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a b s t r a c t

We study a semilinear parametric elliptic equation with superdiffusive reaction and
mixed boundary conditions. Using variational methods, together with suitable trun-
cation techniques, we prove a bifurcation-type theorem describing the nonexistence,
existence and multiplicity of positive solutions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω and let Σ1,Σ2 ⊆ ∂Ω be two (N − 1)-
dimensional C2-submanifolds of ∂Ω such that ∂Ω = Σ1 ∪ Σ2, Σ1 ∩ Σ2 = ∅, |Σ1|N−1 ∈ (0, |∂Ω |N−1), and
Σ1 ∩ Σ 2 = Γ . Here, |·|N−1 denotes the (N − 1)-dimensional Hausdorff (surface) measure and Γ ⊂ ∂Ω is a
(N − 2)-dimensional C2-submanifold of ∂Ω .

In this paper, we study the following logistic-type elliptic problem:⎧⎪⎨⎪⎩
−∆u(z) = λu(z)q−1 − f(z, u(z)) in Ω ,

u|Σ1 = 0, ∂u

∂n

⏐⏐⏐⏐
Σ2

= 0, u > 0, λ > 0.

⎫⎪⎬⎪⎭ (Pλ)

When f(z, x) = xr−1 with r ∈ (2, 2∗), we get the classical logistic equation, which is important in
biological models (see Gurtin & Mac Camy [1]). Depending on the value of q > 1, we distinguish three cases:
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(i) 1 < q < 2 (subdiffusive logistic equation); (ii) 2 = q < r (equidiffusive logistic equation); (iii) 2 < q < r

(superdiffusive logistic equation). In this paper, we deal with the third situation (superdiffusive case), which
exhibits bifurcation-type phenomena for large values of the parameter λ > 0 (see also [2]).

Let EΣ1 = {u ∈ H1(Ω) : u|Σ1 = 0}. This space is defined as the closure of C1
c (Ω ∪ Σ1) with respect to

the H1(Ω)-norm. Since |Σ1|N−1 > 0, we know that for the space EΣ1 , the Poincaré inequality holds (see
Gasinski & Papageorgiou [3, Problem 1.139, p. 58]). So, EΣ1 is a Hilbert space equipped with the norm
∥u∥ = ∥Du∥2. Let A ∈ L(EΣ1 , E

∗
Σ1

) be defined by ⟨A(u), h⟩ =
∫
Ω

(Du,Dh)RN dz for all u, h ∈ EΣ1 . We
denote by Nf the Nemitsky map associated with f , that is, Nf (u)(·) = f(·, u(·)) for all u ∈ EΣ1 .

The hypotheses on the perturbation term f(z, x) are the following:
H(f) : f : Ω × R → R is a Carathéodory function such that for almost all z ∈ Ω , f(z, 0) = 0, f(z, x) ⩾ 0

for all x > 0, and

(i) f(z, x) ⩽ a(z)(1 + xr−1) for almost all z ∈ Ω and all x ⩾ 0, with a ∈ L∞(Ω), 2 < q < r < 2∗;
(ii) limx→+∞

f(z,x)
xq−1 = +∞ uniformly for almost all z ∈ Ω , and the mapping x ↦→ f(z,x)

x is nondecreasing
on (0,+∞) for almost all z ∈ Ω ;

(iii) 0 ⩽ lim infx→0+
f(z,x)

x ⩽ lim supx→0+
f(z,x)

x ⩽ η̂ uniformly for almost all z ∈ Ω ;
(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that for almost all z ∈ Ω the function x ↦→ ξ̂ρx − f(z, x) is

nondecreasing on [0, ρ].

The following functions satisfy hypotheses H(f): (i) f(x) = xr−1 for all x ⩾ 0 with 2 < q < r < 2∗;
(ii) f(x) = xq−1

[
ln(1 + x) + 1

q
x

1+x

]
for all x ⩾ 0, with 2 < q < 2∗.

