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NIKOLAOS S. PAPAGEORGIOU AND VICENŢIU D. RĂDULESCU

(Communicated by Catherine Sulem)

Abstract. We consider a nonlinear eigenvalue problem driven by the p-
Laplacian with Robin boundary condition. Using variational methods and
truncation techniques, we prove a bifurcation-type result describing the set of
positive solutions as the positive parameter λ varies. We also produce extremal
positive solutions and study their properties.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we

study the nonlinear parametric Robin problem

(Pλ)

⎧⎪⎪⎨
⎪⎪⎩

−Δpu(z) = λf(z, u(z)) in Ω,
∂u

∂np
+ β(z)u(z)p−1 = 0 on ∂Ω,

u > 0, λ > 0, 1 < p < ∞.

⎫⎪⎪⎬
⎪⎪⎭

Here Δp denotes the p-Laplacian differential operator defined by

Δpu = div (|Du|p−2Du) for all u ∈ W 1,p(Ω).

Also, ∂u
∂np

denotes the generalized normal derivative defined by

∂u

∂np
= |Du|p−2(Du, n)RN ,

with n(·) being the outward unit normal on ∂Ω.
The reaction f(z, x) is a Carathéodory function (that is, for all x ∈ R, the

mapping z �→ f(z, x) is measurable, and for almost all z ∈ Ω, the function x �→
f(z, x) is continuous) which satisfies certain asymptotic conditions as x → +∞ and
as x → 0+. These conditions incorporate as a special case the p-logistic equation
of superdiffusive type.
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Our aim in this paper is to produce a precise description of the dependence of
positive solutions on the parameter λ > 0. When f(z, x) = xτ−1−xr−1 (x � 0), we
have the classical p-logistic equation, which is important in problems of population
dynamics (mathematical biology) and in the study of reaction-diffusion processes.
Depending on the relation of the exponents 1 < τ, p, r < ∞, we distinguish different
types of logistic equations. More precisely we have:

(i) subdiffusive equations when τ < p < r;
(ii) equidiffusive equations when τ = p < r;
(iii) superdiffusive equations when p < τ < r.
Our hypotheses on the reaction term f(z, x) incorporate as a very special case

the superdiffusive p-logistic equation, and we show that it exhibits bifurcation phe-
nomena for large values of the parameter λ > 0. So, we prove that there exists a
critical parameter λ∗ > 0 such that for all λ > λ∗, problem (Pλ) admits at least
two positive solutions: for λ = λ∗ there is at least one positive solution, and for
λ ∈ (0, λ∗) problem (Pλ) has no positive solutions. We also show that for every
admissible parameter λ � λ∗, problem (Pλ) has a smallest positive solution uλ and
establish the continuity and monotonicity properties of the map λ �→ uλ. The two
main results of this paper read as follows. Hypothesis H(β) is given in the following
section, while hypotheses H and H ′ are given in sections 3 and 4 respectively.

Theorem A. Assume that hypotheses H(β) and H hold. Then there exists λ∗ > 0
such that

(i) for all λ > λ∗, problem (Pλ) admits at least two positive solutions,

u0, û ∈ intC+, u0 �= û;

(ii) for λ = λ∗, problem (Pλ∗) has at least one positive solution, u∗ ∈ intC+;
(iii) for all λ ∈ (0, λ∗), problem (Pλ) has no positive solution.

Theorem B. (a) If hypotheses H(β) and H hold and λ ∈ L = [λ∗,+∞), then
problem (Pλ) has a smallest positive solution uλ ∈ intC+.

(b) If hypotheses H(β) and H ′ hold and λ ∈ L = [λ∗,+∞), then problem
(Pλ) has a biggest positive solution uλ ∈ intC+ and the map λ �→ uλ from
L = [λ∗,+∞) into C1(Ω) is nondecreasing and right continuous.

Recently, Papageorgiou and Rădulescu [12] considered a more general class of
nonlinear parametric Robin problems and proved a bifurcation result near the ori-
gin. In [12], the differential operator is in general nonhomogeneous (the p-Laplacian
is included as a special case) and the parameter λ > 0 enters into the reaction in
general in a nonlinear fashion. Our work here partially complements that paper.
For Dirichlet p-logistic equations of superdiffusive type, we mention the works of
Dong [3] and Takeuchi [13], [14]. Extensions to equations with more general reac-
tions of superdiffusive type can be found in Gasiński and Papageorgiou [5] (Dirichlet
problems) and Cardinali, Papageorgiou and Rubbioni [2], and Papageorgiou and
Rădulescu [10] (Neumann problems).

Our approach uses variational methods based on critical point theory, coupled
with suitable truncation techniques. In the next section, for the convenience of the
reader, we recall the main mathematical tools which we will use in the sequel.
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2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X), we say that ϕ satisfies
the “Palais-Smale condition” (the “PS-condition” for short) if the following holds:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence.”

