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a b s t r a c t

This paper deals with the study of a nonlinear eigenvalue problem driven by a
new class of non-homogeneous differential operators with variable exponent and
involving a nonlinear term with variable growth. The framework in the present
paper corresponds to the case of small perturbations of the nonlinear term.
Combining variational arguments with energy estimates, we establish the existence
of eigenvalues in a neighborhood of the origin. Our abstract setting includes several
models described by nonhomogeneous differential operators, including the case of
the capillarity equation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and abstract setting

The qualitative analysis of nonlinear problems with one or several variable exponents was extended
recently by I.H. Kim and Y.H. Kim [1] in the abstract setting of a new class of non-homogeneous differential
operators. Their work is an important contribution to the refined mathematical analysis of nonlinear
problems with one or more variable exponents, mainly because it allows the understanding of some classes
of nonlinear problems with possible lack of uniform convexity. For these stationary problems, the associated
energy density changes its ellipticity as well as its growth properties according to the point. We refer to
S. Baraket, S. Chebbi, N. Chorfi, and V. Rădulescu [2] for recent advances in this new abstract setting.

Nonlinear problems with this structure are motivated by numerous models in the applied sciences that are
driven by partial differential equations with one or more variable exponents. The variable exponents describe
the geometry of a material which is allowed to change its hardening exponent according to the point. This
leads to the analysis of variable exponents Lebesgue and Sobolev function spaces (denoted by Lp(x) and
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W 1,p(x)), where p is a real-valued (non-constant) function. We point out here the important contributions of
T.C. Halsey [3] and V.V. Zhikov [4] in strong relationship with the behavior of strongly anisotropic materials.
This is mainly achieved in the framework of the homogenization and nonlinear elasticity. We refer here to
the monograph by V. Rădulescu and D. Repovš [5], which includes a thorough variational and topological
analysis of several classes of problems with variable exponent (see also the important contributions by
P. Pucci et al. [6,7]).

We are concerned in this paper with the study of a class of nonlinear non-homogeneous eigenvalue
problems with Dirichlet boundary condition. Our main result establishes the existence of nontrivial weak
solutions in the case of small perturbations, namely if the right-hand side of the problem is sufficiently small,
as described by a suitable positive parameter. The abstract setting of this paper includes several important
applications, such as the capillarity equation or the generalized version of the mean curvature equation.
Related qualitative properties concerning the qualitative analysis of anisotropic elliptic problems have been
established by Repovš et al., see [8] and [9].

We assume throughout the present paper that Ω ⊂ RN is a smooth bounded.
Set C+(Ω) = {p ∈ C(Ω), p(x) > 1 for all x ∈ Ω}. For all p ∈ C+(Ω) we denote p+ = supx∈Ωp(x) and

p− = infx∈Ωp(x).
Let Lp(x)(Ω) be the Lebesgue space with variable exponent, namely

Lp(x)(Ω) =
{
u; u is measurable and

∫
Ω

|u(x)|p(x)
dx < ∞

}
.

This vector space is a Banach space if it is endowed with the Luxemburg norm defined by

|u|p(x) = inf
{
µ > 0;

∫
Ω

⏐⏐⏐⏐u(x)
µ

⏐⏐⏐⏐p(x)
dx ≤ 1

}
.

Let Lp′(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x) + 1/p′(x) = 1. Then for all
u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the following Hölder-type inequality holds:⏐⏐⏐⏐∫

Ω

uv dx

⏐⏐⏐⏐ ≤
(

1
p− + 1

p′−

)
|u|p(x)|v|p′(x). (1)

Let ρp(x) : Lp(x)(Ω) → R be the modular of Lp(x)(Ω), which is defined by ρp(x)(u) =
∫
Ω

|u|p(x)
dx. Then

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x). (2)

We define the variable exponent Sobolev space by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.

On W 1,p(x)(Ω) we may consider one of the following equivalent norms

∥u∥p(x) = |u|p(x) + |∇u|p(x)

or

∥u∥p(x) = inf
{
µ > 0;

∫
Ω

(⏐⏐⏐⏐∇u(x)
µ

⏐⏐⏐⏐p(x)
+
⏐⏐⏐⏐u(x)
µ

⏐⏐⏐⏐p(x)
)
dx ≤ 1

}
.

