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Abstract In this paper, we deal with the Tikhonov regularization method for pseudo-
monotone equilibrium problems. Under mild conditions of semicontinuity and con-
vexity, we show that strictly pseudo-monotone bifunctions can be also used as regular-
ization bifunctions as well as strongly monotone bifunctions. We extend Berge’s max-
imum theorem and establish the relationship between quasi-hemivariational inequal-
ities and equilibrium problems. Applications of the Tikhonov regularization method
to quasi-hemivariational inequalities are also given.

Keywords Equilibrium problem · Quasi-hemivariational inequality · Regularization
method · Multivalued mapping · Semicontinuity · Pseudo-monotonicity

1 Introduction

Let C be a nonempty, closed and convex subset of a real Banach space E and let
� : C × C −→ R be a bifunction satisfying �(x, x) = 0, for every x ∈ C . Such a
bifunction � is called an equilibrium bifunction.
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484 B. Alleche et al.

Recall that an equilibrium problem in the sense of Blum, Muu and Oettli (see [9,27])
is a problem of the form:

find x∗ ∈ C such that �(x∗, y) ≥ 0 ∀y ∈ C, (EP)

where its set of solutions is denoted by SE P (C,�).
Equilibrium problems encompass several problems including variational inequali-

ties, mathematical programming, Nash equilibrium, Kakutani fixed points, optimiza-
tion and many other problems arising in nonlinear analysis. Recently, some practical
models of interest in engineering and economics have been formulated as an equilib-
rium problem of the form (EP), see for example [18,20,22] and the references therein.

Equilibrium problems also encompass quasi-hemivariational inequalities. Recall
that if E is a real Banach space which is continuously embedded in L p (�; R

n), for
some 1 < p < +∞ and n ≥ 1, where � is a bounded domain in R

m , m ≥ 1, then a
quasi-hemivariational inequality is a problem of the form:

find u ∈ E and z ∈ A(u) such that

〈z, v〉 + h (u) J 0 (iu; iv)− 〈Fu, v〉 ≥ 0 ∀v ∈ E ,

where i is the canonical injection of E into L p (�; R
n), A : E ⇒ E∗ is a nonlinear

multivalued mapping, F : E → E∗ is a nonlinear operator, J : L p (�; R
n) → R is

a locally Lipschitz functional and h : E → R is a given nonnegative functional. We
denote by E∗ the dual space of E and by 〈., .〉 the duality pairing between E∗ and E .

For technical reasons, we will consider the following quasi-hemivariational inequal-
ity:

find u ∈ C and z ∈ A(u) such that

〈z, v − u〉 + h(u)J 0(iu; iv − iu)− 〈Fu, v − u〉 ≥ 0 ∀v ∈ C, (QHVI)

where its set of solutions is denoted by SQHVI(C, A). Note that in the special case
when C is the whole space E , the above two formulations of quasi-hemivariational
inequalities are one and the same.

Studies about inequality problems captured special attention in the last decades
where one of the most recent and general type of inequalities is the hemivariational
inequalities introduced in [29,30] as a variational formulation for several classes of
mechanical problems with nonsmooth and nonconvex energy super-potentials. The
theory of hemivariational inequalities has produced an abundance of important results
both in pure and applied mathematics as well as in other domains such as mechanics
and engineering sciences as it allowed mathematical formulations for new classes of
interesting problems, see [4,12,28–30,33,35] and the references therein.

When h is equal to zero in the quasi-hemivariational inequality (QHVI) correspond-
ing to convex super-potentials, we obtain the standard case of variational inequalities,
which were studied earlier by many authors, see [21,24]. The setting corresponding
to h equal to 1 describes the hemivariational inequalities. These inequality problems
appear as a generalization of variational inequalities, but they are much more general
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The Tikhonov regularization for equilibrium problems 485

than these ones, in the sense that they are not equivalent to minimum problems but
give rise to substationarity problems. The general case when h is nonconstant cor-
responds to quasi-hemivariational inequalities, which were first studied in [28, Sec-
tion 4.5], in relationship with relevant models in mechanics and engineering. We refer
to [12,33,35] for recent contributions to the qualitative analysis of hemivariational and
quasi-hemivariational inequalities. On can also consult [1,2,4] where some techniques
on continuity of functions are introduced and new results in the field are obtained.

On the other hand, regularization methods that are widely used in convex optimiza-
tion and variational inequalities have been also considered for equilibrium problems.
The proximal point method as well as the Tikhonov regularization method, which are
a fundamental regularization technique for handling ill-posed problems, have been
recently applied to equilibrium problems, see [13,14,19,25,26] and the references
therein.

In this paper, we deal first with the Tikhonov regularization method for pseudo-
monotone equilibrium problems. Under weakened conditions of upper semiconti-
nuity of bifunctions in their first variable on a subset and of convexity, we extend
some results of [14,19] and prove that strictly pseudo-monotone bifunctions can be
also used as regularization bifunctions as well as strongly monotone bifunctions. We
extend Berge’s maximum theorem and develop some results in the qualitative analy-
sis of quasi-hemivariational inequalities to establish the relationship between quasi-
hemivariational inequality problems and equilibrium problems. We also give examples
and apply the Tikhonov regularization method to quasi-hemivariational inequalities.

2 Notations and preliminary results

Let X be Hausdorff topological space, x ∈ X and f : X −→ R be a function. Recall
that f is said to be

1. upper semicontinuous at x if for every ε > 0, there exists an open neighborhood
U of x such that

f (y) ≤ f (x)+ ε ∀y ∈ U ;

2. lower semicontinuous at x if for every ε > 0, there exists an open neighborhood
U of x such that

f (y) ≥ f (x)− ε ∀y ∈ U.

