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(Communicated by Catherine Sulem)

Abstract. We consider a nonlinear nonhomogeneous Robin problem, with an
indefinite concave term near the origin and a perturbation of arbitrary growth.
By modifying the perturbation and using a variant of the symmetric mountain
pass theorem due to Heinz (J. Diff. Equ. 66 (1987)), we show that the problem
has a whole sequence of distinct nontrivial smooth solutions converging to the
trivial solution.

1. Introduction

Let Ω ⊆ R
N (N ≥ 3) be a bounded domain with a C2−boundary ∂Ω. In this

paper we study the following nonlinear nonhomogeneous Robin problem
(1)⎧⎨
⎩

−div a(Du(z)) + ξ(x)|u(z)|p−2u(z) = ϑ(z)|u(z)|q−2u(z) + f(z, u(z)) in Ω,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂Ω, 1 < q < p < ∞ .

⎫⎬
⎭ .

In this problem, a : R
N → R

N is a strictly monotone and continuous map
(hence maximal monotone, too) which satisfies certain other regularity and growth
conditions listed in hypotheses H(a) below. These conditions are general enough
to incorporate in our framework many differential operators of interest such as the
p-Laplacian and the (p, τ )-Laplacian (that is, the sum of a p-Laplacian and a τ -
Laplacian, 1 < τ < p < ∞). The potential function ξ ∈ L∞(Ω) satisfies ξ ≥ 0
and the reaction term (right-hand side of the equation) has a “concave” part (this
is the (p − 1)-sublinear function x �→ ϑ(z)|x|q−2x, recall that 1 < q < p) and a
perturbation f(z, x), which is a continuous, odd in the x-variable function and can
have arbitrary growth near ±∞.

As it was documented by the important works of Ambrosetti, Brezis and Cerami
[1], Ambrosetti, Garcia Azorero and Peral [2] and Wang [17], the presence of a
concave term of the form λ|x|q−2x with λ > 0, x ∈ R, 1 < q < p, leads to a
bifurcation from the trivial pair. The aforementioned works deal with Dirichlet
problems, in Ambrosetti, Brezis and Cerami [1] and Wang [17] the differential
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operator is the Laplacian and in Ambrosetti, Garcia Azorero and Peral [2] is the
p-Laplacian (1 < p < ∞).

The novelties of this work are that the differential operator is more general and
it is not homogeneous, the boundary condition is Robin (including the Neumann
case when β ≡ 0), the concave term is indefinite (that is, the coefficient function
ϑ ∈ L∞(Ω) is sign-changing) and there is no global growth restriction on f(z, ·) (as
is the case also in Wang [17]). We mention also the recent work of Papageorgiou
and Winkert [15], who examine Dirichlet (p, 2)-equations with a negative concave
term and prove multiplicity results. In the boundary condition, ∂u

∂na
denotes the

generalized normal derivative defined by extension of the map

u �→ ∂u

∂na
= (a(Du), n)RN for all u ∈ C1(Ω),

with n(·) being the outward unit normal on ∂Ω. This normal derivative is dictated
by the nonlinear Green’s identity (see Gasiński and Papageorgiou [4, p. 210]) and
was also used by Lieberman [7]. The boundary coefficient β ∈ C0,α(∂Ω) with
0 < α < 1 satisfies β(z) ≥ 0 for all z ∈ ∂Ω. We assume that ξ 	= 0 or β 	= 0. So,
our framework includes Neumann problems (when β ≡ 0).

Under these conditions we show that problem (1) admits a sequence of nontrivial
smooth solutions un ∈ C1(Ω) (n ∈ N), converging to the trivial solution. Our
method is based on an abstract multiplicity result of Heinz [5] and on a variant of a
result of Wang [17], which permits the replacement of the perturbation f(z, x) by a
more convenient one. We mention that recently Papageorgiou and Rădulescu [12]
produced a sequence of nodal solutions for a class of Robin problems using similar
tools. However, their hypotheses excluded the case of an indefinite concave term.