Let L = {λ > 0 : problem (Pλ) has a positive solution} and let S(λ) denote the set of positive solutions
of problem (Pλ). Let λ∗ = inf L (if L = ∅, then inf ∅ = +∞).

By a solution of problem (Pλ), we understand a function u ∈ EΣ1 such that u ⩾ 0, u ̸= 0 and
⟨A(u), h⟩ =

∫
Ω

[λuq−1 − f(z, u)]hdz for all h ∈ EΣ1 .

We refer to Bonanno, D’Agui & Papageorgiou [4], Filippucci, Pucci & Rădulescu [5], and Li, Ruf, Guo &
Niu [6] for related results. We also refer to the monograph by Pucci & Serrin [7] for more results concerning
the abstract setting of this paper.

2. A bifurcation-type theorem

Proposition 1. If hypotheses H(f) hold, then S(λ) ⊆ C1,α(Ω)∩C0,α(Ω) with α ∈ (0, 1/2). For all u ∈ S(λ)
we have u(z) > 0 for all z ∈ Ω and λ∗ > 0.

Proof. From DiBenedetto [8] and Colorado & Peral [9], we know that if u ∈ S(λ) then u ∈ C1,α(Ω)∩C0,α(Ω)
with α ∈ (0, 1/2). Moreover, using Harnack’s inequality, we deduce that if u ∈ S(λ) then u(z) > 0 for all
z ∈ Ω . Let λ̂1 be the smallest eigenvalue of −∆ with mixed boundary conditions. From Colorado & Peral
[9, p. 482], we know that λ̂1 = inf

{
∥Du∥2

2
∥u∥2

2
: u ∈ EΣ1 \ {0}

}
> 0. By H(f)(i), (iii), there exists λ0 > 0 such

that

λ0x
q−1 − f(z, x) ⩽ λ̂1x for almost all z ∈ Ω , and all x ⩾ 0 (1)

(recall that 2 < q < r). Let λ ∈ (0, λ0) and suppose that λ ∈ L. Then there exists uλ ∈ S(λ) and by using
Green’s identity, we get

A(uλ) = λuq−1
λ −Nf (uλ) in E∗

Σ1 . (2)

We act on (2) with uλ ∈ EΣ1 and obtain ∥Duλ∥2
2 = λ∥uλ∥q

q −
∫
Ω
f(z, uλ)uλdz < λ̂1∥uλ∥2

2 (see (1) and recall
that λ < λ0, uλ(z) > 0 for all z ∈ Ω), which contradicts the definition of λ̂1. Therefore λ ̸∈ L and we have
0 < λ0 ⩽ λ∗ = inf L. □
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Proposition 2. If hypotheses H(f) hold, then L ≠ ∅ and “λ ∈ L, η > λ ⇒ η ∈ L”.

Proof. Fix λ > 0 and let φλ : EΣ1 → R, φλ(u) = 1
2 ∥ Du|22 − λ

q ∥u+∥q
q +

∫
Ω
F (z, u)dz, where

F (z, x) =
∫ x

0 f(z, s)ds. Then φλ ∈ C1(EΣ1) and φλ is sequentially weakly lower semicontinuous. Hypotheses
H(f)(i), (ii) imply that given ξ > 0, we can find c1 = c1(ξ) > 0 such that F (z, x) ⩾ ξ

qx
q − c1 for almost all

z ∈ Ω and for all x ⩾ 0. Thus, for all u ∈ EΣ1 we have φλ(u) ⩾ 1
2 ∥Du∥2

2 + ξ−λ
2 ∥u+∥q

q − c1|Ω |N . Choosing
ξ > λ, we deduce that φλ is coercive. So, by the Weierstrass–Tonelli theorem, there exists uλ ∈ EΣ1 such
that

φλ(uλ) = inf{φλ(u) : u ∈ EΣ1} = mλ. (3)

