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Abstract. We consider an anisotropic double phase problem with a reac-

tion in which we have the competing effects of a parametric singular term

and a superlinear perturbation. We prove a bifurcation-type result describ-
ing the changes in the set of positive solutions as the parameter varies on

R̊+ = (0,+∞). Our approach uses variational tools together with truncation

and comparison techniques as well as several general results of independent
interest about anisotropic equations, which are proved in the Appendix.

1. Features of the paper and historical comments. In this paper, we are
concerned with the combined effects of an anisotropic differential operator, a para-
metric singular reaction, and a superlinear perturbation. The features of this paper
are the following:

(i) the presence of a nonhomogeneous differential operator with different
anisotropic growth, which generates a double phase associated energy;

(ii) the analysis developed in this paper is concerned with the combined effects
of a nonstandard operator with unbalanced variable growth and a singular reaction;

(iii) the main result gives an exhaustive bifurcation picture according with a
critical parameter;

(iv) our analysis combines the anisotropic nature of the differential operator, the
singular nonlinearity with variable growth, and the superlinear perturbation term
without satisfying the Ambrosetti-Rabinowitz condition.
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To the best of our knowledge, this is the first paper dealing with anisotropic
double phase problems with a singular reaction. We first recall some pioneering
achievements in these fields.

We start with a short description on the development of double phase problems.
To the best of our knowledge, the first contributions to this field are due to J. Ball
[7], in relationship with problems in nonlinear elasticity and composite materials.
Let Ω ⊂ RN be a bounded domain with smooth boundary. If u : Ω 7→ RN is the
displacement and if Du is the N ×N matrix of the deformation gradient, then the
total energy can be represented by an integral of the type

I(u) =

∫
Ω

f(z,Du(z))dz, (1)

where the energy function f = f(z, ξ) : Ω×RN×N 7→ R is quasiconvex with respect
to ξ. A simple example considered by Ball is given by functions f of the type

f(ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N × N matrix ξ, and g, h are nonnegative
convex functions, which satisfy the growth conditions

g(ξ) ≥ c1 |ξ|p; lim
t→+∞

h(t) = +∞,

where c1 is a positive constant and 1 < p < N . The condition p ≤ N is necessary
to study the existence of equilibrium solutions with cavities, that is, minima of the
variational integral (1) that are discontinuous at one point where a cavity forms.
In accordance with these problems arising in nonlinear elasticity, Marcellini [34, 35]
considered continuous functions f = f(z, u) with unbalanced growth that satisfy

c1 |u|p ≤ |f(z, u)| ≤ c2 (1 + |u|q) for all (z, u) ∈ Ω× R,

where c1, c2 are positive constants and 1 ≤ p ≤ q.
A second feature of this paper consists in the presence of variable exponents, both

in the expression of the differential operator that governs our problem and in the
power-type nonlinear reaction. The study of differential equations and variational
problems involving p(z)-growth conditions is a consequence of their applications. In
1920, Bingham was surprised that some paints do not run, like honey. He studied
such a behaviour and described a strange phenomenon. There are fluids that flow
then stop spontaneously (Bingham fluids). Within them, the forces that create flow
reach a first threshold. As this threshold is not reached, the fluid flow without
deforms as a solid. Invented in the 17th century, the “Flemish medium” makes
painting oil thixotropic: it fluids under pressure of the brush, but freezes as soon
as you leave the rest. While the exact composition of the medium Flemish remains
unknown, it is known that the bonds form gradually between its components, which
is why the picture freezes in a few minutes. Thanks to this wonderful medium,
Rubens have painted La Kermesse in 24 hours.

Materials requiring such more advanced theory have been studied experimentally
since the middle of last century. The first major discovery on electrorheological
fluids is due to Willis Winslow, who obtained a US patent on the effect in 1947
and wrote an article published in 1949, see [57]. These fluids have the interesting
property that their viscosity depends on the electric field in the fluid. Winslow
noticed that in such fluids (for instance lithium polymetachrylate) viscosity in an
electrical field is inversely proportional to the strength of the field. The field induces
string-like formations in the fluid, which are parallel to the field. They can raise



ANISOTROPIC SINGULAR DOUBLE PHASE DIRICHLET PROBLEMS 4467

the viscosity by as much as five orders of magnitude. This phenomenon is known
as the Winslow effect. For a general account of the underlying physics, we refer to
Halsey [28].

Combining these features, the present paper considers a nonlinear problem whose
associated functional contains the anisotropic double phase energy

u 7→
∫

Ω

(|Du|p(z) + a(z)|Du(z)|q(z))dz,

where the modulating coefficient a(z) dictates the geometry of the composite made
by two differential materials, with hardening exponents p(·) and q(·), respectively.
The isotropic case where p and q are constant functions was introduced by Zhikov
[63] in the context of the Lavrentiev phenomenon.

Finally, we recall that singular problems have been intensively studied in the
last decades. Such problems arise in the study of non-Newtonian fluids, boundary
layer phenomena for viscous fluids, chemical heterogenous catalysts, or in the theory
of heat conduction in electrically conducting materials. For instance, problems of
this type characterize some reaction-diffusion processes where the solution u ≥ 0 is
viewed as the density of a reactant and the region where u = 0 is called the dead core,
where no reaction takes place. Nonlinear singular equations are also encountered
in glacial advance, in transport of coal slurries down conveyor belts, and in several
other geophysical and industrial contents (see, e.g., the case of the incompressible
flow of a uniform stream past a semi-infinite flat plate at zero incidence). Here we
refer to the seminal paper by Crandall, Rabinowitz and Tartar [13] and to several
subsequent works.

2. Introduction. Let Ω ⊆ RN be a bounded domain with C2-boundary ∂Ω. In
this paper we study the following anisotropic singular double phase problem

−∆p(z)u(z)−∆q(z)u(z) = λu(z)−η(z) + f
(
z, u(z)

)
in Ω, u|∂Ω = 0, u > 0. (Pλ)

In this problem, p, q : Ω 7→ (1,+∞) are Lipschitz continuous functions satisfying
1 < q− = min

Ω
q ≤ q+ = max

Ω
q < p− = min

Ω
p ≤ p+ = max

Ω
p.

In general, given a function r ∈ C(Ω) with 1 < r− = min
Ω
r, we denote by ∆r(z)

the anisotropic r(z)-Laplacian defined by

∆r(z)u = div
(
|Du|r(z)−2Du

)
,

for all u ∈W 1, r(z)
0 (Ω).

In the case of constant exponents (isotropic case), the double-phase problem (Pλ)
is motivated by numerous models arising in mathematical physics. For instance, we
can refer to the following Born-Infeld equation [9] that appears in electromagnetism:

−div

(
Du

(1− 2|Du|2)1/2

)
= h(u) in Ω.

Indeed, by the Taylor formula, we have

(1−x)−1/2 = 1+
x

2
+

3

2 · 22
x2 +

5!!

3! · 23
x3 + · · ·+ (2n− 3)!!

(n− 1)!2n−1
xn−1 + · · · for |x| < 1.

Taking x = 2|Du|2 and adopting the first order approximation, we obtain problem
(Pλ) for p = 4 and q = 2. Furthermore, the n-th order approximation problem is
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driven by the multi-phase differential operator

−∆u−∆4u−
3

2
∆6u− · · · −

(2n− 3)!!

(n− 1)!
∆2nu.

In problem (Pλ) the differential operator is the sum of two such variable exponent
differential operators (anisotropic double phase problem). In the reaction (source) of
problem (Pλ)

(
that is, in the right-hand side of problem (Pλ)

)
we have the combined

effects of a parametric singular term λu−η(z) (λ > 0 being the parameter) and of
a perturbation f(z, x) which is a Carathéodory function (that is, for all x ∈ R,
the mapping z 7→ f(z, x) is measurable and for a.a. z ∈ Ω, the function x 7→
f(z, x) is continuous). We assume that f(z, ·) exhibits (p+ − 1)-superlinear growth
but without satisfying the Ambrosetti-Rabinowitz condition (the AR-condition for
short), which is common in the literature when dealing with superlinear elliptic
problems. In the singular term λu−η(z), as we have already mentioned, λ > 0 is a
parameter and η : Ω 7→ R is a Lipschitz continuous function satisfying 0 < η(z) < 1
for all z ∈ Ω. We are looking for positive solutions of problem (Pλ) and our goal is
to describe the changes in the set of positive solutions as the parameter λ moves on
R̊+ = (0,+∞). Finally, we prove the following bifurcation-type result. For the set
of hypotheses H0, H1 mentioned in the theorem as well as the other notation used
in the theorem, we refer to Section 3.

Theorem 2.1. If hypotheses H0, H1 hold, then there exists a critical parameter
value λ∗ > 0 such that

(a) for every λ ∈ (0, λ∗), problem (Pλ) has at least two positive solutions u0,
û ∈ intC+;

(b) for λ = λ∗, problem (Pλ) has at least one positive solution u∗ ∈ intC+;
(c) for every λ > λ∗, problem (Pλ) has no positive solution.

Our method of proof uses variational tools based on the critical point theory
together with truncation and comparison techniques. For these techniques to work,
we also prove some general results about anisotropic elliptic problems which are of
independent interest. We have gathered all these results in the Appendix at the end
of the paper. We believe that the results proved there will be useful to everyone
working an anisotropic double phase problems.

The starting point of our work is the recent paper of Byun and Ko [11], which
deals with anisotropic equations driven by the p(z)-Laplacian and with a reaction
of the form λu−η(z) + uq(z)−1, where q ∈ C1(Ω) and p+ < q(z) for all z ∈ Ω. The
hypothesis on the exponent p(·) is stronger and it is required that p ∈ C1(Ω) and it
satisfies a kind of directional monotonicity condition (see hypothesis (pM ) in [11]);
this condition is motivated by the work of Fan, Zhang and Zhao [15]. To the best of
our knowledge, the work of Byun and Ko [11] is the first one on anisotropic singular
problems.

For isotropic equations, such problems were investigated by Ghergu and
Rădulescu [23, 24], Haitao [27], Sun, Wu and Long [55] (semilinear equations
driven by the Laplacian) and by Giacomoni, Schindler and Takač [25], Papageor-
giou, Rădulescu and Repovš [40], Papageorgiou, Vetro and Vetro [45], Papageorgiou
and Winkert [49]. Very recently, Papageorgiou, Rădulescu and Repovš [41] studied
isotropic singular problems driven by a more general not necessary homogeneous,
differential operator. Finally, we mention the work of Papageorgiou, Rădulescu and
Repovš [43] on anisotropic equations driven by the p(z)-Laplacian plus an indefinite
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potential and with a reaction in which we have the competition of “convex” and
“concave” nonlinearities (anisotropic “concave-convex problem”).

We mention that double phase problems arise in a variety of models of physical
processes. We mention the works of Bahrouni, Rădulescu and Repovš [5, 6], Pa-
pageorgiou and Zhang [51], Ragusa and Tachikawa [53], Zhang and Rădulescu [60],
Zhikov [63]. Singular problems arise in the study of cellular automata and inter-
acting particle systems. Finally, we mention that in the last years isotropic double
phase problems with unbalanced growth were studied systematically primarily by
Mingione and co-workers, see [1, 8, 38]. We also mention the very recent work
of Papageorgiou, Vetro and Vetro [47] on multiple solutions with sign information
for parametric double phase problems with unbalanced growth. For related recent
contributions to the study of anisotropic and singular problems in connection with
models from the real world we refer to [2, 4, 12, 46, 44, 50, 58, 61, 62].

One of the main difficulties we face in dealing with problem (Pλ), is that the
presence of the singular term λu−η(z), leads to an energy (Euler) functional which
is not C1. So, we cannot apply to this variational integral the usual tools and
results of critical point theory. We need to find ways to bypass the singular term
and neutralize its effect.

3. Mathematical background and hypotheses. The study of problem (Pλ)
requires the use of spaces with variable exponent (Lebesgue and Sobolev spaces).
A comprehensive treatment of such spaces can be found in the book of Diening,
Harjulehto, Hästö and Růžička [14].

Let Ê1 =
{
r ∈ C(Ω) : 1 < min

Ω
r
}

. For any r ∈ Ê1, we define

r− = min
Ω
r and r+ = max

Ω
r.

Also, let M(Ω) =
{
u : Ω 7→ R measurable

}
. As usual, we identify two such

functions which differ only on a Lebesgue-null set.

Given r ∈ Ê1, we define the variable exponent Lebesgue space as follows:

Lr(z)(Ω) =

{
u ∈M(Ω) :

∫
Ω

|u|r(z)dz < +∞
}
.