It is well-known that if X is a metric space (or more generally, a Fréchet-Urysohn
space, see [3]), then f is upper (resp. lower) semicontinuous at x ∈ X if and only if
for every sequence (xn)n in X converging to x , we have

f (x) ≥ lim sup
n→+∞

f (xn) (resp. f (x) ≤ lim inf
n→+∞ f (xn)),

where lim supn→+∞ f (xn) = infn supk≥n f (xk) and lim infn→+∞ f (xn) =
supn infk≥n f (xk).
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486 B. Alleche et al.

We say that f is upper (resp. lower) semicontinuous on a subset S of X if it is upper
(resp. lower) semicontinuous at every point of S.

The notion of upper (resp. lower) semicontinuous function on a subset generalizes
the notion of upper (resp. lower) semicontinuous function at a point.

If X is a metric space, these notions of upper and lower semicontinuous functions
on a subset coincide respectively with those of sequentially upper and sequentially
lower semicontinuous functions on a subset considered in [4].

Clearly, if S is an open subset of X , then f : X −→ R is upper (resp. lower) semi-
continuous on S if and only if f|S is upper (resp. lower) semicontinuous on S, where
f|S denotes the restriction of f on S. It is also not difficult to prove the following result
which shows how easy is to construct upper (resp. lower) semicontinuous functions
on subsets.

Proposition 2.1 Let f : X −→ R be a function and let S be a subset of X. If
the restriction f|U of f on an open subset U containing S is upper (resp. lower)
semicontinuous on S, then any extension of f|U to the whole space X is upper (resp.
lower) semicontinuous on S.

The following result provides us with some properties of upper (resp. lower) semi-
continuous functions.

Proposition 2.2 Let f : X −→ R be a function, S a subset of X and a ∈ R.

1. f is upper semicontinuous on S if and only if

{x ∈ X | f (x) ≥ a} ∩ S = {x ∈ S | f (x) ≥ a}.

In particular, if f is upper semicontinuous on S, then the trace on S of any upper
level set of f is closed in S.

2. f is lower semicontinuous at S if and only if

{x ∈ X | f (x) ≤ a} ∩ S = {x ∈ S | f (x) ≤ a}.

In particular, if f is lower semicontinuous on S, then the trace on S of any lower
level set of f is closed in S.

Proof The second statement being similar to the first one, we prove only the case of
upper semicontinuity. Let

x∗ ∈ {x ∈ X | f (x) ≥ a} ∩ S.

Clearly, x∗ ∈ S. To prove that f (x∗) ≥ a, we argue by contradiction and assume that
f (x∗) < a. Take ε > 0 such that f (x∗) + ε < a. By upper semicontinuity of f
at x∗, let U be an open neighborhood of x∗ such that f (y) ≤ f (x∗) + ε, for every
y ∈ U . It follows that

U ∩ {x ∈ X | f (x) ≥ a} = ∅,

which is a contradiction.
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The Tikhonov regularization for equilibrium problems 487

Conversely, let x∗ ∈ S, ε > 0 and put a = f (x∗) + ε. We have f (x∗) < a and
then

x∗ /∈ {x ∈ X | f (x) ≥ a}.

Let U be an open neighborhood of x∗ such that {x ∈ X | f (x) ≥ a} ∩ U = ∅. It
follows that

f (y) < a = f
(
x∗) + ε ∀y ∈ U.

Finally, we have

{x ∈ X | f (x) ≥ a} ∩ S = {x ∈ S | f (x) ≥ a},

which yields that the trace on S of any upper level set of f is closed in S. �
In the sequel, for y ∈ C , we define the following sets:

�+ (y) = {x ∈ C | �(x, y) ≥ 0} and �− (y) = {x ∈ C | �(y, x) ≤ 0} .

Clearly, x∗ ∈ C is a solution of the equilibrium problem (EP) if and only if
x∗ ∈

⋂

y∈C
�+ (y).

The following result of [4] is a generalization of the well-known Ky Fan’s minimax
inequality theorem (see [16,20]). We sketch the proof for the convenience of the reader.

Theorem 2.3 Let � : C × C −→ R be an equilibrium bifunction and suppose the
following assumptions hold:

1. � is quasiconvex in its second variable on C;
2. there exists a compact subset K of C and y0 ∈ K such that

�(x, y0) < 0 ∀x ∈ C\K ;

3. � is upper semicontinuous in its first variable on K .

Then, the equilibrium problem (EP) has a solution and its set of solutions SE P (C,�)
is a nonempty compact set.

Proof Since� is an equilibrium bifunction, then�+ (y) is nonempty and closed, for
every y ∈ C .

By quasiconvexity of� in its second variable, the mapping y �→ �+ (y) is a KKM
mapping (see for example, [2,4,7,15,16,20]), and since �+ (y0) is contained in the
compact subset K , then by Ky Fan’s lemma, we have

⋂

y∈C

�+ (y) �= ∅.

123

Author's personal copy



488 B. Alleche et al.

On the other hand, we have

⋂

v∈C

�+ (y) =
⋂

y∈C

(
�+ (y) ∩ K

)
.

By Proposition 2.2, we have

�+ (y) ∩ K = �+ (y) ∩ K ∀y ∈ C.

Thus,

⋂

y∈C

�+ (y) =
⋂

y∈C

�+ (y) �= ∅.

The compactness of the set of solutions is obvious. �
Remark 1 The set K in the condition 2 of Theorem 2.3 is known in the literature under
the name of the set of coerciveness.

The Minty lemma for equilibrium problems deals in particular with properties such
as compactness and convexity of the set of solutions of equilibrium problems (see for
example, [22]). For more properties of the set of solutions of equilibrium problems,
we need some additional concepts of monotonicity for bifunctions.

