Positive solutions for superdiffusive mixed problems

Nikolaos S. Papageorgiou ${ }^{\text {a }}$, Vicenţiu D. Rădulescu ${ }^{\text {b,c,* }}$, Dušan D. Repovš ${ }^{\text {d }}$
${ }^{\text {a }}$ National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
${ }^{\text {b }}$ Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
${ }^{\text {c }}$ Department of Mathematics, University of Craiova, Street A.I. Cuza 13, 200585 Craiova, Romania
${ }^{\text {d }}$ Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

A R T I C L E I N F O

Article history:
Received 8 September 2017
Received in revised form 30
September 2017
Accepted 30 September 2017
Available online 12 October 2017

Keywords:

Mixed boundary condition
Superdiffusive reaction
Positive solutions
Bifurcation-type result
Truncations

Abstract

We study a semilinear parametric elliptic equation with superdiffusive reaction and mixed boundary conditions. Using variational methods, together with suitable truncation techniques, we prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$ and let $\Sigma_{1}, \Sigma_{2} \subseteq \partial \Omega$ be two ($N-1$)dimensional C^{2}-submanifolds of $\partial \Omega$ such that $\partial \Omega=\Sigma_{1} \cup \Sigma_{2}, \Sigma_{1} \cap \Sigma_{2}=\emptyset,\left|\Sigma_{1}\right|_{N-1} \in\left(0,|\partial \Omega|_{N-1}\right)$, and $\overline{\Sigma_{1}} \cap \bar{\Sigma}_{2}=\Gamma$. Here, $|\cdot|_{N-1}$ denotes the ($N-1$)-dimensional Hausdorff (surface) measure and $\Gamma \subset \partial \Omega$ is a $(N-2)$-dimensional C^{2}-submanifold of $\partial \Omega$.

In this paper, we study the following logistic-type elliptic problem:

$$
\left\{\begin{array}{l}
-\Delta u(z)=\lambda u(z)^{q-1}-f(z, u(z)) \quad \text { in } \Omega, \\
\left.u\right|_{\Sigma_{1}}=0,\left.\frac{\partial u}{\partial n}\right|_{\Sigma_{2}}=0, u>0, \lambda>0 .
\end{array}\right\}
$$

When $f(z, x)=x^{r-1}$ with $r \in\left(2,2^{*}\right)$, we get the classical logistic equation, which is important in biological models (see Gurtin \& Mac Camy [1]). Depending on the value of $q>1$, we distinguish three cases:

[^0](i) $1<q<2$ (subdiffusive logistic equation); (ii) $2=q<r$ (equidiffusive logistic equation); (iii) $2<q<r$ (superdiffusive logistic equation). In this paper, we deal with the third situation (superdiffusive case), which exhibits bifurcation-type phenomena for large values of the parameter $\lambda>0$ (see also [2]).

Let $E_{\Sigma_{1}}=\left\{u \in H^{1}(\Omega):\left.u\right|_{\Sigma_{1}}=0\right\}$. This space is defined as the closure of $C_{c}^{1}\left(\Omega \cup \Sigma_{1}\right)$ with respect to the $H^{1}(\Omega)$-norm. Since $\left|\Sigma_{1}\right|_{N-1}>0$, we know that for the space $E_{\Sigma_{1}}$, the Poincaré inequality holds (see Gasinski \& Papageorgiou [3, Problem 1.139, p. 58]). So, $E_{\Sigma_{1}}$ is a Hilbert space equipped with the norm $\|u\|=\|D u\|_{2}$. Let $\mathcal{A} \in \mathcal{L}\left(E_{\Sigma_{1}}, E_{\Sigma_{1}}^{*}\right)$ be defined by $\langle A(u), h\rangle=\int_{\Omega}(D u, D h)_{\mathbb{R}^{N}} d z$ for all $u, h \in E_{\Sigma_{1}}$. We denote by N_{f} the Nemitsky map associated with f, that is, $N_{f}(u)(\cdot)=f(\cdot, u(\cdot))$ for all $u \in E_{\Sigma_{1}}$.

The hypotheses on the perturbation term $f(z, x)$ are the following:
$H(f): f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for almost all $z \in \Omega, f(z, 0)=0, f(z, x) \geqslant 0$ for all $x>0$, and
(i) $f(z, x) \leqslant a(z)\left(1+x^{r-1}\right)$ for almost all $z \in \Omega$ and all $x \geqslant 0$, with $a \in L^{\infty}(\Omega), 2<q<r<2^{*}$;
(ii) $\lim _{x \rightarrow+\infty} \frac{f(z, x)}{x^{q-1}}=+\infty$ uniformly for almost all $z \in \Omega$, and the mapping $x \mapsto \frac{f(z, x)}{x}$ is nondecreasing on $(0,+\infty)$ for almost all $z \in \Omega$;
(iii) $0 \leqslant \lim \inf _{x \rightarrow 0^{+}} \frac{f(z, x)}{x} \leqslant \lim \sup _{x \rightarrow 0^{+}} \frac{f(z, x)}{x} \leqslant \hat{\eta}$ uniformly for almost all $z \in \Omega$;
(iv) for every $\rho>0$, there exists $\hat{\xi}_{\rho}>0$ such that for almost all $z \in \Omega$ the function $x \mapsto \hat{\xi}_{\rho} x-f(z, x)$ is nondecreasing on $[0, \rho]$.

The following functions satisfy hypotheses $H(f)$: (i) $f(x)=x^{r-1}$ for all $x \geqslant 0$ with $2<q<r<2^{*}$; (ii) $f(x)=x^{q-1}\left[\ln (1+x)+\frac{1}{q} \frac{x}{1+x}\right]$ for all $x \geqslant 0$, with $2<q<2^{*}$.