We equip Lr(z)(Ω) with the so-called “Luxemburg norm” defined by

‖u‖r(z) = inf

{
t > 0 :

∫
Ω

∣∣∣∣u(z)

t

∣∣∣∣r(z) dz ≤ 1

}
.

Then Lr(z)(Ω) becomes a separable, reflexive (in fact, uniformly convex) Banach

space. The dual of Lr(z)(Ω) is the space Lr
′(z)(Ω) with r′ ∈ Ê1 satisfying 1

r(z) +
1

r′(z) = 1 for all z ∈ Ω. We have the following Hölder-type inequality∣∣∣∣∫
Ω

uhdz

∣∣∣∣ ≤ ( 1

r−
+

1

r′−

)
‖u‖r(z)‖h‖r′(z).

Moreover, if r1, r2 ∈ Ê1 satisfy r1(z) ≤ r2(z) for z ∈ Ω, then

Lr2(z)(Ω) ↪→ Lr1(z)(Ω) continuously.
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Using the variable exponent Lebesgue spaces, we can define the corresponding

variable exponent Sobolev spaces. So, given r ∈ Ê1 we define

W 1, r(z)(Ω) =
{
u ∈ Lr(z)(Ω) : |Du| ∈ Lr(z)(Ω)

}
(as usual, the gradient Du is understood in the weak sense).

We equip W 1, r(z)(Ω) with the following norm

‖u‖1, r(z) = ‖u‖r(z) + ‖Du‖r(z),

for all u ∈W 1, r(z)(Ω).

Suppose that r ∈ Ê1 is Lipschitz continuous. Then we can define

W
1, r(z)
0 (Ω) = C∞c (Ω)

‖·‖1, r(z)
.

The spaces W 1, r(z)(Ω) and W
1, r(z)
0 (Ω) are separable, reflexive (in fact, uniformly

convex).
The critical Sobolev exponent is defined by

r∗(z) =


Nr(z)

N − r(z)
if r(z) < N,

+∞ if N ≤ r(z).

Suppose that r, p ∈ C(Ω), 1 < r−, p+ < N and 1 ≤ p(z) ≤ r∗(z) for all z ∈ Ω(
resp., 1 ≤ p(z) < r∗(z) for all z ∈ Ω

)
. Then we have

W 1, r(z)(Ω) ↪→ Lp(z)(Ω) continuouly(
resp. W 1, r(z)(Ω) ↪→ Lp(z)(Ω) compactly

)
.

Similarly for W
1, q(z)
0 (Ω), provided that q(·) is Lipschitz continuous, that is, q ∈

C0, 1(Ω).
For r ∈ C0, 1(Ω), the Poincaré inequality holds, namely, there exists c∗ > 0 such

that

‖u‖r(z) ≤ c∗‖Du‖r(z),

for all u ∈W 1, r(z)
0 (Ω).

Therefore on W
1, p(z)
0 (Ω) we can use the equivalent norm

‖u‖1, r(z) = ‖Du‖r(z),

for all u ∈W 1, r(z)
0 (Ω).

The following modular function plays a central role in the study of these spaces.

So, for r ∈ Ê1, we define

ρr(u) =

∫
Ω

|u|r(z)dz,

for all u ∈ Lr(z)(Ω).
Also, we define

ρr(Du) = ρr(|Du|),

for all u ∈W 1, r(z)(Ω) or W
1, r(z)
0 (Ω).

Sometimes when we want to emphasize the domain in RN on which these modular
functions are defined, we write

ρΩ
r (u) and ρΩ

r (Du).
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Similarly for the norms. We write

‖u‖r(z),Ω and ‖u‖1, r(z),Ω.

The next proposition reveals the close relation between ρr(·) and the norm ‖·‖r(z).

Proposition 1. If r ∈ Ê1 and
{
u, un

}
n≥1
⊆ Lr(z)(Ω), then

(a) for all t > 0 we have ‖u‖r(z) = t if and only if ρr(
u
t ) = 1;

(b) ‖u‖r(z) < 1 ( resp. = 1, > 1 ) ⇔ ρr(u) < 1 ( resp. = 1, > 1 );

(c) ‖u‖r(z) < 1⇒ ‖u‖r+r(z) ≤ ρr(u) ≤ ‖u‖r−r(z),
‖u‖r(z) > 1⇒ ‖u‖r−r(z) ≤ ρr(u) ≤ ‖u‖r+r(z);

(d) ‖un‖r(z) → 0⇔ ρr(un)→ 0 as n→∞;
(e) ‖un‖r(z) → +∞⇔ ρr(un)→ +∞ as n→∞.

Let r ∈ Ê1 ∩ C0, 1(Ω). Then we have

W
1, r(z)
0 (Ω)∗ = W−1, r′(z)(Ω).

We define the operator Ar(z) : W
1, r(z)
0 (Ω)→W−1, r′(z)(Ω) by

〈Ar(z)(u), h〉 =

∫
Ω

|Du|r(z)−2(Du,Dh)RNdz,

for all u, h ∈W 1, r(z)
0 (Ω).

From Rădulescu and Repovš [52, p. 40] (see also Gasiński and Papageorgiou [20,
Proposition 2.5]), we have the following properties.

Proposition 2. If r ∈ Ê1 ∩ C0, 1(Ω), then the operator Ar(z) : W
1, r(z)
0 (Ω) 7→

W−1, r′(z)(Ω) is bounded (that is, it maps bounded sets to bounded sets), continuous,
strictly monotone (hence maximal monotone, too) and of type (S)+, that is,

un
w−→ u in W

1, r(z)
0 (Ω) and lim sup

n→∞
〈Ar(z)(un), un − u〉 ≤ 0w�

un → u in W
1, r(z)
0 (Ω).

Now let us introduce some basic notation which will be used in the rest of this
paper.

For every x ∈ R, we set x± = max
{
± x, 0

}
. Then given u ∈ W

1, r(z)
0 (Ω) we

define u±(z) = u(z)± for all z ∈ Ω. We have

u± ∈W 1, r(z)
0 (Ω), u = u+ − u−, |u| = u+ + u−.

If u, v ∈W 1, r(z)
0 (Ω) and u ≤ v, then we define

[u, v] =
{
h ∈W 1, r(z)

0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω
}
,

[u) =
{
h ∈W 1, r(z)

0 (Ω) : u(z) ≤ h(z) for a.a. z ∈ Ω
}
.

Let C1
0 (Ω) =

{
u ∈ C1(Ω) : u|∂Ω = 0

}
. We set

intC1
0 (Ω)[u, v] = interior in C1

0 (Ω) of [u, v].
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The space C1
0 (Ω) is an ordered Banach space, with positive (order) cone C+ ={

u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω
}

. This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣
∂Ω

< 0

}
,

with n(·) being the outward unit normal on ∂Ω.
In C1(Ω) we will also consider the following open cone

D+ =

{
u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣
∂Ω∩u−1(0)

< 0

}
.

Suppose that X is a Banach space and ϕ ∈ C1(X). We define

Kϕ =
{
u ∈ X : ϕ′(u) = 0

}
(the critical set of ϕ).

We say that ϕ(·) satisfies the “C-condition”, if the following property holds:

“Every sequence
{
un
}
n≥1
⊆ X which satisfies{

ϕ(un)
}
n≥1
⊆ R is bounded,

and
(
1 + ‖un‖X)ϕ′(un

)
→ 0 in X∗ as n→∞,

admits a strongly convergent subsequence”.

This is a compactness-type of condition on ϕ. Since the space X is not locally
compact (being in general infinite dimensional), the burden of compactness is passed
on ϕ. Using the C-condition, one can prove a deformation theorem from which fol-
low the minimax theorems for the critical values of ϕ

(
see Papageorgiou, Rădulescu

and Repovš [42, Chapter 5]
)
.

Now we will introduce our hypotheses on the data of problem (Pλ).

H0 : p, q, η ∈ C0, 1(Ω) and 0 < η(z) < 1 < q(z) ≤ q+ < p− ≤ p(z) for all z ∈ Ω;
H1 : f : Ω × R 7→ R is a Carathéodory function such that f(z, 0) = 0 for a.a.

z ∈ Ω and
(i) 0 ≤ f(z, x) ≤ a(z)

[
1 + xr(z)−1

]
for a.a. z ∈ Ω, all x ≥ 0, with a ∈ L∞(Ω),

r ∈ C(Ω), p(z) < r(z) < p∗− ≤ p∗(z) for all z ∈ Ω;

(ii) if F (z, x) =
∫ x

0
f(z, s)ds, then lim

x→+∞
F (z,x)
xp+ = +∞ uniformly for a.a.

z ∈ Ω;
(iii) there exists τ ∈ C(Ω) such that

τ(z) ∈
(

(r+ − p−) max

{
N

p−
, 1

}
, p∗+

)
for all z ∈ Ω

and 0 < β0 ≤ lim inf
x→+∞

f(z, x)x− p+F (z, x)

xτ(z)
uniformly for a.a. z ∈ Ω;

(iv) lim
x→0+

f(z,x)

xq+−1 = 0 uniformly for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω, the function

x 7→ f(z, x) + ξ̂ρx
p−1

is nondecreasing on [0, ρ].
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Remark 1. Since we are looking for positive solutions and all the above hypotheses
concern the positive semiaxis R+ = [0,+∞), without any loss of generality, we
assume that

f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. (2)

Hypotheses H1(ii), (iii) imply that

lim
x→+∞

f(z, x)

xp+−1
= +∞ uniformly for a.a. z ∈ Ω.

So, the perturbation f(z, ·) is (p+ − 1)-superlinear. Usually in the literature,
superlinear problems are treated using the AR-condition (see Ambrosetti and Rabi-
nowitz [3]). Here, we employ a less restrictive condition, namely hypothesis H1(iii),
which incorporates in our framework superlinear perturbations with “slower” growth
near +∞. For example, the function

f(z, x) = xp+−1 lnx+ xp(z)−1 for all x > 0

with p ∈ C0, 1(Ω) such that 0 ≤ 1
p−
− 1

p+
< 1

N , satisfies hypotheses H1 but fails to

satisfy the AR-condition.
For notational simplicity, in the sequel we denote by ‖·‖ the norm of the Sobolev

space W
1, p(z)
0 (Ω). Recall that by the Poincaré inequality, we have

‖u‖ = ‖Du‖p(z),

for all u ∈W 1, p(z)
0 (Ω).

Also, for every p ∈ Ê1, we write

ρp(Du) = ρp(|Du|),

for all u ∈W 1, p(z)
0 (Ω).

Given r ∈ (1,∞), we denote by û1(r) the positive, Lr-normalized (that is,

‖û1(r)‖r = 1) eigenfunction corresponding to the principal eigenvalue λ̂1(r) > 0 of

(−∆r,W
1, r
0 (Ω)). Recall that λ̂1(r) > 0 is simple and isolated, and û1(r) ∈ intC+

(see Gasiński and Papageorgiou [19, Section 6.2]).
Finally, we denote by | · |N the Lebesgue measure on RN and Ω0 ⊂⊂ Ω, means

that Ω0 ⊂ Ω.

4. Auxiliary results. As we already pointed out in the Introduction, we need to
find ways to bypass the singular term and deal with C1-functions. In this section
we prove an auxiliary result which will be helpful in this direction.

So, we consider the following anisotropic purely singular Dirichlet problem

−∆p(z)u(z)−∆q(z)u(z) = λu(z)−η(z) in Ω, u|∂Ω = 0, u > 0. (Qλ)

Proposition 3. If hypotheses H0 hold and λ > 0, then problem (Qλ) has a unique
positive solution uλ ∈ intC+.

Proof. Let h ∈ Lp(z)(Ω) and ε ∈ (0, 1]. We consider the following auxiliary Dirichlet
problem

−∆p(z)u(z)−∆q(z)u(z) =
λ

[|h(z)|+ ε]
η(z)

in Ω, u|∂Ω = 0. (3)

The operator V : W
1, p(z)
0 (Ω)→W−1,p′(z)(Ω) = W

1, p(z)
0 (Ω)

∗
defined by

V (u) = Ap(z)(u) +Aq(z)(u) for all u ∈W 1, p(z)
0 (Ω)
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is continuous, strictly monotone (hence maximal monotone, too) and coercive (see
Propositions 2 and 1). Therefore V (·) is surjective (see Corollary 2.8.7 of Papageor-
giou, Rădulescu and Repovš [42, p. 135]). Note that

0 ≤ gε(z) =
λ

[|h(z)|+ ε]
η(z)
≤ λ

εη+
(recall that ε ∈ (0, 1]),

⇒ gε ∈ L∞(Ω).

