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Abstract: We prove a Lusternik-Schnirelmann type theorem for locally Lipschitz functionals,

by replacing the notion of Fr6chet-differentiability with the Clarke generalized gradient. We apply

our abstract framework to solve a multivalued second order periodic problem generated by

non-smooth mappings.
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1. Introduction. In the theory of differen-
tial equations two of the most important tools for
proving the existence of solutions are the Moun-
tain Pass Theorem of Ambrosetti-Rabinowitz and
the Lusternik-Schnirelmann Theorem. These ab-
stract results apply to the case where the solu-
tions of the given problem are critical points of
an appropriate functional of energy f, which is
supposed to be real and of class C 1, defined on a

real Banach space. The case when f fails to be
differentiable arises frequently in non-smooth
mechanics. In [8] we proved a generalization of
the Mountain Pass Theorem for locally Lipschitz
functionals. The aim of this paper is to give a
variant of the Lusternik-Schnirelmann Theorem
for such functionals.

We recall in what follows the main prop-
erties of locally Lipschitz functionals. For proofs
and further details see [2] or [3].

Throughout, X will be a real Banach space.
Let X* be its dual and (x*, x), for x X, x
X* denote the duality pairing between X* and
X. Let f :XR be a locally Lipschitz (f
Lipton(X, R)). For each x, v X, we define the
generalized directional derivative at x in the
direction v of f as

f(y + v) f(y)
f(x, v) lim sup 2

Y’-*X
",0

The generalized gradient (the Clarke subdif-
ferential) of f at x is the subset Of(x) of X* de-
fined by

8f(x) {x* X* ;f(x, v) > <x*, v>,
for all v X}

If f is convex, 0f(x) coincides with the sub-
differential of f at x in the sense of convex
analysis.

The fundamental properties of the Clarke
subdifferential are"

a) For each x X, Of(a) is a nonempty
convex weak-" compact subset of X*.

b) For each x, v X, we have

f O(x, v) max{ <x*, v> x 8f(x) }
c) The set-valued mapping x Of(x) is up-

per semi-continuous in the sense that for each

Xo X, s > O, v X, there is c3 > 0 such that
for each x Of(x) with IIx--Xo[l< 8, there
exists Xo* 8f(Xo) such that I<x*--Xo*, v>
<s.

d) The function fo(.,.) is upper semi-
continuous.

e) If f achieves a local minimum or max-
imum at x, then 0 Of(x).

f) The function
/ (x) min x

x* Of(x)

exists and is lower semi-continuous.
Definition 1. A point u X is said te be a

critical point of f Lipo (X, R) /f 0 8f(u),
namely f(u, v) > 0 for every v X. A real num-
ber c is called a critical value off if there is a cri-

tical point u X such that f(u) c.
2. The main result. Let Z be a discrete

subgroup of the real Banach space X, that is
inf IIzl[> o

zz\{o)
A function f" X--*R is said to be Z-

periodic if f(x A- z) --f(x), for every x X and
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zZ.
If f Liptoc(X, R) is Z-periodic, then x

f(x, v) is Z-periodic, for all v X and f is
Z-invariant, that is f(x 4-z): f(x), for ev-
ery x X and z Z. These impliy that / in-
herits the Z-periodicity property.

If c" X- X/Z is the canonical surjection
-1

and x is a critical point of f, then z (To(x)) con-
tains only critical points. Such a set is called a
critical orbit of f Note that X/Z is a complete
metric space endowed with the metric

d(r (x), r (y)) inf IIm z
zZ

Definition 2. A locally Lipschitz Z-periodic

function f" X- R is said to satisfy the (PS)z-
condition provided that, for each sequence (xn) in X
such that (f(Xn) is bounded and , (xn) O, the
sequence (TC(Xn)) is relatively compact in X/Z. If c
is a real number, then f is said to satisfy the

(PS)z,-condition if, for any sequence (xn) in X
such that f(Xn) -- c and (xn) - O, there is a con-
vergent subsequence of (r (xn) ).

We recall some well-known properties of the
Lusternik-Schnirelmann category. See [7] for
proofs and details.

