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A CHARACTERIZATION FOR ELLIPTIC PROBLEMS

ON FRACTAL SETS

GIOVANNI MOLICA BISCI AND VICENŢIU D. RĂDULESCU

(Communicated by Catherine Sulem)

Abstract. In this paper we prove a characterization theorem on the existence
of one non-zero strong solution for elliptic equations defined on the Sierpiński

gasket. More generally, the validity of our result can be checked studying ellip-
tic equations defined on self-similar fractal domains whose spectral dimension
ν ∈ (0, 2). Our theorem can be viewed as an elliptic version on fractal domains
of a recent contribution obtained in a recent work of Ricceri for a two-point
boundary value problem.

1. Introduction

In recent years a great deal of effort has gone into investigating PDEs on fractals
(see, for instance, [6,10,12,21] and the excellent monograph [7]). A major difficulty
is how to define differential operators on non-smooth sets. Analysis on fractal sets
has been made possible by the definition of operators that play the role of the
Laplacian.

Originally defined as a by-product of the construction of the analog of Brown-
ian motion [1], these Laplace-type operators have been shown by direct limit-of-
difference-quotient definitions in the papers by Kigami [13–16], for a class of self-
similar fractals that includes the Sierpiński gasket. In this way, elliptic equations
have been studied by using a suitable energy functional defined on an appropriate
Hilbert space (see [2, 3, 8, 11]).

Motivated by this large interest in the current literature, the purpose of this
paper is to prove a characterization result on the existence of non-negative and
non-zero strong solutions for the following Dirichlet problem:

(Sf
λ,α)

{
Δu(x) = λα(x)f(u(x)) x ∈ V \ V0,
u|V0

= 0,

where V stands for the Sierpiński gasket in (RN−1, | · |), N ≥ 2, V0 is its intrinsic
boundary (consisting of its N corners), Δ denotesthe weak Laplacian on V and λ
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is a positive real parameter. We assume that

(hf ) f : [0,+∞) → [0,+∞) is a continuous function with f(0) = 0 and such
that, for some a > 0, the map hF : (0,+∞) → [0,+∞) defined by

hF (ξ) :=
F (ξ)

ξ2

is non-increasing in the real interval (0, a], where

F (ξ) :=

∫ ξ

0

f(t)dt

for each ξ ∈ [0,+∞).

We assume that the variable potential α : V → R satisfies the following hypoth-
esis:

(hα) α ∈ C(V ) with α(x) < 0, for every x ∈ V .

The main result of this paper is the following.

Theorem 1.1. Assume that hypotheses (hf ) and (hα) are fulfilled. Then, the
following properties are equivalent:

(i1) hF is not constant in (0, b] for each b > 0;
(i2) for each r > 0 there exists an open interval I ⊆ (0,+∞) such that, for every

λ ∈ I, problem (Sf
λ,α) has a strong non-negative and non-zero solution,

whose norm in H1
0 (V ) is less than r.

The above characterization can be regarded as an elliptic version, for some classes
of fractal sets, of a very recent result obtained by Ricceri for a two-point boundary
value problem (see [19, Theorem 1]).

The extension of the cited result to (Sf
λ,α) is not trivial and is required to over-

come some difficulties which arise in this new geometrical context. In particular,
some analytical properties on the Hilbert space H1

0 (V ) and the distribution of the
spectrum of the corresponding linear problem defined on fractal sets, need special
care. More precisely, in our setting, a key ingredient is the validity of the following
Morrey-type inequality:

(1) sup
x,y∈V∗

|u(x)− u(y)|
|x− y|σ ≤ (2N + 3)

√
W (u),

where

σ :=
log((N + 2)/N)

2 log 2
,

and V∗ is defined as in the next section (see [8, Lemma 2.4] for details). Inequality
(1) and the Arzela-Ascoli theorem yield that the embedding

(2) H1
0 (V ) ↪→ C0(V )

is compact (see [9]). This fact will be crucial in our approach.
Taking into account the results contained in [6], our method adopted here can

be useful for studying the existence of weak solutions for elliptic equations defined
on self-similar sets, whose spectral dimension ν ∈ (0, 2). In such a case, the Lapla-
cian may be defined via a suitable Dirichlet form, following the variational fractal
approach developed by Mosco in [17]. An open and more delicate problem is to
attack the case ν ≥ 2 in which the compact embedding (2) is false.
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We emphasize that, as suggested by Ricceri, a possible extension of his result to
the elliptic case requires a more sophisticated and delicate analysis also for equations
involving the classical Laplacian and defined on bounded Euclidean domains.

This paper is organized as follows. In Section 2 we recall the geometrical con-
struction of the Sierpiński gasket and our variational framework. Successively,
Section 3 is devoted to the proof of the main theorem.

