Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Positive solutions for superdiffusive mixed problems

Nikolaos S. Papageorgiou^a, Vicențiu D. Rădulescu^{b,c,*}, Dušan D. Repovš^d

^a National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
 ^b Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

^c Department of Mathematics, University of Craiova, Street A.I. Cuza 13, 200585 Craiova, Romania ^d Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

ABSTRACT

ARTICLE INFO

Article history: Received 8 September 2017 Received in revised form 30 September 2017 Accepted 30 September 2017 Available online 12 October 2017

Keywords: Mixed boundary condition Superdiffusive reaction Positive solutions Bifurcation-type result Truncations

1. Introduction

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial \Omega$ and let $\Sigma_1, \Sigma_2 \subseteq \partial \Omega$ be two (N-1)dimensional C^2 -submanifolds of $\partial \Omega$ such that $\partial \Omega = \Sigma_1 \cup \Sigma_2$, $\Sigma_1 \cap \Sigma_2 = \emptyset$, $|\Sigma_1|_{N-1} \in (0, |\partial \Omega|_{N-1})$, and $\overline{\Sigma_1} \cap \overline{\Sigma_2} = \Gamma$. Here, $|\cdot|_{N-1}$ denotes the (N-1)-dimensional Hausdorff (surface) measure and $\Gamma \subset \partial \Omega$ is a (N-2)-dimensional C^2 -submanifold of $\partial \Omega$.

In this paper, we study the following logistic-type elliptic problem:

$$\begin{cases} -\Delta u(z) = \lambda u(z)^{q-1} - f(z, u(z)) & \text{in } \Omega, \\ u|_{\Sigma_1} = 0, \left. \frac{\partial u}{\partial n} \right|_{\Sigma_2} = 0, \ u > 0, \ \lambda > 0. \end{cases}$$

$$(P_{\lambda})$$

When $f(z,x) = x^{r-1}$ with $r \in (2,2^*)$, we get the classical logistic equation, which is important in biological models (see Gurtin & Mac Camy [1]). Depending on the value of q > 1, we distinguish three cases:

dusan.repovs@guest.ames.si (D.D. Repovš).

 $\label{eq:https://doi.org/10.1016/j.aml.2017.09.017} 0893-9659 (© 2017 Elsevier Ltd. All rights reserved.$

mixed problems

We study a semilinear parametric elliptic equation with superdiffusive reaction and mixed boundary conditions. Using variational methods, together with suitable truncation techniques, we prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions.

© 2017 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: Department of Mathematics, University of Craiova, Street A.I. Cuza 13, 200585 Craiova, Romania. *E-mail addresses:* npapg@math.ntua.gr (N.S. Papageorgiou), vicentiu.radulescu@imar.ro (V.D. Rădulescu),

(i) 1 < q < 2 (subdiffusive logistic equation); (ii) 2 = q < r (equidiffusive logistic equation); (iii) 2 < q < r (superdiffusive logistic equation). In this paper, we deal with the third situation (superdiffusive case), which exhibits bifurcation-type phenomena for large values of the parameter $\lambda > 0$ (see also [2]).

Let $E_{\Sigma_1} = \{u \in H^1(\Omega) : u|_{\Sigma_1} = 0\}$. This space is defined as the closure of $C_c^1(\Omega \cup \Sigma_1)$ with respect to the $H^1(\Omega)$ -norm. Since $|\Sigma_1|_{N-1} > 0$, we know that for the space E_{Σ_1} , the Poincaré inequality holds (see Gasinski & Papageorgiou [3, Problem 1.139, p. 58]). So, E_{Σ_1} is a Hilbert space equipped with the norm $||u|| = ||Du||_2$. Let $\mathcal{A} \in \mathcal{L}(E_{\Sigma_1}, E_{\Sigma_1}^*)$ be defined by $\langle A(u), h \rangle = \int_{\Omega} (Du, Dh)_{\mathbb{R}^N} dz$ for all $u, h \in E_{\Sigma_1}$. We denote by N_f the Nemitsky map associated with f, that is, $N_f(u)(\cdot) = f(\cdot, u(\cdot))$ for all $u \in E_{\Sigma_1}$.

The hypotheses on the perturbation term f(z, x) are the following:

 $H(f): f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that for almost all $z \in \Omega$, f(z, 0) = 0, $f(z, x) \ge 0$ for all x > 0, and

- (i) $f(z,x) \leq a(z)(1+x^{r-1})$ for almost all $z \in \Omega$ and all $x \geq 0$, with $a \in L^{\infty}(\Omega)$, $2 < q < r < 2^*$;
- (ii) $\lim_{x\to+\infty} \frac{f(z,x)}{x^{q-1}} = +\infty$ uniformly for almost all $z \in \Omega$, and the mapping $x \mapsto \frac{f(z,x)}{x}$ is nondecreasing on $(0, +\infty)$ for almost all $z \in \Omega$;
- (iii) $0 \leq \liminf_{x \to 0^+} \frac{f(z,x)}{x} \leq \limsup_{x \to 0^+} \frac{f(z,x)}{x} \leq \hat{\eta}$ uniformly for almost all $z \in \Omega$;
- (iv) for every $\rho > 0$, there exists $\hat{\xi}_{\rho} > 0$ such that for almost all $z \in \Omega$ the function $x \mapsto \hat{\xi}_{\rho} x f(z, x)$ is nondecreasing on $[0, \rho]$.