Let $\mathcal{L}=\left\{\lambda>0\right.$: problem $\left(P_{\lambda}\right)$ has a positive solution $\}$ and let $S(\lambda)$ denote the set of positive solutions of problem $\left(P_{\lambda}\right)$. Let $\lambda_{*}=\inf \mathcal{L}($ if $\mathcal{L}=\emptyset$, then $\inf \emptyset=+\infty)$.

By a solution of problem $\left(P_{\lambda}\right)$, we understand a function $u \in E_{\Sigma_{1}}$ such that $u \geqslant 0, u \neq 0$ and $\langle A(u), h\rangle=\int_{\Omega}\left[\lambda u^{q-1}-f(z, u)\right] h d z$ for all $h \in E_{\Sigma_{1}}$.

We refer to Bonanno, D'Agui \& Papageorgiou [4], Filippucci, Pucci \& Rădulescu [5], and Li, Ruf, Guo \& Niu [6] for related results. We also refer to the monograph by Pucci \& Serrin [7] for more results concerning the abstract setting of this paper.

2. A bifurcation-type theorem

Proposition 1. If hypotheses $H(f)$ hold, then $S(\lambda) \subseteq C^{1, \alpha}(\Omega) \cap C^{0, \alpha}(\bar{\Omega})$ with $\alpha \in(0,1 / 2)$. For all $u \in S(\lambda)$ we have $u(z)>0$ for all $z \in \Omega$ and $\lambda_{*}>0$.

Proof. From DiBenedetto [8] and Colorado \& Peral [9], we know that if $u \in S(\lambda)$ then $u \in C^{1, \alpha}(\Omega) \cap C^{0, \alpha}(\bar{\Omega})$ with $\alpha \in(0,1 / 2)$. Moreover, using Harnack's inequality, we deduce that if $u \in S(\lambda)$ then $u(z)>0$ for all $z \in \Omega$. Let $\hat{\lambda}_{1}$ be the smallest eigenvalue of $-\Delta$ with mixed boundary conditions. From Colorado \& Peral [9, p. 482], we know that $\hat{\lambda}_{1}=\inf \left\{\frac{\|D u\|_{2}^{2}}{\|u\|_{2}^{2}}: u \in E_{\Sigma_{1}} \backslash\{0\}\right\}>0$. By $H(f)\left(\right.$ i), (iii), there exists $\lambda_{0}>0$ such that

$$
\begin{equation*}
\lambda_{0} x^{q-1}-f(z, x) \leqslant \hat{\lambda}_{1} x \text { for almost all } z \in \Omega, \text { and all } x \geqslant 0 \tag{1}
\end{equation*}
$$

(recall that $2<q<r)$. Let $\lambda \in\left(0, \lambda_{0}\right)$ and suppose that $\lambda \in \mathcal{L}$. Then there exists $u_{\lambda} \in S(\lambda)$ and by using Green's identity, we get

$$
\begin{equation*}
A\left(u_{\lambda}\right)=\lambda u_{\lambda}^{q-1}-N_{f}\left(u_{\lambda}\right) \text { in } E_{\Sigma_{1}}^{*} . \tag{2}
\end{equation*}
$$

We act on (2) with $u_{\lambda} \in E_{\Sigma_{1}}$ and obtain $\left\|D u_{\lambda}\right\|_{2}^{2}=\lambda\left\|u_{\lambda}\right\|_{q}^{q}-\int_{\Omega} f\left(z, u_{\lambda}\right) u_{\lambda} d z<\hat{\lambda}_{1}\left\|u_{\lambda}\right\|_{2}^{2}$ (see (1) and recall that $\lambda<\lambda_{0}, u_{\lambda}(z)>0$ for all $\left.z \in \Omega\right)$, which contradicts the definition of $\hat{\lambda}_{1}$. Therefore $\lambda \notin \mathcal{L}$ and we have $0<\lambda_{0} \leqslant \lambda_{*}=\inf \mathcal{L}$.

Proposition 2. If hypotheses $H(f)$ hold, then $\mathcal{L} \neq \emptyset$ and " $\lambda \in \mathcal{L}, \eta>\lambda \Rightarrow \eta \in \mathcal{L}$ ".
Proof. Fix $\lambda>0$ and let $\varphi_{\lambda}: E_{\Sigma_{1}} \rightarrow \mathbb{R}, \varphi_{\lambda}(u)=\frac{1}{2}\left\|\left.D u\right|_{2} ^{2}-\frac{\lambda}{q}\right\| u^{+} \|_{q}^{q}+\int_{\Omega} F(z, u) d z$, where $F(z, x)=\int_{0}^{x} f(z, s) d s$. Then $\varphi_{\lambda} \in C^{1}\left(E_{\Sigma_{1}}\right)$ and φ_{λ} is sequentially weakly lower semicontinuous. Hypotheses $H(f)\left(\right.$ i), (ii) imply that given $\xi>0$, we can find $c_{1}=c_{1}(\xi)>0$ such that $F(z, x) \geqslant \frac{\xi}{q} x^{q}-c_{1}$ for almost all $z \in \Omega$ and for all $x \geqslant 0$. Thus, for all $u \in E_{\Sigma_{1}}$ we have $\varphi_{\lambda}(u) \geqslant \frac{1}{2}\|D u\|_{2}^{2}+\frac{\xi-\lambda}{2}\left\|u^{+}\right\|_{q}^{q}-c_{1}|\Omega|_{N}$. Choosing $\xi>\lambda$, we deduce that φ_{λ} is coercive. So, by the Weierstrass-Tonelli theorem, there exists $u_{\lambda} \in E_{\Sigma_{1}}$ such that

$$
\begin{equation*}
\varphi_{\lambda}\left(u_{\lambda}\right)=\inf \left\{\varphi_{\lambda}(u): u \in E_{\Sigma_{1}}\right\}=m_{\lambda} . \tag{3}
\end{equation*}
$$