This is a compactness-type condition on the functional ϕ and leads to a deforma-
tion theorem from which one can derive the minimax theory of the critical values
of ϕ.

Throughout this work, the hypotheses on the boundary coefficient β(·) are the
following:

H(β) : β ∈ C1,α(∂Ω) with α ∈ (0, 1), β(z) � 0 for all z ∈ ∂Ω, β �= 0.

In the analysis of problem (Pλ), in addition to the Sobolev space W 1,p(Ω) we will
also use the Banach space C1(Ω). This is an ordered Banach space with positive
cone

C+ = {u ∈ C1(Ω) : u(z) � 0 for all z ∈ Ω}.
This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

By || · || we denote the norm of the Sobolev space W 1,p(Ω), given by

||u|| =
[
||u||pp + ||Du||pp

]1/p
for all u ∈ W 1,p(Ω).

On ∂Ω we consider the (N − 1)-dimensional Hausdorff measure σ(·) (the surface
measure on ∂Ω). Using this measure on ∂Ω, we can define the Lebesgue spaces
Lq(∂Ω), 1 � q � ∞. We know that there exists a unique continuous, linear map
γ0 : W 1,p(Ω) → Lp(∂Ω), known as the trace map, such that γ0(u) = u|∂Ω for
all u ∈ C1(Ω). This map is compact (more precisely, γ0 : W 1,p(Ω) → Lq(∂Ω) is

compact for any 1 � q < Np−p
N−p ). Moreover, we have

im γ0 = W
1
p′ ,p(∂Ω)

(
1

p
+

1

p′
= 1

)
and ker γ0 = W 1,p

0 (Ω).

In what follows, for the sake of notational simplicity, we drop the explicit use
of the trace map. All restrictions of Sobolev functions from W 1,p(Ω) on ∂Ω are
defined in the sense of traces.

We say that a map A : W 1,p(Ω) → W 1,p(Ω)∗ is of type (S)+ if the following
property holds:

“un
w→ u in W 1,p(Ω) and lim sup

n→∞
〈A(un), un − u〉 � 0 ⇒ un → u in W 1,p(Ω).”

In what follows, by | · |N we denote the Lebesgue measure on R
N . Also, if x ∈ R,

then x± = max{±x, 0}. Given u ∈ W 1,p(Ω), we set u±(·) = u(·)±. We know that

u± ∈ W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.
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3. Bifurcation-type theorem

In this section, we prove a bifurcation-type theorem describing in a precise way
the dependence of positive solutions of (Pλ) on the parameter λ > 0.

We introduce the following conditions on the reaction f(z, x):

H : f : Ω× R → R is a Carathéodory function such that f(z, 0) = 0 for almost
all z ∈ Ω and

(i) |f(z, x)| � a(z)(1 + xr−1) for almost all z ∈ Ω, all x � 0, with a ∈
L∞(Ω)+, p < r < p∗;

(ii) lim sup
x→+∞

f(z,x)
xp−1 � 0 uniformly for almost all z ∈ Ω;

(iii) −η0 � lim inf
x→0+

f(z,x)
xp−1 � lim sup

x→0+

f(z,x)
xp−1 � 0 uniformly for almost all z ∈ Ω,

with η0 > 0;
(iv) if F (z, x) =

∫ x

0
f(z, s)ds, then there exists ũ ∈ Lr(Ω) such that

∫
Ω
F (z, ũ)dz

> 0;

(v) there exists μ > p such that x �→ f(z,x)
xμ−1 is strictly decreasing uniformly for

almost all z ∈ Ω; that is, if x − y � η > 0, there exists cη > 0 such that

cη � f(z,y)
yμ−1 − f(z,x)

xμ−1 for almost all z ∈ Ω;

(vi) for every ρ > 0, there exists ξρ > 0 such that for almost all z ∈ Ω, the
mapping x �→ f(z, x) + ξρx

p−1 is nondecreasing on [0, ρ].

Remark 1. Since we are looking for positive solutions and the above hypotheses
concern the positive semi-axis, without any loss of generality we may assume that
f(z, x) = 0 for almost all z ∈ Ω and all x � 0.

Example 1. The following function satisfies hypotheses H above. For the sake of
simplicity, we drop the z-dependence:

f(x) = xτ−1 − xr−1 for all x � 0 and with p < τ < r < p∗.

This function is the classical superdiffusive reaction for the p-logistic equation
and was used by Dong [3] and Takeuchi [13, 14].

The reader interested in applications can use the above function f(x) as a reac-
tion term in what follows.

We introduce the following two sets:

L = {λ > 0 : problem (Pλ) admits a positive solution},
S(λ) is the set of positive solutions for problem (Pλ).

Let λ∗ = inf L � 0.

Proposition 1. If hypotheses H(β) and H hold, then for every λ > 0 we have
S(λ) ⊆ intC+ and λ∗ > 0.