A bifunction � : C × C −→ R is called

1. strongly monotone on C with modulus β if

�(x, y)+�(y, x) ≤ −β‖x − y‖2, ∀x, y ∈ C;

2. monotone on C if

�(x, y)+�(y, x) ≤ 0, ∀x, y ∈ C;

3. strictly pseudo-monotone on C if

�(x, y) ≥ 0 �⇒ �(y, x) < 0, ∀x, y ∈ C, x �= y;

4. pseudo-monotone on C if

�(x, y) ≥ 0 �⇒ �(y, x) ≤ 0, ∀x, y ∈ C.

Every strongly monotone bifunction is both monotone and strictly pseudo-
monotone and every strictly pseudo-monotone bifunction� is pseudo-monotone pro-
vided it is an equilibrium bifunction, that is, �(x, x) = 0,∀x ∈ C .

The following result extends [7, Theorem 4.2] for equilibrium problems defined
on non necessarily convex sets and its proof is elementary. We call such a problem, a
nonconvex equilibrium problem.
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The Tikhonov regularization for equilibrium problems 489

Proposition 2.4 Let � : C × C −→ R be a strictly pseudo-monotone bifunction.
Then for every subset A of C, the following nonconvex equilibrium problem

find x∗ ∈ A such that �
(
x∗, y

) ≥ 0 ∀y ∈ A

has at most one solution.

We also need the following notions about convexity of functions. A function f :
C −→ R is said to be

1. semistrictly quasiconvex on C if, for every x1, x2 ∈ C such that f (x1) �= f (x2),
we have

f (λx1 + (1 − λ) x2) < max { f (x1) , f (x2)} ∀λ ∈]0, 1[;

2. explicitly quasiconvex on C if it is quasiconvex and semistrictly quasiconvex (see
[6,17,23]).

Note that there is not any inclusion relationship between the class of semistrictly
quasiconvex functions and that of quasiconvex functions. However, if f is a lower
semicontinuous and semistrictly quasiconvex function, then f is explicitly quasicon-
vex, see [10].

Here, we obtain some additional properties of the set of solutions of equilibrium
problems.

Theorem 2.5 Under assumptions of Theorem 2.3 and suppose the following condi-
tions hold:

1. � is pseudo-monotone;
2. � is explicitly quasiconvex in its second variable on C.

Then the equilibrium problem (EP) has a solution and its set of solutions SEP(C,�)
is nonempty compact set. If in addition, K is convex, then SEP(C,�) is convex.

Proof The first part of this theorem being proved above, we prove the second part.
By pseudo-monotonicity, we have �+ (y) ⊂ �− (y), for every y ∈ C . Since⋂

y∈C �
+ (y) ⊂ K , then

⋂

y∈C

�+ (y) ⊂
⎛

⎝
⋂

y∈C

�− (y)

⎞

⎠ ∩ K .

Now, by explicit quasiconvexity (see [2, Proposition 1.3]), we obtain

⎛

⎝
⋂

y∈C

�− (y)

⎞

⎠ ∩ K ⊂
⋂

y∈C

�+ (y) .
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490 B. Alleche et al.

It follows that

⋂

y∈C

�+ (y) =
⎛

⎝
⋂

y∈C

�− (y)

⎞

⎠ ∩ K .

By quasiconvexity, the set �− (y) is convex, for every y. Thus, the set of solutions
SEP(C, θ) is convex whenever K is convex. �

Note that Theorem 2.5 also holds if we replace upper semicontinuity of � in the
first variable by upper hemicontinuity in the first variable and lower semicontinuity in
the second variable. Recall that upper hemicontinuity is upper semicontinuity on line
segments. The notion of upper hemicontinuity on a subset has been used in [2,4].

3 The Tikhonov regularization method for equilibrium problems

The Tikhonov regularization method (or ridge regression in statistics) (see [34]) is a
powerful tool in convex optimization to handle discrete or continuous ill-posed prob-
lems. In the framework of monotone variational inequalities, the basic idea of this
method is to perturb the problem with a strongly monotone operator depending on a
regularization parameter to the monotone cost operator to obtain a strongly monotone
variational inequality. The optimal regularization parameter is usually unknown and
usually in practical problems it is determined by various methods, such as the discrep-
ancy principle, cross-validation, L-curve method, Bayesian interpretation, restricted
maximum likelihood, and unbiased predictive risk estimator. The resulting regularized
inequality problem has a unique solution that depends on the regularization parame-
ter. Next, passing to the limit as the parameter goes to a suitable value, the unique
solution of the regularized problem tends to a solution of the original problem. We
point out that if the cost operator is pseudo-monotone rather than monotone, then the
monotonicity of the regularized problem may fail.

3.1 Main result

In this section, we define a regularized equilibrium problem for the equilibrium prob-
lem (EP). Let θ : C × C −→ R be an equilibrium bifunction that we call the regu-
larization equilibrium bifunction. Then, for every ε > 0, we define the equilibrium
bifunction �ε : C × C −→ R by

�ε (x, y) = �(x, y)+ εθ (x, y)

and we associate with the equilibrium problem (EP), the regularized equilibrium prob-
lem defined as follows:

find x∗
ε ∈ C such that �ε

(
x∗
ε , y

) ≥ 0 ∀y ∈ C, (REP)

where its set of solutions is denoted by SREP(C,�ε).
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The Tikhonov regularization for equilibrium problems 491

Note that when� or θ is pseudo-monotone, the regularized equilibrium bifunction
�ε does not inherit any monotonicity property from� and θ in general. Also, while the
sum of two convex function is convex, this fact does not remain true for quasiconvex
functions. The sum of two quasiconvex functions need not be quasiconvex even if one
of the functions involved is linear.