Fix ū ∈ EΣ1 ∩ C(Ω) with u(z) > 0 for all z ∈ Ω . For large enough λ > 0 we have φλ(ū) < 0, hence
φλ(uλ) = mλ < 0 = φλ(0) (see (3)). Thus, uλ ̸= 0. By (3), φ′

λ(uλ) = 0, hence

A(uλ) = λ(u+
λ )q−1 −Nf (uλ) in E∗

Σ1 . (4)

We act on (4) with −u−
λ ∈ EΣ1 and obtain ∥Du−

λ ∥2
2 = 0, hence uλ ⩾ 0. So, relation (4) becomes

A(uλ) = λuq−1
λ −Nf (uλ). By Green’s identity, uλ ∈ S(λ), hence λ ∈ L ≠ ∅.

Next, let λ ∈ L and η > λ. Choose ϑ ∈ (0, 1) such that λ = ϑq−2η (recall that 2 < q). Also, let
uλ ∈ S(λ) ⊆ C1,α(Ω) ∩ C0,α(Ω) with α ∈ (0, 1/2). Let u = ϑuλ. Then

A(u) = ϑA(uλ) = ϑ
[
λuq−1

λ −Nf (uλ)
]

in E∗
Σ1 . (5)

From hypothesis H(f)(ii) and since uλ(z), u(z) > 0 for all z ∈ Ω , we have for a.a. z ∈ Ω

f(z, u(z))
u(z) ⩽

f(z, uλ(z))
uλ(z) ⇒ f(z, u(z)) ⩽ ϑf(z, uλ(z)) (recall that u = ϑuλ). (6)

Using (5) in (6) and since ϑ ∈ (0, 1), we obtain

A(u) ⩽ ϑq−1ηuq−1
λ −Nf (u) ⩽ ηuq−1 −Nf (u) in E∗

Σ1 . (7)

We introduce the following Carathéodory truncation of the reaction term in problem (Pη)

gη(z, x) =
{
ηu(z)q−1 − f(z, u(z)) if x ⩽ u(z)
ηxq−1 − f(z, x) if u(z) < x.

(8)

Let Gη(z, x) =
∫ x

0 gη(z, s)ds and define φ̂η : EΣ1 → R by φ̂η(u) = 1
2 ∥Du∥2

2 −
∫
Ω
Gη(z, u)dz.

Hypotheses H(f)(i), (ii) imply that given ξ > 0, we can find c2 = c2(ξ) > 0 such that

ηxq−1 − f(z, x) ⩽ (η − ξ)xq−1 + c2 for almost all z ∈ Ω and all x ⩾ 0. (9)

Then for all u ∈ EΣ1 , we have

φ̂η(u) ⩾ 1
2∥Du∥2

2 + ξ − η

q
∥u+∥q

q − c3 for some c3 > 0 (see (8), (9)). (10)

Choosing ξ > η, we see from (10) that φ̂η is coercive. This function is also sequentially weakly lower
semicontinuous. So, by the Weierstrass–Tonelli theorem, there exists uη ∈ EΣ1 such that φ̂η(uη) = inf[φ̂η(u) :
u ∈ EΣ1 ], hence φ̂′

η(uη) = 0. We deduce that

A(uη) = Ngη (uη) in E∗
Σ1 . (11)
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We act on (11) with (u− uη)+ ∈ EΣ1 . By (8) and (7) we have⟨
A(uη), (u− uη)+⟩

=
∫
Ω

[ηuq−1 − f(z, u)](u− uη)+dz ⩾
⟨
A(u), (u− uη)+⟩

⇒
⟨
A(u− uη), (u− uη)+⟩

⩽ 0 ⇒ ∥D(u− uη)+∥2
2 ⩽ 0 ⇒ u ⩽ uη. (12)

Using (8) and (12) we see that relation (11) becomes A(uλ) = ηuq−1
η − Nf (uη) in E∗

Σ1
. Thus, by

Proposition 1, we have uη ∈ S(η) ⊆ C1,α(Ω)∩C0,α(Ω). Therefore η ∈ L. We also observe that Proposition 2
implies (λ∗,+∞) ⊆ L. □

Proposition 3. If hypotheses H(f) hold and λ > λ∗, then problem (Pλ) has at least two positive solutions
u0, û ∈ EΣ1 ∩ C0,α(Ω) for α ∈ (0, 1/2) with 0 < u0(z), û(z) for all z ∈ Ω .