So, we can find uε ∈W 1, p(z)
0 (Ω), uε 6= 0 such that

V (uε) = gε. (4)

On account of the strict monotonicity of V (·), this solution is unique. Testing

(4) with −u−ε ∈W
1, p(z)
0 (Ω), we obtain

1

p+

[
ρp(Du

−
ε ) + ρq(Du

−
ε )
]
≤ 0,

⇒ uε ≥ 0, uε 6= 0 (see Proposition 1).

From Theorem 4.1 of Fan and Zhao [16], we have that uε ∈ L∞(Ω). Then using
Lemma 3.3 of Fukagai and Narukawa [17] (see also Lieberman [33] for isotropic
problems), we obtain that uε ∈ C+ \

{
0
}

. Invoking Proposition A2 of the Appendix
we infer that uε ∈ intC+.

We can define the solution map K̂ε : Lp(z)(Ω) 7→ Lp(z)(Ω) by setting

K̂ε(h) = ûε for every h ∈ Lp(z)(Ω).

This map is well-defined. Let
{
hn
}
n≥1
⊆ Lp(z)(Ω) and assume that hn → h in

Lp(z)(Ω) as n→∞. Let un = K̂ε(hn) for all n ∈ N and u = K̂ε(h). We have

〈Ap(z)(un), g〉+ 〈Aq(z)(un), g〉 =

∫
Ω

1

[|hn|+ ε]
η(z)

gdz, (5)

for all g ∈W 1, p(z)
0 (Ω).

Choosing g = un ∈W 1, p(z)
0 (Ω) in (5), we see that{
un
}
n≥1
⊆W 1, p(z)

0 (Ω) is bounded.

So, we may assume that

un
w−→ ũ in W

1, p(z)
0 (Ω) and un → ũ in Lp(z)(Ω). (6)

In (5) we choose g = un − ũ ∈ W 1, p(z)
0 (Ω), pass to the limit as n → ∞ and use

(6). We obtain

lim
n→∞

[
〈Ap(z)(un), un − ũ〉+ 〈Aq(z)(un), un − ũ〉

]
= 0,

⇒ lim sup
n→∞

[
〈Ap(z)(un), un − ũ〉+ 〈Aq(z)(ũ), un − ũ〉

]
≤ 0(

since Aq(z)(·) is monotone
)
,

⇒ lim sup
n→∞

〈Ap(z)(un), un − ũ〉 ≤ 0,

⇒ un → ũ in W
1, p(z)
0 (Ω) (see Proposition 2). (7)



ANISOTROPIC SINGULAR DOUBLE PHASE DIRICHLET PROBLEMS 4475

If in (5) we pass to the limit as n→∞ and use (7), then

〈Ap(z)(ũ), g〉+ 〈Aq(z)(ũ), g〉 =

∫
Ω

1

[|h|+ ε]
η(z)

dz

for all g ∈W 1, p(z)
0 (Ω),

⇒ ũ = u,

⇒ K̂ε(·) is continuous.

From the above argument we see that K̂ε

(
Lp(z)(Ω)

)
is a bounded set in

W
1, p(z)
0 (Ω). But W

1, p(z)
0 (Ω) ↪→ Lp(z)(Ω) compactly. So, by the Schauder fixed

point theorem (see Theorem 3.2.20 of Papageorgiou, Rădulescu and Repovš [42, p.

197]) we can find u∗ε ∈W
1, p(z)
0 (Ω) such that u∗ε = K̂ε(u

∗
ε). As above, the anisotropic

regularity theory and Proposition A2, imply that u∗ε ∈ intC+. Moreover, from the

monotonicity of Ap(z)(·), Aq(z)(·) and the fact that the mapping x 7→ 1

(x+ ε)
η(z)

is

decreasing on R+ we infer that this solution u∗ε ∈ intC+ is unique.

Claim. 0 < ε′ < ε⇒ u∗ε ≤ u∗ε′ .
Note that

−∆p(z)u
∗
ε′(z)−∆q(z)u

∗
ε′(z) =

λ

[u∗ε′(z) + ε′]

≥ λ

[u∗ε(z) + ε]
in Ω (recall that ε′ < ε). (8)

We consider the Carathéodory function lε : Ω× R 7→ R defined by

lε(z, x) =


λ

(x+ + ε)η(z)
if x ≤ u∗ε′(z),

λ

[u∗ε′(z) + ε]
η(z)

if u∗ε′(z) < x.
(9)

We set Lε(z, x) =
∫ x

0
lε(z, s)ds and consider the C1-functional γε : W

1, p(z)
0 (Ω) 7→

R defined by

γε(u) =

∫
Ω

1

p(z)
|Du|p(z)dz +

∫
Ω

1

q(z)
|Du|q(z)dz −

∫
Ω

lε(z, u)dz,

for all u ∈W 1, p(z)
0 (Ω).

From (9) it is clear that γε(·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find ũε ∈
W

1, p(z)
0 (Ω) such that

γε(ũε) = min
{
γε(u) : u ∈W 1, p(z)

0 (Ω)
}
. (10)

Let u ∈ intC+. Since u∗ε′ ∈ intC+, we can find t ∈ (0, 1) small such that
tu ≤ min

{
u∗ε′ , ε

}
(see Proposition 4.1.22 of Papageorgiou, Rădulescu and Repovš

[42, p. 274]). We have

γε(tu) ≤ tq−

q−

[
ρp(Du) + ρq(Du)

]
− λt

(2ε)η+
|Ω|N

(
see (9)

)
.
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Since 1 < q−, choosing t ∈ (0, 1) even smaller if necessary, we have

γε(tu) < 0,

⇒ γε(ũε) < 0 = γε(0)
(
see (10)

)
,

⇒ ũε 6= 0.

From (10) we have

γ′ε(ũε) = 0,

⇒ 〈Ap(z)(ũε), g〉+ 〈Aq(z)(ũε), g〉 =

∫
Ω

lε(z, ũε)gdz (11)

for all g ∈W 1, p(z)
0 (Ω).

In relation (11), we first choose g = −ũ−ε ∈W
1, p(z)
0 (Ω). We obtain

ũε ≥ 0, ũε 6= 0.

Also, if in (11) we choose g = (ũε − u∗ε′)+ ∈W 1, p(z)
0 (Ω), then we have

〈Ap(z)(ũε), (ũε − u∗ε′)+〉+ 〈Aq(z)(ũε), (ũε − u∗ε′)+〉

=

∫
Ω

λ

(u∗ε′ + ε)
η(z)

(ũε − u∗ε′)+dz
(
see (9)

)
≤ 〈Ap(z)(u∗ε′), (ũε − u∗ε′)+〉+ 〈Aq(z)(u∗ε′), (ũε − u∗ε′)+〉

(
see (8)

)
,

⇒ ũε ≤ u∗ε′ .

So, we have proved that

ũε ∈ [0, u∗ε′ ], ũε 6= 0,

⇒ ũε = u∗ε
(
see (9)

)
,

⇒ u∗ε ≤ u∗ε′ .

This proves the Claim.
Now let εn = 1

n and u∗n = u∗εn ∈ intC+ for all n ∈ N. We have

−∆p(z)u
∗
n(z)−∆q(z)u

∗
n(z) =

λ[
u∗n(z) + 1

n

]η(z)
in Ω for all n ∈ N.

Testing this equation with u∗n ∈W
1, p(z)
0 (Ω), we obtain

ρp(Du
∗
n) + ρq(Du

∗
n) =

∫
Ω

λu∗n(
u∗n + 1

n

)η(z)
dz ≤ λ

∫
Ω

u∗n
1−η(z)dz for all n ∈ N,

⇒
{
u∗n
}
n≥1
⊆W 1, p(z)

0 (Ω) is bounded (see Proposition 1).

So, we may assume that

u∗n
w−→ uλ in W

1, p(z)
0 (Ω) and u∗n → uλ in Lp(z)(Ω) as n→∞.
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For every n ∈ N, we have

〈Ap(z)(u∗n), u∗n − uλ〉+ 〈Aq(z)(u∗n), u∗n − uλ〉

=

∫
Ω

λ(u∗n − uλ)(
u∗n + 1

n

)η(z)
dz

≤
∫

Ω

λ(u∗n − uλ)

u∗1
η(z)

dz (see the Claim).

On account of Lemma 14.16 of Gilbarg and Trudinger [26, p. 335], we see that

d̂(·) = d(·, ∂Ω) ∈ C+. So, we can find c1 > 0 such that d̂ ≤ c1u∗1. Then we have

λ(u∗n − uλ)

u∗1
η(z)

≤ λ(u∗1)1−η(z)u
∗
n

u∗1

≤ λc2
u∗n

d̂
for some c2 > 0, all n ∈ N.

On account of the anisotropic Hardy inequality of Harjulehto, Hästö and

Koskenoja [29] and of [15], we infer that
{
u∗n
d̂

}
n∈N

is uniformly integrable.

Therefore by Vitali’s theorem, we have∫
Ω

λ(u∗n − uλ)

(u∗n)η(z)
dz → 0 as n→∞,

⇒ lim sup
n→∞

[
〈Ap(z)(u∗n), u∗n − uλ〉+ 〈Aq(z)(u∗n), u∗n − uλ〉

]
≤ 0,

⇒ u∗n → uλ in W
1, p(z)
0 (Ω) as n→∞

(
as before, see (7)). (12)

For every n ∈ N, we have

〈Ap(z)(u∗n), g〉+ 〈Aq(z)(u∗n), g〉 =

∫
Ω

λg(
u∗n + 1

n

)η(z)
dz, (13)

for all g ∈W 1, p(z)
0 (Ω).

Passing to the limit as n→∞ in (13) and using (12), we obtain

〈Ap(z)(uλ), g〉+ 〈Aq(z)(uλ), g〉 =

∫
Ω

λg

uλ
η(z)

dz, (14)

for all g ∈W 1, p(z)
0 (Ω).

It is easy to check that (u∗1)−η(z) ∈ Ls(Ω) for s > N . We know that u∗1 ≤ u∗n
for all n ∈ N (see the Claim), hence u∗1 ≤ uλ, which implies that uλ

−η(z) ∈ Ls(Ω),
s > N . Then from (14) we obtain that uλ is a positive solution of problem (Qλ).
By Proposition A1 of the Appendix we have that uλ ∈ L∞(Ω) and then from
Lemma 3.3 of Fukagai and Narukawa [17] we deduce that uλ ∈ C+ \

{
0
}

. Moreover,
Proposition A2 of the Appendix implies that uλ ∈ intC+.

Finally, we show that this solution is unique. So, suppose that vλ is another
positive solution of problem (Qλ). Again we have vλ ∈ intC+. Exploiting the
strictly monotonicity of Ap(z)(·) and of Aq(z)(·), we have

0 ≤ 〈Ap(z)(uλ)−Ap(z)(vλ), uλ − vλ〉+ 〈Aq(z)(uλ)−Aq(z)(vλ), uλ − vλ〉

=

∫
Ω

λ

[
1

uλ
η(z)
− 1

vλ
η(z)

]
(uλ − vλ)dz ≤ 0,

⇒ uλ = vλ.
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The proof is now complete.

We introduce the following two sets

L =
{
λ > 0 : problem (Pλ) has a positive solution

}
(that is, L is the set of admissible parameters),

Sλ = set of positive solutions of problem (Pλ).

In the next section we establish the structural and regularity properties of these
two sets.

5. Properties of the sets L and Sλ. We start by showing the nonemptiness of
set L, that is, there exist admissible parameters.

Proposition 4. If hypotheses H0, H1 hold, then L 6= ∅.

Proof. Let λ > 0 and let uλ ∈ intC+ be the unique positive solution of problem
(Qλ) produced in Proposition 3. We consider the Carathéodory function kλ(z, x)
defined by

kλ(z, x) =

{
λuλ(z)

−η(z)
+ f(z, x+) if x ≤ uλ(z),

λx−η(z) + f(z, x) if uλ(z) < x.
(15)

(notice u
−η(·)
λ ∈ L1(Ω), see Lazer and McKenna [32]).

We set Kλ(z, x) =
∫ x

0
kλ(z, s)ds and introduce the C1-functional ψλ : W

1, p(z)
0 (Ω)

7→ R defined by

ψλ(u) =

∫
Ω

1

p(z)
|Du|p(z)dz +

∫
Ω

1

q(z)
|Du|q(z)dz −

∫
Ω

Kλ(z, u)dz,

for all u ∈W 1, p(z)
0 (Ω).

