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We consider a parametric singular Dirichlet equation, with the singular term u−γ appear-
ing in the left-hand side. We establish the existence and nonexistence of positive solutions
as the parameter λ > 0 and the exponent γ > 0 of the singularity vary. In particular, we
show that for all λ > 0 and all γ > 1, the problem has no positive solution. Our approach
combines truncation arguments with the method of upper and lower solutions.
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω . In this paper, we study the following parametric singular
Dirichlet elliptic problem

−∆u +
1
uγ

= λf (x, u) inΩ

u = 0 on ∂Ω
u > 0 inΩ.

(Pλ)

Here γ > 0, λ > 0 and f (x, u) is a Carathéodory function (that is, for all u ∈ R the mapping x −→ f (x, u) is measurable
and for a.a. x ∈ Ω, u −→ f (x, u) is continuous).

The aim of this work is to examine the existence and nonexistence of positive solutions as λ > 0 and γ > 0 vary. By a
solution of problem (Pλ)we understand the following.
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Definition 1. A function u(·) is a solution of problem (Pλ) if u ∈ H1
0 (Ω)∩L∞(Ω), u(x) > 0 for a.a. x ∈ Ω, u−γ

∈ L1(Ω), u >
ĉd for some ĉ > 0 with d(x) = d(x, ∂Ω) and

Ω

(Du,Dh)RN dx +


Ω

h
uγ

dx = λ


Ω

f (x, u)hdx for all h ∈ H1
0 (Ω).

This problemwith a reaction (right-hand side) independent of u, was investigated byDiaz,Morel andOswald [1]. Problem
(Pλ) differs from the usual singular equations encountered in the literature, where the singular term u−γ appears in the
right-hand side. So, the problem under consideration in these cases is the following:

−∆u =
1
uγ

+ λf (x, u) inΩ
u = 0 on ∂Ω
u > 0 inΩ.

In fact, the perturbation term f (x, u) has specific form, namely f (x, u) = f (u) = uq−1 with 2 < q < 2∗. For such problems it
is proved that the equation exhibits bifurcation phenomena. Namely, there exists a critical parameter value λ∗ > 0 such that
for all λ ∈ (0, λ∗) the problem has at least two positive solutions, for λ = λ∗ there is one positive solution and for λ > λ∗

there is no positive solution. We refer to Carl and Perera [2], Ghergu and Rădulescu [3, Chapter 7], Perera and Silva [4,5], and
the references therein. In our problem (Pλ), the singular term appears in the reaction with a negative sign and this changes
the geometry of the problem.

We introduce the following conditions on the reaction f (x, u):
H: f : Ω × R → R is a Carathéodory function such that f (x, 0) = 0 for a.a. x ∈ Ω and

(i) for every ρ > 0, there exists a function aρ ∈ L∞(Ω)+ such that
f (x, u) 6 aρ(x) for a.a. x ∈ Ω, all 0 6 u 6 ρ;

(ii) there exists q ∈ (1, 2) and c1 > 0 such that
f (x, u) > c1uq−1 for a.a. x ∈ Ω, all u > 0;

(iii) lim supu→+∞

f (x,u)
uq−1 6 β < +∞ uniformly for a.a. x ∈ Ω;

(iv) for a.a. x ∈ Ω , all u > 0 and all t > 1, we have
f (x, tu) 6 tf (x, u).

In this setting we show that positive solutions exist only for large values of the positive parameter λ. More precisely, we
prove the following existence theorem.

Theorem A. If hypothesesH hold and γ ∈ (0, 1), then there existsλ∗ > 0 such that for allλ > λ∗ problem (Pλ) admits a solution
uλ ∈ H1

0 (Ω) ∩ L∞(Ω) with uλ−γ
∈ L1(Ω) and uλ > ĉd for some ĉ > 0; moreover for λ ∈ (0, λ∗) there is no positive solution.

Moreover, we investigate also the case γ > 1 and prove the following nonexistence result.

Theorem B. Assume that hypotheses H hold, λ > 0 and γ > 1. Then problem (Pλ) has no solution uλ ∈ H1
0 (Ω) ∩ L∞(Ω).

Our approach uses themethod of upper and lower solutions. For this reasonwe definewhatwemean by upper and lower
solutions for problem (Pλ).