Fix $\bar{u} \in E_{\Sigma_{1}} \cap C(\bar{\Omega})$ with $u(z)>0$ for all $z \in \Omega$. For large enough $\lambda>0$ we have $\varphi_{\lambda}(\bar{u})<0$, hence $\varphi_{\lambda}\left(u_{\lambda}\right)=m_{\lambda}<0=\varphi_{\lambda}(0)$ (see (3)). Thus, $u_{\lambda} \neq 0$. By (3), $\varphi_{\lambda}^{\prime}\left(u_{\lambda}\right)=0$, hence

$$
\begin{equation*}
A\left(u_{\lambda}\right)=\lambda\left(u_{\lambda}^{+}\right)^{q-1}-N_{f}\left(u_{\lambda}\right) \text { in } E_{\Sigma_{1}}^{*} . \tag{4}
\end{equation*}
$$

We act on (4) with $-u_{\lambda}^{-} \in E_{\Sigma_{1}}$ and obtain $\left\|D u_{\lambda}^{-}\right\|_{2}^{2}=0$, hence $u_{\lambda} \geqslant 0$. So, relation (4) becomes $A\left(u_{\lambda}\right)=\lambda u_{\lambda}^{q-1}-N_{f}\left(u_{\lambda}\right)$. By Green's identity, $u_{\lambda} \in S(\lambda)$, hence $\lambda \in \mathcal{L} \neq \emptyset$.

Next, let $\lambda \in \mathcal{L}$ and $\eta>\lambda$. Choose $\vartheta \in(0,1)$ such that $\lambda=\vartheta^{q-2} \eta$ (recall that $2<q$). Also, let $u_{\lambda} \in S(\lambda) \subseteq C^{1, \alpha}(\Omega) \cap C^{0, \alpha}(\bar{\Omega})$ with $\alpha \in(0,1 / 2)$. Let $\underline{u}=\vartheta u_{\lambda}$. Then

$$
\begin{equation*}
A(\underline{u})=\vartheta A\left(u_{\lambda}\right)=\vartheta\left[\lambda u_{\lambda}^{q-1}-N_{f}\left(u_{\lambda}\right)\right] \text { in } E_{\Sigma_{1}}^{*} . \tag{5}
\end{equation*}
$$

From hypothesis $H(f)\left(\right.$ ii) and since $u_{\lambda}(z), \underline{u}(z)>0$ for all $z \in \Omega$, we have for a.a. $z \in \Omega$

$$
\begin{equation*}
\left.\frac{f(z, \underline{u}(z))}{\underline{u}(z)} \leqslant \frac{f\left(z, u_{\lambda}(z)\right)}{u_{\lambda}(z)} \Rightarrow f(z, \underline{u}(z)) \leqslant \vartheta f\left(z, u_{\lambda}(z)\right) \text { (recall that } \underline{u}=\vartheta u_{\lambda}\right) . \tag{6}
\end{equation*}
$$

Using (5) in (6) and since $\vartheta \in(0,1)$, we obtain

$$
\begin{equation*}
A(\underline{u}) \leqslant \vartheta^{q-1} \eta u_{\lambda}^{q-1}-N_{f}(\underline{u}) \leqslant \eta \underline{u}^{q-1}-N_{f}(\underline{u}) \text { in } E_{\Sigma_{1}}^{*} . \tag{7}
\end{equation*}
$$

We introduce the following Carathéodory truncation of the reaction term in problem $\left(P_{\eta}\right)$

$$
g_{\eta}(z, x)= \begin{cases}\eta \underline{u}(z)^{q-1}-f(z, \underline{u}(z)) & \text { if } x \leqslant \underline{u}(z) \tag{8}\\ \eta x^{q-1}-f(z, x) & \text { if } \underline{u}(z)<x .\end{cases}
$$

Let $G_{\eta}(z, x)=\int_{0}^{x} g_{\eta}(z, s) d s$ and define $\hat{\varphi}_{\eta}: E_{\Sigma_{1}} \rightarrow \mathbb{R}$ by $\hat{\varphi}_{\eta}(u)=\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} G_{\eta}(z, u) d z$.
Hypotheses $H(f)\left(\right.$ i), (ii) imply that given $\xi>0$, we can find $c_{2}=c_{2}(\xi)>0$ such that

$$
\begin{equation*}
\eta x^{q-1}-f(z, x) \leqslant(\eta-\xi) x^{q-1}+c_{2} \text { for almost all } z \in \Omega \text { and all } x \geqslant 0 . \tag{9}
\end{equation*}
$$

Then for all $u \in E_{\Sigma_{1}}$, we have

$$
\begin{equation*}
\hat{\varphi}_{\eta}(u) \geqslant \frac{1}{2}\|D u\|_{2}^{2}+\frac{\xi-\eta}{q}\left\|u^{+}\right\|_{q}^{q}-c_{3} \text { for some } c_{3}>0(\text { see }(8),(9)) . \tag{10}
\end{equation*}
$$

Choosing $\xi>\eta$, we see from (10) that $\hat{\varphi}_{\eta}$ is coercive. This function is also sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, there exists $u_{\eta} \in E_{\Sigma_{1}}$ such that $\hat{\varphi}_{\eta}\left(u_{\eta}\right)=\inf \left[\hat{\varphi}_{\eta}(u)\right.$: $u \in E_{\Sigma_{1}}$], hence $\hat{\varphi}_{\eta}^{\prime}\left(u_{\eta}\right)=0$. We deduce that

$$
\begin{equation*}
A\left(u_{\eta}\right)=N_{g_{\eta}}\left(u_{\eta}\right) \text { in } E_{\Sigma_{1}}^{*} \tag{11}
\end{equation*}
$$