We refer to the recent book by Ciarlet [4] as a general reference for the basic
notions used in the present paper.

2. Preliminaries and abstract result

Let N ≥ 2 be a natural number and let p1, . . . , pN ∈ R
N−1 be so that |pi−pj | = 1

for i �= j. Define, for every i ∈ {1, . . . , N}, the map Si : R
N−1 → R

N−1 by

Si(x) =
1

2
x+

1

2
pi .

Let S := {S1, . . . , SN} and denote by L : P(RN−1) → P(RN−1) the map assign-
ing to a subset A of RN−1 the set

L(A) =
N⋃
i=1

Si(A).

It is known that there is a unique non-empty compact subset V of RN−1, called
the attractor of the family S, such that L(V ) = V ; see, Theorem 9.1 in Falconer
[7]. The set V is called the Sierpiński gasket in R

N−1 of intrinsic boundary V0 :=
{p1, . . . , pN}.

Consider H to be the convex hull of the set V0 and observe that S satisfies the
open set condition (see [7, p. 129]) taking int (H) the interior of H, which is a
non-empty bounded open set such that

N⋃
i=1

Si(int (H)) ⊂ int (H).

Since the above condition holds and V is the attractor of S, applying [7, Theorem
9.3], we deduce that V has Hausdorff and box dimensions equal to the value of d
satisfying

(3)
N∑
i=1

1

2d
= 1,

and we also have Hd(V ) ∈ (0,+∞), where Hd is the d-dimensional Hausdorff
measure on R

N−1. By relation (3), we immediately get that d = logN/ log 2. Let μ
be the normalized restriction of the Hausdorff measure Hd on R

N−1 to the subsets
of V , so μ(V ) = 1.

We also recall, for completeness, that if 0 ≤ d < ∞, 0 < δ < ∞ and A ⊂ R
k,

then
Hd(A) = lim

δ→0+
Hd

δ (A) = sup
δ>0

Hd
δ (A),

where

Hd
δ (A) =

πd/2

Γ
(
d
2 + 1

) inf
⎧⎨
⎩

∞∑
j=1

(
diamCj

2

)d

; A ⊂
∞⋃
j=1

Cj , diamCj ≤ δ

⎫⎬
⎭
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and

Γ(s) =

∫ ∞

0

e−xxs−1dx

is Euler’s Gamma function (see Evans and Gariepy [5, p. 60] for details).
Further, the following property of μ will be useful in the sequel:

(4) μ(B) > 0, for every non-empty open subset B of V.

In other words, the support of μ coincides with V ; see, for instance, Breckner,
Rădulescu and Varga [2] for more details.

Denote by C(V ) the space of real-valued continuous functions on V and by

C0(V ) := {u ∈ C(V ) | u|V0
= 0}.

The spaces C(V ) and C0(V ) are endowed with the usual supremum norm ‖ · ‖∞.
For a function u : V → R and for m ∈ N let

(5) Wm(u) =

(
N + 2

N

)m ∑
x,y∈Vm

|x−y|=2−m

(u(x)− u(y))2,

where Vm := L(Vm−1), for m ≥ 1 and V∗ :=
⋃

m≥0 Vm.

We have Wm(u) ≤ Wm+1(u) for very natural m, so we can put

(6) W (u) = lim
m→∞

Wm(u).

Now define
H1

0 (V ) := {u ∈ C0(V ) | W (u) < ∞}.
It turns out that H1

0 (V ) is a dense linear subset of L2(V, μ) equipped with the
‖ · ‖2 norm. We now endow H1

0 (V ) with the norm

‖u‖ =
√

W (u).

In fact, there is an inner product defining this norm: for u, v ∈ H1
0 (V ) and m ∈ N

let

Wm(u, v) =

(
N + 2

N

)m ∑
x,y∈Vm

|x−y|=2−m

(u(x)− u(y))(v(x)− v(y)).

Set
W(u, v) = lim

m→∞
Wm(u, v).

Then W(u, v) ∈ R and the space H1
0 (V ), equipped with the inner product W ,

which induces the norm ‖ · ‖, becomes a real Hilbert space.
We now state a useful property of the space H1

0 (V ) which shows, together with
the facts that (H1

0 (V ), ‖ · ‖) is a Hilbert space and H1
0 (V ) is dense in L2(V, μ), that

W is a Dirichlet form on L2(V, μ).

Lemma 2.1. Let h : R → R be a Lipschitz mapping with Lipschitz constant L ≥ 0
and such that h(0) = 0. Then, for every u ∈ H1

0 (V ), we have h ◦ u ∈ H1
0 (V ) and

‖h ◦ u‖ ≤ L‖u‖.

