz <0 foralln e N. (3.39)
Q Q 30 Q

On the other hand, if in (3.38) we choose h = u, € WP (Q), then

- I(a(Dun), Duy)gry dz - I &z)ub dz - J B2)ub do + Ay, If(z, Up)updz = 0. (3.40)
Q Q 20 Q

We add (3.39) and (3.40), and obtain

J[pG(Dun) - (a(Dup), Dup)pn] dz + Ay J e(z,up)dz <0 forallneN.
Q Q

Hence,
An J e(z,un)dz < cy; forallne NN,
Q

for some ¢y > 0.
Lety, = ”,'j—”” n € N. Then ||ly,|| = 1, y, = 0 for all n € N. So, we may assume that
Yn -y inWhP(Q), y,—y inL(Q)andinIP(dQ), y > 0. (3.41)
First assume that y + 0, and let E = {z € Q : y(z) # 0}. We have |E|y > 0, and so
Un(z) — +oo foralmostall z € E.

Hypothesis 3.1 (ii) implies that

F F
"(i;ﬁl;) _ (Z,pun)ylrvl — +oo foralmostall z € E. (3.42)

n

From (3.42) and Fatou’s lemma (Hypothesis 3.1 (ii) permits its use), we have

TE jF(z, Uy) dz — +oo. (3.43)
n
E

Then, since F > 0,

J’F(z, Up) deJF(Z, Upn) dz+ J F(z, uy) dz;JF(Z’ Up)

lun P llun P l[un 1P llun P

dz foralmostalln € IN,

and so (see (3.43))

dz — +00 asn — oo. (3.44)

J F(z, up)

llun P
Hypothesis 3.1 (iii) implies that
0<e(z,x)+d(z) foralmostallze Qandallx >0,

and thus
PF(z,x) - d(z) < f(z,x)x foralmostallz € Qandall x > 0. (3.45)

From (3.40), (3.45) and Hypothesis 2.3 (iv), we have
An JpF(z, up) dz < JpG(Dun) dz + J E2)ub dz + J B(z)ub do +cy, forallneNN,

Q Q Q 0Q
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for some ¢, > 0. Hence,

/‘n J pF(Zun) dz < JPG(Dun) dz + J é’(z),\’ﬁ dz + J ,B(z)yp d0-+
Q Q Q

llunll? l[unllP
20

IIP

1 D sz
< pC5< T + [|Dynlty > + J &(2)yh dz +aj B(z)yh do +

un|P
<cy3 forallne N, (3.46)

for some c¢,3 > 0. Comparing (3.44) and (3.46), we have a contradiction.
Next assume that y = 0. For u > 0, we set

Vo = (pp) Py, € WHP(Q) foralln € N.

Note that (see (3.41) and recall that y = 0) v, — 0 in L"(Q). Hence, by Hypothesis 3.1 (i),

JF(Z, vn)dz — 0. (3.47)
Q

Since ||uy|l — oo, we can find ng € N such that

(pp)'P <1 foralln = ng. (3.48)

1
llunll

Consider the C!-functional 1, : WP(Q) — R defined by

P, (u) = ||Du||1,J += J &) |ulP dz + v J B@)|ulP do - A, JF(z, u)dz, ue WSP(Q).
Q

0Q Q

(pl)

Let t,, € [0, 1] be such that
U, (tnun) = max{hy, (tun) : 0 < t < 1} (3.49)
From (3.47)—(3.49), it follows that (see (C3), Lemmata 2.8 and 2.9, and recall that F > 0, A,; < A*)
YA, (tattn) = P2, (V)
= W[ 25 10ylh + [ &@yidz+ [ B do| - [ Fiz, v dz
Q

Q 0Q

= UCyy — A JF(Z, vp) dz
Q

> y% >0 foralln > n; = ng, (3.50)
for some c,4 > 0. But u > 0 is arbitrary. So, from (3.50) we infer that
l])/\n(tnun) — 400 asn — +oo. (3.51)

Note that
¥1,(0)=0 and P, (u,) <0 forallneN, (3.52)

by (3.37), Corollary 2.6, and the fact that lZ)/\" < @y, forall n € N. Then, from (3.51) and (3.52), it follows that
tn €(0,1) foralln > n,. (3.53)

So, from (3.49) and (3.53), we have

ditlzl/tn(tun)lt=tn =0 foralln > ny,
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and by the chain rule,
<';b;l,,(tnun), thun) =0 foralln > n,.