On account of hypotheses H1(i), (iv), we see that given ε > 0, we can find cε > 0
such that

F (z, x) ≤ ε

q+
xq+ + cεx

r+ for a.a. z ∈ Ω, all x ≥ 0. (16)

Let u ∈W 1, p(z)
0 (Ω) with ‖u‖ ≤ 1. We have

ψλ(u) ≥ 1

q+
ρq(Du)−

∫
{0≤u≤uλ}

[
λuλ

−η(z)u+ F (z, u+)
]
dz

− λ

1− η+

∫
{u>uλ}

[
u1−η(z) − uλ1−η(z)

]
dz

−
∫
{u>uλ}

[F (z, u)− F (z, uλ)] dz
(
see (15)

)
≥ 1

q+
‖u‖q+ − λ

1− η+

∫
Ω

(u+)1−η(z)dz −
∫

Ω

F (z, u+)dz(
since ‖u‖ ≤ 1, F ≥ 0 and see (2)

)
≥ 1

q+
(1− εc5)‖u‖q+ − c6‖u‖r+ − λc7‖u‖1−η+

for some c5 > 0, c6 = c6(ε) > 0 and c7 > 0
(
see (16)

)
.
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Choosing ε ∈ (0, 1
c5

), we obtain

ψλ(u) ≥ c8‖u‖q+ − c6‖u‖r+ − λc7‖u‖1−η+ (17)

for some c8 > 0.
Recall that q+ < r+. So, we can find ρ ∈ (0, 1) small such that

c8ρ
q+ − c6ρr+ ≥ η̂0 > 0. (18)

Then let λ0 > 0 be small so that

λc7ρ
1−η+ ≤ 1

2
η̂0 for all λ ∈ (0, λ0]. (19)

Using (18) and (19) in (17) we obtain

ψλ(u) ≥ 1

2
η̂0 > 0 (20)

for all u ∈W 1, p(z)
0 (Ω) with ‖u‖ = ρ, all 0 < λ ≤ λ0.

Moreover, on account of hypothesis H1(ii), if ũ ∈ intC+, then

ψλ(tũ)→ −∞ as t→ +∞. (21)

Claim. For every λ > 0, the functional ψλ(·) satisfies the C-condition.

Let
{
un
}
n≥1
⊆W 1, p(z)

0 (Ω) be a sequence such that

|ψλ(un)| ≤ c9 for some c9 > 0, all n ∈ N, (22)

(1 + ‖un‖)ψ′λ(un)→ 0 in W−1, p′(z)(Ω) as n→∞. (23)

From (23) we have∣∣∣〈Ap(z)(un), g〉+ 〈Aq(z)(un), g〉 −
∫

Ω

kλ(z, un)gdz
∣∣∣ ≤ εn‖g‖

1 + ‖un‖
, (24)

for all g ∈W 1, p(z)
0 (Ω), with εn → 0+.

In (24) we choose g = −u−n ∈W
1, p(z)
0 (Ω). We obtain

ρp(Du
−
n ) + ρq(Du

−
n ) ≤ c10‖u−n ‖

for some c10 > 0, all n ∈ N
(
see (15) and (2)

)
,

⇒ {u−n }n≥1 ⊆W 1, p(z)
0 (Ω) is bounded (see Proposition 1). (25)

Next, we choose g = u+
n ∈W

1, p(z)
0 (Ω) in (24). We obtain

−ρp(Du+
n )− ρq(Du+

n ) +

∫
Ω

kλ(z, u+
n )u+

n dz ≤ εn, (26)

for all n ∈ N.
From (22) and (25), we have∫

Ω

1

p(z)
|D+

n |p(z)dz +

∫
Ω

1

q(z)
|D+

n |q(z)dz −
∫

Ω

Kλ(z, u+
n )dz ≤ c11,

⇒ 1

p+

[
ρp(Du

+
n ) + ρq(Du

+
n )−

∫
Ω

p+Kλ(z, u+
n )dz

]
≤ c11,

⇒ ρp(Du
+
n ) + ρq(Du

+
n )−

∫
Ω

p+Kλ(z, u+
n )dz ≤ p+c11, (27)

for some c11 > 0, all n ∈ N.
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We add (26) and (27) and obtain∫
Ω

[
kλ(z, u+

n )u+
n − p+Kλ(z, u+

n )
]
dz ≤ c12,

⇒
∫

Ω

[
f(z, u+

n )u+
n − p+F (z, u+

n )
]
dz ≤ c13

[
1 +

∫
Ω

(u+
n )1−η(z)dz

]
, (28)

for some c12, c13 > 0, all n ∈ N.
On account of hypotheses H1(i), (iii), we can find β1 ∈ (0, β0) and c14 > 0 such

that

β1x
τ(z) − c14 ≤ f(z, x)x− p+F (z, x) for a.a. z ∈ Ω, all x ≥ 0. (29)

We use (29) in (28) and obtain

ρτ (u+
n ) ≤ c15

[
1 + ‖u+

n ‖τ(z)

]
for some c15 > 0, all n ∈ N,

⇒
{
u+
n

}
n≥1
⊆ Lτ(z)(Ω) ↪→ Lτ−(Ω) is bounded. (30)

It is clear from hypothesis H1(iii) that without any loss of generality, we may
assume that

τ(z) < r(z) < p∗(z),

⇒ τ− < r+ < p∗−
(
see hypothesis H1(i)

)
.

Hence we can find t ∈ (0, 1) such that

1

r+
=

1− t
τ−

+
t

p∗−
. (31)

Invoking the interpolation inequality (see Proposition 2.3.17 of Papageorgiou and
Winkert [48, p. 116]), we obtain

‖u+
n ‖r+ ≤ ‖u+

n ‖1−tτ− ‖u
+
−‖tp∗− for all n ∈ N,

⇒ ‖u+
n ‖r+r+ ≤ c16‖un‖tr+ for some c16 > 0, all n ∈ N

(
see (30)

)
. (32)

From (24) with h = u+
n ∈W

1, p(z)
0 (Ω), we have

ρp(Du
+
n ) + ρq(Du

+
n ) ≤ εn +

∫
Ω

kλ(z, u+
n )u+

n dz,

⇒ ρp(Du
+
n ) + ρq(Du

+
n ) ≤ c17

[
1 +

∫
Ω

f(z, u+
n )u+

n dz

]
≤ c18

(
1 + ‖u+

n ‖r+r+
) (

see hypothesis H1(i)
)

≤ c19

(
1 + ‖un‖tr+

) (
see (32)

)
, (33)

for some c17, c18, c19 > 0, all n ∈ N.
First suppose that p∗− 6= N . We have

p∗− =
Np−
N − p−

if p− < N and p∗− = +∞ if p− > N.

From (31) we have

tr+ =
p∗−(r+ − τ−)

p∗− − τ−
if p− < N and tr+ = r+ − τ− if N < p−.

Using hypothesis H1(iii), we see that

tr+ < p−. (34)
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From (34), (33) and Proposition 1 it follows that{
u+
n

}
n≥1
⊆W 1, p(z)

0 (Ω) is bounded. (35)

Next, suppose that p− = N . Then p∗− = +∞ and we know that W
1, p(z)
0 (Ω) ↪→

Lθ(Ω) for all 1 ≤ θ <∞. Then for the above argument to work, we need to consider
θ > r+ > τ−. As before, let t ∈ (0, 1) such that

1

r+
=

1− t
τ−

+
t

θ
,

⇒ tr+ =
θ(r+ − τ−)

θ − τ−
→ r+ − τ− < p− as θ → +∞(

see hypothesis H1(iii)
)
.

So, we choose θ > r+ big such that

tr+ < p−.

Then from this and (33) again we obtain (35).

From (25) and (35), we see that
{
un
}
n≥1
⊂ W

1, p(z)
0 (Ω) is bounded and so we

may assume that

un
w−→ u in W

1, p(z)
0 (Ω) and un → u in Lr(z)(Ω). (36)

In (24) we use g = un − u ∈ W 1, p(z)
0 (Ω), pass to the limit as n → ∞ and use

(36). Then as in the proof of Proposition 3, we obtain

un → u in W
1, p(z)
0 (Ω)

(
see (7)

)
,

⇒ ψλ(·) satisfies the C-condition.

This proves the Claim.
From (20), (21) and the Claim, we see that we can apply the mountain pass

theorem. So, for every λ ∈ (0, λ0], we can find uλ ∈W 1, p(z)
0 (Ω) such that

uλ ∈ Kψλ and ψλ(0) = 0 <
1

q
η̂0 ≤ ψλ(uλ)

(
see (20)

)
. (37)

From (37) we have uλ 6= 0 and

〈Ap(z)(uλ), g〉+ 〈Aq(z)(uλ), g〉 =

∫
Ω

kλ(z, uλ)gdz, (38)

for all g ∈W 1, p(z)
0 (Ω).

In (38) we choose g = (uλ − uλ)+ ∈W 1, p(z)
0 (Ω) and have

〈Ap(z)(uλ), (uλ − uλ)+〉+ 〈Aq(z)(uλ), (uλ − uλ)+〉

=

∫
Ω

[
λuλ

−η(z) + f(z, u+
λ )
]

(uλ − uλ)+dz
(
see (15)

)
≥
∫

Ω

λuλ
−η(z)(uλ − uλ)+dz

(
see hypothesis H1(i)

)
= 〈Ap(z)(uλ), (uλ − uλ)+〉+ 〈Aq(z)(uλ), (uλ − uλ)+〉 (see Proposition 3),

⇒ uλ ≤ uλ,
⇒ uλ ∈ Sλ (see (24) and (15)) and so (0, λ0) ⊆ L 6= ∅.

The proof is now complete.
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Next, we determine the regularity properties of the elements of Sλ. This will also
lead to important structural properties of L.

We start by obtaining a lower bound for the elements of Sλ.

Proposition 5. If hypotheses H0, H1 hold, then uλ ≤ u for all u ∈ Sλ.

Proof. Let u ∈ Sλ and consider the following function defined on Ω × R̊+ = Ω ×
(0,+∞)

eλ(z, x) =

{
λx−η(z) if 0 < x ≤ u(z),

λu(z)
−η(z)

if u(z) < x.
(39)

This is a Carathéodory function on Ω×R̊+. We consider the following anisotropic,
singular double phase problem

−∆p(z)u(z)−∆q(z)u(z)− eλ
(
z, u(z)

)
in Ω, u|∂Ω = 0, u > 0. (Tλ)

As in the proof of Proposition 3, via a fixed point argument, we show that for
every λ > 0, problem (Tλ) admits a positive solution ũλ ∈ intC+.

We have

〈Ap(z)(ũλ), (ũλ − u)+〉+ 〈Aq(z)(ũλ), (ũλ − u)+〉

= λ

∫
Ω

u−η(z)(ũλ − u)+dz
(
see (39)

)
≤
∫

Ω

[
λu−η(z) + f(z, u)

]
(ũλ − u)+dz

(
see hypothesis H1(i)

)
= 〈Ap(z)(u), (ũλ − u)+〉+ 〈Aq(z)(u), (ũλ − u)+〉

(
since u ∈ Sλ

)
,

⇒ ũλ ≤ u,
⇒ ũλ = uλ

(
see (39) and Proposition 3

)
,

⇒ uλ ≤ u for all u ∈ Sλ.
The proof is now complete.

If in the above proof we replace λ > 0 by µ ∈ (0, λ) and u by uλ ∈ intC+, then
we derive the following monotonicity property of the solution map λ 7→ uλ (λ > 0)
of problem (Qλ) (see Proposition 3).

Proposition 6. If hypotheses H0 hold and 0 < µ < λ, then uµ ≤ uλ.

As a consequence of Proposition 5 and Theorem B.1 of Saoudi and Ghanmi [54]
we have the following regularity result for Sλ.

Proposition 7. If hypotheses H0, H1 hold and λ ∈ L, then Sλ ⊆ [uλ) ∩ intC+.

Proof. Let u ∈ Sλ. From Proposition 5, we have

0 ≤ uλ ≤ u,

⇒ 0 ≤ u−η(z) ≤ uλ−η(z) ∈ Ls(Ω), s > N (40)(
see the proof of Proposition 3).

Also, from Proposition A1 of the Appendix, we have

u ∈ L∞(Ω). (41)

We know that

−∆p(z)u(z)−∆q(z)u(z) = λu(z)
−η(z)

+ f
(
z, u(z)

)
in Ω. (42)
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Let g(·) = λu(·)−η(z) ∈ Ls(Ω), s > N
(
see (40)

)
and consider the following linear

Dirichlet problem

−∆v(z) = g(z) in Ω, v|∂Ω = 0. (43)

Theorem 9.15 of Gilbarg and Trudinger [26, p. 241] implies that problem (43)
has a unique solution v ∈ W 2, s(Ω). The Sobolev embedding theorem implies that
W 2, s(Ω) ↪→ C1, α(Ω) with α = 1 − N

s ∈ (0, 1) (recall that s > N). Let ξ = Dv ∈
C0, α(Ω,RN ). By (41) and hypothesis H1(i) we obtain that

θ(·) = f
(
·, u(·)

)
∈ L∞(Ω).