The following functions satisfy hypotheses H(f): (i) $f(x) = x^{r-1}$ for all $x \ge 0$ with $2 < q < r < 2^*$; (ii) $f(x) = x^{q-1} \left[\ln(1+x) + \frac{1}{q} \frac{x}{1+x} \right]$ for all $x \ge 0$, with $2 < q < 2^*$.

Let $\mathcal{L} = \{\lambda > 0 : \text{problem } (P_{\lambda}) \text{ has a positive solution} \}$ and let $S(\lambda)$ denote the set of positive solutions of problem (P_{λ}) . Let $\lambda_* = \inf \mathcal{L}$ (if $\mathcal{L} = \emptyset$, then $\inf \emptyset = +\infty$).

By a solution of problem (P_{λ}) , we understand a function $u \in E_{\Sigma_1}$ such that $u \ge 0$, $u \ne 0$ and $\langle A(u), h \rangle = \int_{\Omega} [\lambda u^{q-1} - f(z, u)] h dz$ for all $h \in E_{\Sigma_1}$.

We refer to Bonanno, D'Agui & Papageorgiou [4], Filippucci, Pucci & Rădulescu [5], and Li, Ruf, Guo & Niu [6] for related results. We also refer to the monograph by Pucci & Serrin [7] for more results concerning the abstract setting of this paper.

2. A bifurcation-type theorem

Proposition 1. If hypotheses H(f) hold, then $S(\lambda) \subseteq C^{1,\alpha}(\Omega) \cap C^{0,\alpha}(\overline{\Omega})$ with $\alpha \in (0, 1/2)$. For all $u \in S(\lambda)$ we have u(z) > 0 for all $z \in \Omega$ and $\lambda_* > 0$.

Proof. From DiBenedetto [8] and Colorado & Peral [9], we know that if $u \in S(\lambda)$ then $u \in C^{1,\alpha}(\Omega) \cap C^{0,\alpha}(\overline{\Omega})$ with $\alpha \in (0, 1/2)$. Moreover, using Harnack's inequality, we deduce that if $u \in S(\lambda)$ then u(z) > 0 for all $z \in \Omega$. Let $\hat{\lambda}_1$ be the smallest eigenvalue of $-\Delta$ with mixed boundary conditions. From Colorado & Peral [9, p. 482], we know that $\hat{\lambda}_1 = \inf \left\{ \frac{\|Du\|_2^2}{\|u\|_2^2} : u \in E_{\Sigma_1} \setminus \{0\} \right\} > 0$. By H(f)(i), (iii), there exists $\lambda_0 > 0$ such that

$$\lambda_0 x^{q-1} - f(z, x) \leqslant \hat{\lambda}_1 x \text{ for almost all } z \in \Omega, \text{ and all } x \ge 0$$
(1)

(recall that 2 < q < r). Let $\lambda \in (0, \lambda_0)$ and suppose that $\lambda \in \mathcal{L}$. Then there exists $u_{\lambda} \in S(\lambda)$ and by using Green's identity, we get

$$A(u_{\lambda}) = \lambda u_{\lambda}^{q-1} - N_f(u_{\lambda}) \text{ in } E_{\Sigma_1}^*.$$
(2)

We act on (2) with $u_{\lambda} \in E_{\Sigma_1}$ and obtain $\|Du_{\lambda}\|_2^2 = \lambda \|u_{\lambda}\|_q^q - \int_{\Omega} f(z, u_{\lambda}) u_{\lambda} dz < \hat{\lambda}_1 \|u_{\lambda}\|_2^2$ (see (1) and recall that $\lambda < \lambda_0, u_{\lambda}(z) > 0$ for all $z \in \Omega$), which contradicts the definition of $\hat{\lambda}_1$. Therefore $\lambda \notin \mathcal{L}$ and we have $0 < \lambda_0 \leq \lambda_* = \inf \mathcal{L}$. \Box

Proposition 2. If hypotheses H(f) hold, then $\mathcal{L} \neq \emptyset$ and " $\lambda \in \mathcal{L}, \eta > \lambda \Rightarrow \eta \in \mathcal{L}$ ".