Therefore,
CIDEunl + [ 8@ Eun)” dz + | B Eun)” do = Ay [ £z, trn) ) dz - foralln > ma,
p Q 0Q Q
and thus

pll),\n(tnun) + Ay JpF(z, thuy) dz = Ay Jf(z, thun)(thuy) dz foralln = ns.
Q Q

By (3.53), Hypothesis 3.1 (iii) and since A, < A* forall n € N and e > 0, it follows that

P, (tnltn) < An J e(z, thup) dz
<A*

e(z, tyuy) dz

<A* | e(z, up) dz + A*||d|1

D, O, ©

<My, foralln > ny, (3.54)

for some M, > 0. Comparing (3.51) and (3.54) again we have a contradiction.
This proves the claim.

On account of the claim, we may assume that
Up - u* inWHP(Q),  u, —»u* inL(Q)andin LP(3Q). (3.55)
In (3.38) we choose h = u, — u* € WHP(Q), pass to the limit as n — oo and use (3.55). Then we obtain
Jim (A(un), un —u’) =0,

hence (see Proposition 2.7)
Up — u*  in WHP(Q). (3.56)

So, if in (3.38) we pass to the limit as n — co and use (3.56), then

(A, hy + J E2) P hdz + J B P Thdo = A* Jf(z, uhdz forallh e WhP(Q).

Q 20 Q
Therefore,
—diva(Du*(2)) + &2)u*(z)’ 1 = 1*f(z, u*(z)) foralmostallz € Q,
and (see [28])
U | B WP =0 ondQ. (3.57)
ong
We know that

Uy sup forallneN

(see claim 4 in the proof of Proposition 3.4 and use the fact that A — u, is nondecreasing from (0, +c0) into
C'(Q)). Hence, as n — oo, we obtain i, < u*, thus u* € S" (see (3.57)), and so 1* € L. O

Proposition 3.12. If Hypotheses 2.3 and 3.1, and conditions (C1)-(C3) hold, and A € (0, A*), then prob-
lem (1.1) has at least two positive solutions

va, Uy € Dy,  withuy—uy € Cy \ {0}.
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Proof. From Proposition 3.11 we know that A* € £. So, we can find u* € S} ¢ D,. Invoking Corollary 3.9,
we can find uy € S’l ¢ D, such that

u* —uy €intCi(Zp), withZp={z€0Q: ux(2) = u*(2)}. (3.58)

Moreover, from the proof of Proposition 3.7, we know that u, is a global minimizer of the functional w;.
Using the fact that u, € S’l ¢ D,, we introduce the following truncation of the reaction term in prob-
lem (1.1):

(3.59)

{/\f(z, u(2)) i x < u(z),
Iz, x) =
Af(z, x) if uy(2) < x.

This is a Carathéodory function. Now we set ©,(z, x) = Ig 9:(z, s) ds, and we consider the C!-functional
@r: WHP(Q) — R defined by

1 1
G = | G(buw) dz + = Pdz+ =~ Pdo- | ©y(z, u) dz, WLP(Q).
Pa(w) i (Du) z+pi<’(z>|u| z+pa£ﬁ(z)|u| o ! Az dz, ue WHP(Q)

From (3.59) it is clear 95(z, - ) has the same asymptotic behavior for x — +co as f(z, - ). So, reasoning as in the
claim in the proof of Proposition 3.11, we show that

(, satisfies the C-condition. (3.60)
Claim. Ky, € [up) N Dy ={u € Dy : up(z) <u(z)forallz € Q.