We rewrite (42) as follows

−div
(
|Du|p(z)−2Du+ |Du|q(z)−2Du− ξ

)
= θ in Ω, u|∂Ω = 0.

Then Lemma 3.3 of Fukagai and Narukawa [17] implies that

u ∈ C1, α
0 (Ω) = C1, α(Ω) ∩ C1

0 (Ω),

⇒ u ∈ [uλ) ∩ intC+ (see Proposition 5).

The proof is now complete.

Now we can prove a structural property for the set L. Namely, we show that L
is an interval.

Proposition 8. If hypotheses H0, H1 hold, λ ∈ L and µ ∈ (0, λ), then µ ∈ L.

Proof. Since λ ∈ L, we can find uλ ∈ Sλ ⊆ intC+ (see Proposition 7). By Proposi-
tion 6 we have uµ ≤ uλ. Therefore uµ ≤ uλ and so we can define the Carathéodory
function jµ(z, x) by

jµ(z, x) =


µuµ(z)

−η(z)
+ f

(
z, uµ(z)

)
if x < uµ(z),

µx−η(z) + f(z, x) if uµ(z) ≤ x ≤ uλ(z),

µuλ(z)
−η(z)

+ f
(
z, uλ(z)

)
if uλ(z) < x.

(44)

We set Jµ(z, x) =
∫ x

0
jµ(z, s)ds and introduce the C1-functional σµ : W

1, p(z)
0 (Ω)

7→ R defined by

σµ(u) =

∫
Ω

1

p(z)
|Du|p(z)dz +

∫
Ω

1

q(z)
|Du|q(z)dz −

∫
Ω

Jµ(z, u)dz,

for all u ∈W 1, p(z)
0 (Ω).

By (44) and Proposition 1, it is clear that σµ(·) is coercive. Also it is sequentially
weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem we can find

uµ ∈W 1, p(z)
0 (Ω) such that

σµ(uµ) = min
{
σµ(u) : u ∈W 1, p(z)

0 (Ω)
}
,

⇒ σ′µ(uµ) = 0,

⇒ 〈Ap(z)(uµ), g〉+ 〈Aq(z)(uµ), g〉 =

∫
Ω

jµ(z, uµ)gdz (45)

for all g ∈W 1, p(z)
0 (Ω).
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We test (45) with h = (uµ − uµ)+ ∈W 1, p(z)
0 (Ω). We have

〈Ap(z)(uµ), (uµ − uµ)+〉+ 〈Aq(z)(uµ), (uµ − uµ)+〉

=

∫
Ω

[
µuµ

−η(z) + f(z, uλ)
]

(uµ − uµ)+dz
(
see (44))

≥
∫

Ω

µuµ
−η(z)dz

(
see hypothesis H1(i))

= 〈Ap(z)(uµ), (uµ − uµ)+〉+ 〈Aq(z)(uµ), (uµ − uµ)+〉,
⇒ uµ ≤ uµ.

Next, we choose h = (uµ − uλ)+ ∈W 1, p(z)
0 (Ω) in (45). Then

〈Ap(z)(uµ), (uµ − uλ)+〉+ 〈Aq(z)(uµ), (uµ − uλ)+〉

=

∫
Ω

[
µuλ

−η(z) + f(z, uλ)
]

(uµ − uλ)+dz
(
see (44)

)
≤
∫

Ω

[
λuλ

−η(z) + f(z, uλ)
]

(uµ − uλ)+dz (since µ < λ)

= 〈Ap(z)(uλ), (uµ − uλ)+〉+ 〈Aq(z)(uλ), (uµ − uλ)+〉 (since uλ ∈ Sλ),

⇒ uµ ≤ uλ.

So, we have proved that

uµ ∈ [uµ, uλ]. (46)

From (46), (44) and (45) it follows that

uµ ∈ Sµ ⊆ [uµ) ∩ intC+ (see Proposition 7), hence µ ∈ L.

The proof is now complete.

A byproduct of the above proof, is the following weak monotonicity property of
the solution multifunction λ 7→ Sλ.

Proposition 9. If hypotheses H0, H1 hold, λ ∈ L, uλ ∈ Sλ and µ ∈ (0, λ), then
µ ∈ L and we can find uµ ∈ Sµ such that uµ ≤ uλ.

In fact, using Proposition A4 of the Appendix (the anisotropic strong comparison
principle), we can have a stronger version of Proposition 9.

Proposition 10. If hypotheses H0, H1 hold, λ ∈ L, uλ ∈ Sλ and µ ∈ (0, λ), then
µ ∈ L and there exists uµ ∈ Sµ such that

uλ − uµ ∈ intC+.

Proof. From Proposition 9, we already know that µ ∈ L and we can find uµ ∈ Sµ ⊆
intC+ such that

0 ≤ uµ ≤ uλ. (47)

Let ρ = ‖uλ‖∞ (recall that uλ ∈ Sλ ⊆ intC+) and let ξ̂ρ > 0 be as postulated
by hypothesis H1(v). We have

−∆p(z)uµ −∆q(z)uµ + ξ̂ρuρ
p(z)−1 − λuµ−η(z)

= f(z, uµ) + ξ̂ρuµ
p(z)−1 − (λ− µ)uµ

−η(z) (since uµ ∈ Sµ)
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≤ f(z, uµ) + ξ̂ρuµ
p(z)−1 − (λ− µ)‖uµ‖−η(z)

∞(
see (47), hypothesis H1(v) and recall that µ < λ)

≤ −∆p(z)uλ −∆q(z)uλ + ξ̂ρuλ
−η(z) in Ω.

Then Proposition A4 of the Appendix implies that

uλ − uµ ∈ intC+.

The proof is now complete.

Let λ∗ = supL.

Proposition 11. If hypotheses H0, H1 hold, then λ∗ ∈ L.

Proof. Hypotheses H1 imply that we can find λ̂ > 0 such that

λ̂

2
x−η(z) + f(z, x) ≥ xp(z)−1 for a.a. z ∈ Ω, all x ≥ 0. (48)

Let λ > λ̂ and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ intC+. Let
Ω0 ⊂⊂ Ω with C2-boundary ∂Ω0. We set

0 < m0
λ = min

Ω0

uλ ≤ 1(
recall that uλ ∈ intC+ and choose Ω0 such that d(Ω0, ∂Ω) is small

)
.

For δ ∈ (0,m0
λ), we set (m0

λ)δ = m0
λ + δ. For ρ = ‖uλ‖∞, let ξ̂ρ > 0 be as

postulated by hypothesis H1(v). We have

λ
[
(m0

λ)δ
]−η(z)

=
λ

(m0
λ + δ)

η(z)

≥ λ

(m0
λ)η(z) + δη(z)

(
since 0 < η(z) < 1 for all z ∈ Ω)

≥ λ

2

1

(m0
λ)η(z)

(recall that 0 < δ < m0
λ). (49)

We have

−∆p(z)(m
0
λ)δ −∆q(z)(m

0
λ)δ + ξ̂ρ

[
(m0

λ)δ
]p(z)−1 − λ

[
(m0

λ)δ
]−η(z)

≤ ξ̂ρ(m
0
λ)p(z)−1 + χ(δ)− λ

2

1

(m0
λ)η(z)

with χ(δ)→ 0+ as δ → 0+
(
see (49))

≤
(
ξ̂ρ + 1

)
(m0

λ)p(z)−1 + χ(δ)− λ

2

1

(m0
λ)η(z)

≤ f(z,m0
λ) + ξ̂ρ(m

0
λ)p(z)−1 − 1

2

(
λ− λ̂

) 1

(m0
λ)η(z)

+ χ(δ)
(
see (48)

)
≤ f(z,m0

λ) + ξ̂ρ(m
0
λ)p(z)−1 − 1

2

(
λ− λ̂

) 1

(m0
λ)η−

+ χ(δ) (since m0
λ ≤ 1, λ̂ < λ)

< f(z,m0
λ) + ξ̂ρ(m

0
λ)p(z)−1 for δ ∈ (0,m0

λ) small

= −∆p(z)uλ −∆q(z)uλ + ξ̂ρuλ
p(z)−1 − λuλ−η(z) in Ω0.

Invoking Proposition A4 of the Appendix, we have

(m0
λ)δ < u(z) for all z ∈ Ω0, all λ ∈ (0,m0

λ) small,

a contradiction to the definition of m0
λ. Therefore λ 6∈ L and so λ∗ ≤ λ̂ <∞.
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The proof is now complete.

So far we have that

(0, λ∗) ⊆ L ⊆ (0, λ∗].

6. Multiple positive solutions and the critical parameter λ∗. In this section
we show that for λ ∈ (0, λ∗) we have multiplicity of the positive solutions and finally
we show that the critical parameter value is admissible. In this way we complete
the proof of Theorem 2.1.

Proposition 12. If hypotheses H0, H1 hold and λ ∈ (0, λ∗), then problem (Pλ)
has at least two positive solutions

u0, û ∈ intC+, u0 6= û.

Proof. Let 0 < µ < λ < θ < λ∗. We know that µ, θ ∈ L (see Proposition 8). Also,
on account of Proposition 10, we can find uθ ∈ Sθ ⊆ intC+, u0 ∈ Sλ ⊆ intC+ and
uµ ∈ Sµ ⊆ intC+ such that

u0 − uµ ∈ intC+ and uθ − u0 ∈ intC+,

⇒ u0 ∈ intC1
0 (Ω)[uµ, uθ]. (50)

We consider the Carathéodory function iλ(z, x) defined by

iλ(z, x) =

{
λuµ(z)

−η(z)
+ f

(
z, uµ(z)

)
if x ≤ uµ(z),

λx−η(z) + f(z, x) if uµ(z) < x.
(51)

Also, we consider the following truncation of iλ(z, ·)

îλ(z, x) =

{
iλ(z, x) if x ≤ uθ(z),
iλ
(
z, uθ(z)

)
if uθ(z) < x.

(52)

This is also a Carathéodory function. We set

Iλ(z, x) =

∫ x

0

iλ(z, s)ds and Îλ(z, x) =

∫ x

0

îλ(z, s)ds

and consider the C1-functionals dλ, d̂λ : W
1, p(z)
0 (Ω) 7→ R defined by

dλ(u) =

∫
Ω

1

p(z)
|Du|p(z)dz +

∫
Ω

1

q(z)
|Du|q(z)dz −

∫
Ω

Iλ(z, u)dz,

d̂λ(u) =

∫
Ω

1

p(z)
|Du|p(z)dz +

∫
Ω

1

q(z)
|Du|q(z)dz −

∫
Ω

Îλ(z, u)dz,

for all u ∈W 1, p(z)
0 (Ω).

Using (51) and (52), we can show that

Kdλ ⊆ [uµ) ∩ intC+ and Kd̂λ
⊆ [uµ, uθ] ∩ intC+. (53)

From (53) we see that without any loss of generality, we may assume that

Kdλ is finite and Kd̂λ
=
{
u0

}
. (54)

Otherwise, on account of (53), (51) and (52), problem (Pλ) already has two
positive solutions and so we are done.

Note that

dλ
∣∣
[uµ,uθ]

= d̂λ
∣∣
[uµ,uθ]

and d′λ
∣∣
[uµ,uθ]

= d̂′λ
∣∣
[uµ,uθ]

. (55)
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It is clear that d̂λ(·) is coercive and sequentially weakly lower semicontinuous.

So, we can find ũ0 ∈W 1, p(z)
0 (Ω) such that

d̂λ(ũ0) = min
{
d̂λ(u) : u ∈W 1, p(z)

0 (Ω)
}
,

⇒ ũ0 ∈ Kd̂λ
=
{
u0

} (
see (54)

)
,

⇒ ũ0 = u0 ∈ intC+.

But then from (50) and (55), it follows that

u0 ∈ intC+ is a local C1
0 (Ω)-minimizer of dλ(·),

⇒ u0 ∈ intC+ is a local W
1, p(z)
0 (Ω)-minimizer of dλ(·) (56)

(see Proposition A3 of the Appendix).