Let W 1,p(x)
0 (Ω) denote the closure of the set of compactly supported W 1,p(x)-functions with respect to

the norm ∥u∥p(x). By the Poincaré inequality, the space W 1,p(x)
0 (Ω) can be also defined as the closure of

C∞
0 (Ω) with respect to the norm ∥u∥p(x) = |∇u|p(x). The vector space (W 1,p(x)

0 (Ω), ∥ · ∥) is a separable and
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reflexive Banach space. Moreover, if 0 < |Ω | < ∞ and p1, p2 ∈ C+(Ω) such that p1 ≤ p2 then there exists
the continuous embedding W 1,p2(x)

0 (Ω) ↪→ W
1,p1(x)
0 (Ω).

Set ϱp(x)(u) =
∫
Ω

|∇u(x)|p(x)
dx. Then

∥u∥ < 1 ⇒ ∥u∥p+
≤ ϱp(x)(u) ≤ ∥u∥p−

. (3)

Set

p∗(x) =

⎧⎨⎩
Np(x)
N − p(x) if p(x) < N

+∞ if p(x) ≥ N.

We recall that if p, q ∈ C+(Ω) and q(x) < p⋆(x) for all x ∈ Ω then the embedding W 1,p(x)
0 (Ω) ↪→ Lq(x)(Ω)

is compact.

2. Main result

Fix p1, p2 ∈ C+(Ω) and consider the mappings ϕ, ψ : Ω × [0,∞) → [0,∞) satisfying the following
hypotheses:

(H1) the functions ϕ(·, ξ) and ψ(·, ξ) are measurable on Ω for all ξ ≥ 0 and ϕ(x, ·), ψ(x, ·) are locally
absolutely continuous on [0,∞) for almost all x ∈ Ω ;

(H2) there exist b > 0 and a2 ∈ Lp′
2(Ω) such that

|ϕ(x, |v|)v| ≤ b|v|p1(x)−1
, |ψ(x, |v|)v| ≤ a2(x) + b|v|p2(x)−1

for almost all x ∈ Ω and for all v ∈ RN ;
(H3) there exists c > 0 such that for almost all x ∈ Ω and for all ξ > 0

ϕ(x, ξ) ≥ cξp1(x)−2, ϕ(x, ξ) + ξ
∂ϕ

∂ξ
(x, ξ) ≥ cξp1(x)−2

and

ψ(x, ξ) ≥ cξp2(x)−2, ψ(x, ξ) + ξ
∂ψ

∂ξ
(x, ξ) ≥ cξp2(x)−2;

(H4) we have minx∈Ωp2(x) < minx∈Ωp1(x) and maxx∈Ω{p1(x), p2(x)} < p∗
1(x) for all x ∈ Ω .

Consider the following nonlinear eigenvalue problem:{
−div (ϕ(x, |∇u|)∇u) = λψ(x, |u|)u in Ω
u = 0 on ∂Ω .

(4)

Problem (4) is driven by the non-homogeneous operator div (ϕ(x, |∇u|)∇u). If ϕ(x, ξ) = ξp(x)−2 then we
obtain the standard p(x)-Laplace operator, ∆p(x)u := div (|∇u|p(x)−2∇u). Our abstract setting includes the
case

ϕ(x, ξ) =
(

1 + ξp(x)√
1 + ξ2p(x)

)
ξp(x)−2, x ∈ Ω , ξ > 0,

which corresponds to the capillarity equation described by the differential operator

div

⎡⎣⎛⎝1 + |∇u|p(x)√
1 + |∇u|2p(x)

⎞⎠ |∇u|p(x)−2∇u

⎤⎦ .
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We say that u ∈ W
1,p1(x)
0 (Ω) \ {0} is a solution of problem (4) if∫

Ω

ϕ(x, |∇u|)∇u · ∇vdx = λ

∫
Ω

ψ(x, |u|)uvdxdx for all v ∈ W
1,p1(x)
0 (Ω).

In this case, u is an eigenfunction of problem (4) and the corresponding λ ∈ R is an eigenvalue of (4).
For ϕ and ψ described in hypotheses (H1)–(H4) we set

A0(x, t) :=
∫ t

0
ϕ(x, s)sds; B0(x, t) :=

∫ t

0
ψ(x, s)sds, for all t ≥ 0. (5)

Consider the functionals A, B : W 1,p1(x)
0 (Ω) → R defined by A(u) :=

∫
Ω
A0(x, |∇u|)dx and B(u) :=∫

Ω
B0(x, |u|)dx. The energy functional associated to problem (4) is Cλ : W 1,p1(x)

0 (Ω) → R, which is defined
by Cλ(u) := A(u) − λB(u). Thus, by [1, Lemma 3.2], Cλ is of class C1 and weak solutions of (4) coincide
with nontrivial critical points of Cλ.