Definition 2. (a) A function ū(·) is an upper solution for problem (Pλ), if ū ∈ H1
0 (Ω), ū(x) > 0 for a.a. x ∈ Ω and

Ω

(Dū,Dh)RN dx +


Ω

h
ūγ

dx > λ


Ω

f (x, ū)hdx for all h ∈ H1
0 (Ω), h > 0.

(b) A function u(·) is a lower solution for problem (Pλ), if u ∈ H1
0 (Ω), u(x) > 0 for a.a. x ∈ Ω and

Ω

(Du,Dh)RN dx +


Ω

h
uγ

dx 6 λ


Ω

f (x, u)hdx for all h ∈ H1
0 (Ω), h > 0.

Remark 1. Since we are looking for positive solutions and the above hypotheses concern the positive semiaxis R+ =

[0,+∞), without any loss of generality we may assume that f (x, u) = 0 for a.a. x ∈ Ω and for all u 6 0. Hypothesis H(iv)
is equivalent to saying that for a.a. x ∈ Ω the function u −→

f (x,u)
u is nonincreasing. So, the reaction f (x, ·) is sublinear.

In addition to the Sobolev space H1
0 (Ω), we will also use the Banach space

C1
0 (Ω̄) = {u ∈ C1(Ω̄) : u|∂Ω = 0}.

This is an ordered Banach space with positive cone
C+ = {u ∈ C1

0 (Ω̄) : u(x) > 0 inΩ}.

This cone has a nonempty interior given by

int C+ =


u ∈ C+ : u(x) > 0 for all x ∈ Ω,

∂u
∂n
(x) < 0 for all x ∈ ∂Ω


,

where n(·) denotes the outward unit normal on ∂Ω .



238 N.S. Papageorgiou, V.D. Rădulescu / Nonlinear Analysis 109 (2014) 236–244

For a ∈ R, we set a±
= max{0,±a}. For u ∈ H1

0 (Ω), we define u±(·) = u(·)±. We know that u±
∈ H1

0 (Ω). Also, for all
u ∈ H1

0 (Ω), we denote ∥u∥ := ∥Du∥2.

2. Auxiliary results

We start by considering the following auxiliary Dirichlet problem:
−∆u = λf (x, u) inΩ
u = 0 on ∂Ω
u > 0 inΩ.

(Auλ)

For this problem we have the following existence result valid for all values of the parameter λ > 0. To the best of our
knowledge, this result is new and of independent interest. Note that in problem (Auλ) there is no singular term and so the
regularity of the solution is easier to establish.

Proposition 3. If hypotheses H hold and λ > 0, then problem (Auλ) admits a positive solution ũλ ∈ int C+.

Proof. Let F(x, u) =
 u
0 f (x, s)ds and consider the C1-functional ψλ : H1

0 (Ω) → R defined by

ψλ(u) =
1
2
∥Du∥2

2 − λ


Ω

F(x, u(x))dx for all u ∈ H1
0 (Ω).

By virtue of hypotheses H(i) and (iii), we have

F(x, u) 6 a(x)(1 + uq) for a.a. x ∈ Ω, all u > 0, with a ∈ L∞(Ω)+.

Then for all u ∈ H1
0 (Ω), we have

ψλ(u) >
1
2
∥Du∥2

2 − c2(∥u∥q
q + 1) for some c2 > 0

>
1
2
∥u∥2

− c3∥u∥q
− c3 for some c3 > 0. (1)

Since q < 2, from (1) it follows thatψλ is coercive. Also, using the Sobolev embedding theorem, we check thatψλ is sequen-
tially weakly lower semicontinuous. So, we can find ũλ ∈ H1

0 (Ω) such that

ψλ(ũλ) = inf

ψλ(u) : u ∈ H1

0 (Ω)

. (2)

From H(ii) we have

F(x, u) >
c1
q

uq for a.a. x ∈ Ω, all u > 0.

For u ∈ int C+ and t > 0, we have

ψλ(tu) 6
t2

2
∥u∥2

−
c1tqλ
q

∥u∥q
q.

Since q < 2, choosing t ∈ (0, 1) small, we obtain

ψλ(tu) < 0
⇒ ψλ(ũλ) < 0 = ψλ(0) (see (2)), hence ũλ ≠ 0.