Proof. Let µ ∈ (λ∗, λ). By Proposition 2 we know that µ ∈ L. Hence we can find uµ ∈ S(µ) ⊆ EΣ1 ∩C0,α(Ω)
with α ∈ (0, 1/2), uµ(z) > 0 for all z ∈ Ω . We have A(uµ) = µuq−1

µ − Nf (uµ) in E∗
Σ1

. Next, we define the
following Carathéodory function

ĥλ(z, x) =
{
λuµ(z)q−1 − f(z, uµ(z)) if x ⩽ uµ(z)
λxq−1 − f(z, x) if uµ(z) < x.

(13)

Let Ĥλ(z, x) =
∫ x

0 ĥλ(z, s)ds and let ψ̂λ : EΣ1 → R, ψ̂λ(u) = 1
2 ∥Du∥2

2 −
∫
Ω
Ĥλ(z, u)dz. Then ψ̂λ is

coercive and sequentially weakly lower semicontinuous. Thus, we can find u0 ∈ EΣ1 such that ψ̂λ(u0) =
inf{ψ̂λ(u) : u ∈ EΣ1}, hence ψ̂′

λ(u0) = 0. Thus, A(u0) = Nĥλ
(u0). Using (13) and reasoning as in the proof

of Proposition 2 we deduce that uµ ⩽ u0. By Colorado & Peral [9, Theorem 6.6], we have u0 ∈ EΣ1 ∩C0,α(Ω)
with α ∈ (0, 1/2) and u0 > 0 in zΩ (by Harnack’s inequality).

Let ρ0 = ∥u0∥∞ and let ξ̂ρ0 > 0 be as postulated in hypothesis H(f)(iv). We have⎧⎪⎨⎪⎩
−∆u0(z) + ξ̂ρ0u0(z) = λu0(z)q−1 − f(z, u0(z)) + ξ̂ρ0u0(z) in Ω ,

u0|Σ1 = 0, ∂u0

∂n

⏐⏐⏐⏐
Σ2

= 0

⎫⎪⎬⎪⎭ (14)

and ⎧⎪⎨⎪⎩
−∆uµ(z) + ξ̂ρ0uµ(z) = µuµ(z)q−1 − f(z, uµ(z)) + ξ̂ρ0uµ(z) in Ω ,

ûµ|Σ1 = 0, ∂uµ

∂n

⏐⏐⏐⏐
Σ2

= 0.

⎫⎪⎬⎪⎭ (15)

Let ŷ = u0 − uµ ⩾ 0. Since λ > µ, u0 ⩾ uµ, from (14), (15), and H(f)(iv) we have

−∆ŷ(z) + ξ̂ρ0 ŷ(z) = λu0(z)q−1 − µuµ(z)q−1 + [ξ̂ρ0u0(z) − f(z, u0(z))] −
−[ξ̂ρ0uµ(z) − f(z, uµ(z))] ⩾ 0 in Ω .