The following result is an extension of [14, Theorem 2.9] (see also [19, Theo-
rem 3.2]) in which a largest family of bifunctions including strictly pseudo-monotone
bifunctions can be used. We avoid the lower semicontinuity of� and θ in their second
variable on C , the convexity of � and θ is weakened to the quasiconvexity of the
regularized bifunction and the upper semicontinuity of� and θ in their first variable is
weakened to the set of uniform coerciveness. In this result we will never need the qua-
siconvexity of� or θ in their second variable but the quasiconvexity of the regularized
equilibrium bifunctions �εn in their second variable.

Theorem 3.1 Let (εn)n be a sequence of positive numbers such that lim
n→+∞ εn = 0

and suppose the following conditions hold:

1. � and θ are pseudo-monotone on C;
2. �+ εnθ is quasiconvex in the second variable on C, for every n;
3. there exist a compact subset K of C and y0 ∈ C such that�(x, y0) < 0, for every

x ∈ C \ K ;
4. � and θ are upper semicontinuous in the first variable on K .

Then any cluster point x∗ ∈ C of a sequence (xn)n with xn ∈ SREP
(
C,�εn

) ∩ K for
every n, is a solution to the nonconvex equilibrium problem:

find x∗ ∈ SEP (C,�) such that θ
(
x∗, y

) ≥ 0 ∀y ∈ SEP (C,�). (NC-EP)

Assume in addition that the following hypotheses hold:

1. θ is strictly pseudo-monotone on C;
2. there exists A ⊂ K such that θ (x, y0) < 0, for every x ∈ C\A.

Then, the regularized equilibrium problem (REP) is solvable, for every n, and any
sequence (xn)n with xn ∈ SREP

(
C,�εn

)
for every n, converges to the unique solution

of the nonconvex equilibrium problem (NC-EP).

Proof Let (xn)n be a sequence with xn ∈ SREP
(
C,�εn

)∩K for every n, and admitting
x∗ ∈ C as a cluster point. We have x∗ ∈ K and without loss of generality, we may
assume that (xn)n converges to x∗.

First we will prove that x∗ ∈ SEP (C,�) and therefore SEP (C,�) is not empty.
We know that for every n,

�(xn, y)+ εnθ (xn, y) ≥ 0 ∀y ∈ C.
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492 B. Alleche et al.

By upper semicontinuity of � and θ in their first variable on K and the properties of
the upper limits, we have

�
(
x∗, y

) ≥ lim sup
n→+∞

�(xn, y)+ lim sup
n→+∞

εnθ (xn, y)

≥ lim sup
n→+∞

(� (xn, y)+ εnθ (xn, y)) ≥ 0 ∀y ∈ C.

It results that x∗ ∈ SEP (C,�). Now, let z ∈ SEP (C,�). By pseudo-monotonicity
of �, we have �(xn, z) ≤ 0, for every n. Then

εnθ (xn, z) ≥ −�(xn, z) ≥ 0 ∀n,

which implies that θ (xn, z) ≥ 0. Letting n go to +∞, we obtain by upper semiconti-
nuity of θ in its first variable on K that θ (x∗, z) ≥ 0. Thus,

θ
(
x∗, z

) ≥ 0 ∀z ∈ SEP (C,�)

which completes the proof of the first part.
To prove the second part of the theorem, note that for every n,

�(xn, y0)+ εnθ (xn, y0) < 0 ∀x ∈ C \ K .

By Theorem 2.3, the regularized equilibrium problem (REP
(
C,�εn

)
) is solvable and

its set of solutions SREP
(
C,�εn

)
is contained in K . Let (xn)n be a sequence such that

xn ∈ SREP
(
C,�εn

)
, for every n. Then the sequence (xn)n has a cluster point x∗ ∈ K

and by the first part of the theorem, x∗ is a solution to the nonconvex equilibrium
problem (NC-EP). Since θ is strictly pseudo-monotone, then by Proposition 2.4, the
above nonconvex equilibrium problem (NC-EP) has a unique solution. It follows that
every subsequence of the sequence (xn)n admits this unique solution of the nonconvex
equilibrium problem (NC-EP) as a cluster point. Thus, the sequence (xn)n converges
to the unique solution of the nonconvex equilibrium problem (NC-EP). �
Remark 2 1. Note that in the case of a finite dimensional real Banach space E , if θ

is strongly monotone on C , and θ and � are convex and lower semicontinuous
in the second variable on C , then the sequence (�+ εnθ)n is uniformly coercive
whenever� has a set of coerciveness, see [14, Corollary 2.6]. This means that even
if we consider a strongly monotone bifunction θ as a regularization bifunction,
Theorem 3.1 can also be seen as a generalization of [14, Theorem 2.9] since the
upper semicontinuity on the first variable is weakened. We choose in this case
θ such that both θ and � are upper semicontinuous in their first variable on the
subset of the uniform coerciveness.

2. We point out that Theorem 3.1 provides us with a tool to use the Tikhonov regu-
larization method in the case of equilibrium problems involving non upper semi-
continuous bifunctions on their first variable.

3. Finally, even if strongly monotone bifunctions seem to be more widely used in
the Tikhonov regularization method, our Theorem 3.1 presents a generalization in
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The Tikhonov regularization for equilibrium problems 493

several directions of [14, Theorem 2.9] and provides us with a largest family of
bifunctions to use in the Tikhonov regularization method.

3.2 Examples of suitable bifunctions and discussion

First, we construct in what follows two bifunctions� and θ satisfying all the conditions
of Theorem 3.1 without being upper semicontinuous in their first variable on the whole
space C . The bifunction � is pseudo-monotone non strictly pseudo-montone and θ
is strictly pseudo-monotone non strongly monotone on C . This example is obtained
by modification of some equilibrium bifunctions constructed in the literature, see
[1,5,7,8].

Example 3.2 Let E = C = R, K = [−1,+1] and y0 = 0.

(I) First consider the bifunction � : C × C −→ R is defined by

�(x, y) =

⎧
⎪⎨

⎪⎩

(x + 2) (y − x) if x ∈] − ∞,−2[,
(x + 1) (y − x) if x ∈ [−2,−1[,
max (x, 0) (y − x) otherwise.