From (2) we have

ψ ′

λ(ũλ) = 0
⇒ A(ũλ) = λNf (ũλ),

(3)

where A ∈ L(H1
0 (Ω), H−1(Ω)) is defined by ⟨A(u), y⟩ =


Ω
(Du,Dy)RN dx for all u, y ∈ H1

0 (Ω) and Nf (·) is the Nemitsky
map corresponding to f , that is,

Nf (u)(·) = f (·, u(·)) for all u ∈ H1
0 (Ω).

On (3) we act with −ũ−

λ ∈ H1
0 (Ω) and obtain ∥Dũ−

λ ∥
2
2 = 0, hence ũλ > 0, ũλ ≠ 0. Then from (3) we have

−∆ũλ = λf (x, ũλ) for a.a. x ∈ Ω

ũλ = 0 on ∂Ω.

From this equation and using the Moser iteration technique (see Ladyzhenskaya and Uraltseva [6, p. 286] and Gasinski and
Papageorgiou [7, p. 737]), we have that ũλ ∈ L∞(Ω). Then the result of Lieberman [8, Theorem 1] (see also Gasinski and
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Papageorgiou [7, p. 738]) implies ũλ ∈ C1
0 (Ω). In fact, this regularity of the solution can also be obtained using the Agmon–

Douglis–Nirenberg theorem (see Brezis [9, p. 316]), which implies that ũλ ∈ W 2,q(Ω)∩H1
0 (Ω) (q > N) and this, by virtue of

the Sobolev embedding theorem, implies that ũλ ∈ C1,α
0 (Ω)with α ∈ (0, 1). Finally note that hypothesis H(ii) implies that

−∆u(x) > 0 for a.a. x ∈ Ω H⇒ ∆u(x) 6 0 for a.a. x ∈ Ω

H⇒ ũλ ∈ int C+ see, for example, Gasinski and Papageorgiou [7, p. 738].

This completes the proof. �

Let λ̂1 > 0 be the principal eigenvalue of (−∆, H1
0 (Ω)) and û1 the corresponding positive, L2–normalized (that is,

∥û1∥2 = 1) eigenfunction. It is well known that û1 ∈ int C+. Inspired by Diaz, Morel and Oswald [1], we introduce

u = ξ û
2

1+γ
1 ∈ int C+ (ξ > 0).

Proposition 4. Assume that hypotheses H hold. Then for λ > 0 big enough, u ∈ int C+ is a lower solution for problem (Pλ)
Proof. We have

−∆u +
1
uγ

= −div(Du)+
1
uγ

= −
2ξ

1 + γ
div


û

1−γ
1+γ
1 Dû1


+

1
uγ

= −
2ξ

1 + γ
û

1−γ
1+γ
1 div(Dû1)−

2ξ
1 + γ


Dû

1−γ
1+γ
1 ,Dû1


RN

+
1
uγ

=
2ξ λ̂1
1 + γ

û
2

1+γ
1 −

2ξ(1 − γ )

(1 + γ )2

1

û
2γ
1+γ
1

∥Dû1∥
2
RN +

1
uγ
. (4)

Recall that û1 ∈ int C+. So, given ϵ > 0, we can find δ = δ(ϵ) > 0 such that

∥Dû1(x)∥RN > ϵ for all x ∈ Ωc
δ = {x ∈ Ω : d(x, ∂Ω) < δ} (5)

û1(x) > ϵ for all x ∈ Ω\Ωc
δ . (6)

Let ξ̂1 = max


(1+γ )2

2(1−γ )ϵ2

1/γ
, 1


. Then for ξ > ξ̂1 we have

1
uγ

=
1

ξ γ û
2γ
1+γ
1

6
2(1 − γ )ϵ2

(1 + γ )2

1

û
2γ
1+γ
1

6
2(1 − γ )ξ∥Dû1(x)∥2

RN

(1 + γ )2û1(x)
2γ
1+γ

for all x ∈ Ωc
δ (see (5) and recall ξ > ξ̂1 > 1). (7)

Let ξ̂2 = max


1+γ
λ̂ϵ2

1/γ
, 1


. Then for ξ > ξ̂2 we have

1
uγ

=
1

ξ γ û
2γ
1+γ
1

6
λ̂1ϵ

2

1 + γ

1

û
2γ
1+γ
1

6
λ̂1ξ û

2
1+γ
1

1 + γ
for all x ∈ Ω\Ωc

δ (see (6) and recall ξ > ξ̂2 > 1). (8)