Proof. Fix $\lambda > 0$ and let $\varphi_{\lambda} : E_{\Sigma_1} \to \mathbb{R}$, $\varphi_{\lambda}(u) = \frac{1}{2} \| Du\|_2^2 - \frac{\lambda}{q} \|u^+\|_q^q + \int_{\Omega} F(z, u) dz$, where $F(z, x) = \int_0^x f(z, s) ds$. Then $\varphi_{\lambda} \in C^1(E_{\Sigma_1})$ and φ_{λ} is sequentially weakly lower semicontinuous. Hypotheses H(f)(i), (ii) imply that given $\xi > 0$, we can find $c_1 = c_1(\xi) > 0$ such that $F(z, x) \ge \frac{\xi}{q} x^q - c_1$ for almost all $z \in \Omega$ and for all $x \ge 0$. Thus, for all $u \in E_{\Sigma_1}$ we have $\varphi_{\lambda}(u) \ge \frac{1}{2} \|Du\|_2^2 + \frac{\xi - \lambda}{2} \|u^+\|_q^q - c_1|\Omega|_N$. Choosing $\xi > \lambda$, we deduce that φ_{λ} is coercive. So, by the Weierstrass–Tonelli theorem, there exists $u_{\lambda} \in E_{\Sigma_1}$ such that

$$\varphi_{\lambda}(u_{\lambda}) = \inf\{\varphi_{\lambda}(u) : u \in E_{\Sigma_1}\} = m_{\lambda}.$$
(3)

Fix $\bar{u} \in E_{\Sigma_1} \cap C(\overline{\Omega})$ with u(z) > 0 for all $z \in \Omega$. For large enough $\lambda > 0$ we have $\varphi_{\lambda}(\bar{u}) < 0$, hence $\varphi_{\lambda}(u_{\lambda}) = m_{\lambda} < 0 = \varphi_{\lambda}(0)$ (see (3)). Thus, $u_{\lambda} \neq 0$. By (3), $\varphi'_{\lambda}(u_{\lambda}) = 0$, hence

$$A(u_{\lambda}) = \lambda(u_{\lambda}^{+})^{q-1} - N_f(u_{\lambda}) \text{ in } E_{\Sigma_1}^*.$$
(4)

We act on (4) with $-u_{\lambda}^{-} \in E_{\Sigma_{1}}$ and obtain $\|Du_{\lambda}^{-}\|_{2}^{2} = 0$, hence $u_{\lambda} \ge 0$. So, relation (4) becomes $A(u_{\lambda}) = \lambda u_{\lambda}^{q-1} - N_{f}(u_{\lambda})$. By Green's identity, $u_{\lambda} \in S(\lambda)$, hence $\lambda \in \mathcal{L} \neq \emptyset$.

Next, let $\lambda \in \mathcal{L}$ and $\eta > \lambda$. Choose $\vartheta \in (0,1)$ such that $\lambda = \vartheta^{q-2}\eta$ (recall that 2 < q). Also, let $u_{\lambda} \in S(\lambda) \subseteq C^{1,\alpha}(\Omega) \cap C^{0,\alpha}(\overline{\Omega})$ with $\alpha \in (0, 1/2)$. Let $\underline{u} = \vartheta u_{\lambda}$. Then

$$A(\underline{u}) = \vartheta A(u_{\lambda}) = \vartheta \left[\lambda u_{\lambda}^{q-1} - N_f(u_{\lambda}) \right] \text{ in } E_{\Sigma_1}^*.$$
(5)

From hypothesis H(f)(ii) and since $u_{\lambda}(z), \underline{u}(z) > 0$ for all $z \in \Omega$, we have for a.a. $z \in \Omega$

$$\frac{f(z,\underline{u}(z))}{\underline{u}(z)} \leqslant \frac{f(z,u_{\lambda}(z))}{u_{\lambda}(z)} \Rightarrow f(z,\underline{u}(z)) \leqslant \vartheta f(z,u_{\lambda}(z)) \text{ (recall that } \underline{u} = \vartheta u_{\lambda}).$$
(6)

Using (5) in (6) and since $\vartheta \in (0, 1)$, we obtain

$$A(\underline{u}) \leqslant \vartheta^{q-1} \eta u_{\lambda}^{q-1} - N_f(\underline{u}) \leqslant \eta \underline{u}^{q-1} - N_f(\underline{u}) \text{ in } E^*_{\Sigma_1}.$$

$$\tag{7}$$

We introduce the following Carathéodory truncation of the reaction term in problem (P_{η})

$$g_{\eta}(z,x) = \begin{cases} \eta \underline{u}(z)^{q-1} - f(z,\underline{u}(z)) & \text{if } x \leq \underline{u}(z) \\ \eta x^{q-1} - f(z,x) & \text{if } \underline{u}(z) < x. \end{cases}$$
(8)

Let $G_{\eta}(z,x) = \int_0^x g_{\eta}(z,s) ds$ and define $\hat{\varphi}_{\eta} : E_{\Sigma_1} \to \mathbb{R}$ by $\hat{\varphi}_{\eta}(u) = \frac{1}{2} \|Du\|_2^2 - \int_{\Omega} G_{\eta}(z,u) dz$. Hypotheses $H(f)(\mathbf{i})$, (ii) imply that given $\xi > 0$, we can find $c_2 = c_2(\xi) > 0$ such that

$$\eta x^{q-1} - f(z, x) \leq (\eta - \xi) x^{q-1} + c_2$$
 for almost all $z \in \Omega$ and all $x \ge 0$.