We act on (11) with $\left(\underline{u}-u_{\eta}\right)^{+} \in E_{\Sigma_{1}}$. By (8) and (7) we have

$$
\begin{gather*}
\left\langle A\left(u_{\eta}\right),\left(\underline{u}-u_{\eta}\right)^{+}\right\rangle=\int_{\Omega}\left[\eta \underline{u}^{q-1}-f(z, \underline{u})\right]\left(\underline{u}-u_{\eta}\right)^{+} d z \geqslant\left\langle A(\underline{u}),\left(\underline{u}-u_{\eta}\right)^{+}\right\rangle \\
\Rightarrow\left\langle A\left(\underline{u}-u_{\eta}\right),\left(\underline{u}-u_{\eta}\right)^{+}\right\rangle \leqslant 0 \Rightarrow\left\|D\left(\underline{u}-u_{\eta}\right)^{+}\right\|_{2}^{2} \leqslant 0 \Rightarrow \underline{u} \leqslant u_{\eta} . \tag{12}
\end{gather*}
$$

Using (8) and (12) we see that relation (11) becomes $A\left(u_{\lambda}\right)=\eta u_{\eta}^{q-1}-N_{f}\left(u_{\eta}\right)$ in $E_{\Sigma_{1}}^{*}$. Thus, by Proposition 1, we have $u_{\eta} \in S(\eta) \subseteq C^{1, \alpha}(\Omega) \cap C^{0, \alpha}(\bar{\Omega})$. Therefore $\eta \in \mathcal{L}$. We also observe that Proposition 2 implies $\left(\lambda_{*},+\infty\right) \subseteq \mathcal{L}$.

Proposition 3. If hypotheses $H(f)$ hold and $\lambda>\lambda_{*}$, then problem $\left(P_{\lambda}\right)$ has at least two positive solutions $u_{0}, \hat{u} \in E_{\Sigma_{1}} \cap C^{0, \alpha}(\bar{\Omega})$ for $\alpha \in(0,1 / 2)$ with $0<u_{0}(z), \hat{u}(z)$ for all $z \in \Omega$.

Proof. Let $\mu \in\left(\lambda_{*}, \lambda\right)$. By Proposition 2 we know that $\mu \in \mathcal{L}$. Hence we can find $u_{\mu} \in S(\mu) \subseteq E_{\Sigma_{1}} \cap C^{0, \alpha}(\bar{\Omega})$ with $\alpha \in(0,1 / 2), u_{\mu}(z)>0$ for all $z \in \Omega$. We have $A\left(u_{\mu}\right)=\mu u_{\mu}^{q-1}-N_{f}\left(u_{\mu}\right)$ in $E_{\Sigma_{1}}^{*}$. Next, we define the following Carathéodory function

$$
\hat{h}_{\lambda}(z, x)= \begin{cases}\lambda u_{\mu}(z)^{q-1}-f\left(z, u_{\mu}(z)\right) & \text { if } x \leqslant u_{\mu}(z) \tag{13}\\ \lambda x^{q-1}-f(z, x) & \text { if } u_{\mu}(z)<x .\end{cases}
$$

Let $\hat{H}_{\lambda}(z, x)=\int_{0}^{x} \hat{h}_{\lambda}(z, s) d s$ and let $\hat{\psi}_{\lambda}: E_{\Sigma_{1}} \rightarrow \mathbb{R}, \hat{\psi}_{\lambda}(u)=\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} \hat{H}_{\lambda}(z, u) d z$. Then $\hat{\psi}_{\lambda}$ is coercive and sequentially weakly lower semicontinuous. Thus, we can find $u_{0} \in E_{\Sigma_{1}}$ such that $\hat{\psi}_{\lambda}\left(u_{0}\right)=$ $\inf \left\{\hat{\psi}_{\lambda}(u): u \in E_{\Sigma_{1}}\right\}$, hence $\hat{\psi}_{\lambda}^{\prime}\left(u_{0}\right)=0$. Thus, $A\left(u_{0}\right)=N_{\hat{h}_{\lambda}}\left(u_{0}\right)$. Using (13) and reasoning as in the proof of Proposition 2 we deduce that $u_{\mu} \leqslant u_{0}$. By Colorado \& Peral [9, Theorem 6.6], we have $u_{0} \in E_{\Sigma_{1}} \cap C^{0, \alpha}(\bar{\Omega})$ with $\alpha \in(0,1 / 2)$ and $u_{0}>0$ in $z \Omega$ (by Harnack's inequality).

Let $\rho_{0}=\left\|u_{0}\right\|_{\infty}$ and let $\hat{\xi}_{\rho_{0}}>0$ be as postulated in hypothesis $H(f)(\mathrm{iv})$. We have

$$
\left\{\begin{array}{l}
-\Delta u_{0}(z)+\hat{\xi}_{\rho_{0}} u_{0}(z)=\lambda u_{0}(z)^{q-1}-f\left(z, u_{0}(z)\right)+\hat{\xi}_{\rho_{0}} u_{0}(z) \text { in } \Omega, \tag{14}\\
\left.u_{0}\right|_{\Sigma_{1}}=0,\left.\frac{\partial u_{0}}{\partial n}\right|_{\Sigma_{2}}=0
\end{array}\right\}
$$

and

$$
\left\{\begin{array}{l}
-\Delta u_{\mu}(z)+\hat{\xi}_{\rho_{0}} u_{\mu}(z)=\mu u_{\mu}(z)^{q-1}-f\left(z, u_{\mu}(z)\right)+\hat{\xi}_{\rho_{0}} u_{\mu}(z) \text { in } \Omega, \tag{15}\\
\left.\hat{u}_{\mu}\right|_{\Sigma_{1}}=0,\left.\frac{\partial u_{\mu}}{\partial n}\right|_{\Sigma_{2}}=0 .
\end{array}\right\}
$$