We return to (4) and use (7) and (6). We see that if ξ̂ = max{ξ̂1, ξ̂2} and ξ > ξ̂ , then

−∆u +
1
uγ

6
3

1 + γ
u for a.a. x ∈ Ω. (9)

Let λ∗

1 =
3ξ2−q

(1+γ )c1
∥û1∥

2(2−q)
1+γ

∞ . Then for λ > λ∗

1 we have

λf (x, u) > λc1uq−1 (see H(iii)) >
3ξ 2−q

1 + γ
û

2(2−q)
1+γ

1 ξ q−1û
2(q−1)
1+γ

1 =
3ξ

1 + γ
û

2
1+γ
1 =

3
1 + γ

u

> −∆u +
1
uγ

a.e. inΩ (see (9)). (10)

This shows that u ∈ int C+ is a lower solution for problem (Pλ) for λ > λ∗

1 , in the sense of Definition 2 (in fact, u is a strong
lower solution for problem (Pλ) for λ > λ1). This concludes the proof. �
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Next we will produce an upper solution ūλ ∈ int C+ such that u 6 ūλ.

Proposition 5. If hypotheses H hold and λ > 0, then problem (Pλ) admits an upper solution ūλ ∈ int C+ such that u 6 ūλ.

Proof. Let ũλ ∈ int C+ be as in Proposition 3. By virtue of Lemma 3.3 of Filippakis, Kristaly and Papageorgiou [10], we can
find µ > 1 such that

u 6 µũλ = ūλ ∈ int C+.

Then we have
−∆ūλ = µ(−∆ũλ) = λµf (x, ũλ) (see Proposition 3)

> λf (x, µũλ) (see H(iv))
= λf (x, ūλ) a.e. inΩ,

⇒ −∆ūλ +
1
ūγλ

> λf (x, ūλ) a.e. inΩ,

⇒ ūλ ∈ int C+ is an upper solution for (Pλ) and u 6 ūλ.

This completes the proof. �

3. Case γ ∈ (0, 1)

We point out that all the results in this section remain valid if the nonlinear term u−γ in the left-hand side of problem
(Pλ) is replaced with g ∈ C0,α

[0,∞) (0 < α < 1) such that g > 0, g is nonincreasing on (0,∞)with lims→0+ g(s) = +∞

and there exist C0, η0 > 0 and γ ∈ (0, 1) such that

g(s) 6 C0s−γ for all s ∈ (0, η0). (11)

As proved by Bénilan, Brezis and Crandall in [11], condition (11) is equivalent to the property of compact support, that is, for
any h ∈ L1(RN)with compact support, there is a unique u ∈ W 1,1(RN)with compact support such that∆u ∈ L1(RN) and

−∆u + g(u) = h a.e. in RN .

The proof of the next proposition uses suitable truncation and comparison techniques going back to the seminal work of
Rabinowitz [12]. However, the presence of the singular term−u−γ makes our case a little more complicated and some facts
such as the differentiability and the weak lower semicontinuity of the truncated energy functional are not immediate and
require a more careful analysis (see Claims 1 and 2 of the proof which follows).

Proposition 6. Assume that hypotheses H hold, λ > λ∗

1 and γ ∈ (0, 1). Then problem (Pλ) admits a solution uλ.

Proof. We consider the ordered pair {ūλ, u} of upper–lower solutions of (Pλ) (λ > λ∗

1) produced in Section 2. Then we
introduce the following Carathéodory function

gλ(x, u) =

λf (x, u(x))− u(x)−γ if u < u(x)
λf (x, u)− u−γ if u(x) 6 u 6 ūλ(x)
λf (x, ūλ(x))− ūλ(x)−γ if ūλ(x) < u.

(12)

Since ūλ ∈ int C+ (see Proposition 5), we can find ϑ > 0 small such that

ϑ û1 6 ūλ (see Filippakis, Kristaly and Papageorgiou [10]),
⇒ ū−γ

λ 6 (ϑ û1)
−γ

⇒
1
ūγλ

∈ L1(Ω) (see Lazer and McKenna [13] and recall γ ∈ (0, 1)).