Let v1 ∈ EΣ1 be the unique function satisfying −∆v(z) + ξ̂ρ0v(z) = 1 Ω , v|Σ1 = 0, and ∂v
∂n

⏐⏐
Σ2

= 0. Then
v1 ∈ C1,α(Ω) ∩ C0,α(Ω) with α ∈ (0, 1/2) (see [8,9]) and v1 > 0 in Ω . By Lemma 2.1 of Barletta, Livrea &
Papageorgiou [10] (see also Lemma 5.3 of Colorado & Peral [9]), we can find ϑ > 0 such that

ϑv1(z) ⩽ uµ(z) and ϑv1(z) ⩽ ŷ(z) ⇒ ϑv1(z) ⩽ uµ(z) ⩽ u0(z) − ϑv1(z) for all z ∈ Ω . (16)

Let Ĉ1 =
{
y ∈ EΣ1 ∩ C(Ω) :

 y
v1


∞
< ∞

}
and [uµ) = {u ∈ EΣ1 : uµ(z) ⩽ u(z), a.a. z ∈ Ω}. We claim

that if B̄1(0) := {y ∈ Ĉ1 :
 y

v1


∞

⩽ 1}, then u0 − ϑB̄1(0) ⊆ [uµ) ∩ Ĉ1. To see this, let y ∈ B̄1(0). Then

− v1(z) ⩽ y(z) ⩽ v1(z) for all z ∈ Ω . (17)
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Fix z ∈ Ω . If y(z) > 0, then 0 ⩽ uµ(z) ⩽ uµ(z) + ϑy(z) ⩽ uµ(z) + ϑv1(z) ⩽ u0(z) (see (16), (17)), hence
uµ(z) ⩽ u0(z) − ϑy(z). If y(z) < 0, then 0 ⩽ uµ(z) − ϑv1(z) ⩽ uµ(z) + ϑy(z) ⩽ uµ(z) + ϑv1(z) ⩽ u0(z) (see
(16), (17)), hence uµ(z) ⩽ u0(z) − ϑy(z). We conclude that uµ ∈ u0 − ϑB̄1(0), which proves the claim. It
follows that

u0 ∈ intĈ1
[uµ) ∩ C(Ω). (18)

By (13) it is clear that

ψ̂λ(u) = φλ(u) + c4 for some c4 ∈ R and for all u ∈ [uµ) . (19)

It follows from (18) and (19) that u0 is a local Ĉ1-minimizer of φλ.

Claim. u0 is a local EΣ1-minimizer of φλ.

Suppose that this assertion is not true. Then for every ρ > 0, we have inf{φλ(u0 + y) : y ∈ EΣ1 , ∥y∥ ⩽
ρ} < φλ(u0). By the Weierstrass–Tonelli theorem, there exists yρ ∈ EΣ1 \ {0}, ∥yρ∥ ⩽ ρ such that
φλ(u0 + yρ) = inf{φλ(u0 + y) : y ∈ EΣ1 , ∥y∥ ⩽ ρ} < φλ(y0). By the Lagrange multiplier rule, there
exists ϑ ⩽ 0 such that (1 − ϑ) ⟨A(uρ), h⟩ = λ

∫
Ω

(u+
ρ )q−1hdz −

∫
Ω
f(z, uρ)hdz for all h ∈ EΣ1 , with

uρ = u0 + yρ ∈ EΣ1 . It follows that ∆uρ(z) = 1
1−ϑ [λu+

ρ (z)q−1 − f(z, uρ(z))] in Ω , hence

− ∆uρ(z) + ξ̂ρ0uρ(z) = 1
1 − ϑ

[λu+
ρ (z)q−1 + f(z, uρ(z))] + ξ̂ρ0uρ(z) in Ω , (20)

with ξ̂ρ0 > 0 as before resulting from hypothesis H(f)(iv) (recall that ρ0 = ∥u0∥∞). Also,

− ∆u0(z) + ξ̂ρ0u0(z) = λu0(z)q−1 − f(z, u0(z)) + ξ̂ρ0u0(z) in Ω . (21)

From (20) and (21) we obtain

− ∆yρ(z) + ξ̂ρ0yρ(z) = gρ
λ(z) in Ω (22)

with gρ
λ(z) = 1

1−ϑ [λu+
ρ (z)q−1 − f(z, uρ(z))] − λu0(z)q−1 + f(z, u0(z)) + ξ̂ρ0yρ(z). By (22) and Colorado &