Following Falconer and Hu [8] we can define in a standard way a linear self-
adjoint operator Δ: Z → L2(V, μ), where Z is a linear subset of H1

0 (V ) which is
dense in L2(V, μ) (and dense also in (H1

0 (V ), ‖ · ‖)), such that

−W(u, v) =

∫
V

Δu · vdμ, for every (u, v) ∈ Z ×H1
0 (V ).
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The operator Δ is called the (weak) Laplacian on V .
Precisely, let H−1(V ) be the closure of L2(V, μ) with respect to the pre-norm

‖u‖−1 = sup
h∈H1

0 (V )
‖h‖=1

|〈u, h〉|,

where

〈v, h〉 =
∫
V

v(x)h(x)dμ, v ∈ L2(V, μ), h ∈ H1
0 (V ).

Then H−1(V ) is a Hilbert space. Then, the relation

−W(u, v) = 〈Δu, v〉, ∀v ∈ H1
0 (V ),

uniquely defines a function Δu ∈ H−1(V ) for every u ∈ H1
0 (V ).

Finally, fix λ > 0. Let α : V → R and f : R → R be as in the Introduction. We

say that a function u ∈ H1
0 (V ) is a weak solution of problem (Sf

λ,α) if

W(u, v) = −λ

∫
V

α(x)f(u(x))v(x)dμ,

for every v ∈ H1
0 (V ).

While we mainly work with the weak Laplacian, there is also a directly defined
version. We say that Δs is the standard Laplacian of u if Δsu : V → R is continuous
and

lim
m→∞

sup
x∈V \V0

|(N + 2)m(Hmu)(x)−Δsu(x)| = 0,

where

(Hmu)(x) :=
∑
y∈Vm

|x−y|=2−m

(u(y)− u(x)),

for x ∈ Vm. We say that u ∈ C0(V ) is a strong solution of problem (Sf
λ,α) if Δsu

exists and is continuous for all x ∈ V \ V0, and

Δsu(x) = λα(x)f(u(x)), ∀ x ∈ V \ V0.

The existence of the standard Laplacian of a function u ∈ H1
0 (V ) implies the

existence of the weak Laplacian Δ; see, for completeness, Falconer and Hu [8].

Remark 2.1. Since f : R → R is continuous and α ∈ C(V ), then using Lemma 2.16

of Falconer and Hu [8], it follows that every weak solution of the problem (Sf
λ,α) is

also a strong solution.

Now, let (X, 〈·, ·〉) be a real Hilbert space and, for each γ > 0, put

Bγ := {u ∈ X : ‖u‖2 ≤ γ}.
Further, denote by int (Bγ) the interior of Bγ .

The proof of our main result is obtained by exploiting the following abstract
theorem due to Ricceri [19] whose proof is entirely based on the results contained
in [18].

Theorem 2.1. Let J : X → R be a sequentially weakly upper semicontinuous and
Gâteaux differentiable functional, with J(0X) = 0. Assume that, for some γ > 0,
there exists a global maximum û of J |Bγ

, such that

〈J ′(û), û〉 < 2J(û).
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Then, there exists an open interval I ⊆ (0,+∞) such that, for every λ ∈ I, the
equation

u = λJ ′(u)

has a non-zero solution lying in int (Bγ).

3. Proof of the main theorem

Let us put X := H1
0 (V ) endowed by the inner product W and define

f̃(t) :=

{
f(t) if t ≥ 0,
0 if t < 0.

Since f(0) = 0 it follows that f̃ is a continuous function.
We consider the truncated problem

(S
˜f
λ,α)

{
Δu(x) = λα(x)f̃(u(x)) x ∈ V \ V0,
u|V0

= 0,

and set

J(u) := −
∫
V

α(x)F̃ (u(x))dμ,

for every u ∈ X, where

F̃ (ξ) :=

∫ ξ

0

f̃(t)dt,

for every ξ ∈ R.
By [3, Proposition 4.5] it follows that J is a Gâteaux differentiable and sequen-

tially weakly continuous functional with J(0X) = 0. Moreover, fixing λ > 0, the

weak solutions of (S
˜f
λ,α) are exactly the solutions u ∈ X of the following equation:

u = λJ ′(u) ;

see Proposition 2.19 in [8].

Further, Remark 2.1 ensures that every weak solution of problem (S
˜f
λ,α) is a

strong one. Hence, exploiting the maximum principle proved by Strichartz in [20,

Theorem 2.1], every solution u ∈ X of (S
˜f
λ,α) is non-negative, so that u also solves

the original problem (Sf
λ,α).