1. Clearly, �(x, x) = 0, for every x ∈ C and �(x, 0) < 0, for every x /∈
[−1,+1].

2. To verify that� is pseudo-monotone on C , let x, y ∈ C such that�(x, y) ≥ 0.
(a) If x ∈] − ∞,−2[, then �(x, y) = (x + 2) (y − x). It follows that

y − x ≤ 0 and then, y < −2. Thus �(y, x) = (y + 2) (x − y) ≤ 0.
(b) If x ∈ [−2,−1[, then y −x ≤ 0 and then, y < −1. If y ∈ [−2,−1[, then

�(y, x) = (y + 1) (x − y) ≤ 0, and if y ∈] − ∞,−2[, then �(y, x) =
(y + 2) (x − y) ≤ 0.

(c) If x ≥ −1, then y ≥ x . It follows that y ≥ −1 and then �(y, x) =
max (y, 0) (x − y) ≤ 0.

3. Clearly, � is convex in its second variable on C and upper semicontinuous in
its first variable on [−1,+1].

4. To see that � is not upper semicontinuous in its first variable on C , consider
y > −2 and take a sequence (xn)n in ] − ∞,−2[ converging to −2. We have

�(−2, y) = − (y + 2) < 0 = lim sup
n→+∞

(xn + 2) (y + 2) = lim sup
n→+∞

�(xn, y).

5. Note that in addition, � is not lower semicontinuous in its first variable on C .
To see this fact, consider y < −2 and take a sequence (xn)n in ] − ∞,−2[
converging to −2. We have

�(−2, y) = − (y + 2) > 0 = lim inf
n→+∞ (xn + 2) (y + 2) = lim inf

n→+∞�(xn, y) .

6. Finally, let us point out that � is not strictly pseudo-monotone on C since
�(x, y) = �(y, x) = 0 whenever x, y ∈ [−1, 0].
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(II) Now, consider the bifunction θ : C × C −→ R is defined by

θ (x, y) =
{

y4−x4

65 if x = 2,

y4 − x4 otherwise.

1. Clearly θ (x, x) = 0, for every x ∈ C and θ (x, 0) < 0, for every x /∈ K =
[−1,+1]. It is also easy to see that θ is strictly pseudo-monotone and not
strongly monotone on C .

2. To see that θ is convex in its second variable, let x ∈ C be fixed.
(a) if x = 2, then θ (2, y) = y4−16

65 , for every y ∈ C . The function y �→ y4−16
65

is convex on C .
(b) if x �= 2, then θ (x, y) = y4 − x4, for every y ∈ C . The function

y �→ y4 − x4 is convex on C .
3. To see that θ is upper semicontinuous in its first variable on [−1,+1], let y ∈ C

be fixed and denote by f : C −→ R the function defined by

f (x) = θ (x, y).

The restriction f|U of f on the open set U =] − ∞, 2[ containing [−1,+1] is
defined by f|U (x) = y4 − x4 which is continuous on U and then by Proposi-
tion 2.1, f is upper semicontinuous on [−1,+1].

4. Finally, the bifunction θ is not upper semicontinuous in its first variable on C .
Indeed, consider y = 3 for example. Let (xn)n be a converging sequence to 2
such that xn �= 2, for every n. We have

θ (2, 3) = 1 < 65 = lim sup
n→+∞

θ (xn, 3) .

Convexity and generalized convexity are important fields in many areas of math-
ematics and more particularly, in Optimization since convex and concave functions
entail several useful properties. Moreover, quasiconvexity and by analogy, quasicon-
cavity, reveal properties of special interest in Economics Theory. For classical and
recent investigations of the subject, we refer to [6,10] where the role of convexity and
concavity is stressed.

As mentioned before, the sum of two quasiconvex functions need not be quasicon-
vex even if one of the functions involved is linear. This means that the sum of two non
necessarily quasiconvex functions may be quasiconvex. Also, any quasiconvex func-
tion could be split into a sum of two functions and it seems that in general, nothing can
justifies that these functions must be quasiconvex. In other words, this subject is very
rich and for this reason, studies about convexity and generalized convexity abound in
the literature. Characterizations by means of various notions including the notion of
differentiability and different sufficient conditions to obtain quasiconvexity as well as
other stronger notions such as convexity, strict convexity and strict quasiconvexity are
deeply developed and many examples are constructed by several authors.

However, we recall here the following basic properties which will inspire us in the
construction of our next examples:
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1. If f is a quasiconvex function, then for every α ≥ 0, α f is quasiconvex.
2. Every monotone function of one real variable is quasiconvex.
3. The sum of two monotone functions of one real variable with the same sense of

monotonicity is monotone, and therefore quasiconvex.

Now, we modify the bifunction θ of Example 3.2 in such a way that all its above
properties are conserved but it is quasiconvex non convex bifunction in the second
variable. Note that it could be more easy to construct further examples if we relax the
condition on the semicontinuity of the bifunctions to the whole space rather than only
on the set of coerciveness.

Example 3.3 Let E = C = R, K = [−1,+1] and y0 = 0.
The bifunction θ : C × C −→ R is now defined by

θ(x, y) =
{

y4−x4

65 if (x, y) ∈ {2}×] − ∞, 3],
y4 − x4 otherwise.

1. To see that θ is quasiconvex in its second variable, treat only the case of x = 2. In
this case, we have

θ(2, y) =
{

y4−16
65 if y ∈] − ∞, 3],

y4 − 16 otherwise.

We have that θ (2, 3) ≤ θ (2, y), for every y ∈]3,+∞[. A combination with the
other properties of the bifunction θ yields easily that the function y �→ θ (2, y) is
quasiconvex on C .