Proof. Let λ ∈ L. Then we can find uλ ∈ S(λ) such that

−Δpuλ(z) = λf(z, uλ(z)) for almost all z ∈ Ω,
∂uλ

∂np
+ β(z)uλ(z)

p−1 = 0 on ∂Ω

(see Papageorgiou and Rădulescu [9]). From Winkert [15], we know that uλ ∈
L∞(Ω). So, we apply Theorem 2 of Lieberman [7] and we have uλ ∈ C+\{0}. Let
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ρ = ||uλ||∞ and let ξρ > 0 be as postulated by hypothesis H(vi). We have

−Δpuλ(z) + λξρuλ(z)
p−1 = λf(z, uλ(z)) + λξρuλ(z)

p−1 � 0

for almost all z ∈ Ω,

⇒ Δpuλ(z) � λξρuλ(z)
p−1 for almost all z ∈ Ω,

⇒ uλ ∈ intC+ (by the nonlinear maximum principle)

⇒ S(λ) ⊆ intC+.

Hypotheses H(i), (ii), (iii) imply that we can find c1 > 0 such that

(1) f(z, x) � c1x
p−1 for almost all z ∈ Ω, all x � 0.

Let λ̂1 denote the principal eigenvalue of −Δp with Robin boundary condition

(see Papageorgiou and Rădulescu [9]). We know that λ̂1 > 0. We choose λ ∈(
0, λ̂1

c1

)
. Then we have

(2) λf(z, x) � λc1x
p−1 < λ̂1x

p−1 for almost all z ∈ Ω, all x > 0 (see (1)).

Suppose that λ ∈ L. Then there exists uλ ∈ S(λ) ⊆ intC+ such that

(3) 〈A(uλ, h)〉+
∫
∂Ω

β(z)up−1
λ hdσ = λ

∫
Ω

f(z, uλ)hdz for all h ∈ W 1,p(Ω).

In (3) we choose h = uλ ∈ W 1,p(Ω) and use (2). Then

||Duλ||pp +
∫
∂Ω

β(z)up
λdσ < λ̂1||uλ||pp,

which contradicts the variational characterization of λ̂1 > 0 (see Papageorgiou and

Rădulescu [9]). Therefore λ /∈ L and so λ∗ � λ̂1

c1
> 0. �

Proposition 2. If hypotheses H(β) and H hold, then L �= ∅ and (λ∗,+∞) ⊆ L.

Proof. We introduce the Carathéodory function

(4) f̂λ(z, x) = λf(z, x) + (x+)p−1 for all (z, x) ∈ Ω× R, all λ > 0.

We set F̂λ(z, x) =
∫ x

0
f̂λ(z, s)ds, and for every λ > 0, we consider the C1-

functional ϕ̂λ : W 1,p(Ω) → R defined by

ϕ̂λ(u) =
1

p
||Du||pp+

1

p
||u||pp+

1

p

∫
∂Ω

β(z)(u+)pdσ−
∫
Ω

F̂λ(z, u)dz for all u ∈ W 1,p(Ω).

Hypotheses H(i), (ii) imply that given ε ∈
(
0, λ̂1

λ

)
, we can find c2 = c2(ε) > 0

such that

(5) F (z, x) � ε

p
xp + c2 for almost all z ∈ Ω, all x � 0.
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Then for all u ∈ W 1,p(Ω), we have

ϕ̂λ(u) �
1

p
||Du||pp +

1

p
||u−||pp +

1

p

∫
∂Ω

β(z)(u+)pdσ − λε

p
||u+||pp − λc2|Ω|N

(see (4), (5))

=
1

p

[
||Du+||pp +

∫
∂Ω

β(z)(u+)pdσ − λε||u+||pp
]
+

1

p
||u−||p − λc2|Ω|N

� c3
p
||u+||p + 1

p
||u−||p − λc2|Ω|N for some c3 > 0

(see Proposition 1 of Papageorgiou and Rădulescu [9])

� c4||u||p − λc2|Ω|N for some c4 > 0,

⇒ ϕ̂λ is coercive.

Also, using the Sobolev embedding theorem and the trace theorem, we see that
ϕ̂λ is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem we
can find u0 ∈ W 1,p(Ω) such that

(6) ϕ̂λ(u0) = inf
[
ϕ̂λ(u) : u ∈ W 1,p(Ω)

]
.

Consider the integral functional IF : Lr(Ω) → R,

IF (u) =

∫
Ω

F (z, u(z))dz for all u ∈ Lr(Ω).

From hypothesis H(i) and the dominated convergence theorem, we see that IF
is continuous. By hypothesis H(iv), we have

IF (ũ) > 0.

Exploiting the density of W 1,p(Ω) in Lr(Ω), we can find ū ∈ W 1,p(Ω) such that

(7) IF (ũ) > 0.

So, because of (7) and by choosing λ > 0 appropriately big, we have

ϕ̂λ(ū) < 0,

⇒ ϕ̂λ(u0) < 0 = ϕ̂λ(0) (see (6)); hence u0 �= 0.