(i1) ⇒ (i2)
By hypothesis (hf ), taking into account that hF is non-increasing in (0, a] and

since

h′
F (ξ) =

f(ξ)ξ − 2F (ξ)

ξ3
, ∀ ξ ∈ (0, a],

we obtain

(7) f(ξ)ξ ≤ 2F (ξ),

for every ξ ∈ (0, a].
On the other hand, Fukushima and Shima proved in [9] that the embedding

(X, ‖ · ‖) ↪→ (C0(V ), ‖ · ‖∞)

is compact and

(8) ‖u‖∞ ≤ (2N + 3)‖u‖,
for every u ∈ X.
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Thus, let us fix

r ∈
(
0,

a2

(2N + 3)2

]
,

and denote γ := r2.
By relations (7) and (8) it follows that

(9) f̃(u(x))u(x) ≤ 2F̃ (u(x)),

for every u ∈ Bγ and x ∈ V .
Let u0 ∈ X be a non-negative function in V with ‖u0‖ = y > 0. Take ε > y/γ

and consider the function

vε(x) :=
u0(x)

ε
, ∀x ∈ V.

Clearly vε ∈ Bγ and

(10) J(vε) = −
∫
V ε
a

α(x)F (vε(x))dμ > 0,

where

V ε
a := {x ∈ V : 0 < vε(x) ≤ a},

with μ(V ε
a ) > 0.

Now, let û ∈ Bγ be a global maximum of J in Bγ . Then, condition (10) ensures
that J(û) > 0 and consequently

max
x∈V

û(x) > 0.

At this point, note that

(11) Sf := {x ∈ V : f(û(x))û(x) < 2F (û(x))} �= ∅.
Indeed, arguing by contradiction, if Sf = ∅, bearing in mind relation (9), we would
have

f(û(x))û(x) = 2F (û(x)),

for every x ∈ V .
Then, since h′

F (ξ) = 0 for every

ξ ∈ A :=

(
0,max

x∈V
û(x)

]
,

the function hF would be constant in A against (i1).
Finally, since α is negative in Sf , relations (4) and (11) yield

(12) −
∫
Sf

α(x)f(û(x))û(x)dμ < −2

∫
Sf

α(x)F (û(x))dμ.

Moreover,

(13)

∫
V \Sf

α(x)(f(û(x))û(x)− 2F (û(x)))dμ = 0.

Thus, by (12) and (13), we write

−
∫
V

α(x)f(û(x))û(x)dμ < −2

∫
V

α(x)F (û(x))dμ.

Licensed to Universite Bordeaux I. Prepared on Sun Apr 19 03:53:20 EDT 2015 for download from IP 147.210.130.33.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2966 GIOVANNI MOLICA BISCI AND VICENŢIU D. RĂDULESCU

Bearing in mind that

〈J ′(û), û〉 = −
∫
V

α(x)f(û(x))û(x)dμ,

the above inequality can be rewritten as

(14) 〈J ′(û), û〉 < 2J(û).

On the other hand, if

r ∈
(

a

(2N + 3)
,+∞

)
,

by choosing γ := a2/(2N + 3)2, and arguing as before, there exists a global maxi-
mum û of J in Bγ such that condition (14) holds.

Hence, Theorem 2.1 ensures that there exists an open interval I ⊆ (0,+∞)

such that, for every λ ∈ I, problem (Sf
λ,α) has a strong non-negative and non-zero

solution, whose norm in X is less than
√
γ. The conclusion follows.

(i1) ⇐ (i2)
Let us start recalling a preliminary fact on the spectrum of linear elliptic prob-

lems on the Sierpiński gasket. More precisely, let a : V → R be such that

(a1) a(x) ≥ 0 in V and 0 <

∫
V

a(x)dμ < +∞,

and consider the following elliptic eigenvalue problem:

(Sλ,a)

{
Δu(x) + λa(x)u(x) = 0 x ∈ V \ V0,
u|V0

= 0.

By [11], under the structural hypothesis (a1), it follows that problem (Sλ,a)
possesses a sequence {λn} of eigenvalues fulfilling

(15) 0 < λ1 < λ2 ≤ · · · ≤ λn ≤ · · · , λn → ∞ as n → ∞;

see also [8, pp. 563–564].
From now on, we argue by contradiction. Hence, assume that there are two

positive real constants b and c such that

F (ξ)

ξ2
= c, ∀ ξ ∈ (0, b].

Fixing

r ∈
(
0,

b

(2N + 3)

]
,

by (i2), there exists an open interval I such that, for every λ ∈ I, problem (Sf
λ,α)

admits a (strong) non-negative solution u ∈ C0(V ) \ {0X} such that

(16) ‖u‖ < r .

In view of (8) and (16), we also obtain

‖u‖∞ < b,

and it follows that

f(u(x)) = 2cu(x), ∀x ∈ V.
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Then, for every λ ∈ I, the linear problem

(Sλ,cα)

{
Δu(x)− 2λcα(x)u(x) = 0 x ∈ V \ V0,
u|V0

= 0,

admits a strong non-zero solution. This fact contradicts (15) and the proof is
complete. �
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