Let $\hat{y}=u_{0}-u_{\mu} \geqslant 0$. Since $\lambda>\mu, u_{0} \geqslant u_{\mu}$, from (14), (15), and $H(f)$ (iv) we have

$$
\begin{aligned}
& -\Delta \hat{y}(z)+\hat{\xi}_{\rho_{0}} \hat{y}(z)=\lambda u_{0}(z)^{q-1}-\mu u_{\mu}(z)^{q-1}+\left[\hat{\xi}_{\rho_{0}} u_{0}(z)-f\left(z, u_{0}(z)\right)\right]- \\
& -\left[\hat{\xi}_{\rho_{0}} u_{\mu}(z)-f\left(z, u_{\mu}(z)\right)\right] \geqslant 0 \text { in } \Omega .
\end{aligned}
$$

Let $v_{1} \in E_{\Sigma_{1}}$ be the unique function satisfying $-\Delta v(z)+\hat{\xi}_{\rho_{0}} v(z)=1 \Omega,\left.v\right|_{\Sigma_{1}}=0$, and $\left.\frac{\partial v}{\partial n}\right|_{\Sigma_{2}}=0$. Then $v_{1} \in C^{1, \alpha}(\Omega) \cap C^{0, \alpha}(\bar{\Omega})$ with $\alpha \in(0,1 / 2)$ (see [8,9]) and $v_{1}>0$ in Ω. By Lemma 2.1 of Barletta, Livrea \& Papageorgiou [10] (see also Lemma 5.3 of Colorado \& Peral [9]), we can find $\vartheta>0$ such that

$$
\begin{equation*}
\vartheta v_{1}(z) \leqslant u_{\mu}(z) \text { and } \vartheta v_{1}(z) \leqslant \hat{y}(z) \Rightarrow \vartheta v_{1}(z) \leqslant u_{\mu}(z) \leqslant u_{0}(z)-\vartheta v_{1}(z) \text { for all } z \in \bar{\Omega} . \tag{16}
\end{equation*}
$$

Let $\hat{C}_{1}=\left\{y \in E_{\Sigma_{1}} \cap C(\bar{\Omega}):\left\|\frac{y}{v_{1}}\right\|_{\infty}<\infty\right\}$ and $\left[u_{\mu}\right)=\left\{u \in E_{\Sigma_{1}}: u_{\mu}(z) \leqslant u(z)\right.$, a.a. $\left.z \in \Omega\right\}$. We claim that if $\bar{B}_{1}(0):=\left\{y \in \hat{C}_{1}:\left\|\frac{y}{v_{1}}\right\|_{\infty} \leqslant 1\right\}$, then $u_{0}-\vartheta \bar{B}_{1}(0) \subseteq\left[u_{\mu}\right) \cap \hat{C}_{1}$. To see this, let $y \in \bar{B}_{1}(0)$. Then

$$
\begin{equation*}
-v_{1}(z) \leqslant y(z) \leqslant v_{1}(z) \text { for all } z \in \bar{\Omega} \text {. } \tag{17}
\end{equation*}
$$

Fix $z \in \bar{\Omega}$. If $y(z)>0$, then $0 \leqslant u_{\mu}(z) \leqslant u_{\mu}(z)+\vartheta y(z) \leqslant u_{\mu}(z)+\vartheta v_{1}(z) \leqslant u_{0}(z)$ (see (16), (17)), hence $u_{\mu}(z) \leqslant u_{0}(z)-\vartheta y(z)$. If $y(z)<0$, then $0 \leqslant u_{\mu}(z)-\vartheta v_{1}(z) \leqslant u_{\mu}(z)+\vartheta y(z) \leqslant u_{\mu}(z)+\vartheta v_{1}(z) \leqslant u_{0}(z)$ (see (16), (17)), hence $u_{\mu}(z) \leqslant u_{0}(z)-\vartheta y(z)$. We conclude that $u_{\mu} \in u_{0}-\vartheta \bar{B}_{1}(0)$, which proves the claim. It follows that

$$
\begin{equation*}
u_{0} \in \operatorname{int}_{\hat{C}_{1}}\left[u_{\mu}\right) \cap C(\bar{\Omega}) . \tag{18}
\end{equation*}
$$

By (13) it is clear that

$$
\begin{equation*}
\hat{\psi}_{\lambda}(u)=\varphi_{\lambda}(u)+c_{4} \text { for some } c_{4} \in \mathbb{R} \text { and for all } u \in\left[u_{\mu}\right) . \tag{19}
\end{equation*}
$$