From (6), we have

ϕ̂′
λ(u0) = 0,

⇒ 〈A(u0), h〉+
∫
Ω

|u0|p−2u0hdz +

∫
∂Ω

β(z)(u+
0 )

p−1hdσ =

∫
Ω

f̂λ(z, u0)hdz(8)

for all h ∈ W 1,p(Ω).

In (8) we choose h = −u−
0 ∈ W 1,p(Ω). Then

||Du−
0 ||pp + ||u−

0 ||pp = 0 (see (4)),

⇒ ||u−
0 ||p = 0, and so u0 � 0, u0 �= 0.

Therefore (8) becomes

(9) 〈A(u0), h〉+
∫
∂Ω

β(z)up−1
0 hdσ =

∫
Ω

f(z, u0)hdz for all h ∈ W 1,p(Ω) (see (4)).

From (9), reasoning as in Papageorgiou and Rădulescu [9], using the nonlinear
Green’s identity, we infer that uλ ∈ S(λ) ⊆ intC+ for λ > 0 big; hence L �= ∅.
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Next, let λ ∈ L and let ϑ > λ. Consider uλ ∈ S(λ) ⊆ intC+ and let ξ ∈ (0, 1)
such that

(10) λ = ξμ−pϑ (recall that μ > p; see hypothesis H(v)).

We set u = ξuλ ∈ intC+. We have

−Δpu(z) = ξp−1(−Δpuλ(z)) = ξp
+

λf(z, uλ(z)) (since uλ ∈ S(λ))

= ξμ−1ϑf(z, uλ(z)) for almost all z ∈ Ω (see (10))(11)

(12’)
∂u

∂np
+ β(z)up−1 = 0 on ∂Ω

Let η = (1 − ξ)min
Ω

uλ > 0 (recall uλ ∈ intC+, ξ ∈ (0, 1)). So, by virtue of

hypothesis H(v), we can find cη > 0 such that

cη � f(z, ξuλ(z))

ξμ−1uλ(z)μ−1
− f(z, uλ(z))

uλ(z)μ−1
for almost all z ∈ Ω,

⇒ cηu(z)
μ−1 + ξμ−1f(z, uλ(z)) � f(z, u(z)) for almost all z ∈ Ω.(12)

Using (12) in (11), we obtain

(13) −Δpu(z) � ϑf(z, u(z))− cηu(z)
μ−1 for almost all z ∈ Ω.

We introduce the following truncations:

ĝϑ(z, x) =

{
f̂θ(z, u(z)) if x � u(z)

f̂θ(z, x) if u(z) < x
for all (z, x) ∈ Ω× R,(14)

k̂(z, x) =

{
β(z)u(z)p−1 if x � u(z)
β(z)xp−1 if u(z) < x

for all (z, x) ∈ ∂Ω× R .(15)

Both are Carathéodory functions. We set

Ĝϑ(z, x) =

∫ x

0

ĝϑ(z, s)ds and K̂(z, x) =

∫ x

0

k̂(z, s)ds

and consider the C1-functional ψ̂ϑ : W 1,p(Ω) → R defined by

ψ̂ϑ(u) =
1

p
||Du||pp +

1

p
||u||pp +

∫
∂Ω

K̂(z, u)dσ −
∫
Ω

Ĝϑ(z, u)dz for all u ∈ W 1,p(Ω).

From (14) and (15) it is clear that the functional ψ̂ϑ has essentially the same

structure as the functional ϕ̂ϑ. In particular, ψ̂ϑ is coercive and sequentially weakly
lower semicontinuous. So, we can find uϑ ∈ W 1,p(Ω) such that

ψ̂ϑ(uϑ) = inf[ψ̂ϑ(u) : u ∈ W 1,p(Ω)],

⇒ ψ̂′
ϑ(uϑ) = 0,

⇒ 〈A(uϑ), h〉+
∫
Ω

|uϑ|p−2uϑhdz +

∫
∂Ω

k̂(z, uϑ)hdσ =

∫
Ω

ĝϑ(z, uϑ)hdz(16)

for all h ∈ W 1,p(Ω).

In (16) we choose h = (u− uϑ)
+ ∈ W 1,p(Ω) and obtain u � uϑ.
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Using (14) and (15), we see that equation (16) becomes

〈A(uϑ), h〉+
∫
∂Ω

β(z)up−1
ϑ hdσ −

∫
Ω

ϑf(z, uϑ)dz for all h ∈ W 1,p(Ω),

⇒ uϑ ∈ S(ϑ) ⊆ intC+ and so ϑ ∈ L,
⇒ (λ∗,∞) ⊆ L.

This completes the proof. �

Proposition 3. If hypotheses H(β) and H hold and ϑ > λ∗, then problem (Pϑ)
admits at least two positive solutions,

u0, û ∈ intC+, u0 �= 0.