2. To see that the function y �→ θ (2, y) is not convex, choose y1 = 3 and y2 = 4 for
example. Take the point

y = 1

2
y1 +

(
1 − 1

2

)
y2 = 7

2

in the line segment between y1 and y2. We have

θ (2, y) = θ

(
2,

7

2

)
= 74

16
− 16.

In the other hand, we have

1

2
θ (2, y1)+

(
1 − 1

2

)
θ (2, y2) = 1

2
+ 1

2

(
44 − 16

)
= 241

2
< θ (2, y) .

Now, we show that the regularized bifunction constructed from � and θ as in
Theorem 3.1 is quasiconvex in its second variable.
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Example 3.4 Let ε be a positive number and consider the regularized bifunction�ε =
�+ εθ as in Theorem 3.1. Then, the bifunction �ε is defined on C × C by

�ε (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x + 2) (y − x)+ ε
(
y4 − x4

)
if x ∈] − ∞,−2[,

(x + 1) (y − x)+ ε
(
y4 − x4

)
if x ∈ [−2,−1[,

max (x, 0) (y − x)+ ε
y4−x4

65 if (x, y) ∈ {2} ×] − ∞, 3],
max (x, 0) (y − x)+ ε

(
y4 − x4

)
otherwise.

As above, only the quasiconvexity of the function y �→ �ε (2, y) is important to
verify, the other cases come readily from the definition. In this case, we have

�ε (2, y) =
{

2 (y − 2)+ ε
y4−16

65 if y ∈] − ∞, 3],
2 (y − 2)+ ε

(
y4 − 16

)
otherwise.

By the same argument as above, remark that �ε (2, 3) ≤ �ε (2, y), for every
y ∈]3,+∞[, and this completes the proof.

4 Applications to quasi-hemivariational inequalities

In this section we give some results on the relationship between equilibrium problems
and quasi-hemivariational inequalities. We develop results in the qualitative analy-
sis of quasi-hemivariational inequalities and give a generalization to Berge’s maxi-
mum theorem in order to apply the Tikhonov regularization for quasi-hemivariational
inequalities.

Recall that a function φ : E → R is called locally Lipschitzian if for every u ∈ E ,
there exists a neighborhood U of u and a constant Lu > 0 such that

|φ (w)− φ (v) | ≤ Lu‖w − v‖X ∀w ∈ U, ∀v ∈ U.

If φ : E → R is locally Lipschitzian near u ∈ E , then the Clarke generalized
directional derivative of φ at u in the direction of v ∈ E , denoted by �0 (u, v), is
defined by

φ0 (u, v) = lim sup
w→u
λ↓0

φ (w + λv)− φ (w)

λ
.

Among several important properties of the generalized directional derivative of
locally Lipschitzian functions, we will make use in the present paper of the following
properties (for proofs and related properties, we refer to [11, Proposition 2.1.1]).

Suppose that φ : E → R is locally Lipschitzian near u ∈ E . Then,

1. the function v �−→ φ0 (u, v) is finite, positively homogeneous and subadditive;
2. the function (u, v) �−→ φ0 (u, v) is upper semicontinuous.
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Remark 3 To avoid any confusion in the definition of semicontinuity on subsets, from
now on and in all what follows, the functions h and F , and the multivalued mapping
A will be considered from C rather than from E .

It is easily seen that any solution of the quasi-hemivariational inequality (QHVI) is
a solution of the equilibrium problem (EP) where the equilibrium bifunction � :
C × C → R is defined by

�(u, v) = sup
z∈A(u)

〈z, v − u〉 + h (u) J 0 (iu; iv − iu)− 〈Fu, v − u〉 ∀u, v ∈ C.

The converse needs some additional conditions on the multivalued mapping A and
holds by a classical approach.

Theorem 4.1 If A has nonempty, convex and weak* compact values, then any solution
of the equilibrium problem (EP) is a solution of the quasi-hemivariational inequality
problem (QHVI).

Proof Let u∗ ∈ C be such that �(u∗, v) ≥ 0, for every v ∈ C , and assume that there
does not exist z ∈ A(u∗) satisfying

〈z, v − u∗〉 + h(u∗)J 0 (
iu∗; iv − iu∗) − 〈Fu∗, v − u∗〉 ≥ 0 ∀v ∈ C.

Clearly, for every z ∈ A(u∗), there exist vz ∈ C and εz > 0 such that

〈z, vz − u∗〉 + h(u∗)J 0 (
iu∗; ivz − iu∗) − 〈Fu∗, vz − u∗〉 < −εz .

Since, for every v ∈ C , the mapping defined on E∗ by

z �→ 〈z, v − u∗〉 + h(u∗)J 0 (
iu∗; iv − iu∗) − 〈Fu∗, v − u∗〉

is weak* continue, then for every z ∈ A(u∗), we choose a weak* open subset Oz of
E∗ such that

〈z′, vz − u∗〉 + h(u∗)J 0 (
iu∗; ivz − iu∗) − 〈Fu∗, vz − u∗〉 < −εz ∀z′ ∈ Oz .

For every z ∈ A(u∗), we have z ∈ Oz and then, {Oz | z ∈ A(u∗)} is a weak* open
cover of A(u∗). Since A(u∗) is weak* compact, there exist z j ∈ C , j = 1, . . . , n such
that

{
Oz j | j = 1, . . . , n

}
is a finite subcover of A(u∗). Put v j = vz j , j = 1, . . . , n

and ε = min
{
εz j | j = 1, . . . , n

}
. Clearly for all z ∈ A(u∗), we have

min
j=1,...,n

(
〈z, v j − u∗〉 + h(u∗)J 0 (

iu∗; iv j − iu∗) − 〈Fu∗, v j − u∗〉
)
< −ε.