Then for all $u \in E_{\Sigma_1}$, we have

$$\hat{\varphi}_{\eta}(u) \ge \frac{1}{2} \|Du\|_{2}^{2} + \frac{\xi - \eta}{q} \|u^{+}\|_{q}^{q} - c_{3} \text{ for some } c_{3} > 0 \text{ (see (8), (9))}.$$
(10)

Choosing $\xi > \eta$, we see from (10) that $\hat{\varphi}_{\eta}$ is coercive. This function is also sequentially weakly lower semicontinuous. So, by the Weierstrass–Tonelli theorem, there exists $u_{\eta} \in E_{\Sigma_1}$ such that $\hat{\varphi}_{\eta}(u_{\eta}) = \inf[\hat{\varphi}_{\eta}(u) : u \in E_{\Sigma_1}]$, hence $\hat{\varphi}'_{\eta}(u_{\eta}) = 0$. We deduce that

$$A(u_{\eta}) = N_{g_{\eta}}(u_{\eta}) \text{ in } E^*_{\Sigma_1}.$$

$$\tag{11}$$

(9)

We act on (11) with $(\underline{u} - u_{\eta})^+ \in E_{\Sigma_1}$. By (8) and (7) we have

$$\left\langle A(u_{\eta}), (\underline{u} - u_{\eta})^{+} \right\rangle = \int_{\Omega} [\eta \underline{u}^{q-1} - f(z, \underline{u})](\underline{u} - u_{\eta})^{+} dz \ge \left\langle A(\underline{u}), (\underline{u} - u_{\eta})^{+} \right\rangle$$

$$\Rightarrow \left\langle A(\underline{u} - u_{\eta}), (\underline{u} - u_{\eta})^{+} \right\rangle \leqslant 0 \Rightarrow \left\| D(\underline{u} - u_{\eta})^{+} \right\|_{2}^{2} \leqslant 0 \Rightarrow \underline{u} \leqslant u_{\eta}.$$

$$(12)$$

Using (8) and (12) we see that relation (11) becomes $A(u_{\lambda}) = \eta u_{\eta}^{q-1} - N_f(u_{\eta})$ in $E_{\Sigma_1}^*$. Thus, by Proposition 1, we have $u_{\eta} \in S(\eta) \subseteq C^{1,\alpha}(\Omega) \cap C^{0,\alpha}(\overline{\Omega})$. Therefore $\eta \in \mathcal{L}$. We also observe that Proposition 2 implies $(\lambda_*, +\infty) \subseteq \mathcal{L}$. \Box

Proposition 3. If hypotheses H(f) hold and $\lambda > \lambda_*$, then problem (P_{λ}) has at least two positive solutions $u_0, \hat{u} \in E_{\Sigma_1} \cap C^{0,\alpha}(\overline{\Omega})$ for $\alpha \in (0, 1/2)$ with $0 < u_0(z), \hat{u}(z)$ for all $z \in \Omega$.

Proof. Let $\mu \in (\lambda_*, \lambda)$. By Proposition 2 we know that $\mu \in \mathcal{L}$. Hence we can find $u_{\mu} \in S(\mu) \subseteq E_{\Sigma_1} \cap C^{0,\alpha}(\overline{\Omega})$ with $\alpha \in (0, 1/2), u_{\mu}(z) > 0$ for all $z \in \Omega$. We have $A(u_{\mu}) = \mu u_{\mu}^{q-1} - N_f(u_{\mu})$ in $E_{\Sigma_1}^*$. Next, we define the following Carathéodory function

$$\hat{h}_{\lambda}(z,x) = \begin{cases} \lambda u_{\mu}(z)^{q-1} - f(z,u_{\mu}(z)) & \text{if } x \leq u_{\mu}(z) \\ \lambda x^{q-1} - f(z,x) & \text{if } u_{\mu}(z) < x. \end{cases}$$
(13)

Let $\hat{H}_{\lambda}(z,x) = \int_{0}^{x} \hat{h}_{\lambda}(z,s) ds$ and let $\hat{\psi}_{\lambda} : E_{\Sigma_{1}} \to \mathbb{R}$, $\hat{\psi}_{\lambda}(u) = \frac{1}{2} \|Du\|_{2}^{2} - \int_{\Omega} \hat{H}_{\lambda}(z,u) dz$. Then $\hat{\psi}_{\lambda}$ is coercive and sequentially weakly lower semicontinuous. Thus, we can find $u_{0} \in E_{\Sigma_{1}}$ such that $\hat{\psi}_{\lambda}(u_{0}) = \inf\{\hat{\psi}_{\lambda}(u) : u \in E_{\Sigma_{1}}\}$, hence $\hat{\psi}_{\lambda}'(u_{0}) = 0$. Thus, $A(u_{0}) = N_{\hat{h}_{\lambda}}(u_{0})$. Using (13) and reasoning as in the proof of Proposition 2 we deduce that $u_{\mu} \leq u_{0}$. By Colorado & Peral [9, Theorem 6.6], we have $u_{0} \in E_{\Sigma_{1}} \cap C^{0,\alpha}(\overline{\Omega})$ with $\alpha \in (0, 1/2)$ and $u_{0} > 0$ in $z\Omega$ (by Harnack's inequality).