Proof. Fix λ ∈ (λ∗, ϑ). From Proposition 2 we know that λ ∈ L, and so there
exists uλ ∈ S(λ) ⊆ intC+. Let ξ ∈ (0, 1) such that λ = ξμ−pϑ (recall μ > p;
see hypothesis H(v)). We set u = ξuλ ∈ intC+. Reasoning as in the proof of

Proposition 2 and using the truncated functional ψ̂ϑ ∈ C1(W 1,p(Ω)), we can find
u0 ∈ W 1,p(Ω) such that

u0 ∈ S(ϑ) ⊆ intC+, u � u0,(17)

ψ̂ϑ(u0) = inf[ψ̂ϑ(u) : u ∈ W 1,p(Ω)].(18)

Let ρ = ||u0||∞ and let ξρ > 0 be as postulated by hypothesis H(vi). For δ > 0,
let uδ = u+ δ ∈ intC+. We have

−Δpu
δ + ϑξρ(u

δ)p−1

� −Δpu+ ϑξρu
p−1 + γ(δ) with γ(δ) → 0+ as δ → 0+

� ϑf(z, u) + ϑξρu
p−1 − cηu

μ−1 + γ(δ) (see (13))

� ϑf(z, u0) + ϑξρu
p−1
0 − cηm

μ−1 + γ(δ) with m = min
Ω

u > 0

(see (17), hypothesis H(vi) and recall u ∈ intC+)

< ϑf(z, u0) + ϑξρu
p−1
0 for δ > 0 small (recall γ(δ) → 0+)

= −Δpu0 + ϑξρu
p−1
0 for almost all z ∈ Ω, all δ > 0 small,

⇒ uδ � u0 for δ > 0 small,

⇒ u0 − u ∈ intC+.(19)

Let

[u) = {u ∈ W 1,p(Ω) : u(z) � u(z) for almost all z ∈ Ω}.

From (14) and (15), we see that

(20) ψ̂ϑ|[u) = ϕ̂ϑ|[u) + ξ∗ϑ with ξ∗ϑ ∈ R.

From (18), (19) and (20), it follows that

u0 is a local C1(Ω)−minimizer of ϕ̂ϑ,

⇒ u0 is a local W 1,p(Ω)−minimizer of ϕ̂ϑ (see [9]).(21)
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Hypothesis H(iii) implies that given ε > 0, we can find δ = δ(ε) > 0 such that

(22) F (z, x) � ε

p
xp for almost all z ∈ Ω, all x ∈ [0, δ].

Then for all u ∈ C1(Ω) with ||u||C1(Ω) � δ, we have

ϕ̂ϑ(u) =
1

p
||Du||pp +

1

p
||u−||pp +

1

p

∫
∂Ω

β(z)(u+)pdσ −
∫
Ω

F (z, u+)dz (see (4))(23)

� 1

p

[
||Du+||pp +

∫
∂Ω

β(z)(u+)pdσ − ε||u+||pp
]
+

1

p
||u−||p (see (22))

� c5||u||p for some c5 > 0 (see [11, Proposition 4]),

⇒ u = 0 is a local C1(Ω)−minimizer of ϕ̂ϑ,

⇒ u = 0 is a local W 1,p(Ω)−minimizer of ϕ̂ϑ (see [9]).

We may assume that ϕ̂ϑ(0) = 0 � ϕ̂ϑ(u0) (the reasoning is similar if the opposite
inequality holds). Since Kϕ̂ϑ

\{0} ⊆ intC+, we may assume that Kϕ̂ϑ
is finite;

otherwise we already have an infinity of distinct positive solutions for problem
(Pλ). Because of (21) (if the opposite inequality holds, we use (23)), we can find
ρ ∈ (0, 1), small such that

(24) ϕ̂ϑ(0) = 0 � ϕϑ(u0) < inf [ϕ̂ϑ(u) : ||u− u0|| = ρ] = m̂ρ ||u0|| > ρ

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29). The func-
tional ϕ̂ϑ being coercive, it satisfies the PS-condition. This fact and (24) permit
the use of the mountain pass-theorem; see [4, p. 648]. So, we can find û ∈ W 1,p(Ω)
such that

(25) û ∈ Kϕ̂ϑ
and m̂ρ � ϕ̂ϑ(û).

From (24) and (25) it follows that û ∈ S(ϑ) ⊆ intC+, û �= u0. �

Next we examine what happens at the critical parameter λ = λ∗.

Proposition 4. If hypotheses H(β) and H hold, then λ∗ ∈ L, and so L =
[λ∗,+∞).

Proof. Let λn > λ∗ for all n � 1 and assume that λn ↓ λ∗ as n → ∞. From
Proposition 2, we can find un ∈ S(λn) ⊆ intC+ for all n � 1. We have
(26)

〈A(un), h〉+
∫
∂Ω

β(z)up−1
n hdσ = λn

∫
Ω

f(z, un)hdz for all n � 1, all h ∈ W 1,p(Ω).

In (26) we choose h = un ∈ intC+ and have

(27) ||Dun||pp +
∫
∂Ω

β(z)up
ndσ = λn

∫
Ω

f(z, un)undz for all n � 1.