The Clarke generalized directional derivative being finite, then for every j = 1, . . . , n,
the functions

z �→ 〈z, v j − u∗〉 + h(u∗)J 0 (
iu∗; iv j − iu∗) − 〈Fu∗, v j − u∗〉,
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defined on the convex set A(u∗) are concave and proper with domain containing A(u∗),
and therefore by a standard result of convex analysis (see [32, Theorem 21.1]), there
exist μ j ≥ 0, j = 1, . . . , n, with

∑n
j=1 = 1 such that for all z ∈ A(u∗)

n∑

j=1

μ j

(
〈z, v j − u∗〉 + h(u∗)J 0 (

iu∗; iv j − iu∗) − 〈Fu∗, v j − u∗〉
)
< −ε.

Set v∗ = ∑n
j=1 μ jv j . Then v∗ ∈ C and by the positive homogeneity and the sub-

additivity of the Clarke generalized directional derivative in its second variable, we
have

〈z, v∗ − u∗〉 + h(u∗)J 0 (
iu∗; iv∗ − iu∗) − 〈Fu∗, v∗ − u∗〉 < −ε ∀z ∈ A(u∗)

which implies that �(u∗, v∗) < 0, a contradiction. �
We turn now into studying the properties inherited by the equilibrium bifunctions

defined from quasi-hemivariational inequalities.

Theorem 4.2 The bifunction � is lower semicontinuous and convex in its second
variable on C.

Proof From the positive homogeneity and the subadditivity of the Clarke generalized
directional derivative in its second variable, the function

v �→ 〈z, v − u〉 + h (u) J 0 (iu; iv − iu)− 〈Fu, v − u〉

is convex, for every u ∈ C and every z ∈ A(u∗). It is also lower semicontinuous since
the Clarke generalized directional derivative is lower semicontinuous. The bifunc-
tion � being the superior envelope of a family of convex and lower semicontinuous
functions, it is then convex and lower semicontinuous in its second variable on C . �

The properties inherited by � in its first variable are more complicated and need
additional conditions on the functions and multivalued mappings involved in the quasi-
hemivariational inequalities.

Recall that a multivalued mapping T from a topological space X with values in the
set of subsets of a topological space Y is called upper semicontinuous at a point x ∈ X
if whenever V an open subset containing T (x), there exist an open neighborhood U
of x such that T

(
x ′) ⊂ V , for every x ′ ∈ U . We say that T is upper semicontinuous

on a subset S of X if T is upper semicontinuous at every point of S.
The following result is a generalization of the well-known Berge’s maximum the-

orem, see [31, Theorem 6.1.18].

Theorem 4.3 Let X and Y be two Hausdorff topological spaces, S a nonempty subset
of X, U an open subset containing S, T : X ⇒ Y a multivalued mapping and
ψ : Y × X → R ∪ {+∞} a function. Suppose that ψ is upper semicontinuous on
Y × U and T is upper semicontinuous on S with nonempty compact values on U.
Then the value function f : X → R ∪ {+∞} defined by
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f (x) = sup
y∈T (x)

ψ (y, x)

is upper semicontinuous on S.

Proof By Proposition 2.1, it suffices to prove that the restriction g = f|U of f on U
is upper semicontiunuous on S. Let a ∈ R and by Proposition 2.2, we have to prove
that

{x ∈ U | g (x) ≥ a} ∩ S = {x ∈ S | g (x) ≥ a},

where the closure is taken with respect to U . Let x∗ ∈ {x ∈ U | g (x) ≥ a} ∩ S and
choose a net (xα)α∈� in {x ∈ U | g (x) ≥ a} converging in U to x∗. Since xα ∈ U , then
the restriction of the functionψ on Y ×{xα} is upper semicontinuous and therefore, by
the Weierstrass theorem, it attains its maximum on the compact set T (xα), for every
α ∈ �. Let yα ∈ T (xα) be such that g (xα) = ψ (yα, xα), for every α ∈ �.

The net (yα)α∈� has a cluster point in T (x∗). Indeed, suppose the contrary holds.
Then the compactness of T (x∗) yields the existence of an open set V containing T (x∗)
and α0 ∈ � such that yα /∈ V , for every α ≥ α0. It follows by upper semicontinuity
of T at x∗ the existence of an open neighborhood W of x∗ such that T (x) ⊂ V , for
every x ∈ W . Let α1 ∈ � be such that xα ∈ W , for every α ≥ α1. Thus yα ∈ V , for
every α ≥ α1. Contradiction.

Take now y∗ ∈ T (x) and (yα)α∈� a subnet of (yα)α∈� converging to y∗. The net
((yα, xα))α∈� is in Y × U , converging to (y∗, x∗) and satisfies

ψ (yα, xα) ≥ a ∀α ∈ �.

By upper semicontinuity of ψ on Y × U , it follows that g (x∗) ≥ ψ (y∗, x∗) ≥ a,
which completes the proof.

We give in what follows a sufficient condition for the upper semicontinuity in its
first variable of the equilibrium bifunction �.

Corollary 4.4 Let K be a subset of C, U be an open subset containing K and suppose
the following conditions hold:

1. the nonlinear multivalued mapping A is upper semicontinuous on K with respect
to the strong topology of E∗ and has nonempty compact values on U;

2. for every v ∈ C, the mapping u ∈ C �→ h (u) J 0 (iu; iv − iu) is upper semicon-
tinuous on U;

3. for every v ∈ C, the mapping u ∈ C �→ 〈F (u) , v − u〉 is lower semicontinuous
on U.

Then � is upper semicontinuous in its first variable on K .

Proof Let v ∈ C be fixed and define the function ψ : E∗ × C → R by

ψ (z, u) = 〈z, v − u〉 + h (u) J 0 (iu; iv − iu)− 〈Fu, v − u〉.
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The functionψ being a sum of upper semicontinuous functions on E∗ ×U , it is upper
semicontinuous on E∗ ×U , where E∗ is equipped with the strong topology. It follows
by Theorem 4.3 that the value function u �→ �(u, v) is upper semicontinuous on K .