Lemma 1. Let A and B be subsets of X.
Then the following hold"

i) IrA c B, then Catx(A) -< Catx(B)
ii) Catx(A U B) <-Catx(A) + Catx(B)
iii) Let h" [0,1] >< A- X be a continuous

mapping such that h(O,x) x for every x A. If
A is closed and B h(1, A), then Catx(A)
Catx(B)

iv) If n is the dimension of the vector space
generated by the discrete group Z, then, for each
1 <-- <-- n + 1, the set

/i- {A c X ;A is compact and Catoc>r(A) i}
is nonempty. Obviously,

The following two Lemmas are proved in [9].
Lemma2. For each l <__j <-- n + l, the space

1 endowed with the Hausdorff metric
6(A, B) max{sup dist(a, B), sup dist(b, A)}

aA bB

is a complete metric space.
Lemma 3. If I <-- i <-- n + 1 and f C(X,

R), then the function r" l-- R defined by
(A) max f(x)

is lower semi-continuous.

Let f X-- R be a Z-periodic locally Lips-
chitz function with the (RS)z-property. Moreov-

er, we suppose that f is bounded below. We shall
denote by Cr(f, c) the set of critical points of f
at the level c R, that is

Cr(f, c) {xX;f(x) cand2(x) 0}
For each c R we denote [f_< c] {x

X ;f(x) < c}.
Theorem 1. Let f "XR be a bounded be-

low Z-periodic locally Lipschitz function which

satisfies the (PS)z-COndition.
Then f has at least n + 1 distinct critical

orbits, where n is the dimension of the vector space
generated by the discrete group Z.

Proof For each 1 <_ i<_ n-4- 1, let

c inf r/(A)

It follows from Lemma 1 iv) and the lower
boundedness of f that

co < c c2<-- <- c+< + co

It is sufficient to show that, if 1 <_ i <_ j <_ n
4- 1 and c= cj-- c, then the set Cr(f, c)
contains at least j- i 4- 1 distinct critical orbits.
We argue by contradiction and suppose that, for
some i <--j, Cr(f, c) has k --< j- distinct cri-
tical orbits, generated by x,...,xk X. We
construct first an open neighbourhood of
Cr(f, c) of the form

Vr U U B(x+z, r)
l=l zZ

Moreover, we may suppose that r > 0 is
chosen such that 7r is one-to-one on B(xt, 2r).
This condition ensures that Cat<x)(r(B(x,
2r))) 1, for each 1- 1,..., k. Here Vr 0 if

Step 1. We prove that there exists 0 < e

< min , such that, for each x [c--s <--
f <-- c + s] \ g, one has
(1) I (x) > /

Indeed, if not, there is a sequence (m)in
X\ Vr such that, for each m _> 1,

1
<f(x,.) < c+ 1 1

c m- and 2 (Xm) <--
Since f satisfies (PS) z, it follows that, up to

a subsequence, rr(x,)--, re(x)as m--* co, for
some x X\ Vr. By the Z-periodicity of f and
2, we can assume that Xm--*x as m --- co. The
continuity of f and the lower semi-continuity of
/ imply f(x) c and /(x) 0, which is a con-
tradiction, since x X\ Vr.

Step 2. For found above and according to
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the definition of cj, there exists A d such that
maxf(x) <c+
xA

Setting B A \ V,.r, we get by Lemma 1 that
j < Cat(x)(r(A)) -< Cat(x)(r(B) tO r(V,,)) <_

-< Cat(x)(r(B)) + Cat(x(rr(V,,)) -<
Cat(x) (r(B)) + k <- Cat(x)(rr(B)) + j

Hence, Cat(x)(r(B)) _> i, that is B d.
Step 3. For and B as above we apply the

Ekeland’s Principle to the functional r] defined in
Lemma 3. It follows that there exists C
such that, for each D alli, D :/= C,

r](C) <_ r](B) <_ r(A) _< c + z
6(B, C) <-

(2) (D) > r (C) e(C, D)
Since B fq V2r= 0 and (B, C) <- e < r,

it follows that C N Vr 0. In particular, the
set F- [c- s -< f] N C is contained in [c-
<-- f<-- c -+- e] and F (’1 V= 0. Applying Lem-
ma 1 in [8] to 99 0fon F, we find a continuous
map v’F--+X such that, for all x F and
x Of(x),

v(x)II < 1 and (x* v(x)> > inf 2(x) e >
xF

inf/(x) - >/-x_C

where the last inequality is justified by (1). ,
It follows that, for each x F and x

f(x),
f O(x,_v(x))_ max <x*,-v(x)>

x*Of(x)
max <x* v(x)> <--4 <

x* Of(x)

from our choice of s.
From the upper semi-continuity of fo and

the compactness of F, there exists > 0 such
that ifx F, yX, [[y-x][-< ,then
(3) fO(y, v(x)) <

Since C Cr(f, c) 0 and C is compact,
while Cr(f, c)is closed, there is a continuous
extension w" X---* X of v such that w [cr(, 0
and w (x) <- 1, for all x X.