Hypotheses H(i), (ii) imply that given ε > 0, we can find c6 = c6(ε) > 0 such
that

(28) f(z, x)x � εxp + c6x for almost all z ∈ Ω, all x � 0.

We use (28) in (27) and obtain

||Dun||pp +
∫
∂Ω

β(z)up
ndσ � λ1ε||un||pp + λ1c6||un||1 for all n � 1.
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Choosing ε ∈
(
0, λ̂1

λ1

)
and using Proposition 4 of Papageorgiou and Rădulescu

[11], we have

||un||p � c7||un|| for some c7 > 0, all n � 1,

⇒ {un}n�1 ⊆ W 1,p(Ω) is bounded.

So, by passing to a suitable subsequence if necessary, we may assume that

(29) un
w→ u∗ in W 1,p(Ω) and un → u∗ in Lr(Ω) and in Lp(∂Ω) as n → ∞ .

In (26) we choose h = un − u∗ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(29). Then we have

lim
n→∞

〈A(un), un − u∗〉 = 0,

⇒ un → u∗ in W 1,p(Ω) as n → ∞ (see [8, p. 314]).(30)

So, if in (26) we pass to the limit as n → ∞ and use (30), then

〈A(u∗), h〉+
∫
∂Ω

β(z)up−1
∗ hdσ = λ∗

∫
Ω

f(z, u∗)hdz for all h ∈ W 1,p(Ω),

⇒ u∗ � 0 solves problem (Pλ∗) .

If we can show that u∗ �= 0, then u∗ ∈ S(λ∗) ⊆ intC+, and so λ∗ ∈ L.
We argue indirectly. So, suppose that u∗ = 0. We set yn = un

||un|| , n � 1. Then

||yn|| = 1, yn � 0, n � 1. By passing to a subsequence if necessary, we may assume
that

(31) yn
w→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω) as n → ∞.

Hypotheses H(i), (iii) imply that

|f(z, x)| � c8(|x|p−1 + |x|r−1) for almost all z ∈ Ω, all x ∈ R, with c8 > 0,

⇒
{
f(·, un(·))
||un||p−1

}
n�1

⊆ Lp′
(Ω) is bounded

(
1

p
+

1

p′
= 1

)
.

(32)

Thus, by passing to a subsequence if necessary and using hypothesis H(iii) we
obtain

(33)
f(·, un(·))
||un||p−1

w→ gyp−1 in Lp′
(Ω) with − η0 � g(z) � 0 for almost all z ∈ Ω

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 14).
From (26) we have

(34) 〈A(yn), h〉+
∫
∂Ω

β(z)yp−1
n hdσ = λn

∫
Ω

f(z, un)

||un||p−1
hdz for all n � 1.

Choosing h = yn − y ∈ W 1,p(Ω), passing to the limit as n → ∞ and using (31)
and (33), we obtain

lim
n→∞

〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p(Ω) as n → ∞, ||y|| = 1, y � 0.(35)

So, if in (34) we pass to the limit as n → ∞ and use (35), we obtain

〈A(y), h〉+
∫
∂Ω

β(z)yp−1hdσ = λ∗
∫
Ω

gyp−1hdz for all h ∈ W 1,p(Ω).
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We choose h = y ∈ W 1,p(Ω). Then

0 < λ̂1 � ||Dy||pp +
∫
∂Ω

β(z)ypdσ = λ∗

∫
Ω

gypdz � 0 (see [9] and (33), (35)),

a contradiction.
Therefore u∗ �= 0, and so u∗ ∈ S(λ∗) ⊆ intC+; hence λ∗ ∈ L, and so L =

[λ∗,+∞). �
The proof of Theorem A is now complete.

4. Extremal positive solutions

In this section we show that for all λ � λ∗, problem (Pλ) has extremal positive
solutions, that is, a smallest positive solution uλ ∈ intC+ and a biggest positive so-
lution uλ ∈ intC+. We also investigate the monotonicity and continuity properties
of the map λ �→ uλ.

To produce the smallest positive solution uλ ∈ intC+, we do not need to intro-
duce any additional conditions on the reaction f(z, x).

Proposition 5. If hypotheses H(β) and H hold and λ ∈ L = [λ∗,∞), then problem
(Pλ) admits a smallest positive solution uλ ∈ intC+.

Proof. The set S(λ) is downward directed; that is, if u, û ∈ S(λ), then there exists
ũ ∈ S(λ) such that ũ � u, ũ � û.

Since we are looking for the smallest positive solution, thanks to the above
property of S(λ), without any loss of generality, we may assume that there exists
c9 > 0 such that

(36) ||u||∞ � c9 for all u ∈ S(λ).

From Hu and Papageorgiou [6, p. 178], we know that we can find {un}n�1 ⊆ S(λ)
such that

inf S(λ) = inf
n�1

un.