Let $\rho_0 = ||u_0||_{\infty}$ and let $\hat{\xi}_{\rho_0} > 0$ be as postulated in hypothesis H(f)(iv). We have

$$\begin{cases} -\Delta u_0(z) + \hat{\xi}_{\rho_0} u_0(z) = \lambda u_0(z)^{q-1} - f(z, u_0(z)) + \hat{\xi}_{\rho_0} u_0(z) \text{ in } \Omega, \\ u_0|_{\varSigma_1} = 0, \left. \frac{\partial u_0}{\partial n} \right|_{\varSigma_2} = 0 \end{cases}$$
(14)

and

$$\begin{cases} -\Delta u_{\mu}(z) + \hat{\xi}_{\rho_{0}} u_{\mu}(z) = \mu u_{\mu}(z)^{q-1} - f(z, u_{\mu}(z)) + \hat{\xi}_{\rho_{0}} u_{\mu}(z) \text{ in } \Omega, \\ \hat{u}_{\mu}|_{\Sigma_{1}} = 0, \left. \frac{\partial u_{\mu}}{\partial n} \right|_{\Sigma_{2}} = 0. \end{cases}$$

$$(15)$$

Let $\hat{y} = u_0 - u_\mu \ge 0$. Since $\lambda > \mu, u_0 \ge u_\mu$, from (14), (15), and H(f)(iv) we have

$$\begin{split} -\Delta \hat{y}(z) + \hat{\xi}_{\rho_0} \hat{y}(z) &= \lambda u_0(z)^{q-1} - \mu u_\mu(z)^{q-1} + [\hat{\xi}_{\rho_0} u_0(z) - f(z, u_0(z))] - \\ - [\hat{\xi}_{\rho_0} u_\mu(z) - f(z, u_\mu(z))] &\ge 0 \text{ in } \mathcal{Q}. \end{split}$$

Let $v_1 \in E_{\Sigma_1}$ be the unique function satisfying $-\Delta v(z) + \hat{\xi}_{\rho_0} v(z) = 1 \ \Omega, \ v|_{\Sigma_1} = 0$, and $\frac{\partial v}{\partial n}|_{\Sigma_2} = 0$. Then $v_1 \in C^{1,\alpha}(\Omega) \cap C^{0,\alpha}(\overline{\Omega})$ with $\alpha \in (0, 1/2)$ (see [8,9]) and $v_1 > 0$ in Ω . By Lemma 2.1 of Barletta, Livrea & Papageorgiou [10] (see also Lemma 5.3 of Colorado & Peral [9]), we can find $\vartheta > 0$ such that

$$\vartheta v_1(z) \leqslant u_\mu(z) \text{ and } \vartheta v_1(z) \leqslant \hat{y}(z) \Rightarrow \vartheta v_1(z) \leqslant u_\mu(z) \leqslant u_0(z) - \vartheta v_1(z) \text{ for all } z \in \overline{\Omega}.$$
 (16)

Let $\hat{C}_1 = \left\{ y \in E_{\Sigma_1} \cap C(\overline{\Omega}) : \left\| \frac{y}{v_1} \right\|_{\infty} < \infty \right\}$ and $[u_{\mu}) = \{ u \in E_{\Sigma_1} : u_{\mu}(z) \leq u(z), \text{ a.a. } z \in \Omega \}$. We claim that if $\bar{B}_1(0) := \{ y \in \hat{C}_1 : \left\| \frac{y}{v_1} \right\|_{\infty} \leq 1 \}$, then $u_0 - \vartheta \bar{B}_1(0) \subseteq [u_{\mu}) \cap \hat{C}_1$. To see this, let $y \in \bar{B}_1(0)$. Then

$$-v_1(z) \leqslant y(z) \leqslant v_1(z) \text{ for all } z \in \overline{\Omega}.$$
 (17)

Fix $z \in \overline{\Omega}$. If y(z) > 0, then $0 \leq u_{\mu}(z) \leq u_{\mu}(z) + \vartheta y(z) \leq u_{\mu}(z) + \vartheta v_1(z) \leq u_0(z)$ (see (16), (17)), hence $u_{\mu}(z) \leq u_0(z) - \vartheta y(z)$. If y(z) < 0, then $0 \leq u_{\mu}(z) - \vartheta v_1(z) \leq u_{\mu}(z) + \vartheta y(z) \leq u_{\mu}(z) + \vartheta v_1(z) \leq u_0(z)$ (see (16), (17)), hence $u_{\mu}(z) \leq u_0(z) - \vartheta y(z)$. We conclude that $u_{\mu} \in u_0 - \vartheta \overline{B}_1(0)$, which proves the claim. It follows that

$$u_0 \in \operatorname{int}_{\hat{C}_1} [u_\mu) \cap C(\overline{\Omega}). \tag{18}$$

By (13) it is clear that

$$\psi_{\lambda}(u) = \varphi_{\lambda}(u) + c_4 \text{ for some } c_4 \in \mathbb{R} \text{ and for all } u \in [u_{\mu}).$$
 (19)

It follows from (18) and (19) that u_0 is a local \hat{C}_1 -minimizer of φ_{λ} .

Claim. u_0 is a local E_{Σ_1} -minimizer of φ_{λ} .