Let u € Kgp,. Then

(AQu), hy + J E)ulP2uh dz + J B)ulPuh do = J 9z, whdz forallhe W-P(Q).  (3.61)
Q 0Q Q

In (3.61) we choose h = (uy — u)* € W-?(Q). Then, by (3.59) and since u, € S}, we have

(AW), (- w)*) + j EDNuP2uluy - w)* dz + j B 2u(uy - w* do

Q 0Q
_ I)lf(z, w) s - w)* dz
Q
= (AG), (ur - w*) + j &b - w)t dz + j Bt (ur — u)* do,
Q 0Q

hence u, < u. As before, the nonlinear regularity theory implies that u € D.. This proves the claim.

The claim allows us to assume that
K, 0 [ux, u*] = {uz}. (3.62)

Indeed, otherwise we already have a second positive smooth (due to nonlinear regularity) solution of prob-
lem (1.1), which is bigger than u,, and so we are done.
We consider the following truncation of 9,(z, - ):

51000 < {SA(Z, X) if x < u*(2), .69

Iz, u*(2)) ifu*(z) <x.

This is a Carathéodory function. Now we set ©,(z, x) = jg 9:(z, s) ds, and we consider the C!-functional
@r: WEP(Q) — R defined by

1 1 -
i = | G(buw) dz + = Pdz+ = Pdo- | Oy(z, u) dz, WhP(Q).
Paw) i (Du) z+p£¢’(z>|u| Z+pa£ﬁ(2)|m o i Az dz, ue WHP(Q)
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Using (3.63), we can easily show that
Ky, € [up, u*]1nD;. (3.64)

From (3.63) it is clear that (¢, is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can
find ity € WHP(Q) such that
Pa(iy) = inf{@a(w) : u e WHP(Q)},

and thus, by (3.64),
i) € Ky, < [up, u"]nDy.

From (3.59) and (3.63), we see that @} |j0,u*] = @}l0,u*], hence ity € Ky, and i1y = u; (see (3.62)). Then,
from (3.58), we infer that for £y = {z € 0Q : ua(z) = u*(z)}, we have that uy, is a C1(Q)-minimizer of ¢,, and
souyisa Wi P (Q)-minimizer of (¥, (see Proposition 2.12).

Without any loss of generality, we may assume that K, is finite. Otherwise, the claim and (3.59) imply
that we already have a whole sequence of distinct smooth solutions of (1.1) bigger than u,, and so we are
done. Then we can find p € (0, 1) small such that

@a(up) <inf{@a(ur + ) : Rl < p, h e WP (Q)} = i (3.65)
In addition, Hypothesis 3.1 (ii) implies that for all h € int C} (%), we have
@a(up + th) —» —oo ast — +oo. (3.66)

From (3.60), (3.65) and (3.66), we see that we can apply Theorem 2.1 (the mountain pass theorem) on
the affine space (manifold) Y = u, + wh? (Q) and find 1) € Y such that (see (3.65))

(@), hy =0 forallh e W,P(Q), ) < painn), (3.67)

and thus, by choosing h = (u) - )t € Wr*(Q), ux < .
Also, using the nonlinear Green’s identity on the space wlp (Q) (see [8, 23]), from (3.67), we infer that
uy € D, is a solution of (1.1) (A € (0, A*)). Moreover, from (3.65) we have ity — uy € C; \ {0}. O

Summarizing the results of this section, we can formulate the following bifurcation-type result.

Theorem 3.13. Under Hypotheses 2.3 and 3.1, and conditions (C1)—(C3), there exists A* > 0 such that the fol-
lowing hold:

(a) Forall A € (0,A*), problem (1.1) has at least two positive solutions uy, ty € D,, with tiy — uy € Cy \ {O}.
(b) For A = A*, problem (1.1) has at least one positive solution u* € D,.

(c) For A > A*, problem (1.1) has no positive solution.

4 Big, small and minimal positive solutions

In this section we show that as A — 0%, we can produce positive solutions of problem (1.1) which have
WP (Q)-norm, which is arbitrarily big and arbitrarily small. Moreover, we show that for every A € (0, A*),
problem (1.1) admits a smallest positive solution uj € D,, and we study the monotonicity and continuity
properties of the map A + uj.