Then we have

(37) 〈A(un), h〉+
∫
∂Ω

β(z)up−1
n hdσ = λ

∫
Ω

f(z, un)hdz for all h ∈ W 1,p(Ω).

Choosing h = un ∈ W 1,p(Ω) in (37), we obtain

λ̂1||un||pp � ||Dun||pp +
∫
∂Ω

β(z)up
ndσ = λ

∫
Ω

f(z, un)undz for all n � 1,

⇒ {un}n�1 ⊆ W 1,p(Ω) is bounded (see (36) and hypothesis H(i)).

So, we may assume that

(38) un
w→ uλ in W 1,p(Ω) and un → uλ in Lp(Ω) and in Lp(∂Ω).

In (37), we choose h = un − uλ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(38). Then

lim
n→∞

〈A(un), un − uλ〉 = 0,

⇒ un → uλ in W 1,p(Ω) (see Proposition 4).

Arguing as in the proof of Proposition 4, via a contradiction argument and
using hypothesis H(iii), we show that uλ �= 0. Hence uλ ∈ S(λ) ⊆ intC+ and
uλ = inf S(λ). �
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To produce the biggest positive solution for (Pλ), we need an extra condition on
the reaction f(z, ·). So, we assume the following on the function f(z, x):

H ′ : f : Ω× R → R is a Carathéodory function such that f(z, 0) = 0 for almost
all z ∈ Ω, hypotheses H ′(i) → (vi) are the same as the corresponding hypotheses
H(i) → (vi) and

(vii) there exists w ∈ W 1,p(Ω) ∩ C(Ω) with w(z) � 0, for all z ∈ Ω, w �= 0 and

A(w) � 0 in W 1,p(Ω)∗,

f(z, x) � 0 for almost all z ∈ Ω, all x ∈ [0, w(z)],

f(z, x) � 0 for almost all z ∈ Ω, all x � w(z).

Remark 2. Evidently, f(z, w(z)) = 0 for almost all z ∈ Ω. If there exists ξ > 0
such that

f(z, x) � 0 for almost all z ∈ Ω, all x ∈ [0, ξ]

and f(z, x) � 0 for almost all z ∈ Ω, all x � ξ,

then hypothesis H(vii) is satisfied. In particular, the classical superdiffusive reac-
tion

f(x) = xτ−1 − xr−1 for all x � 0 with 1 < p < τ < r < p∗

satisfies this new condition.

Proposition 6. If hypotheses H(β) and H ′ hold and λ ∈ L, then uλ(z) � w(z)
for all z ∈ Ω and all uλ ∈ S(λ).

Proof. Let uλ ∈ S(λ) ⊆ intC+ (see Proposition 1). We have

〈A(uλ), h〉+
∫
∂Ω

β(z)up−1
λ hdσ = λ

∫
Ω

f(z, uλ)hdz for all h ∈ W 1,p(Ω).

Let h = (uλ − w)+ ∈ W 1,p(Ω). Then

〈
A(uλ), (uλ − w)+

〉
+

∫
∂Ω

β(z)up−1
λ (uλ − w)+dσ

= λ

∫
Ω

f(z, uλ)(uλ − w)+dz

�
〈
A(w), (uλ − w)+

〉
+

∫
∂Ω

β(z)wp−1(uλ − w)+dσ (see H ′(vii) and H(β)),

⇒
∫
{uλ,w}

(|Duλ|p−2Duλ − |Dw|p−2Dw,Duλ −Dw)RNdz

+

∫
∂Ω

β(z)(up−1
λ − wp−1)(uλ − w)+dσ � 0,

⇒ |{uλ > w}|N = 0, hence uλ(z) � w(z) for all z ∈ Ω.

This completes the proof. �

Remark 3. This proposition implies that w(z) > 0 for all z ∈ Ω and hypothesis
H ′(iii) becomes

lim
x→0+

f(z, x)

xp−1
= 0 uniformly for almost all z ∈ Ω.
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Using Proposition 6 and reasoning similarly as in the proof of Proposition 5, we
obtain:

Proposition 7. If hypotheses H(β) and H ′ hold and λ ∈ L, then problem (Pλ)
admits a biggest positive solution uλ ∈ intC+.

Now we investigate the properties of the map λ �→ uλ from (0,+∞) into intC+.
First we show the monotonicity of this map.

Proposition 8. If hypotheses H(β) and H ′ hold and λ, ϑ ∈ L, then uλ � uϑ.

Proof. We have

〈A(uλ, h)〉+
∫
∂Ω

β(z)up−1
λ hdσ = λ

∫
Ω

f(z, uλ)hdz

� ϑ

∫
Ω

f(z, uλ)hdz for all h ∈ W 1,p(Ω) with h � 0

(see hypothesis H ′(vii) and Proposition 6).