We stress that contrary to all the previous works involving a concave contribution
in the reaction, here the coefficient of this term is indefinite (that is, sign-changing).
This is the source of several difficulties, which require a more careful analysis in
order to be able to apply the extension of the symmetric mountain pass theorem of
Heinz [5]. Also, in contrast to the recent work of Papageorgiou and Rădulescu [12],
we do not assume that the reaction term has zeros of constant sign. Our hypothesis
on the perturbation term f(z, x) are minimal. We only impose a symmetry condi-
tion, namely that f(z, ·) is odd (needed to apply the result of Heinz [5]) and we also
assume that f(z, ·) is (p − 1)-sublinear in a neighborhood of the origin. So, near
zero our reaction term exhibits competition phenomena between “sublinear” and
“superlinear” terms (concave-convex nonlinearity). Such a situation is excluded
from the hypotheses in [12]. An interesting open problem resulting from our anal-
ysis is whether we can have a sequence of nodal (that is, sign-changing) solutions
converging to zero. Our result (see Theorem 3.3) provides no information about the
sign of the solutions {un}n≥1. Finally we point out that our differential operator is
general (it includes as special cases many differential operators of interest) and also
is nonhomogeneous. So, our work provides a unifying framework for a large class
of nonlinear equations. The same can be said about the boundary condition, since
the case β ≡ 0 is allowed, incorporating in our analysis also the usual Neumann
problem. Our work illustrates that the cut-off techniques initiated by Wang [17]
can be implemented to a much broader class of boundary value problems and opens
the way for more results concerning the existence and multiplicity of solutions for
equations with a reaction term of arbitrary growth.
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2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say that ϕ(·) satisfies
the “Palais-Smale condition” (“PS-condition”, for short), if the following property
holds:

“Every sequence {un}n≥1 ⊆ X such that

{ϕ(un)}n≥1 ⊆ R is bounded and ϕ′(un) → 0 in X∗,

admits a strongly convergent subsequence”.

The result of Heinz [5] which we will use, is a variant of the symmetric mountain
pass theorem (see, for example, Gasinski and Papageorgiou [4, p. 688]) and says
the following.

Theorem 2.1. Assume that X is a Banach space, ϕ ∈ C1(X,R), it satisfies the
PS-condition, it is even and bounded below, ϕ(0) = 0 and for every n ∈ N there
exist an n-dimensional subspace Vn of X and ρn > 0 such that

sup[ϕ(u) : u ∈ Vn, ||u|| = ρn] < 0.

Then there exists a sequence {un}n≥1 of critical points of ϕ such that

ϕ(un) < 0 for all n ∈ N and ϕ(un) → 0 as n → ∞ .

In what follows, given ϕ ∈ C1(X,R), we define

Kϕ = {u ∈ X : ϕ′(u) = 0}
(the critical set of ϕ).

Let η ∈ C1(0,∞) such that η(t) > 0 for all t > 0 and
(2)

0 < ĉ ≤ η′(t)t

η(t)
≤ c0 and c1t

p−1 ≤ η(t) ≤ c2(1 + tp−1) for all t > 0, some c1, c2 > 0.

The hypotheses on the map a(·) are the following:
H(a) : a(y) = a0(|y|)y for all y ∈ R

N with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,+∞), t �→ a0(t)t is strictly increasing on (0,+∞), a0(t)t → 0+

as t → 0+ and

lim
t→0+

a′0(t)t

a0(t)
> −1;

(ii) there exists c3 > 0 such that

|∇a(y)| ≤ c3
η(|y|)
|y| for all y ∈ R

N\{0};

(iii) (∇a(y)ξ, ξ)RN ≥ η(|y|)
|y| |ξ|2 for all y ∈ R

N\{0}, all ξ ∈ R
N ;

(iv) if G0(t) =
∫ t

0
a0(s)sds, then a0(t)t

2−qG0(t) ≥ ĉ0t
p for some ĉ0 > 0, all t >

0 and

lim
t→0+

G0(t)

tq
= 0.

Remark 2.2. Hypotheses H(a)(i), (ii), (iii) are motivated by the nonlinear regular-
ity theory of Lieberman [7]. Hypothesis H(a)(iv) serves the needs of our problem
here. However, it is not restrictive and it is satisfied in all cases of interest as the
examples which follow illustrate. Similar conditions on the map a(·) can be found
in the work of Papageorgiou and Rădulescu [12].
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Evidently the above hypotheses imply that the primitive G0(·) is strictly convex
and strictly increasing. We set

G(y) = G0(|y|) for all y ∈ R
N .