Theorem 2.1. Assume that hypotheses (H1)–(H4) are fulfilled. Then there exists λ∗ > 0 such that for all
λ ∈ (0, λ∗), problem (4) has at least one solution.

Proof. In our arguments we use some ideas developed by Rădulescu et al., see [10] and [5, Chapter 3].
Throughout this paper, we denote by ∥ · ∥ the norm in the Banach space W 1,p1(x)

0 (Ω). We split the proof
into several steps.

Step 1. There exist positive numbers λ∗, r and a such that Cλ(u) ≥ a for all λ ∈ (0, λ∗) and for all
u ∈ W

1,p1(x)
0 (Ω) satisfying ∥u∥ = r.

By hypothesis (H2), we observe that

B(u) ≤
∫
Ω

(∫ |u|

0
(|a2(x)| + b|s|p2(x)−1)ds

)
dx ≤ 2 |a2|p′

2(x)|u|p2(x) + b

p−
2
ρp2(x)(u). (6)

Fix r ∈ (0, 1) and take u ∈ W
1,p1(x)
0 (Ω) with that ∥u∥ = r. Next, using the continuous embedding of

W
1,p1(x)
0 (Ω) into Lp2(x)(Ω) we can assume that r is chosen small enough such that |u|p2(x) < 1. We fix

r ∈ (0, 1) with this property. Using (2), relation (6) yields for all u ∈ W
1,p1(x)
0 (Ω) with ∥u∥ = r

B(u) ≤ C1|u|p2(x) + C2|u|p
−
2

p2(x) ≤ C ′
3∥u∥ + C ′′

3 ∥u∥p−
2 ≤ C3(r + rp−

2 ). (7)

On the other side, by (H3) we have

A(u) ≥ c

∫
Ω

(∫ |∇u|

0
sp1(x)−1

)
dx ≥ c

p+
1

∫
Ω

|∇u|p1(x)
dx = c

p+
1
ϱp1(x)(u),

for all u ∈ W
1,p1(x)
0 (Ω).

Assume that ∥u∥ = r and use (3). It follows that

A(u) ≥ c

p+
1

∥u∥p+
1 = C4r

p+
1 . (8)

Combining relations (7), (8) with hypothesis (H4) we deduce that for all u ∈ W
1,p1(x)
0 (Ω) with ∥u∥ = r we

have

C(u) ≥ C4r
p+

1 − λC3(r + rp−
2 ) = C3r

(
C4

C3
rp+

1 −p−
2 − λ(1 + rp−

2 −1)
)

≥ a > 0,
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provided that λ ∈ (0, λ∗) for some λ∗. We observe that as soon as r ∈ (0, 1) with the above properties is
fixed then a and λ∗ can be also assumed to be fixed.

Step 2. There exist v ∈ W
1,p1(x)
0 (Ω) and t0 > 0 such that Cλ(t0v) < 0.

In order to construct the convenient test function v, we use our hypothesis (H4). Indeed, since p−
2 < p−

1 ,
we fix ε0 > 0 such that p−

2 + ε0 < p−
1 and choose a bounded subset ω of Ω such that p2(x) < p−

2 + ε0 for all
x ∈ ω. Next, we choose v ∈ C∞

0 (Ω) such that v ≥ 0 and supp v ⊃ ω. It follows that for all t ∈ (0, 1)

Cλ(tv) ≤ b

∫
Ω

∫ t|∇v|

0
|s|p1(x)−1

dsdx− λc

∫
Ω

∫ tv

0
sp2(x)−1dsdx

≤ btp
−
1

p−
1

∫
Ω

|∇v|p1(x)
dx− λc

p+
2

∫
Ω

tp2(x)vp2(x)dx

≤ btp
−
1

p−
1

∫
Ω

|∇v|p1(x)
dx− λc

p+
2

∫
ω

tp2(x)vp2(x)dx

≤ C ′
5t

p−
1 − C6t

p−
2 +ε0

∫
ω

vp2(x)dx

= C ′
5t

p−
1 − C ′

6t
p−

2 +ε0 .

Since p−
2 + ε0 < p−

1 , we can choose small t0 > 0 such that Cλ(t0v) < 0.
Using Step 2, there exist v ∈ W

1,p1(x)
0 (Ω) and t0 > 0 such that Cλ(t0v) < 0. We can assume that t0 is

small enough so that ∥t0v∥ < r, where r is given in Step 1. Set B := {u ∈ W
1,p1(x)
0 (Ω); ∥u∥ ≤ r}. Combining

steps 1 and 2 we deduce that

inf{Cλ(u); u ∈ B} ≤ Cλ(t0v) < 0 and inf{Cλ(u); u ∈ ∂B} ≥ a > 0.