Theorem 4.1. If Hypotheses 2.3 and 3.1, and conditions (C1)-(C3) hold, and A,, — 07, then we can find positive
solutions
Up =1y, € S/l" €D, up=uy,c€ S’l“ cD, forallneN

such that ||it,|| — +oo and ||uy| — 0 as n — oo.
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Proof. From (3.4) we have

10 _r

F(z,x) < ng + CTX for almostall z € Q and all x > 0. (4.1)

Then, for all u € WP (Q), we have (see Corollary 2.6, Lemmata 2.8 and 2.9, (C3) and (4.1))

c 1 1 A AnC
01, 0) > Dl + - [ E@Iul? dz+ - [ @l do - T - S0
Q 0Q
> cosllull? = Ancas(lull” + lul”) foralln e N, (4.2)

for some ¢35, c26 > 0. Let |Jul| = A,;* with a > 0. We set
k(Ap) = C25/1,_1ap — C26(/1}l_ar + A}l_m), n € N.

We choose a € (0, %) (recall that r > p). Then we have —ap < 1 — ar < 1 - at (recall that 7 < p < r). So, we
see that (recall that A, — 0%)
k(A,) — +c0 asn — oo. (4.3)

Then, from (4.2) and (4.3), we infer that there exists n; € N such that
©1,(W) = k(Az) >0 =¢,,(0) foralln>nyandall |ull = A,°%. (4.4)
Hypothesis 3.1 (ii) implies that if u € D, then
®a,(tu) - —co ast — +oo, foralln € N. (4.5)
Moreover, as in the claim in the proof of Proposition 3.11, we can check that
@, () satisfies the C-condition for all n € IN. (4.6)

Then (4.4), (4.5) and (4.6) permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find
i, € WHP(Q) such that (see Hypothesis 3.1 (i)

Uy € Ky, and k() < @a(itn) < c27(1 + |litn]")  foralln > ny,
for some c,7 > 0. Hence (see (4.3)),
dpeShcDp, foralneN,  |inl — co.

Next let { € (0, %) and consider |lu| = Ai. Then from (4.2) we have

02,00 2 C35AT = o6 A 4 A5 = Aalleas A = co6 (AR + A,
Let ko(Ayp) = cz5)lﬁp_1 - czé()lgT + Aﬁ’). Since {p — 1 < 0 and A, — 0, we infer that
ko(Ap) —» +0c0 asn — +oo.
So, we can find n, € N such that
92, (W) = Anko(An) > 0 = @2, (0) forall n > ny and all [luf) = A5. (4.7)

LetBy, = {u € WHP(Q) : |lull < Ai}, n € N. Since Hypotheses 2.3 (iv) and 3.1 (iv) and the fact that 7t < g < p
imply that for every n € IN, every u € D, and for t € (0, 1) small, we have (see the proof of Proposition 3.5)

oa (tw) <0, |tul <Ay foralln e N. (4.8)
From (4.7) and (4.8), we see that

0< grg’f @, infey, <0 foralln > n,. (4.9)
" B

n
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Let ¢, = infyp, @, — infgn @a, > 0forn = n, (see (4.9)). Using the Ekeland variational principle (see, for
example, [15, pp. 579]), given € € (0, T,) (n > ny), we can find u” € B, = {u € WHP(Q) : |Ju| < Ag} such that
o, (Wl <infoq, +€, (4.10)

o, W) < A, (y) +€ly —uy|l forally € By, n > n,. (4.11)

Given t € WHP(Q), for ¢ > 0 small, we have u? + th € By. So, if in (4.11) we choose y = ul! + th, then
—ellhll < (@) (ug),h) forallh e WHP(Q),

and thus
||<p;"(u2’)||* <e foralln > n,. (4.12)

Let €, — 0" and set ug‘m =ull forallm € N, n > n,. From (4.12) we have
@}, (uy) =0 in WhP(Q)* asm — oo, n > n,. (4.13)