It follows from (18) and (19) that u_{0} is a local \hat{C}_{1}-minimizer of φ_{λ}.
Claim. u_{0} is a local $E_{\Sigma_{1}}$-minimizer of φ_{λ}.
Suppose that this assertion is not true. Then for every $\rho>0$, we have $\inf \left\{\varphi_{\lambda}\left(u_{0}+y\right): y \in E_{\Sigma_{1}},\|y\| \leqslant\right.$ $\rho\}<\varphi_{\lambda}\left(u_{0}\right)$. By the Weierstrass-Tonelli theorem, there exists $y_{\rho} \in E_{\Sigma_{1}} \backslash\{0\},\left\|y_{\rho}\right\| \leqslant \rho$ such that $\varphi_{\lambda}\left(u_{0}+y_{\rho}\right)=\inf \left\{\varphi_{\lambda}\left(u_{0}+y\right): y \in E_{\Sigma_{1}},\|y\| \leqslant \rho\right\}<\varphi_{\lambda}\left(y_{0}\right)$. By the Lagrange multiplier rule, there exists $\vartheta \leqslant 0$ such that $(1-\vartheta)\left\langle A\left(u_{\rho}\right), h\right\rangle=\lambda \int_{\Omega}\left(u_{\rho}^{+}\right)^{q-1} h d z-\int_{\Omega} f\left(z, u_{\rho}\right) h d z$ for all $h \in E_{\Sigma_{1}}$, with $u_{\rho}=u_{0}+y_{\rho} \in E_{\Sigma_{1}}$. It follows that $\Delta u_{\rho}(z)=\frac{1}{1-\vartheta}\left[\lambda u_{\rho}^{+}(z)^{q-1}-f\left(z, u_{\rho}(z)\right)\right]$ in Ω, hence

$$
\begin{equation*}
-\Delta u_{\rho}(z)+\hat{\xi}_{\rho_{0}} u_{\rho}(z)=\frac{1}{1-\vartheta}\left[\lambda u_{\rho}^{+}(z)^{q-1}+f\left(z, u_{\rho}(z)\right)\right]+\hat{\xi}_{\rho_{0}} u_{\rho}(z) \text { in } \Omega, \tag{20}
\end{equation*}
$$

with $\hat{\xi}_{\rho_{0}}>0$ as before resulting from hypothesis $H(f)$ (iv) (recall that $\rho_{0}=\left\|u_{0}\right\|_{\infty}$). Also,

$$
\begin{equation*}
-\Delta u_{0}(z)+\hat{\xi}_{\rho_{0}} u_{0}(z)=\lambda u_{0}(z)^{q-1}-f\left(z, u_{0}(z)\right)+\hat{\xi}_{\rho_{0}} u_{0}(z) \text { in } \Omega . \tag{21}
\end{equation*}
$$

From (20) and (21) we obtain

$$
\begin{equation*}
-\Delta y_{\rho}(z)+\hat{\xi}_{\rho_{0}} y_{\rho}(z)=g_{\lambda}^{\rho}(z) \text { in } \Omega \tag{22}
\end{equation*}
$$

with $g_{\lambda}^{\rho}(z)=\frac{1}{1-\vartheta}\left[\lambda u_{\rho}^{+}(z)^{q-1}-f\left(z, u_{\rho}(z)\right)\right]-\lambda u_{0}(z)^{q-1}+f\left(z, u_{0}(z)\right)+\hat{\xi}_{\rho} y_{\rho}(z)$. By (22) and Colorado \& Peral [9], there exist $c_{5}>0$ and $\alpha \in(0,1 / 2)$ such that

$$
\begin{equation*}
y_{\rho} \in C^{0, \alpha}(\bar{\Omega}) \text { and }\left\|y_{\rho}\right\|_{C^{0, \alpha}(\bar{\Omega})} \leqslant c_{5} \text { for all } \rho \in(0,1] . \tag{23}
\end{equation*}
$$

Exploiting the compact embedding of $C^{0, \alpha}(\bar{\Omega})$ into $C(\bar{\Omega})$, we have $y_{\rho} \rightarrow 0$ in $C(\bar{\Omega})$ as $\rho \rightarrow 0^{+}$. Thus, by the definition of g_{λ}^{ρ}, there exists $\tau_{\rho}^{*}>0$ such that

$$
\begin{equation*}
\left\|g_{\lambda}^{\rho}\right\|_{\infty} \leqslant \tau_{\rho}^{*} \text { for all } \rho \in(0,1] \text { and } \tau_{\rho}^{*} \rightarrow 0^{+} \text {as } \rho \rightarrow 0^{+} \tag{24}
\end{equation*}
$$

Let $\hat{y}_{\rho}=\frac{1}{\tau_{\rho}^{*}} y_{\rho}$. Then by (24) $-\Delta\left(\hat{y}_{\rho}-v_{1}\right)(z)+\hat{\xi}_{\rho_{0}}\left(\hat{y}_{\rho}-v_{1}\right)(z)=\frac{1}{\tau_{\rho}^{*}} g_{\lambda}^{\rho}(z)-1 \leqslant 0$. We deduce that $\left\|D\left(\hat{y}_{\rho}-v_{1}\right)^{+}\right\|_{2}^{2}+\hat{\xi}_{\rho_{0}}\left\|\left(\hat{y}_{\rho}-v_{1}\right)^{+}\right\|_{2}^{2} \leqslant 0$, hence $y_{\rho} \leqslant \tau_{\rho}^{*} v_{1}$.

Also, we have $-\Delta\left(-\hat{y}_{\rho}-v_{1}\right)(z)+\hat{\xi}_{\rho_{0}}\left(-\hat{y}_{\rho}-v_{1}\right)(z)=-\frac{1}{\tau_{\rho}^{*}} g_{\lambda}^{\rho}(z)-1 \leqslant 0$ in Ω and so as above we obtain that $-\tau_{\rho}^{*} v_{1} \leqslant y_{\rho}$. Therefore we have proved that $-\tau_{\rho}^{*} v_{1} \leqslant y_{\rho} \leqslant \tau_{\rho}^{*} v_{1}$. These relations show that $y_{\rho} \in \hat{C}_{1}$ and $\left\|\frac{y_{\rho}}{v_{1}}\right\|_{\infty} \leqslant \tau_{\rho}^{*}$ for all $\rho \in(0,1]$, hence $y_{\rho} \rightarrow 0$ in \hat{C}_{1} as $\rho \rightarrow 0^{+}$. Therefore for small $\rho \in(0,1]$ we have $\varphi_{\lambda}\left(u_{0}+y_{\rho}\right)<\varphi_{\lambda}\left(u_{0}\right)$, which contradicts the fact that u_{0} is a local \hat{C}_{1}-minimizer of φ_{λ}. This proves the claim.