Then we see that

(3) G(·) is convex and G(0) = 0.

Also, we have

∇G(y) = G′
0(|y|)

y

|y| = a0(|y|)y = a(y) for all y ∈ R
N\{0}, ∇G(0) = 0.

Hence G(·) is the primitive of a(·) and so from (3) it follows that

(4) G(y) ≤ (a(y), y)RN for all y ∈ R
N .

The next lemma summarizes the main properties of the map a(·). It is a straight-
forward consequence of hypotheses H(a)(i), (ii), (iii).

Lemma 2.3. If hypotheses H(a)(i), (ii), (iii) hold, then

(a) the map y �→ a(y) is strictly monotone and continuous (thus, maximal
monotone too);

(b) |a(y)| ≤ c4(1 + |y|p−1) for all y ∈ R
N , some c4 > 0;

(c) (a(y), y)RN ≥ c1
p−1 |y|p for all y ∈ R

N .

This lemma together with (4) lead to the following growth estimates for the
primitive G(·).

Corollary 2.4. If hypotheses H(a)(i), (ii), (iii) hold, then c1
p(p−1) |y|p ≤ G(y) ≤

c5(1 + |y|p) for all y ∈ R
N , some c5 > 0.

The examples which follow illustrate the generality of our framework. They
cover many differential operators of interest.

Example 2.5. The following maps a(·) satisfy hypotheses H(a) above.

(a) a(y) = |y|p−2y with 1 < p < ∞.
This map corresponds to the p-Laplace differential operator defined by

Δpu = div (|Du|p−2Du) for all u ∈ W 1,p(Ω).

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p < ∞.
This map corresponds to the (p, q)-Laplace differential operator defined by

Δpu+Δqu for all u ∈ W 1,p(Ω).

Such operators arise in problems of mathematical physics. Recently there
have been some multiplicity results for such equations. We mention the
works of Mugnai and Papageorgiou [8], Papageorgiou and Rădulescu [9,10],
Papageorgiou and Winkert [15] and Sun, Zhang and Su [16].

(c) a(y) = (1 + |y|2) p−2
2 y with 1 < p < ∞.

This map corresponds to the generalized p-mean curvature differential op-
erator defined by

div ((1 + |Du|2)
p−2
2 Du) for all u ∈ W 1,p(Ω).
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(d) a(y) = |y|p−2y + |y|p−2y
1+|y|p with 1 < p < ∞.

This map corresponds to the differential operator

Δpu+ div

(
|Du|p−2Du

1 + |Du|p

)
for all u ∈ W 1,p(Ω).

This differential operator arises in problems of plasticity.

The hypotheses on the other data of problem (1) are the following:

H(ϑ) : ϑ ∈ L∞(Ω) and there exists an open set U ⊆ Ω such that ϑ(z) > 0 for
almost all z ∈ U .

H(f) : f ∈ C(Ω× (−τ, τ )) for some τ > 0, for all z ∈ Ω, f(z, ·) is odd and

lim
x→0

f(z, x)

|x|p−2x
= 0 uniformly for almost all z ∈ Ω .

Remark 2.6. We stress that we do not impose any global growth condition on
f(z, ·). We have only conditions concerning the behavior of f(z, ·) near zero.

H(ξ) : ξ ∈ L∞(Ω), ξ(z) ≥ 0 for almost all z ∈ Ω.
H(β) : β ∈ C0,α(∂Ω) for some α ∈ (0, 1), β(z) ≥ 0 for all z ∈ ∂Ω.
H0 : ξ 	= 0 or β 	= 0.

In what follows, by σ(·) we denote the (N − 1)-dimensional Hausdorff (surface)
measure on ∂Ω. Also, the restriction of any Sobolev function on ∂Ω is understood
in the sense of traces.

When β 	= 0, with β̂ = p−1
c1

β we define

λ̃1 = inf

[
||Du||pp +

∫
∂Ω

β̂(z)|u|pdσ
||u||pp

: u ∈ W 1,p(Ω), u 	= 0

]
.