Suppose that this assertion is not true. Then for every $\rho > 0$, we have $\inf \{\varphi_{\lambda}(u_0 + y) : y \in E_{\Sigma_1}, \|y\| \leq \rho \} < \varphi_{\lambda}(u_0)$. By the Weierstrass–Tonelli theorem, there exists $y_{\rho} \in E_{\Sigma_1} \setminus \{0\}, \|y_{\rho}\| \leq \rho$ such that $\varphi_{\lambda}(u_0 + y_{\rho}) = \inf \{\varphi_{\lambda}(u_0 + y) : y \in E_{\Sigma_1}, \|y\| \leq \rho \} < \varphi_{\lambda}(y_0)$. By the Lagrange multiplier rule, there exists $\vartheta \leq 0$ such that $(1 - \vartheta) \langle A(u_{\rho}), h \rangle = \lambda \int_{\Omega} (u_{\rho}^+)^{q-1} h dz - \int_{\Omega} f(z, u_{\rho}) h dz$ for all $h \in E_{\Sigma_1}$, with $u_{\rho} = u_0 + y_{\rho} \in E_{\Sigma_1}$. It follows that $\Delta u_{\rho}(z) = \frac{1}{1-\vartheta} [\lambda u_{\rho}^+(z)^{q-1} - f(z, u_{\rho}(z))]$ in Ω , hence

$$-\Delta u_{\rho}(z) + \hat{\xi}_{\rho_0} u_{\rho}(z) = \frac{1}{1 - \vartheta} [\lambda u_{\rho}^+(z)^{q-1} + f(z, u_{\rho}(z))] + \hat{\xi}_{\rho_0} u_{\rho}(z) \text{ in } \Omega,$$
(20)

with $\hat{\xi}_{\rho_0} > 0$ as before resulting from hypothesis H(f)(iv) (recall that $\rho_0 = ||u_0||_{\infty}$). Also,

$$-\Delta u_0(z) + \hat{\xi}_{\rho_0} u_0(z) = \lambda u_0(z)^{q-1} - f(z, u_0(z)) + \hat{\xi}_{\rho_0} u_0(z) \text{ in } \Omega.$$
(21)

From (20) and (21) we obtain

$$-\Delta y_{\rho}(z) + \hat{\xi}_{\rho_0} y_{\rho}(z) = g_{\lambda}^{\rho}(z) \text{ in } \Omega$$
(22)

with $g_{\lambda}^{\rho}(z) = \frac{1}{1-\vartheta} [\lambda u_{\rho}^{+}(z)^{q-1} - f(z, u_{\rho}(z))] - \lambda u_{0}(z)^{q-1} + f(z, u_{0}(z)) + \hat{\xi}_{\rho_{0}} y_{\rho}(z)$. By (22) and Colorado & Peral [9], there exist $c_{5} > 0$ and $\alpha \in (0, 1/2)$ such that

$$y_{\rho} \in C^{0,\alpha}(\overline{\Omega}) \text{ and } \|y_{\rho}\|_{C^{0,\alpha}(\overline{\Omega})} \leq c_5 \text{ for all } \rho \in (0,1].$$
 (23)

Exploiting the compact embedding of $C^{0,\alpha}(\overline{\Omega})$ into $C(\overline{\Omega})$, we have $y_{\rho} \to 0$ in $C(\overline{\Omega})$ as $\rho \to 0^+$. Thus, by the definition of g_{λ}^{ρ} , there exists $\tau_{\rho}^* > 0$ such that

$$\|g_{\lambda}^{\rho}\|_{\infty} \leqslant \tau_{\rho}^{*} \text{ for all } \rho \in (0,1] \text{ and } \tau_{\rho}^{*} \to 0^{+} \text{ as } \rho \to 0^{+}.$$

$$(24)$$

Let $\hat{y}_{\rho} = \frac{1}{\tau_{\rho}^{*}} y_{\rho}$. Then by $(24) - \Delta(\hat{y}_{\rho} - v_{1})(z) + \hat{\xi}_{\rho_{0}}(\hat{y}_{\rho} - v_{1})(z) = \frac{1}{\tau_{\rho}^{*}} g_{\lambda}^{\rho}(z) - 1 \leq 0$. We deduce that $\|D(\hat{y}_{\rho} - v_{1})^{+}\|_{2}^{2} + \hat{\xi}_{\rho_{0}}\|(\hat{y}_{\rho} - v_{1})^{+}\|_{2}^{2} \leq 0$, hence $y_{\rho} \leq \tau_{\rho}^{*} v_{1}$. Also, we have $-\Delta(-\hat{y}_{\rho} - v_{1})(z) + \hat{\xi}_{\rho_{0}}(-\hat{y}_{\rho} - v_{1})(z) = -\frac{1}{\tau_{\rho}^{*}} g_{\lambda}^{\rho}(z) - 1 \leq 0$ in Ω and so as above we obtain