Since $f \geqslant 0$, for all $u \in E_{\Sigma_{1}}$ we have $\varphi_{\lambda}(u) \geqslant \frac{1}{2}\|D u\|_{2}^{2}-\frac{\lambda}{q}\left\|u^{+}\right\|_{q}^{q} \geqslant \frac{1}{2}\|D u\|_{2}^{2}-c_{6}\|D u\|_{2}^{q}$ for some $c_{6}>0$. Since $q>2$, we deduce that $u=0$ is a local minimizer of φ_{λ}. We assume that the set of critical points of φ_{λ}
is finite (otherwise we already have an infinity of positive solutions for $\left(P_{\lambda}\right)$ for $\lambda>\lambda_{*}$ and so we are done) and that $\varphi_{\lambda}(0) \leqslant \varphi_{\lambda}\left(u_{0}\right)$ (the reasoning is similar if the opposite inequality holds). The claim implies that we can find small enough $\rho \in\left(0,\left\|u_{0}\right\|\right)$ such that $0=\varphi_{\lambda}(0) \leqslant \varphi_{\lambda}(u)<\inf \left\{\varphi_{\lambda}(u):\left\|u-u_{0}\right\|=\rho\right\}=m_{\lambda}^{\rho}$. Thus, we can apply the mountain pass theorem. So, there exists $\hat{u} \in E_{\Sigma_{1}}$ such that $\varphi_{\lambda}^{\prime}(\hat{u})=0$ and $m_{\lambda}^{\rho} \leqslant \varphi_{\lambda}(\hat{u})$, hence $\hat{u} \notin\left\{0, u_{0}\right\}, \hat{u} \in S_{\lambda} \subseteq E_{\Sigma_{1}} \cap C^{0, \alpha}(\bar{\Omega})$, and $\hat{u}>0$ in Ω.

Proposition 4. If hypotheses $H(f)$ hold, then $\lambda_{*} \in \mathcal{L}$, that is, $\mathcal{L}=\left[\lambda^{*},+\infty\right)$.
Proof. Let $\left\{\lambda_{n}\right\}_{n \geqslant 1} \subseteq\left(\lambda_{*},+\infty\right)$ be such that $\lambda_{n} \downarrow \lambda_{*}$. We find $u_{n} \in S\left(\lambda_{n}\right)$ such that

$$
\begin{equation*}
A\left(u_{n}\right)=\lambda u_{n}^{q-1}-N_{f}\left(u_{n}\right) \text { in } E_{\Sigma_{1}}^{*} \text { for all } n \in \mathbb{N} . \tag{25}
\end{equation*}
$$

Hypotheses $H(f)\left(\right.$ i), (ii) imply that given any $\xi>0$, we find $c_{7}=c_{7}(\xi)>0$ such that

$$
\begin{equation*}
f(z, x) \geqslant \xi x^{q-1}-c_{7} \text { for almost all } z \in \Omega \text { and all } x \geqslant 0 . \tag{26}
\end{equation*}
$$

We act on (25) with $u_{n} \in E_{\Sigma_{1}}$ and then use (26). We obtain $\|D u\|_{2}^{2} \leqslant\left(\lambda_{n}-\xi\right)\left\|u_{n}\right\|_{q}^{q}+c_{7}|\Omega|_{N}$. Choosing $\xi>\lambda_{1} \geqslant \lambda_{n}$ for all $n \in \mathbb{N}$, we have $\left\|D u_{n}\right\|_{2}^{2} \leqslant c_{7}|\Omega|_{N}$ for all $n \in \mathbb{N}$, hence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq E_{\Sigma_{1}}$ is bounded. By passing to a subsequence if necessary, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u_{*} \text { in } E_{\Sigma_{1}} \text { and } u_{n} \rightarrow u \text { in } L^{r}(\Omega) \text { as } n \rightarrow \infty . \tag{27}
\end{equation*}
$$

In (25) we pass to the limit as $n \rightarrow \infty$ and use (27). Then $A\left(u_{*}\right)=\lambda_{*} u_{*}^{q-1}-N_{f}\left(u_{*}\right)$. Thus, $u_{*} \in E_{\Sigma_{1}}$ and $u_{*} \geqslant 0$ is a solution of $\left(P_{\lambda_{*}}\right)$. We also notice that $\lim _{n \rightarrow \infty}\left\langle A\left(u_{n}\right), u_{n}-u_{*}\right\rangle=0$, hence $\left\|D u_{n}\right\|_{2} \rightarrow\left\|D u_{*}\right\|_{2}$. Using the Kadec-Klee property we deduce that $u_{n} \rightarrow u_{*}$ in $E_{\Sigma_{1}}$.