When ξ 	= 0, with ξ̂ = p−1
c1

ξ, we define

λ̃1 = inf

[
||Du||pp +

∫
Ω
ξ̂(z)|u|pdz

||u||pp
: u ∈ W 1,p(Ω), u 	= 0

]
.

From Papageorgiou and Rădulescu [11] (case β 	= 0) and from Cardinali, Papa-
georgiou and Rubbioni [3] (Lemma 3.1, case ξ 	= 0), we have

(5) λ̃1 > 0.

We consider the C1-functional γ : W 1,p(Ω) → R defined by

γ(u) = ||Du||pp +
∫
Ω

ξ̂(z)|u|pdz +
∫
∂Ω

β̂(z)|u|pdσ for all u ∈ W 1,p(Ω).

We set

λ̂1 = inf

[
γ(u)

||u||pp
: u ∈ W 1,p(Ω), u 	= 0

]
.

Then

(6′) λ̂1 ≥ λ̃1 > 0 (see (5)).
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3. Multiple solutions

We start with a lemma, which is inspired by Lemma 2.3 of Wang [17]. In our
case we have to accommodate the fact that the concave term is indefinite.

Lemma 3.1. If hypotheses H(f) hold and μ ∈ (0, λ̂1), then there exist b ∈
(
0, τ2

)
and f̂ ∈ C(Ω× R) such that

• f̂(z, ·) is odd for all z ∈ Ω;

• f̂(z, x) = f(z, x) for all z ∈ Ω, all |x| ≤ b

2
;

• if F̂ (z, x) =

∫ x

0

f̂(z, s)ds,

then |F̂ (z, x)| ≤ μ

p
|x|p for all (z, x) ∈ Ω× R;

• f̂(z, x)x− qF̂ (z, x) ≤ μc6|x|p for all (z, x) ∈ Ω× R and with

c6 = min

{
ĉ0,

c1(p− q)

p(p− 1)

}
.

Proof. Hypotheses H(f) imply that given ε > 0, we can find b = b(ε) ∈ (0, τ ) such
that

(6) |f(z, x)| ≤ ε|x|p and |F (z, x)| ≤ ε|x|p for almost all z ∈ Ω, all |x| ≤ b.

We choose a cut-off function χ ∈ C1(R) such that

χ(·) is even, χ(t) = 1 if |t| ≤ b

2
, χ(t) = 0 if |t| ≥ b

|χ′(t)| ≤ 4

b
and χ′(t)t ≤ 0 for all t ≥ 0.(7)

Given k > 0, we define

(8) F̂ (z, x) = χ(x)F (z, x) + (1− χ(x))k|x|p.

We set f̂(z, x) = F̂ ′
x(z, x). We have

f̂(z, x) = χ′(x)F (z, x) + χ(x)f(z, x)− χ′(x)k|x|p + pk(1− χ(x))|x|p−2x,

⇒ f̂(z, ·) is odd and f̂(z, x) = f(z, x) for all z ∈ Ω, all |x| ≤ b

2
(see (7)).

Also for all (z, x) ∈ Ω× R, we have

f̂(z, x)x− qF̂ (z, x) =χ′(x)xF (z, x)

+ χ(x)f(z, x)x− χ′(x)xk|x|p + pk(1− χ(x))|x|p

− qχ(x)F (z, x)− q(1− χ(x))k|x|p (see (8)).

(9)

From (6), (7), (8) we infer that

|F̂ (z, x)| ≤ (ε+ k)|x|p for all (z, x) ∈ Ω× R .

We choose ε, k > 0 such that ε+ k ≤ μ
p . Then

|F̂ (z, x)| ≤ μ

p
|x|p for all (z, x) ∈ Ω× R.
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Also, we have

χ(x) [f(z, x)x− qF (z, x)] + pk(1− χ(x))|x|p ≤ (ε(1 + q) + pk − q)|x|p,(10)

χ′(x)x [F (z, x)x− k|x|p] ≥ 0 for all (z, x) ∈ Ω× R,(11)

(see (6), (7) and choose ε ∈ (0, k]).
Returning to (9) and using (10) and (11), we obtain

(12) f̂(z, x)x− qF̂ (z, x) ≤ (ε(1 + q) + pk − q)|x|p for all (z, x) ∈ Ω× R.