Also, we have $-\Delta(-\hat{y}_{\rho} - v_1)(z) + \hat{\xi}_{\rho_0}(-\hat{y}_{\rho} - v_1)(z) = -\frac{1}{\tau_{\rho}^*}g_{\lambda}^{\rho}(z) - 1 \leq 0$ in Ω and so as above we obtain that $-\tau_{\rho}^*v_1 \leq y_{\rho}$. Therefore we have proved that $-\tau_{\rho}^*v_1 \leq y_{\rho} \leq \tau_{\rho}^*v_1$. These relations show that $y_{\rho} \in \hat{C}_1$ and $\left\|\frac{y_{\rho}}{v_1}\right\|_{\infty} \leq \tau_{\rho}^*$ for all $\rho \in (0, 1]$, hence $y_{\rho} \to 0$ in \hat{C}_1 as $\rho \to 0^+$. Therefore for small $\rho \in (0, 1]$ we have $\varphi_{\lambda}(u_0 + y_{\rho}) < \varphi_{\lambda}(u_0)$, which contradicts the fact that u_0 is a local \hat{C}_1 -minimizer of φ_{λ} . This proves the claim.

Since $f \ge 0$, for all $u \in E_{\Sigma_1}$ we have $\varphi_{\lambda}(u) \ge \frac{1}{2} \|Du\|_2^2 - \frac{\lambda}{q} \|u^+\|_q^q \ge \frac{1}{2} \|Du\|_2^2 - c_6 \|Du\|_2^q$ for some $c_6 > 0$. Since q > 2, we deduce that u = 0 is a local minimizer of φ_{λ} . We assume that the set of critical points of φ_{λ} is finite (otherwise we already have an infinity of positive solutions for (P_{λ}) for $\lambda > \lambda_*$ and so we are done) and that $\varphi_{\lambda}(0) \leq \varphi_{\lambda}(u_0)$ (the reasoning is similar if the opposite inequality holds). The claim implies that we can find small enough $\rho \in (0, ||u_0||)$ such that $0 = \varphi_{\lambda}(0) \leq \varphi_{\lambda}(u) < \inf\{\varphi_{\lambda}(u) : ||u - u_0|| = \rho\} = m_{\lambda}^{\rho}$. Thus, we can apply the mountain pass theorem. So, there exists $\hat{u} \in E_{\Sigma_1}$ such that $\varphi'_{\lambda}(\hat{u}) = 0$ and $m_{\lambda}^{\rho} \leq \varphi_{\lambda}(\hat{u})$, hence $\hat{u} \notin \{0, u_0\}, \hat{u} \in S_{\lambda} \subseteq E_{\Sigma_1} \cap C^{0,\alpha}(\overline{\Omega})$, and $\hat{u} > 0$ in Ω . \Box

Proposition 4. If hypotheses H(f) hold, then $\lambda_* \in \mathcal{L}$, that is, $\mathcal{L} = [\lambda^*, +\infty)$.

Proof. Let $\{\lambda_n\}_{n\geq 1} \subseteq (\lambda_*, +\infty)$ be such that $\lambda_n \downarrow \lambda_*$. We find $u_n \in S(\lambda_n)$ such that

$$A(u_n) = \lambda u_n^{q-1} - N_f(u_n) \text{ in } E_{\Sigma_1}^* \text{ for all } n \in \mathbb{N}.$$
(25)

Hypotheses H(f)(i), (ii) imply that given any $\xi > 0$, we find $c_7 = c_7(\xi) > 0$ such that

$$f(z,x) \ge \xi x^{q-1} - c_7 \text{ for almost all } z \in \Omega \text{ and all } x \ge 0.$$
(26)

We act on (25) with $u_n \in E_{\Sigma_1}$ and then use (26). We obtain $||Du||_2^2 \leq (\lambda_n - \xi)||u_n||_q^q + c_7|\Omega|_N$. Choosing $\xi > \lambda_1 \geq \lambda_n$ for all $n \in \mathbb{N}$, we have $||Du_n||_2^2 \leq c_7|\Omega|_N$ for all $n \in \mathbb{N}$, hence $\{u_n\}_{n \geq 1} \subseteq E_{\Sigma_1}$ is bounded. By passing to a subsequence if necessary, we may assume that

$$u_n \xrightarrow{w} u_*$$
 in E_{Σ_1} and $u_n \to u$ in $L^r(\Omega)$ as $n \to \infty$. (27)

In (25) we pass to the limit as $n \to \infty$ and use (27). Then $A(u_*) = \lambda_* u_*^{q-1} - N_f(u_*)$. Thus, $u_* \in E_{\Sigma_1}$ and $u_* \ge 0$ is a solution of (P_{λ_*}) . We also notice that $\lim_{n\to\infty} \langle A(u_n), u_n - u_* \rangle = 0$, hence $\|Du_n\|_2 \to \|Du_*\|_2$. Using the Kadec–Klee property we deduce that $u_n \to u_*$ in E_{Σ_1} .

Claim. $u_* \neq 0$.