Let cr’X [0,1] be a continuous Z-per-
iodic function such that 1 on If > c] and
c-- 0on [f>_ c-- e].Leth" [0,1] X--+Xbe
the continuous mapping defined by

h (t, x) x t6a (x) w(x)
If D- h(1, C), it follows from Lemma 1

that
Cat(x>(zr(D)) _> Cat(x>(r(C)) >- i

which shows that D M, since D is compact.
Step 4. By Lebourg’s mean value theorem

(see [4]) we get that, for each x X, there exists
O (0,1) such that

f(h(1, x)) --f(h(O, x)) <Of(h(O, x)),
a(x) w(x) >

Hence, there is some x Of(h(O, x)) such
that
f(h(1, x)) --f(h(O, x)) a(x)<x*, 6w(x)>

It follows from (3) that, if x F, then
(4) f(h(1, x)) f(h(O, x))

oa(x) <x*, w (x) >
< &r(x)f (x O&r(x) w(x), v(x)>
<_ 6a(x)
It follows that, for each x C,

f(h(1, x)) _< f(x)
Let Xo C be such that f(h(1, Xo))

r] (D). Hence,
c <-- f(h(1, Xo)) -< f(Xo)

By the definition of a and F, it follows that
a(Xo) 1 and Xo F. Therefore, by (4), we get

f(h(1, Xo)) --f(Xo) <- e6
Thus,

(5) (D) + e6 <_ f(Xo) <- (C)
Taking into account the definition of D, it

follows that
(C, D) <-

Therefore,

7 (D) + s(C, D) <_ 7 (C)
so that (2) implies C D, which contradicts (5).

3. An application. We shall study the
periodic multivalued problem of the forced-
pendulum

(6)/z"(t) +f(t) [g(x(t)), g(z(t))] a.e. t (0,1)
x(0) x(1)

where
(7)
(8)

(9)

(10)

f LP(0,1) for some p > 1
g L(R), g(x + T) g(x)
for some T > 0, a.e. x R

g(s) lim essinf {g(t);[ t- s[ < e}
\o

g(s) lim esssup (g(t) ;I t- s < )
,’o

g(t) dt f (t) dt 0

Theorem 2. If f, g are as above, then the
problem (6) has at least two solutions in
X "= H)(0,1) {x H(0,1) x(0) x(1)},
which are distinct in the sense that their difference
is not an integer multiple of T.

Sketch of the proof. The critical points of the
locally Lipschitz map
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1 -I -I -I

.x-R q,(x) 1 =’=+/f=-I G(=)
0 0 t 0

are solutions of (6), where G(t) g(s)ds.

Since 9(x + 9(x), we are going to use
Theorem 1. We shall verify only that has the
(PS)zx-property, for each real c. The details of
the proof and further results will appear else-
where.

Let (xn) X be such that
(11) 9(x) c
(12) (z) o

Let w (.) cL(0,1) (since go
w go n and g, g L()) be such that

2(.) + f-- w 0 in H 1(0,1)
Then, multiplying (12) by n we get

(x) fx + WnX 0 (1) xn I]n
and, by (11),

2 (x) + fx. G (x.) c,

so that there exist positive constants C, Ce such
that

ed.

c + c . .(x;,)

Note that G is also T-periodic, hence bound-

Replacing xn by x, + kT for a suitable inte-
ger k, we may suppose that

x.(O) [0, T]
so that (xn) is bounded in H.

Let x H be such that, up to a subsequ-
ence, xn ---* x and xn (0) ---* x(O).
Then

fO (X;) X’-- f "- Wn, Xn(- x}

+ w. (x. x)

i/(x- x)

xnx x

because Xn-* x in Lp’, where p’ is the conjugated

exponent of p.
it follows that xn x in H.
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