(39)

We introduce the following truncations-perturbations of the reaction and of the
boundary term:

ĝϑ(z, x) =

{
ϑf(z, uλ(z)) + uλ(z)

p−1 if x � uλ(z)
ϑf(z, x) + xp−1 if uλ(z) < x

for all (z, x) ∈ Ω× R,(40)

k̂(z, x) =

{
β(z)uλ(z)

p−1 if x � uλ(z)
β(z)xp−1 if uλ(z) � x

for all (z, x) ∈ ∂Ω× R.(41)

Both are Carathéodory functions. We set Ĝϑ(z, x) =
∫ x

0
ĝϑ(z, s)ds and K̂(z, x) =∫ x

0
k̂(z, s)ds and consider the C1-functional ψ̂ϑ : W 1,p(Ω) → R defined by

ψ̂ϑ(u)=
1

p
||Du||pp+

1

p
||u||pp+

∫
∂Ω

K̂(z, u(z))dσ−
∫
Ω

Ĝϑ(z, u(z))dz for all u∈W 1,p(Ω).

We know that ψ̂ϑ is coercive and sequentially weakly lower semicontinuous (see
the proof of Proposition 2). So, by the Weierstrass theorem, we can find uϑ ∈
W 1,p(Ω) such that

ψ̂ϑ(uϑ) = inf[ψϑ(u) : u ∈ W 1,p(Ω)],

⇒ ψ̂′
ϑ(uϑ) = 0,

⇒ 〈A(uϑ), h〉+
∫
Ω

|uϑ|p−2uϑhdz +

∫
∂Ω

k̂(z, uϑ)hdσ =

∫
Ω

ĝϑ(z, uϑ)hdz(42)

for all h ∈ W 1,p(Ω).
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In (42) we choose h = (uλ − uϑ)
+ ∈ W 1,p(Ω). We have

〈
A(uϑ), (uλ − uϑ)

+
〉
+

∫
Ω

|uϑ|p−2uϑ(uλ − uϑ)
+dz +

∫
∂Ω

β(z)up−1
λ (uλ − uϑ)

+dσ

=

∫
Ω

(ϑf(z, uλ) + up−1
λ )(uλ − uϑ)

+dz (see (40), (41))

�
〈
A(uλ), (uλ − uϑ)

+
〉
+

∫
Ω

up−1
λ (uλ − uϑ)

+dz +

∫
∂Ω

β(z)up−1
λ (uλ − uλ)

+dσ

(see (39))

⇒
∫
{uλ,uϑ}

(
|Duλ|p−2Duλ − |Duϑ|p−2Duϑ, Duλ −Duϑ

)
RN dz

+

∫
{uλ>uϑ}

(up−1
λ − |uϑ|p−2uϑ)(uλ − uϑ)dz � 0,

⇒ |{uλ > uϑ}|N = 0, hence uλ � uϑ.

So, (42) becomes

〈A(uϑ, h)〉+
∫
∂Ω

β(z)up−1
n hdσ =

∫
Ω

ϑf(z, uϑ)hdz for all h ∈ W 1,p(Ω)

(see (40), (41)),

⇒ uϑ ∈ S(ϑ) ⊆ intC+ .

We conclude that

uλ � uϑ � uϑ,

which completes the proof. �

Next we examine the continuity of the map λ �→ uλ from [λ∗,+∞) into C1(Ω).

Proposition 9. If hypotheses H(β) and H ′ hold, then the map λ �→ uλ is right
continuous from [λ∗,+∞) into C1(Ω).

Proof. Let {λn}n�1 ⊆ L = [λ∗,+∞) and assume that λn ↓ λ ∈ L as n → ∞.
Let un = uλn

∈ S(λn) ⊆ intC+ be the maximal positive solution of problem
(Pλn

) n � 1 (see Proposition 7). We have

−Δpun(z) = λnf(z, un(z)) for almost all z ∈ Ω,(43)

∂un

∂np
+ β(z)up−1

n = 0 on ∂Ω, n � 1

un � w for all n � 1 (see Proposition 6).(44)

Then (43), (44) and Theorem 2 of Lieberman [7] imply that there exist α ∈ (0, 1)
and c10 > 0 such that

(45) un ∈ C1,α(Ω) and ||un||C1,α(Ω) � c10 for all n � 1.

Moreover, from Proposition 8 we have that {un}n�1 is decreasing. From (45)

and the compact embedding of C1,α(Ω) into C1(Ω), we have

(46) un ↓ ũ in C1(Ω) as n → ∞.

We show that ũ = uλ. Indeed, if this is not true, then we can find z0 ∈ Ω such
that

ũ(z0) < uλ(z0).
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Because of (46), we can find n0 ∈ N such that

(47) un(z0) < uλ(z0) for all n � n0.

On the other hand, from Proposition 8 we have

(48) uλ(z0) � un(z0) for all n � 1.

Comparing (47) and (48) we reach a contradiction. This proves that ũ = uλ, and
so we have established the right continuity of the map λ �→ uλ from L = [λ∗,+∞)
into C1(Ω). �

The proof of Theorem B is now complete.
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