Peral [9], there exist c5 > 0 and α ∈ (0, 1/2) such that

yρ ∈ C0,α(Ω) and ∥yρ∥C0,α(Ω) ⩽ c5 for all ρ ∈ (0, 1] . (23)

Exploiting the compact embedding of C0,α(Ω) into C(Ω), we have yρ → 0 in C(Ω) as ρ → 0+. Thus, by
the definition of gρ

λ, there exists τ∗
ρ > 0 such that

∥gρ
λ∥∞ ⩽ τ∗

ρ for all ρ ∈ (0, 1] and τ∗
ρ → 0+ as ρ → 0+. (24)

Let ŷρ = 1
τ∗

ρ
yρ. Then by (24) −∆(ŷρ − v1)(z) + ξ̂ρ0(ŷρ − v1)(z) = 1

τ∗
ρ
gρ

λ(z) − 1 ⩽ 0. We deduce that
∥D(ŷρ − v1)+∥2

2 + ξ̂ρ0∥(ŷρ − v1)+∥2
2 ⩽ 0, hence yρ ⩽ τ∗

ρ v1.
Also, we have −∆(−ŷρ − v1)(z) + ξ̂ρ0(−ŷρ − v1)(z) = − 1

τ∗
ρ
gρ

λ(z) − 1 ⩽ 0 in Ω and so as above we obtain
that −τ∗

ρ v1 ⩽ yρ. Therefore we have proved that −τ∗
ρ v1 ⩽ yρ ⩽ τ∗

ρ v1. These relations show that yρ ∈ Ĉ1

and
 yρ

v1


∞

⩽ τ∗
ρ for all ρ ∈ (0, 1], hence yρ → 0 in Ĉ1 as ρ → 0+. Therefore for small ρ ∈ (0, 1] we have

φλ(u0 + yρ) < φλ(u0), which contradicts the fact that u0 is a local Ĉ1-minimizer of φλ. This proves the
claim.

Since f ⩾ 0, for all u ∈ EΣ1 we have φλ(u) ⩾ 1
2 ∥Du∥2

2 − λ
q ∥u+∥q

q ⩾ 1
2 ∥Du∥2

2 − c6∥Du∥q
2 for some c6 > 0.

Since q > 2, we deduce that u = 0 is a local minimizer of φλ. We assume that the set of critical points of φλ
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is finite (otherwise we already have an infinity of positive solutions for (Pλ) for λ > λ∗ and so we are done)
and that φλ(0) ⩽ φλ(u0) (the reasoning is similar if the opposite inequality holds). The claim implies that we
can find small enough ρ ∈ (0, ∥u0∥) such that 0 = φλ(0) ⩽ φλ(u) < inf{φλ(u) : ∥u− u0∥ = ρ} = mρ

λ. Thus,
we can apply the mountain pass theorem. So, there exists û ∈ EΣ1 such that φ′

λ(û) = 0 and mρ
λ ⩽ φλ(û),

hence û ̸∈ {0, u0}, û ∈ Sλ ⊆ EΣ1 ∩ C0,α(Ω), and û > 0 in Ω . □

Proposition 4. If hypotheses H(f) hold, then λ∗ ∈ L, that is, L = [λ∗,+∞).