Arguing by contradiction, suppose that $u_* = 0$. Then $||u_n|| \to 0$. Let $y_n = \frac{u_n}{||u_n||}$, $n \in \mathbb{N}$. Then $||y_n|| = 1$, $y_n \ge 0$ for all $n \in \mathbb{N}$. From (25) we have

$$A(y_n) = \lambda_n u_n^{q-2} y_n - \frac{N_f(u_n)}{\|u_n\|} \text{ for all } n \in \mathbb{N}.$$
(28)

From hypotheses H(f)(i), (iii), we see that we can find $\eta > \hat{\eta}$ and $c_8 > 0$ such that

$$f(z,x) \leq \eta x + c_8 x^{r-1}$$
 for a.a. $z \in \Omega$, all $x \geq 0 \Rightarrow \{N_f(u_n)\}_{n \geq 1} \subseteq L^2(\Omega)$ is bounded. (29)

By [9], there exist $\alpha \in (0, 1/2)$ and $c_9 > 0$ such that $u_n \in C^{0,\alpha}(\overline{\Omega})$, $||u_n||_{C^{0,\alpha}(\overline{\Omega})} \leq c_9$ for all $n \in \mathbb{N}$. Since $C^{0,\alpha}(\overline{\Omega})$ is compactly embedded compactly in $C(\overline{\Omega})$, we deduce that

$$u_n \to 0 \text{ in } C(\overline{\Omega}).$$
 (30)

Recall that $||y_n|| = 1$, $y_n \ge 0$ for all $n \in \mathbb{N}$. So, we may assume that

$$y_n \xrightarrow{w} y$$
 in E_{Σ_1} and $y_n \to y$ in $L^2(\Omega), y \ge 0.$ (31)

It follows from (29), (30) and (31) that $\left\{\frac{N_f(u_n)}{\|u_n\|}\right\}_{n\geq 1} \subseteq L^2(\Omega)$ is bounded. Thus, by hypothesis H(f)(iii), we have at least for a subsequence (see [11]),

$$\frac{N_f(u_n)}{\|u_n\|} \xrightarrow{w} \eta_0 y \text{ in } L^2(\Omega) \text{ with } 0 \leq \eta_0(z) \leq \hat{\eta} \text{ for almost all } z \in \Omega.$$
(32)

93

We act on (28) with $y_n - y \in E_{\Sigma_1}$ and pass to the limit as $n \to \infty$. Using (30), (31) and (32) we obtain $\lim_{n\to\infty} \langle A(y_n), y_n - y \rangle = 0$. By the Kadec-Klee property we have $y_n \to y$, hence ||y|| = 1, $y \ge 0$. In (28) we pass to the limit as $n \to \infty$ and use (30), (32). Then $A(y) = -\eta_0 y$. Thus, by (32) we have $||Dy||_2^2 = -\int_{\Omega} \eta_0 y^2 dz \le 0$, hence y = 0, a contradiction. This shows that the claim is true. Hence $u_* \in S(\lambda_*) \subseteq E_{\Sigma_1} \cap C(\overline{\Omega})$ and so $\lambda_* \in \mathcal{L}$. \Box

Summarizing, we can state the following bifurcation-type theorem.

Theorem 5. If hypotheses H(f) hold, then there exists $\lambda_* > 0$ such that

- (a) for all $\lambda > \lambda_*$, problem (P_{λ}) has at least two positive solutions $u_0, \hat{u} \in E_{\Sigma_1} \cap C(\overline{\Omega})$;
- (b) for $\lambda = \lambda_*$, problem (P_{λ}) has at least one positive solution $u_* \in E_{\Sigma_1} \cap C(\overline{\Omega})$;
- (c) for $\lambda \in (0, \lambda_*)$, problem (P_{λ}) has no positive solutions.

Acknowledgments

This research was supported by the Slovenian Research Agency grants P1-0292, J1-8131, and J1-7025. V.D. Rădulescu acknowledges the support through a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0130.

References

- [1] M.E. Gurtin, R.C. Mac Camy, On the diffusion of biological populations, Math. Biosci. 33 (1977) 35–49.
- [2] N.S. Papageorgiou, P. Winkert, On parametric nonlinear Dirichlet problems with subdiffusive and equidiffusive reaction, Adv. Nonlinear Stud. 14 (2014) 569–591.
- [3] L. Gasinski, N.S. Papageorgiou, Exercises in Analysis. Part 2: Nonlinear Analysis, Springer, 2016.
- G. Bonanno, G. D'Agui, N.S. Papageorgiou, Infinitely many solutions for mixed elliptic problems involving the p-Laplacian, Adv. Nonlinear Stud. 15 (2015) 939–950.
- [5] R. Filippucci, P. Pucci, V. Rădulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations 33 (2008) 706–717.
- [6] Y. Li, B. Ruf, Q. Guo, P. Niu, Positive solutions for singular elliptic equations with mixed Dirichlet-Neumann boundary conditions, Math. Nachr. 287 (2014) 374–397.
- [7] P. Pucci, J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007.
- [8] E. DiBenedetto, $C^{1,\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983) 827–850.
- [9] E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal. 199 (2003) 468–507.
- [10] G. Barletta, R. Livrea, N.S. Papageorgiou, Bifurcation phenomena for the positive solutions of semilinear elliptic problems with mixed boundary conditions, J. Nonlinear Convex Anal. 17 (2016) 1497–1516.
- [11] S. Aizicovici, N.S. Papageorgiou, V. Staicu, Degree Theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 196 (915) (2008) 70.