Corollary 4.5 Let K be a subset of C, U be an open subset containing K and suppose
the following conditions hold:

1. the nonlinear multivalued mapping A is upper semicontinuous on K with respect
to the weak* topology of E∗ and has nonempty weak* compact values on U;

2. for every v ∈ C, the mapping

(z, u) ∈ E∗ × U �→ 〈z, v − u〉 + h (u) J 0 (iu; iv − iu)− 〈Fu, v − u〉

is upper semicontinuous on E∗ × U.

Then � is upper semicontinuous in its first variable on K .

Recall that a multivalued mapping T : C → 2E∗
is said to be:

1. pseudo-monotone on C if

〈z, u − v〉 ≤ 0 �⇒ 〈t, v − u〉 ≥ 0 ∀u, v ∈ C,∀z ∈ A (u) ,∀t ∈ A (v) ;

2. strictly pseudo-monotone if

〈z, u − v〉 ≤ 0 �⇒ 〈t, v − u〉 > 0 ∀u, v ∈ C,∀z ∈ A (u) ,∀t ∈ A (v) .

It is well-known that if T has weak* compact values, then T is pseudo-monotone
(resp. strictly pseudo-monotone) if and only if the equilibrium bifunction θ is pseudo-
monotone (resp. strictly pseudo-monotone) where θ : C × C → R is defined by

θ (u, v) = sup
z∈T (u)

〈z, v − u〉.

This follows from the fact that for every u, v ∈ C , by the weak* compactness of the
values of T , there exist z ∈ T (u) and t ∈ T (v) such that

θ (u, v) = 〈z, v − u〉 and θ (v, u) = 〈t, u − v〉.

Now, to apply the Tikhonov regularization for quasi-hemivariational inequalities,
first we take a multivalued function G : C → 2E∗

and ε > 0, and define the multival-
ued function Aε : C → 2E∗

by

Aε(x) = A(x)+ εG(x).

The regularized quasi-hemivariational inequality has the following form:

Find u ∈ C and z ∈ Aε(u) such that
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〈z, v − u〉 + h (u) J 0 (iu; iv − iu)− 〈Fu, v − u〉 ≥ 0 ∀v ∈ C. (RQHVI)

As previously, we denote its set of solutions by SRQHVI(C, Aε).
We say that a quasi-hemivariational inequality (QHVI) is pseudo-monotone on C

if the associated equilibrium bifunction � is pseudo-monotone on C .

Theorem 4.6 Let K be a compact subset of C, U an open subset containing K and
(εn)n is a sequence of positive numbers such that limn→+∞ εn = 0. Suppose that the
following assumptions hold:

1. G is pseudo-monotone on C, upper semicontinuous on K with respect to the strong
topology of E∗ and has nonempty, convex and compact values on C;

2. the quasi-hemivariational inequality (QHVI) is pseudo-monotone on C;
3. A is upper semicontinuous on K with respect to the strong topology of E∗ and has

nonempty, convex and compact values on C;
4. for every v ∈ C, the mapping u ∈ C �→ h (u) J 0 (iu; iv − iu) is upper semicon-

tinuous on U;
5. for every v ∈ C, the mapping u ∈ C �→ 〈F (u) , v − u〉 is lower semicontinuous

on U.
6. there exists v0 ∈ C such that

〈z, v0 − u〉+h (u) J 0 (iu; iv0−iu)−〈Fu, v0−u〉<0 ∀u ∈ C \ K ,∀z ∈ A (u) .

Then any cluster point x∗ ∈ C of a sequence (xn)n with xn ∈ SRQHVI
(
C, Aεn

) ∩ K
for every n, is a solution to the multivalued variational inequality:

Find u ∈ SQHVI (C, A) andz ∈ G(u) such that

〈z, v − u〉 ≥ 0 ∀v ∈ SQHVI (C, A) .

Assume in addition, that the following conditions hold:

1. G is strictly pseudo-monotone on C;
2. there exists K ′ ⊂ K such that 〈z, v0 − u〉 < 0, for every u ∈ C\K ′ and every

z ∈ G (u).

Then the regularized quasi-hemivariational inequality (RQHVI
(
C, Fεn

)
) is solvable,

for every n, and any sequence (xn)n with xn ∈ SRQHVI
(
C, Fεn

)
for every n, converges

to the unique solution of the multivalued variational inequality problem:

Find u ∈ SQHVI (C, A) and z ∈ G (u) such that

〈z, v − u〉 ≥ 0 ∀v ∈ SQHVI (C, A) .

Proof Note that

sup
z∈Aε (x)

〈z, y − x〉 = sup
z∈A(x)

〈z, y − x〉 + ε sup
z∈G(x)

〈z, y − x〉 ∀x, y ∈ C.

The result holds now easily from the results developed above and by applying Theo-
rem 3.1. �
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Remark 4 Under assumptions of Theorem 4.6, the set of solutions of the quasi-
hemivariational inequality (QHVI) is nonempty and compact. It is also convex when-
ever K is convex.

5 Conclusions

In this work, we have proved that under weakened conditions of semicontinuity and
convexity, the Tikhonov regularization method can be applied to pseudo-monotone
equilibrium problems with strictly pseudo-monotone bifunctions as regularized equi-
librium bifunctions as well as strongly monotone bifunctions. We have obtained a gen-
eralization of Berge’s maximum theorem and developed new techniques in the qualita-
tive analysis of quasi-hemivariational inequalities in order to establish the relationship
between quasi-hemivariational inequalities and equilibrium problems. We have also
applied the Tikhonov regularization method to quasi-hemivariational inequality prob-
lems.
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