Choosing ε ∈ (0, k] even smaller if necessary, we can have

ε(1 + q) + pk − q ≤ μc6.

Then from (12) it follows that

f̂(z, x)x− qF̂ (z, x) ≤ μc6|x|p for all (z, x) ∈ Ω× R .

�

Using this lemma, we introduce the C1-functional ϕ̂ : W 1,p(Ω) → R defined by

ϕ̂(u) =

∫
Ω

G(Du)dz +
1

p

∫
Ω

ξ(z)|u|pdz + 1

p

∫
∂Ω

β(z)|u|pdσ

− 1

q

∫
Ω

ϑ(z)|u|qdz −
∫
Ω

F̂ (z, u)dz for all u ∈ W 1,p(Ω).

Using Corollary 2.4 and Lemma 3.1, we have

ϕ̂(u) ≥ c1
p(p− 1)

[
1− μ

λ̂1

]
γ(u)− c7||u||q for some c7 > 0.

Since μ < λ̂ and q < p, it follows that ϕ̂ is coercive. Therefore

• ϕ̂ is even (see Lemma 3.1);

• ϕ̂ is bounded below;

• ϕ̂ satisfies the PS-condition (see Papageorgiou and Winkert [14]);

• ϕ̂(0) = 0.

Proposition 3.2. If hypotheses H(a), H(ϑ), H(f), H(ξ), H(β), H0 hold and

ϕ̂(u) = 0, ϕ̂′(u) = 0,

then u = 0.

Proof. We have

−
∫
Ω

qG(Du)dz − q

p

∫
Ω

ξ(z)|u|pdz − q

p

∫
∂Ω

β(z)|u|pdσ +

∫
Ω

ϑ(z)|u|qdz(13)

+

∫
Ω

qF̂ (z, u)dz = 0

and

〈A(u), h〉+
∫
Ω

ξ(z)|u|p−2uhdz +

∫
∂Ω

β(z)|u|p−2uhdσ −
∫
Ω

ϑ(z)|u|q−2uhdz(14)

−
∫
Ω

f̂(z, u)hdz = 0
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for all h ∈ W 1,p(Ω), where A : W 1,p(Ω) → W 1,p(Ω)∗ is the nonlinear map defined
by

〈A(v), h〉 =
∫
Ω

(a(Dv), Dh)RNdz for all v, h ∈ W 1,p(Ω).

In (14) we choose h = u ∈ W 1,p(Ω) and obtain∫
Ω

(a(Du), Du)RNdz +

∫
Ω

ξ(z)|u|pdz +
∫
∂Ω

β(z)|u|pdσ −
∫
Ω

ϑ(z)|u|qdz(15)

−
∫
Ω

f̂(z, u)udz = 0.

We add (13) and (15) and have∫
Ω

[(a(Du), Du)RN − qG(Du)] dz +

(
1− q

p

)[∫
Ω

ξ(z)|u|pdz +
∫
∂Ω

β(z)|u|pdσ
]

=

∫
Ω

[
f̂(z, u)u− qF̂ (z, u)

]
dz

⇒ ĉ0||Du||pp +
p− q

p

[∫
Ω

ξ(z)|u|pdz +
∫
∂Ω

β(z)|u|pdσ
]
≤ μc6||u||pp

(see hypothesis H(a)(iv) and Lemma 3.1)

⇒ c6

[
||Du||pp +

∫
Ω

ξ̂(z)|u|pdz +
∫
∂Ω

β̂(z)|u|pdσ
]
≤ μc6||u||pp

(recall the choice of c6 > 0)

⇒ γ(u) ≤ μ||u||pp,

a contradiction (since μ < λ̂1), unless u = 0. �

Let B
∞
τ = {u ∈ L∞(Ω) : ||u||∞ ≤ τ} and let ϕ : W 1,p(Ω) ∩ B

∞
τ → R be the

energy functional for problem (1) defined by

ϕ(u) =

∫
Ω

G(Du)dz +
1

p

∫
Ω

ξ(z)|u|pdz

+
1

p

∫
∂Ω

β(z)|u|pdσ − 1

q

∫
Ω

ϑ(z)|u|qdz −
∫
Ω

F (z, u)dz

for all u ∈ W 1,p(Ω) ∩B
∞
τ .