Step 3. Existence of “almost critical” points and completion of the proof.
Fix λ ∈ (0, λ∗), where λ∗ is given by Step 1. Let n be a positive integer such that na > 1. Next, we apply

the Ekeland variational principle. Thus, there exists un ∈ W
1,p1(x)
0 (Ω) such that

Cλ(un) < inf{Cλ(u); u ∈ B} + 1
n

(9)

Cλ(un) < Cλ(u) + 1
n

∥u− un∥, for all u ∈ W
1,p1(x)
0 (Ω) \ {un}. (10)

We first observe that un ̸∈ ∂B. This follows from

Cλ(un) < inf{Cλ(u); u ∈ B} + 1
n
<

1
n
< a ≤ inf{Cλ(u); u ∈ ∂B}.

Next, a standard argument shows that relation (10) implies that ∥C ′
λ(un)∥ ≤ 1/n. Thus, (un) ⊂ B is a

sequence of “almost critical” points of Cλ, namely

lim
n→∞

Cλ(un) = inf{Cλ(u); u ∈ B} and lim
n→∞

∥C ′
λ(un)∥ = 0.

Since (un) is a bounded sequence, we can assume (up to a subsequence) that

un ⇀ u in W
1,p1(x)
0 (Ω) (11)

un → u in Lp2(x)(Ω). (12)

Combining hypothesis (H1) with the Hölder inequality we find⏐⏐⏐⏐∫
Ω

ψ(x, un)un(un − u)dx
⏐⏐⏐⏐ ≤

∫
Ω

(a2(x) + |un|p2(x)−1)|un − u|dx

≤ |un − u|p2(x)|a2 + |un|p2(x)−1|p′
2(x) → 0.

(13)
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But

lim
n→∞

C ′
λ(un)(un − u) = 0.

So, by relations (13) and (2), we obtain∫
Ω

ϕ(x, |∇un|)∇un · ∇(un − u)dx → 0 as n → ∞.

Using now (11) and applying the same argument as in F. Gazzola and Rădulescu [11, p. 59] (see also X. Fan
and Q.H. Zhang [12, Theorem 3.1]) we conclude that un → u in W

1,p1(x)
0 (Ω). Thus, u is a critical point of

Cλ, hence a weak solution of problem (4). □

2.1. Perspectives and open problems

Function spaces Lp(x) and W 1,p(x) with variable exponent have several unusual properties, such as:
(i) they are not translation invariant; (ii) the use of convolution is limited and the Young inequality holds
if and only if p is constant; (iii) these spaces do not fulfill the mean continuity property; (iv) the co-area
formula has no variable exponent analogue, etc. We refer to Rădulescu and Repovš [5, pp. 8, 9] for more
details.

(a) The methods used in the present paper can be extended to perturbed problems, namely if the left-hand
side of (4) is replaced with the operator −div (ϕ(x, |∇u|)∇u) + αϕ(x, u)u, provided that there exists C > 0
such that ∫

Ω

A0(x, |∇u|)dx+ α

∫
Ω

A0(x, |u|)dx ≥ C ϱp1(x)(u) for every u ∈ W
1,p1(x)
0 (Ω).

(b) We do not have any information on the qualitative behavior for big values of the parameter λ in
problem (4). A more difficult question is to develop an exhaustive analysis for all λ > 0.

(c) We appreciate that a valuable research direction is to generalize the abstract approach developed in
this paper to the framework studied by G. Mingione et al. [13,14], namely to double-phase integral functionals
of the type

u ↦→
∫
Ω

[|∇u|p(x) + a(x)|∇u|q(x)]dx (14)

or

u ↦→
∫
Ω

[|∇u|p(x) + a(x)|∇u|q(x) log(e+ |x|)]dx, (15)

where p(x) ≤ q(x), p ̸= q, and a(x) ≥ 0. In the case of two different materials that involve power hardening
exponents p(x) and q(x), the coefficient a(x) described the geometry of a composite of these two materials.
When a(·) > 0 then the q(·)-material is present. In the contrary case, the p(·)-material is the only one
describing the composite. The integral energy functional defined in (15) has a degenerate behavior on the
zero set of the gradient. At the same time, if |∇u| is small, then there exists an unbalance between the two
terms of the integrand in the double-phase energy defined in (15).

(d) We suggest the reader to generalize the main abstract result in this paper to the very general setting
of Musielak–Orlicz spaces (see the monograph by Rădulescu and Repovš [5, Chapter 4] for several examples
of stationary problems with one or more variable exponents).
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