Claim. $u_{*} \neq 0$.
Arguing by contradiction, suppose that $u_{*}=0$. Then $\left\|u_{n}\right\| \rightarrow 0$. Let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}, n \in \mathbb{N}$. Then $\left\|y_{n}\right\|=1, y_{n} \geqslant 0$ for all $n \in \mathbb{N}$. From (25) we have

$$
\begin{equation*}
A\left(y_{n}\right)=\lambda_{n} u_{n}^{q-2} y_{n}-\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|} \text { for all } n \in \mathbb{N} . \tag{28}
\end{equation*}
$$

From hypotheses $H(f)\left(\right.$ i), (iii), we see that we can find $\eta>\hat{\eta}$ and $c_{8}>0$ such that

$$
\begin{equation*}
f(z, x) \leqslant \eta x+c_{8} x^{r-1} \text { for a.a. } z \in \Omega \text {, all } x \geqslant 0 \Rightarrow\left\{N_{f}\left(u_{n}\right)\right\}_{n \geqslant 1} \subseteq L^{2}(\Omega) \text { is bounded. } \tag{29}
\end{equation*}
$$

By [9], there exist $\alpha \in(0,1 / 2)$ and $c_{9}>0$ such that $u_{n} \in C^{0, \alpha}(\bar{\Omega}),\left\|u_{n}\right\|_{C^{0, \alpha}(\bar{\Omega})} \leqslant c_{9}$ for all $n \in \mathbb{N}$. Since $C^{0, \alpha}(\bar{\Omega})$ is compactly embedded compactly in $C(\bar{\Omega})$, we deduce that

$$
\begin{equation*}
u_{n} \rightarrow 0 \text { in } C(\bar{\Omega}) . \tag{30}
\end{equation*}
$$

Recall that $\left\|y_{n}\right\|=1, y_{n} \geqslant 0$ for all $n \in \mathbb{N}$. So, we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } E_{\Sigma_{1}} \text { and } y_{n} \rightarrow y \text { in } L^{2}(\Omega), y \geqslant 0 . \tag{31}
\end{equation*}
$$

It follows from (29), (30) and (31) that $\left\{\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|}\right\}_{n \geqslant 1} \subseteq L^{2}(\Omega)$ is bounded. Thus, by hypothesis $H(f)$ (iii), we have at least for a subsequence (see [11]),

$$
\begin{equation*}
\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|} \xrightarrow{w} \eta_{0} y \text { in } L^{2}(\Omega) \text { with } 0 \leqslant \eta_{0}(z) \leqslant \hat{\eta} \text { for almost all } z \in \Omega . \tag{32}
\end{equation*}
$$

We act on (28) with $y_{n}-y \in E_{\Sigma_{1}}$ and pass to the limit as $n \rightarrow \infty$. Using (30), (31) and (32) we obtain $\lim _{n \rightarrow \infty}\left\langle A\left(y_{n}\right), y_{n}-y\right\rangle=0$. By the Kadec-Klee property we have $y_{n} \rightarrow y$, hence $\|y\|=1, y \geqslant 0$. In (28) we pass to the limit as $n \rightarrow \infty$ and use (30), (32). Then $A(y)=-\eta_{0} y$. Thus, by (32) we have $\|D y\|_{2}^{2}=-\int_{\Omega} \eta_{0} y^{2} d z \leqslant 0$, hence $y=0$, a contradiction. This shows that the claim is true. Hence $u_{*} \in S\left(\lambda_{*}\right) \subseteq E_{\Sigma_{1}} \cap C(\bar{\Omega})$ and so $\lambda_{*} \in \mathcal{L}$.

Summarizing, we can state the following bifurcation-type theorem.

Theorem 5. If hypotheses $H(f)$ hold, then there exists $\lambda_{*}>0$ such that
(a) for all $\lambda>\lambda_{*}$, problem $\left(P_{\lambda}\right)$ has at least two positive solutions $u_{0}, \hat{u} \in E_{\Sigma_{1}} \cap C(\bar{\Omega})$;
(b) for $\lambda=\lambda_{*}$, problem $\left(P_{\lambda}\right)$ has at least one positive solution $u_{*} \in E_{\Sigma_{1}} \cap C(\bar{\Omega})$;
(c) for $\lambda \in\left(0, \lambda_{*}\right)$, problem $\left(P_{\lambda}\right)$ has no positive solutions.

Acknowledgments

This research was supported by the Slovenian Research Agency grants P1-0292, J1-8131, and J1-7025. V.D. Rădulescu acknowledges the support through a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0130.

References

[1] M.E. Gurtin, R.C. Mac Camy, On the diffusion of biological populations, Math. Biosci. 33 (1977) 35-49.
[2] N.S. Papageorgiou, P. Winkert, On parametric nonlinear Dirichlet problems with subdiffusive and equidiffusive reaction, Adv. Nonlinear Stud. 14 (2014) 569-591.
[3] L. Gasinski, N.S. Papageorgiou, Exercises in Analysis. Part 2: Nonlinear Analysis, Springer, 2016.
[4] G. Bonanno, G. D'Agui, N.S. Papageorgiou, Infinitely many solutions for mixed elliptic problems involving the p-Laplacian, Adv. Nonlinear Stud. 15 (2015) 939-950.
[5] R. Filippucci, P. Pucci, V. Rădulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations 33 (2008) 706-717.
[6] Y. Li, B. Ruf, Q. Guo, P. Niu, Positive solutions for singular elliptic equations with mixed Dirichlet-Neumann boundary conditions, Math. Nachr. 287 (2014) 374-397.
[7] P. Pucci, J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007.
[8] E. DiBenedetto, $C^{1, \alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983) 827-850.
[9] E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal. 199 (2003) 468-507.
[10] G. Barletta, R. Livrea, N.S. Papageorgiou, Bifurcation phenomena for the positive solutions of semilinear elliptic problems with mixed boundary conditions, J. Nonlinear Convex Anal. 17 (2016) 1497-1516.
[11] S. Aizicovici, N.S. Papageorgiou, V. Staicu, Degree Theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 196 (915) (2008) 70.

[^0]: * Corresponding author at: Department of Mathematics, University of Craiova, Street A.I. Cuza 13, 200585 Craiova, Romania. E-mail addresses: npapg@math.ntua.gr (N.S. Papageorgiou), vicentiu.radulescu@imar.ro (V.D. Rădulescu), dusan.repovs@guest.ames.si (D.D. Repovš).