We have the following multiplicity result.

Theorem 3.3. If hypotheses H(a), H(ϑ), H(f), H(ξ), H(β), H0 hold, then problem
(1) admits a sequence {un}n≥1 ⊆ C1(Ω) of solutions such that

||un||C1(Ω) → 0, ϕ(un) → 0 and ϕ(un) < 0 for all n ∈ N.

Proof. For every m ∈ N, consider a family {vk}mk=1 ⊆ C1
c (U) (with U ⊆ Ω open as

in hypothesis H(ϑ)) of linearly independent functions. Set

Vm = span {vk}mk=1.

Hypothesis H(a)(iv) and Corollary 2.4, imply that given ε > 0, we can find
c8 = c8(ε) > 0 such that

(16) G(y) ≤ ε|y|q + c8|y|p for all y ∈ R
N .
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Let {un}n≥1 ⊆ W 1,p(Ω) be a sequence such that

(17) un ∈ Vm for all n ∈ N, ||un|| → 0.

Let yn = un

||un|| (n ∈ N). Then ||yn|| = 1, yn ∈ Vm for all n ∈ N. Since Vm is

finite dimensional, we may assume that

(18) yn → y in W 1,p(Ω), ||y|| = 1, y ∈ Vm.

For every n ∈ N, we have

ϕ̂(un) ≤ ε||Dun||qq −
1

q

∫
U

ϑ(z)|un|qdz + c9 ||un||p for some c9 > 0

(see (16) and hypotheses H(ξ), H(β)),

⇒ ϕ̂(un)

||un||q
≤ ε||Dyn||qq −

1

q

∫
U

ϑ(z)|yn|qdz + c9||un||p−q||yn||q for all n ∈ N .(19)

We set

η̂n = ε||Dun||qq −
1

q

∫
U

ϑ(z)|yn|qdz + c9||un||p−q||yn||q.

From (17) and (18) it follows that

η̂n → η̂ = ε||Dy||qq −
1

q

∫
u

ϑ(z)|y|qdz as n → ∞ .

Note that
∫
U
ϑ(z)|y|qdz > 0 (see hypothesis H(ϑ) and (18)). So, for ε > 0 small,

we have η̂ < 0. Then (19) implies that

lim sup
n→∞

ϕ̂(un)

||un||q
≤ η̂ < 0.

Hence we can find ρm ∈ (0, 1) small such that

sup [ϕ̂(u) : u ∈ Vm, ||u|| = ρm] < 0.

Then we can apply Theorem 2.1 and produce {un}n≥1 ⊆ W 1,p(Ω) such that

(20) {un}n≥1 ⊆ Kϕ̂, ϕ̂(un) → 0 and ϕ̂(un) < 0 for all n ∈ N.

We know that we can find c10 > 0 such that

un ∈ L∞(Ω) and ||un||∞ ≤ c10 for all n ∈ N

(see Hu and Papageorgiou [6] and Papageorgiou and Rădulescu [13] (critical case)).
Then from Lieberman [7, p. 320], we can find α ∈ (0, 1) and c11 > 0 such that

(21) un ∈ C1,α(Ω), ||un||C1,α(Ω) ≤ c11 for all n ∈ N.

Exploiting the compact embedding of C1,α(Ω) into C1(Ω) and by passing to a
subsequence if necessary, we have

un → u in C1(Ω) (see (21)),

⇒ ϕ̂(u) = 0 and ϕ̂′(u) = 0,

⇒ u = 0 (see Proposition 3.2).

So, we have
un → 0 in C1(Ω).

Therefore we can find n0 ∈ N such that

|un(z)| ≤ b/2 for all n ≥ n0

⇒ un ∈ C1(Ω) is a solution of (1) for all n ≥ n0.
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Hence we conclude that {un}n≥n0
⊆ C1(Ω) is the desired sequence of solutions

(see (20)). �

References
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