But from (4.6) we know that ¢, (-) satisfies the C-condition. So, from (4.10) and (4.13), it follows that at
least for a subsequence, we have

ul, - uy, =u, in WHP(Q)asm — co. (4.14)
From (4.10) and (4.14), we infer that

@a,(up) =inf @, foralln > ny,
Bn

hence uy, € By, and so u, € Ky, foralln > n; (see (4.9)). Therefore, we have u, € SY e D, and Jun| < Ag for
all n > ny. Thus, |uy|| — 0as n — oo (recall that A,, — 07%). O

For every A € (0, A*), we show that problem (1.1) admits a minimal positive solution uy and determine the
monotonicity and continuity properties of the map A +— u;.

Theorem 4.2. If Hypotheses 2.3 and 3.1, and conditions (C1)—(C3) hold, and A € (0, A*), then problem (1.1)
has a smallest positive solution uj € Sﬁ‘r ¢ D, and the map A — u; from (0, A*) into C LQ)is
o “strictly monotone”, in the sense that

9<A = uj -ugeintCi(To), withZo ={z € 0Q: u;(2) = uy(2)};
«  “left continuous”, that is, if \y, —» A~ < A*, thenu,, — uyin cl(Q).

Proof. From [20, Lemma 3.10], we know that we can find {u,},>1 € S/l such that (see the proof of Proposi-
tion 3.5)
infS’}r = ir>111? Up, up<tiy forallneN.
nz

Evidently, {uy}ns1 € WHP(Q) is bounded and so we may assume that

Up - ui  inWHP(Q),  u, —uj inL’(Q)andinLP(3Q). (4.15)
We have
(A(up), h) + j &2l hdz + I Bl thdo =2 Jf(z, uphdz forallh e W-P(Q). (4.16)
Q 0Q Q

In (4.16) we choose h = un - uj € W1P(Q). Passing to the limit as n — co and using (4.15), we obtain

Aim (A(un), un - uy) =0,
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and so (see Proposition 2.7)
up - up  in WHP(Q). (4.17)

If in (4.16) we pass to the limit as n — oo and use (4.17), then

(AW, by + J{(z)(u;)l’—lh dz + J B@) )P Thdo = A Jf(z, wHhdz forall h e WP(Q),
Q 0Q Q

which implies that u; is a nonnegative solution of (1.1) (see [28]).
Hypotheses 3.1 (i) and (iv) imply that we can find c,g > 0 such that

1 1

flz,x) = lox"" = c28x" foralmostall z € Qandall x > 0. (4.18)

We consider the following auxiliary Robin problem:

— diva(Du(z)) + &2u@)P ™" = A(fou(z)"! - c2su(2)"™!) inQ,
(4.19)

u p1_
on, + B(2)u 0 on oQ,

with u > 0, A > 0. As in the proof of Proposition 3.4 (there we had the auxiliary problem (3.19)), prob-
lem (4.19) has a unique positive solution u; € D, for all A > 0 and (see (4.18))

—x

u; <u forallu e S},

So, we have
Uy <u, forallneN,

which implies 4} < u}, and so uj € S; and u} = inf S.

From Corollary 3.9, we infer the strict monotonicity of the map A ~ uj.

Finally, suppose that {A,,, A}»>1 € (0, A*) and A, — A~. Then (see the proof of Proposition 3.5)

uj{n <y forallne N,
and so {u;n}nm c WLP(Q) is bounded. From [25], we know that there exist a € (0, 1) and M5 > 0 such that
up € CH%(Q),  Nunllgragg <Ms foralln e N.
Exploiting the compact embedding of C1*(Q) into C1(Q), we have
uy —a; inC'Y(Q) (4.20)

(here we have the original sequence since it is increasing).
Suppose that it} # uj. Then we can find zo € Q such that u; (zo) < it} (z0), and therefore, by (4.20),

ujy (zo0) < u;n(zo) forall n > ng.

This contradicts the monotonicity of A — u;. Therefore, ﬂj{ =uj and the map A — u; is left continuous. [
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