From (54), (56) and Proposition 5.7.6 of Papageorgiou, Rădulescu and Repovš
[42, p. 449], we know that we can find ρ ∈ (0, 1) small such that

dλ(u0) < inf
{
dλ(u) : ‖u− u0‖ = ρ

}
= mλ. (57)

Given u ∈ intC+, on account of hypothesis H1(ii), we have

dλ(tu)→ −∞ as t→ +∞. (58)

Also, reasoning as in the “Claim” in the proof of Proposition 4, we show that

dλ(·) satisfies the C-condition. (59)

Then (57), (58), (59) permit the use of the mountain pass theorem. So, we can

find û ∈W 1, p(z)
0 (Ω) such that

û ∈ Kdλ ⊆ [uµ) ∩ intC+

(
see (53)

)
and mλ ≤ dλ(û)

(
see (57)

)
. (60)

From (60), (57) and (51) it follows that

û ∈ Sλ ⊆ intC+, û 6= u0.

The proof is now complete.

To complete the proof of Theorem 2.1, it remains to show that the critical param-
eter value λ∗ is admissible (that is, λ∗ ∈ L). This is done in the next proposition.

Proposition 13. If hypotheses H0, H1 hold, then λ∗ ∈ L.

Proof. Let
{
λn
}
n≥1
⊆ L such that λn ↑ λ∗. Also let µ ∈ (0, λ1). We know that

µ ∈ L and so we can find uµ ∈ Sµ ⊆ intC+. Using uµ(z), we can define iλn(z, x)
(
see

(51)
)

and then introduce dλn(·) ∈ C1
(
W

1, p(z)
0 (Ω)

)
(see the proof of Proposition

12) for every n ∈ N. From the proof of Proposition 12, we know that for every
n ∈ N, we can find un ∈ Sλn ⊆ intC+ such that

dλn(un) ≤ dλn(uµ)
(
see (55) and recall that uλn is a minimizer of d̂λn

)
≤ 1

q−
[ρp(Duµ) + ρq(Duµ)]

−
∫

Ω

[
λnuµ

−η(z) + f(z, uµ)
]
uµdz

(
see (51)

)
. (61)
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We have∫
Ω

[
λnuµ

−η(z) + f(z, uµ)
]
uµdz

≥
∫

Ω

[
µuµ

−η(z) + f(z, uµ)
]
uµdz (see µ < λ1 ≤ λn for all n ∈ N)

= ρp(Duµ) + ρq(Duµ) (since uµ ∈ Sµ). (62)

We return to (61) and use (62) to obtain

dλn(un) ≤
(

1

q−
− 1

)
ρp(Duµ) +

(
1

q−
− 1

)
ρq(Duµ) < 0, (63)

for all n ∈ N.
Moreover, for every n ∈ N, we have

〈Ap(z)(un), g〉+ 〈Aq(z)(un), g〉 =

∫
Ω

iλn(z, un)gdz, (64)

for all g ∈W 1, p(z)
0 (Ω).

From (63) and (64) and reasoning as in the “Claim” in the proof of Proposition
4, we show that

un → u∗ in W
1, p(z)
0 (Ω) as n→∞. (65)

Recall that uµ ≤ un for all that n ∈ N
(
see (53)

)
. Therefore

uµ ≤ u∗. (66)

Passing to the limit as n→∞ in (64) and using (65) and (66), we conclude that
u∗ ∈ Sλ∗ , hence λ∗ ∈ L. The proof of Proposition 13 is now complete.

So, we have proved that L = (0, λ∗] and this completes the proof of Theorem 2.1.

7. Appendix. In this appendix we prove some results about general anisotropic
boundary value problems, which are of independent interest. Our results developed
here will be useful to everyone working on anisotropic double phase problems. The
results established in this Appendix complement and improve several related results
in the literature.

7.1. A boundedness property in the anisotropic singular case. We establish
in what follows a boundedness result for the weak solutions of anisotropic singular
Dirichlet problems. We know that such a result is the essential first step to have
global C1-regularity of the solutions

(
see Fukagai and Narukawa [17, Lemma 3.3]

and Lieberman [33] for isotropic problems
)
. Next, we establish a strong maximum

principle for problems driven by the anisotropic (p, q)-Laplacian (double phase prob-
lems). In the previous sections we have remarked how important is to know that
the positive solutions belong in intC+. A remarkable outgrowth of the previous
two results is Proposition A3, which relates local Hölder and Sobolev minimizers
of a C1-functional. This proposition led to the multiplicity property established in
Proposition 12. Finally, we state in Proposition A4 a strong comparison principle
for anisotropic problems.

We start by showing that every weak solution of a general anisotropic singular
problem is essentially bounded. This property extends to the anisotropic singular
framework results obtained by Fan and Zhao [16], Giacomoni, Schindler and Takač
[25], Byun and Ko [11].
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So, we consider the following anisotropic Dirichlet problem

−∆p(z)u(z)−∆q(z)u(z) = f
(
z, u(z)

)
in Ω, u|∂Ω = 0, u ≥ 0. (a1)

The hypotheses on the exponents remain the same (see hypotheses H0), while
the hypotheses on the reaction f(z, x) are the following:

HA
1 : f : Ω× R 7→ R is a Carathéodory function such that

|f(z, x)| ≤ ĉ1
[
|x|−η(z) + |x|r(z)−1 + 1

]
with r ∈ C(Ω), 1 < r(z) < p∗(z) for all z ∈ Ω and some ĉ1 > 0.

As before, by a “(weak) solution” of problem (a1), we mean a function u ∈
W

1, p(z)
0 (Ω) such that u(z) ≥ 0 for a.a. z ∈ Ω, f

(
·, u(·)

)
g(·) ∈ L1(Ω) for all g ∈

W
1, p(z)
0 (Ω) and

〈Ap(z)(u), g〉+ 〈Aq(z)(u), g〉 =

∫
Ω

f(z, u)gdz,

for all g ∈W 1, p(z)
0 (Ω).

Our approach is based on the Moser iteration technique. In fact, we present
two proofs based on this technique. This technique was used in the past in the
context of isotropic problems; see Winkert [56], Hu and Papageorgiou [30], Marino
and Winkert [36, 37]. An alternative approach, can be based on estimates of the
Ladyzhenskaya-Uraltseva type (see [31]). This method was used by Papageorgiou
and Rădulescu [39] (for problems driven by a general isotropic nonhomogeneous
differential operator) and by Byun and Ko [11] (anisotropic problems driven by the
p(z)-Laplacian with singular terms). We mention also the work of Acerbi and Min-
gione [1], who obtained local estimates for the gradient Du(·) (Calderon-Zygmund
type estimates).

Proposition A1. If hypotheses H0, HA
1 hold and u ∈W 1, p(z)

0 (Ω) is a weak solution
of problem (a1), then u ∈ L∞(Ω).

Proof. Let ξ : R 7→ [0, 1] be a C1-cutoff function which satisfies

supp ξ ⊆ R+, ξ
∣∣
[1,+∞)

≡ 1 and ξ′(t) ≥ 1 for all t ∈ [0, 1]. (a2)

For every ε > 0, we set

ξε(t) = ξ

(
t− 1

ε

)
. (a3)

From the chain rule for Sobolev functions (see Proposition 1.4.2 of Papageorgiou,

Rădulescu and Repovš [42, p. 22]) and since W
1, p(z)
0 (Ω) ↪→W

1, p−
0 (Ω) continuously,

we have

ξε(u) ∈W 1, p(z)
0 (Ω), Dξε(u) = ξ′ε(u)Du (see (a3)).

Let y ∈W 1, p(z)
0 (Ω), y ≥ 0 and use as a test function g = ξε(u)y. We have

〈Ap(z)(u), g〉 =

∫
Ω

|Du|p(z)−2
(
Du,D(ξε(u)y)

)
RNdz

=

∫
Ω

|Du|p(z)ξ′ε(u)ydz +

∫
Ω

|Du|p(z)−2(Du,Dy)RN ξε(u)dz

≥
∫

Ω

|Du|p(z)−2(Du,Dy)RN ξε(u)dz
(
see (a2)

)
. (a4)
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Similarly, we show that

〈Aq(z)(u), g〉 =

∫
Ω

|Du|q(z)−2
(
Du,D(ξε(u)y)

)
RNdz

≥
∫

Ω

|Du|q(z)−2(Du,Dy)RN ξε(u)dz
(
see (a5)

)
. (a5)

Since u ∈W 1, p(z)
0 (Ω) is a weak solution of problem (a1), we have∫

Ω

|Du|p(z)−2(Du,Dy)RN ξε(u)dz +

∫
Ω

|Du|q(z)−2(Du,Dy)RN ξε(u)dz

≤ 〈Ap(z)(u), g〉+ 〈Aq(z)(u), g〉
(
see (a4), (a5)

)
=

∫
Ω

f(z, u)ξε(u)ydz

≤
∫

Ω

ĉ1

[
u−η(z) + ur(z)−1 + 1

]
ξε(u)ydz, (a6)

for all ε ∈ (0, 1].
Let Ω1

+ =
{
z ∈ Ω : u(z) > 1

}
. We let ε→ 0+ in (a6) and obtain∫

Ω1
+

|Du|p(z)−2(Du,Dy)RNdz +

∫
Ω1

+

|Du|q(z)−2(Du,Dy)RNdz

≤
∫

Ω1
+

ĉ2

[
ur(z)−1 + 1

]
ydz, (a7)

for some ĉ2 > 0.

For θ ≥ 1, let uθ = min
{
u, θ
}
∈ W

1, p(z)
0 (Ω). Also let λ > 0 and use as test

function y = uuθ
p+ . We obtain∫

Ω1
+

|Du|p(z)−2
(
Du,D(uuθ

λp+)
)
RNdz

=

∫
Ω1

+

|Du|p(z)uθλp+dz + λp+

∫
Ω1

+∩{u≤θ}
|Du|p(z)uθλp+dz

≥ 1

2

∫
Ω1

+∩{u>θ}
|Du|p(z)uθλp+dz + (λp+ + 1)

∫
Ω1

+∩{u≤θ}
|Du|p(z)uθλp+dz

≥ λp+ + 1

2(λ+ 1)p+

∫
Ω1

+∩{u>θ}
|Du|p(z)uθλp+dz +

λp+ + 1

2

∫
Ω1

+∩{u≤θ}
|Du|p(z)uθλp+dz

(using Bernoulli’s inequality)

≥ λp+ + 1

2(λ+ 1)p+

∫
Ω1

+

|Du|p(z)uθλp+dz

≥ λp+ + 1

2(λ+ 1)p+

∫
Ω1

+

|D
(
uuθ

λ
)
|p(z)dz (since θ ≥ 1).

Similarly we have ∫
Ω1

+

|Du|q(z)−2
(
Du,D(uuθ

λp+)
)
RNdz

≥ λp+ + 1

2(λ+ 1)p+

∫
Ω1

+

|Du|q(z)uθλp+dz ≥ 0.
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So, we can write

λp+ + 1

2(λ+ 1)p+

∫
Ω1

+

|D
(
uuθ

λ
)
|p(z)dz

≤ ĉ2

[∫
Ω1

+

uuθ
λp+dz +

∫
Ω1

+

ur(z)uθ
λp+dz

] (
see (a7)

)
≤ ĉ3

∫
Ω1

+

ur+uθ
λp+dz, (a8)

for some ĉ3 > 0.
Without any loss of generality we may assume that ‖uuθλ‖ ≥ 1. Then we have

λp+ + 1

2(λ+ 1)p+

∫
Ω1

+

|D
(
uuθ

λ
)
|p(z)dz

=
λp+ + 1

2(λ+ 1)p+
ρ

Ω1
+

p

(
D(uuθ

λ)
)

≥ λp+ + 1

2(λ+ 1)p+
‖D(uuθ

λ)‖p−
p(z),Ω1

+

≥ ĉ4
λp+ + 1

(λ+ 1)p+
‖uuθλ‖p−Lp+ (Ω1

+)
, (a9)

for some ĉ4 > 0 (using the anisotropic Sobolev embedding theorem).
We return to (a8) and use (a9). We obtain

‖uuθλ‖p−Lp+ (Ω1
+)
≤ ĉ5

∫
Ω1

+

up
∗
+uθ

λp+dz, (a10)

for some ĉ5 > 0 (recall that r+ < p∗+).
We choose λ1 > 0 so that (λ1 + 1)p+ = p∗+. Then

‖uuθλ1‖Lp+ (Ω1
+) ≤ ĉ6‖u‖

p∗+/p−
p∗+

(see (a10)),

for some ĉ6 = ĉ6(λ1, u) > 0.
We let θ → +∞ and use Fatou’s lemma to obtain

‖u‖
L(λ1+1)p+ (Ω1

+)
≤ ĉ6‖u‖

p∗+/p−
p∗+

.

Now we perform a typical bootstrap procedure. We repeat the above steps with
λk > 0, k ∈ N, k ≥ 2 such that

(λk + 1)p+ = (λk−1 + 1)p∗+.