Proof. Let {λn}n⩾1 ⊆ (λ∗,+∞) be such that λn ↓ λ∗. We find un ∈ S(λn) such that

A(un) = λuq−1
n −Nf (un) in E∗

Σ1 for all n ∈ N. (25)

Hypotheses H(f)(i), (ii) imply that given any ξ > 0, we find c7 = c7(ξ) > 0 such that

f(z, x) ⩾ ξxq−1 − c7 for almost all z ∈ Ω and all x ⩾ 0. (26)

We act on (25) with un ∈ EΣ1 and then use (26). We obtain ∥Du∥2
2 ⩽ (λn − ξ)∥un∥q

q + c7|Ω |N . Choosing
ξ > λ1 ⩾ λn for all n ∈ N, we have ∥Dun∥2

2 ⩽ c7|Ω |N for all n ∈ N, hence {un}n⩾1 ⊆ EΣ1 is bounded. By
passing to a subsequence if necessary, we may assume that

un
w→ u∗ in EΣ1 and un → u in Lr(Ω) as n → ∞. (27)

In (25) we pass to the limit as n → ∞ and use (27). Then A(u∗) = λ∗u
q−1
∗ −Nf (u∗). Thus, u∗ ∈ EΣ1 and

u∗ ⩾ 0 is a solution of (Pλ∗). We also notice that limn→∞ ⟨A(un), un − u∗⟩ = 0, hence ∥Dun∥2 → ∥Du∗∥2.
Using the Kadec–Klee property we deduce that un → u∗ in EΣ1 .

Claim. u∗ ̸= 0.

Arguing by contradiction, suppose that u∗ = 0. Then ∥un∥ → 0. Let yn = un
∥un∥ , n ∈ N. Then

∥yn∥ = 1, yn ⩾ 0 for all n ∈ N. From (25) we have

A(yn) = λnu
q−2
n yn − Nf (un)

∥un∥
for all n ∈ N. (28)

From hypotheses H(f)(i), (iii), we see that we can find η > η̂ and c8 > 0 such that

f(z, x) ⩽ ηx+ c8x
r−1 for a.a. z ∈ Ω , all x ⩾ 0 ⇒ {Nf (un)}n⩾1 ⊆ L2(Ω) is bounded. (29)

By [9], there exist α ∈ (0, 1/2) and c9 > 0 such that un ∈ C0,α(Ω), ∥un∥C0,α(Ω) ⩽ c9 for all n ∈ N. Since
C0,α(Ω) is compactly embedded compactly in C(Ω), we deduce that

un → 0 in C(Ω). (30)

Recall that ∥yn∥ = 1, yn ⩾ 0 for all n ∈ N. So, we may assume that

yn
w→ y in EΣ1 and yn → y in L2(Ω), y ⩾ 0. (31)

It follows from (29), (30) and (31) that
{

Nf (un)
∥un∥

}
n⩾1

⊆ L2(Ω) is bounded. Thus, by hypothesis H(f)(iii),
we have at least for a subsequence (see [11]),

Nf (un)
∥un∥

w→ η0y in L2(Ω) with 0 ⩽ η0(z) ⩽ η̂ for almost all z ∈ Ω . (32)
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We act on (28) with yn − y ∈ EΣ1 and pass to the limit as n → ∞. Using (30), (31) and (32) we obtain
limn→∞ ⟨A(yn), yn − y⟩ = 0. By the Kadec–Klee property we have yn → y, hence ∥y∥ = 1, y ⩾ 0. In
(28) we pass to the limit as n → ∞ and use (30), (32). Then A(y) = −η0y. Thus, by (32) we have
∥Dy∥2

2 = −
∫
Ω
η0y

2dz ⩽ 0, hence y = 0, a contradiction. This shows that the claim is true. Hence
u∗ ∈ S(λ∗) ⊆ EΣ1 ∩ C(Ω) and so λ∗ ∈ L. □

Summarizing, we can state the following bifurcation-type theorem.

Theorem 5. If hypotheses H(f) hold, then there exists λ∗ > 0 such that

(a) for all λ > λ∗, problem (Pλ) has at least two positive solutions u0, û ∈ EΣ1 ∩ C(Ω);
(b) for λ = λ∗, problem (Pλ) has at least one positive solution u∗ ∈ EΣ1 ∩ C(Ω);
(c) for λ ∈ (0, λ∗), problem (Pλ) has no positive solutions.
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