Then for every λ > 0, we have

‖u‖
L(λ+1)p+ (Ω1

+)
≤ ĉ7 for some ĉ7 = ĉ7(λ, u) > 0,

⇒ u ∈ Lµ(Ω1
+) for every µ ∈ [1,+∞).

From (a8) we have

λp+ + 1

2(λ+ 1)p+
‖D(uuθ

λ)‖p−
Lp+ (Ω1

+)
≤ ĉ3

∫
Ω1

+

up
∗
+uθ

λp+dz.
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Using Hölder’s inequality, Fatou’s lemma (as θ → +∞) and the classical Moser
iteration process (see, for example, Gasiński and Papageorgiou [20, pp. 333-334]
and Marino and Winkert [36, pp. 164-165]), we obtain

‖u‖
L

(λk+1)p∗
+
≤ ĉ8,

for some ĉ8 > 0, all k ∈ N, with λk → +∞.
Then from Problem 3.104 of Gasiński and Papageorgiou [22, p. 477] we infer

that

u ∈ L∞(Ω1
+),

⇒ u ∈ L∞(Ω).

The proof is now complete.

Remark 2. The result can be easily extended also to anisotropic Neumann and
Robin problems. Also, we can go beyond the anisotropic two-phase equations.
Namely, we can replace the differential operator u 7→ −∆p(z)u − ∆q(z)u with a
more general operator of the form u 7→ −div a(z,Du). Indeed, a careful inspection
of the proof of Proposition A1, reveals that the result remains true if we have
the differential operator u 7→ −div a(z,Du), with a : Ω × RN 7→ RN being a
Carathéodory function satisfying

• |a(z, y)| ≤ ĉ9
[
1 + |y|p(z)−1

]
for a.a. z ∈ Ω, all y ∈ RN , for some ĉ9 > 0;

•
(
a(z, y), y

)
RN ≥ ĉ10|y|p(z) for a.a. z ∈ Ω, all y ∈ RN , for some ĉ10 > 0.

These hypotheses cover the case of the anisotropic (p, q)-Laplacian.

For the benefit of the reader, we outline an alternative proof of Proposition A1.
The argument in this proof can be used in other situations, too. We employ again
the Moser iteration process, but now this is done in a different fashion, convenient
for the anisotropic (p, q)-Laplacian.

7.1.1. Alternative proof of Proposition A1. The domain Ω ⊆ RN is relatively com-
pact, thus totally bounded. So, given any ρ > 0, we can find a finite number of
ρ-balls

{
Bk(ρ)

}m
k=1

with centres in Ω such that Ω ⊆
⋃m
k=1Bk(ρ). In what follows,

we write for simplicity Bk = Bk(ρ). We set

pk− = min
Ω∩Bk

p(·), pk+ = max
Ω∩Bk

p(·), rk+ = max
Ω∩Bk

r(·).

Consider a smooth partition of unity
{
ψk
}m
k=1

subordinated to the open cover{
Bk
}m
k=1

. So, we have

suppψk ⊆ Bk, 0 ≤ ψk ≤ 1,

m∑
k=1

ψk(z) = 1 for all z ∈ Ω. (a11)

As before for every θ ≥ 1, let uθ = min
{
u, θ
}
∈ W 1, p(z)

0 (Ω). Let λ > 0 and in

the definition of weak solution use as test function g = uθ
λ+1. We have

(λ+ 1)

[∫
Ω

|Duθ|p(z)uθλdz +

∫
Ω

|Duθ|q(z)uθλdz
]

=

∫
Ω

f(z, u)uθ
λ+1dz. (a12)
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We have

(λ+ 1)

∫
Ω

|Duθ|p(z)uθλdz

= (λ+ 1)

∫
Ω

|Duθ|p(z)uθλ
( m∑
k=1

ψk
)
dz

(
see (a11)

)
≥ (λ+ 1)

m∑
k=1

∫
Ω

|Duθ|p
k
−uθ

λψkdz − (λ+ 1)

m∑
k=1

∫
Ω

uθ
λψkdz

≥ λ+ 1(
λ
p−

+ 1
)p+ m∑

k=1

∫
Ω

∣∣∣Duθ(λ/pk−+1)
∣∣∣pk− ψkdz

− (λ+ 1)ĉ11

m∑
k=1

[∫
Ω

u(λ/pk−+1)dz

] pk−λ

(λ+pk−)rk+

≥ λ+ 1(
λ
p−

+ 1
)p+ m∑

k=1

∫
Ω

∣∣∣Duθ(λ/pk−+1)
∣∣∣pk− ψkdz

− (λ+ 1)ĉ12

[
m∑
k=1

∥∥∥u(λ/pk−+1)
∥∥∥pk−
L
rk
+ (Ω)

+ 1

]
, (a13)

for some ĉ11, ĉ12 > 0.
Also we have

(λ+ 1)

∫
Ω

|Duθ|q(z)uθλdz ≥ 0. (a14)

Moreover, using hypothesis HA
1 we have∫

Ω

f(z, u)uθ
λ+1dz

≤ ĉ1

[
uθ
−η(z) + uθ

r(z)−1 + 1
]
uθ
λ+1dz

≤ ĉ13

[
1 + ur(z)+λ

]( m∑
k=1

ψk

)
dz (see hypotheses H0)

≤ ĉ14

[
m∑
k=1

∫
Ω

u(λ/pk−+1)pk−ur
k
+−p

k
−dz + 1

]

≤ ĉ15

[
m∑
k=1

∥∥∥u(λ/pk−+1)
∥∥∥pk−
L
rk
+ (Ω)

+ 1

]
(use Hölder’s inequality), (a15)

for some ĉ13, ĉ14, ĉ15 > 0.
We return to (a12) and use (a13), (a14), (a15). We obtain

λ+ 1(
λ
p−

+ 1
)p+ m∑

k=1

∫
Ω

∣∣∣Duθ(λ/pk−+1)
∣∣∣pk− ψkdz

≤ ĉ16(λ+ 1)

[
m∑
k=1

∥∥∥u(λ/pk−+1)
∥∥∥pk−
L
rk
+ (Ω)

+ 1

]
,

for some ĉ16 > 0.
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We let θ → +∞ and use Fatou’s lemma. It follows that
m∑
k=1

∫
Ω

∣∣∣Du(λ/pk−+1)
∣∣∣pk− ψkdz ≤ ĉ16

(
1

p−
+ 1

)p+ [ m∑
k=1

∥∥∥u(λ/pk−+1)
∥∥∥pk−
L
rk
+ (Ω)

+ 1

]
.

From this relation, via the anisotropic Sobolev embedding theorem, we obtain

‖u‖
L(λ/pk−+1)pk− (Ωk)

≤ ĉ17

[
‖u‖

L(λ/pk−+1)rk− (Ωk)
+ 1

]
for some ĉ17 > 0 and with Ωk =

{
ψk = 1

}
.

Using this estimate, as in the previous proof, the Moser iteration process can be
performed and leads to the conclusion that u ∈ L∞(Ω).

7.2. Strong maximum principle for anisotropic singular double phase
problems. The main result of this subsection here extends Theorem 1.1 of Zhang
[59], which does not cover the case of the anisotropic (p, q)-Laplacian

(
see condi-

tions (5), (6) in [59]
)
. A maximum principle for isotropic double phase problems

was proved recently by Papageorgiou, Vetro and Vetro [47]. We point out that in
both the aforementioned works, no singular term is involved. So, our result here
generalizes their works in that direction, too.

Given u ∈W 1, p(z)
0 (Ω), we write that

−∆p(z)u−∆q(z)u− λu−η(z) ≥ 0 in Ω

if and only if for all g ∈W 1, p(z)
0 (Ω) with g(z) ≥ 0 for a.a. z ∈ Ω we have∫

Ω

|Du|p(z)−2(Du,Dg)RNdz +

∫
Ω

|Du|q(z)−2(Du,Dg)RNdz ≥ λ
∫

Ω

u−η(z)gdz.

Proposition A2. If hypotheses H0 hold and u ∈ C+ \
{

0
}

satisfies

−∆p(z)u−∆q(z)u− λu−η(z) ≥ 0 in Ω,

then u ∈ intC+.

Proof. First we show that u(z) > 0 for all z ∈ Ω. Arguing by contradiction,
suppose that we could find z1, z2 ∈ Ω and an open ball B2ρ(z2) ⊂⊂ Ω such that
z1 ∈ ∂B2ρ(z2), u(z1) = 0 and u|B2ρ(z2) > 0. So, 2ρ = |z1 − z2| and ρ > 0 can be
chosen small by fixing z1 and letting z2 to vary.

Let m = min
{
u(z) : |z − z2| = ρ

}
> 0. We see that

m→ 0+ and
m

ρ
→ 0+ as ρ→ 0+ (L’Hopital’s rule).

Also note that since u ∈ C+\
{

0
}

and u(z) = 0 with z1 ∈ Ω, we have Du(z1) = 0.
We consider the following annulus

D =
{
z ∈ Ω : ρ < |z − z2| < 2ρ

}
.

We see that u|D > 0. By hypotheses H0, the exponents p, q are Lipschitz
continuous and so by Rademacher’s theorem, they are differentiable for almost all
z ∈ Ω (see, for example, Theorem 5.8.12 of Papageorgiou and Winkert [48, p. 476])
So, we can define

θ = sup
{

max
{
|Dp(z)|, |Dq(z)|

}
: z ∈ D

}
<∞.
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We know that

m

ρ
→ 0+ and

p(z)− 1

p(z1)− 1
→ 1 uniformly on D as ρ→ 0+.

So, we can choose ρ ∈ (0, 1) small such that

m

ρ
< 1 and

p(z)− 1

p(z1)− 1
≥ 1

2
for all z ∈ D.

In what follows, p1 = p(z1). Also we set

τ = −kθ ln

(
m

ρ

)
+

2(N − 1)

ρ
, k > 2. (a16)

and consider the function

v(t) =
m
(
e

τt
p1−1 − 1

)
e

τt
p1−1 − 1

for all t ∈ [0, ρ].

Evidently, v ∈ C2[0, ρ] and v′, v′′ > 0 on [0, ρ], hence they are both strictly
increasing. In fact, we have

m

ρ
< v′(t) < 1 for all t ∈ [0, ρ]. (a17)

For notational simplicity and without any loss of generality, we may assume that
z2 = 0. We denote

s = |z − z2| = |z| and t = 2ρ− s.
and introduce the function w(s) defined by

w(s) = v(2ρ− s) = v(t) for all s ∈ [ρ, 2ρ].

We have w ∈ C2[ρ, 2ρ] and w′(s) = −v′(t), w′′(t) = v′′(t). For every z ∈ D,
|z| = s, we write w(z) = w(s). Then w ∈ C2(D) and we have

div
[
|Dw|p(z)−2Dw + |Dw|q(z)−2Dw

]
= [p(z)− 1] v′(t)

p(z)−1
v′′(t)− N − 1

s
v′(t)

p(z)−1

− v′(t)
p(z)−1

ln v′(t)

N∑
k=1

∂p

∂zk

zk
s

+ [q(z)− 1] v′(t)
q(z)−1

v′′(t)− N − 1

s
v′(t)

q(z)−1

− v′(t)
q(z)−1

ln v′(t)

N∑
k=1

∂q

∂zk

zk
s
. (a18)

Note that

(p1 − 1)v′′(t) = τv′(t).

Using this equality in (a18), we obtain

div
[
|Dw|p(z)−2Dw + |Dw|q(z)−2Dw

]
> v′(t)

p(z)−1

[
τ + 2θ ln

(
m

ρ

)2

− 2(N − 1)

s

]
,
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see (a17) and note that∣∣∣∣∣
m∑
k−1

∂p

∂zk

zk
s

∣∣∣∣∣ ≤ θ,
∣∣∣∣∣
m∑
k−1

∂q

∂zk

zk
s

∣∣∣∣∣ ≤ θ.
Then on account of (a16), we have

div
[
|Dw|p(z)−2Dw + |Dw|q(z)−2Dw

]
> 0 in Ω,

⇒ −∆p(z)u−∆q(z)u− λu−η(z) ≥ −∆p(z)w −∆q(z)w − λw−η(z) in D. (a19)

Note that v(0) = 0, v(ρ) = m. It follows that

w|∂D ≤ u|∂D. (a20)

From (a19), (a20) and the weak comparison principle, we obtain

w(z) ≤ u(z) for all z ∈ D.
So, we have

∂u

∂n
(z1) ≤ ∂w

∂n
(z1) = −v′(0) < 0

(
recall that u(z1) = 0

)
. (a21)

But from (a21) we infer that Du(z1) 6= 0, a contradiction. Therefore we have
proved that

u(z) > 0 for all z ∈ Ω.

Finally, let z1 ∈ ∂Ω, B2ρ(z2) ⊆ Ω. From the previous part of the proof, we know

that we can find a function w ∈ C2(D) ∩ C1(D) such that

w(z1) = 0,
∂w

∂n
(z1) < 0 and w|D ≤ u|D.

It follows that
∂u

∂n
(z1) < 0, hence u ∈ intC+.

7.3. Anisotropic principle for local minimizers. In what follows, we present
an anisotropic version of a well-known result of Brezis and Nirenberg [10], re-
lating C1 and Sobolev local minimizers of C1-functionals. Since then the result
has been extended in many different directions. We mention the works of Garcia
Azorero, Manfredi and Peral Alonso [18] (Dirichlet problems driven by the isotropic
p-Laplacian), Gasiński and Papageorgiou [21] (nonlinear Dirichlet problems with a
nonsmooth potential), Gasiński and Papageorgiou [20] (Neumann problems driven
by the anisotropic p-Laplacian) and Papageorgiou and Rădulescu [39] (Robin prob-
lems driven by an isotropic nonhomogeneous differential operator).

We consider a function g : Ω× R 7→ R of the form

g(z, x) = f(z) + g0(z, x)

with f ∈ Ls(Ω) for s > N and g0 : Ω× R 7→ R a Carathéodory function satisfying

|g0(z, x)| ≤ a(z)
[
1 + |x|r(z)−1

]
for a.a. z ∈ Ω, all x ∈ R,

with a ∈ L∞(Ω), r ∈ C(Ω) and 1 < r(z) < p∗(z) for all z ∈ Ω.

We set G(z, x) =
∫ x

0
g(x, s)ds and consider the C1-functional k : W

1, p(z)
0 (Ω) 7→ R

defined by

k(u) =

∫
Ω

1

p(z)
|Du|p(z)dz +

∫
Ω

1

q(z)
|Du|q(z)dz −

∫
Ω

G(z, u)dz,
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for all u ∈W 1, p(z)
0 (Ω).

As before, we assume that the exponent p(·) and q(·) involved in the definition
of k(·) satisfy the conditions in hypotheses H0.

Proposition A3. If u0 ∈ W 1, p(z)
0 (Ω) is a local C1

0 (Ω)-minimizer of k(·), that is,
there exists ρ1 > 0 such that

k(u0) ≤ k(u0 + h) for all h ∈ C1
0 (Ω), ‖h‖C1

0 (Ω) ≤ ρ1,

then u0 ∈ C1
0 (Ω) and it is a local W

1, p(z)
0 (Ω)-minimizer of k(·), that is, there exists

ρ2 > 0 such that

k(u0) ≤ k(u0 + h) for all h ∈W 1, p(z)
0 (Ω), ‖h‖ ≤ ρ2.

Proof. Since, by hypothesis, u0 is a local C1
0 (Ω)-minimizer of k(·), for every h ∈

C1
0 (Ω) and for t ∈ (0, 1) small, we have

0 ≤ 1

t
[k(u0 + th)− k(u0)] ,

⇒ 0 ≤ 〈k′(u0), h〉 for all h ∈ C1
0 (Ω),

⇒ 〈k′(u0), h〉 = 0 for all h ∈ C1
0 (Ω).

The density of C1
0 (Ω) in W

1, p(z)
0 (Ω) implies that

k′(u0) = 0 in W−1, p(z)(Ω) = W
1, p(z)
0 (Ω)

∗
,

⇒ 〈Ap(z)(u0), h〉+ 〈Aq(z)(u0), h〉 =

∫
Ω

g(z, u0)hdz for all h ∈W 1, p(z)
0 (Ω),

⇒ −∆p(z)u−∆q(z)u = f(z) + g0(z, u0) in Ω, u0|∂Ω = 0.

Since f ∈ Ls(Ω), s > N , reasoning as in the proof of Proposition 7, we infer that

u0 ∈ C1, α
0 (Ω) = C1, α(Ω) ∩ C1

0 (Ω) with α = 1− N

s
∈ (0, 1).

Let Bε =
{
u ∈W 1, p(z)

0 (Ω) : ‖u‖ ≤ ε
}

(ε > 0). We set

mε
0 = inf

{
k(u0 + h) : h ∈ Bε

}
. (a22)

Arguing by contradiction, suppose that the second assertion of the proposition
is not true. Then we can find ε0 > 0 such that

mε
0 < k(u0) for all 0 < ε ≤ ε0. (a23)

Let ε ∈ (0, ε0] and consider a sequence
{
vn
}
n≥1
⊆ Bε such that

k(u0 + vn) ↓ mε
0 as n→∞. (a24)

We may assume that

vn
w−→ vε in W

1, p(z)
0 (Ω) and vn → vε in Lr(z)(Ω) as n→∞. (a25)

The functional k(·) is sequentially weakly lower semicontinuous. So, from (a25)
and (a24), we have

k(u0 + vε) ≤ mε
0 and vε ∈ Bε,

⇒ k(u0 + vε) = mε
0 < k(u0)

(
see (a22), (a23)

)
,

⇒ vε 6= 0.
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By the Lagrange multiplier rule (see Theorem 5.5.9 of Papageorgiou, Rădulescu
and Repovš [42, p. 422]), we can find θε ≤ 0 such that

k′(u0 + vε) = θεAp(z)(vε),

⇒ −∆p(z)(u0 + vε)−∆q(z)(u0 + vε) = g(z, u0 + vε) + θε|Dvε|p(z)−2Dvε in Ω.
(a26)

If θε = 0, then from (a26) we infer as above that

vε ∈ C1, α
0 (Ω) with α = 1− N

s
∈ (0, 1) and ‖vε‖C1, α

0 (Ω) ≤ ĉ18, (a27)

for some ĉ18 > 0, all ε ∈ (0, ε0].
Next, suppose that −1 ≤ θε < 0. We know that

−θε∆p(z)u0 − θε∆q(z)u0 = θεg(z, u0) in Ω. (a28)

We add (a26) and (a28) and obtain

−∆p(z)(u0 + vε)−∆q(z)(u0 + vε)− θε∆p(z)u0 − θε∆q(z)u0 − θε|Dvε|p(z)−2Dvε

= g(z, u0 + vε) + θεg(z, u0) in Ω. (a29)

We consider the map aε : Ω× RN 7→ RN defined by

aε(z, y) = |y|p(z)−2y + |y|q(z)−2y + θε|y −Du0(z)|q(z)−2
(
y −Du0(z)

)
+ θε

[
|y −Dvε(z)|p(z)−2

(
y −Dvε(z) + |y −Dvε(z)|q(z)−2

(
y −Dvε(z)

)]
.

Using aε(z, y) we rewrite (a29) as follows

−div aε
(
z,D(u0 + vε)

)
= g(z, u0 + vε) + θεg(z, u0) in Ω.

From Proposition A1 (see also Theorem 4.1 of Fan and Zhao [16]) we have u0 +
vε ∈ L∞(Ω) and then by Lemma 3.3 of Fukagai and Narukawa [17], we have that
(a27) holds.

Finally, suppose that θε < −1. In this case we have

−∆p(z)(u0 + vε)−∆q(z)(u0 + vε) + ∆p(z)u0 + ∆q(z)u0 − θε|Dvε|p(z)−2Dvε

= g(z, u0 + vε)− g(z, u0) in Ω. (a30)

We introduce the map âε : Ω× RN 7→ RN defined by

âε(z, y) =
1

|θε|

[
|y +Du0(z)|p(z)−2

(
y +Du0(z)

)
+ |y +Du0(z)|q(z)−2

(
y +Du0(z)

)
− |Du0(z)|p(z)−2Du0(z)− |Du0(z)|q(z)−2Du0(z)

]
+ |y|p(z)−2y.

Then using âε(z, y), we rewrite (a30) as follows

−div âε(z,Du0 +Dvε) =
1

|θε|
[g(z, u0 + vε)− g(z, u0)] .

As before, we infer that (a27) remains true.
So, in all cases, we have the validity of (a27). Let εn ↓ 0 and let vn = vεn . From

(a27) and the compact embedding of C1, α
0 (Ω) into C1

0 (Ω), we see that by passing
to a subsequence if necessary, we may assume that

vn → v∗ in C1
0 (Ω),

⇒ ‖v∗‖ ≤ εn for all n ∈ N (recall that vn ∈ Bεn),

⇒ v∗ = 0.
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Hence we have

vn → 0 in C1
0 (Ω),

⇒ ‖vn‖C1
0 (Ω) ≤ ρ1 for all n ≥ n0,

⇒ k(u0) ≤ k(u0 + vn) = mεn
0 < k(un) for all n ≥ n0

(
see (19)

)
,

a contradiction. This proves that u0 is also a local W
1, p(z)
0 (Ω)-minimizer of k(·).

The proof is now complete.

Remark 3. In fact, the proposition remains true for the more general functional

k̂(u) =

∫
Ω

F̂ (Du)dz −
∫

Ω

G(z, u)dz for all u ∈W 1, p(z)
0 (Ω)

with F̂ (y) a function such that

F̂ (y) = F̂0(|y|) for all y ∈ RN

with F̂0(t) =
∫ t

0
f̂0(s)ds, where f̂0 ∈ C1(0,+∞) and there exists a function θ ∈

C1(0,+∞) such that

0 < ĉ ≤ θ′(t)t

θ(t)
≤ ĉ0 and ĉ19t

p(z)−1 ≤ θ(t) ≤ ĉ20

[
tp(z)−1 + tq(z)−1

]
for some ĉ19, ĉ20 > 0. For f̂(y) = f̂0(|y|)y, we have∣∣∣∇f̂(y)

∣∣∣ ≤ ĉ21
θ(|y|)
|y|

for some ĉ21 > 0, all y ∈ RN ,

(∇f̂(y)ξ, ξ)RN ≥
θ(|y|)
|y|
|ξ|2 for all y ∈ RN \

{
0
}
, all ξ ∈ RN

(see Fukagai and Narukawa [17] and Lieberman [33]).

Also, we mention that Proposition A3 is also true for the energy functionals of
Neumann and Robin problems.

Finally, we state a strong comparison principle. The proof at this result can be
obtained by combining the proofs of Proposition 2.5 of Papageorgiou, Rădulescu
and Repovš [43] and Proposition 6 of Papageorgiou, Rădulescu and Repovš [41].
We can state the following comparison result.

Proposition A4. If u, v ∈ C1(Ω), ξ̂, g1, g2 ∈ L∞(Ω), ξ̂ ≥ 0, 0 < β0 ≤ g2(z)−g1(z)
for a.a. z ∈ Ω, 0 ≤ u ≤ v in Ω and

−∆p(z)u−∆q(z)u+ ξ̂(z)up(z)−1 − λu−η(z) = g1 in Ω,

−∆p(z)v −∆q(z)v + ξ̂(z)vp(z)−1 − λv−η(z) = g2 in Ω,

then v − u ∈ D+.

The results of this Appendix provide all the basic tools for one to conduct an
in-depth study of various anisotropic boundary value problems, singular and non-
singular alike.
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[4] A. Bahrouni and V. D. Rădulescu, Singular double-phase systems with variable growth for
the Baouendi-Grushin operator, Discrete Contin. Dyn. Syst., 41 (2021), 4283–4296.
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variable growth: Nonlinear patterns and stationary waves, Nonlinearity, 32 (2019), 2481–

2495.
[7] J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos.

Trans. Roy. Soc. London Ser. A, 306 (1982), 557–611.

[8] L. Beck and G. Mingione, Lipschitz bounds and nonuniform ellipticity, Comm. Pure Appl.
Math., 73 (2020), 944–1034.

[9] D. Bonheure, P. d’Avenia and A. Pomponio, On the electrostatic Born-Infeld equation with
extended charges, Comm. Math. Phys., 346 (2016), 877–906.

[10] H. Brezis and L. Nirenberg, H1 versus C1 local minimizers, C. R. Acad. Sci. Paris, Sér. I

Math., 317 (1993), 465–472.
[11] S.-S. Byun and E. Ko, Global C1, α regularity and existence of multiple solutions for singular

p(x)-Laplacian equations, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 76,

29 pp.
[12] X. Chen, H. Jiang and G. Liu, Boundary spike of the singular limit of an energy minimizing

problem, Discrete Contin. Dyn. Syst., 40 (2020), 3253–3290.

[13] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular
nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193–222.

[14] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Vari-
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[19] L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall / CRC, Boca

Raton FL, 2006.
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