Since u ∈ int C+, in a similar fashion we can show that 1
uγ ∈ L1(Ω).

Therefore we can define the primitive Gλ(x, u) =
 u
0 gλ(x, s)ds and consider the functional σλ : H1

0 (Ω) → R defined by

σλ(u) =
1
2
∥Du∥2

2 −


Ω

Gλ(x, u(x))dx for all u ∈ H1
0 (Ω).

Claim 1. We have σλ ∈ C1(H1
0 (Ω)) and σ

′

λ(u) = A(u)− Ngλ(u) for all u ∈ H1
0 (Ω).

We introduce the following Carathéodory function

hλ(x, u) =

u(x)−γ if u < u(x)
u−γ if u(x) 6 u 6 ūλ(x)
ūλ(x)−γ if ūλ(x) < u.

(13)
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From the previous considerations, we know that we can define the primitive Hλ(x, u) =
 u
0 hλ(x, s)ds and then consider the

functional ξλ : H1
0 (Ω) → R defined by

ξλ(u) =


Ω

Hλ(x, u(x))dx for all u ∈ H1
0 (Ω).

Evidently, to prove Claim 1, it suffices to show that ξλ ∈ C1(H1
0 (Ω)). To this end, let u, v ∈ H1

0 (Ω) and t ∈ R. We have

1
t
[ξλ(u + tv)− ξλ(u)] =


Ω

 1

0
hλ(x, u + ϑtv)dϑ


v dx. (14)

Note that 1

0
hλ(x, u + ϑtv)dϑ −→ hλ(x, v) for a.a. x ∈ Ω, as t → 0+.

From (13) we have 1

0
hλ(x, u + ϑtv)dϑ 6 2u(x)−γ +

 1

0
|u + ϑtv|−γ dϑ (since u 6 ūλ)

6 2u(x)−γ + c4 max
06ϑ61

|u + ϑtv|−γχ{u6u+ϑtv6ūλ}(x) a.e inΩ

for some c4 > 0 (see Takac [14, p. 233])

6 c5u(x)−γ for a.a. x ∈ Ω and some c5 > 0. (15)

Since u ∈ int C+, we can find c6 > 0 such that

u(x) > c6d(x) for all x ∈ Ω̄.

Then from (15) we have

v

 1

0
h(x, u + ϑtv)dϑ 6 c7d−γ v for a.a. x ∈ Ω and some c7 > 0. (16)

We have

c7d−γ v = c7d1−γ
v

d
6 c8

v

d
for a.a. x ∈ Ω and some c8 > 0 (recall that γ ∈ (0, 1)).

Since y ∈ H1
0 (Ω), using Hardy’s inequality (see Brezis [9, p. 313]), we deduce that

c7d−γ v ∈ L2(Ω).

Because of (16), we can apply the dominated convergence theorem and then from (14) we have
ξ ′

λ(u), v

=


Ω

hλ(x, u)v dx for all v ∈ H1
0 (Ω),

⇒ ξ ′

λ(u) = Nhλ(u) and so ξλ ∈ C1(H1
0 (Ω)).

Therefore we conclude that σλ ∈ C1(H1
0 (Ω)) and σ

′

λ(u) = A(u)− Ngλ(u) for all u ∈ H1
0 (Ω). This proves Claim 1.

Claim 2. The functional σλ is sequentially weakly lower semicontinuous.
Again, if we can show the sequential weak continuity of the functional ξλ, we would have proved Claim 2. To this end,

let un
w
→ u in H1

0 (Ω). By passing to a subsequence if necessary, we deduce that

un → u in L2(Ω) and un(x) → u(x) a.e. inΩ.

Hence we have

hλ(x, un(x)) → hλ(x, u(x)) a.e. inΩ.

Note that

0 6 hλ(x, un(x)) 6
1

u(x)γ
for a.a. x ∈ Ω, all n > 1 and u−γ

∈ L1(Ω).

So, by virtue of the dominated convergence theorem, we have

ξλ(un) → ξλ(u).

This proves Claim 2.
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It is clear from (12) that σλ is coercive. Therefore by theWeierstrass theorem (see Claim 2), we can find uλ ∈ H1
0 (Ω) such

that

σλ(uλ) = inf

σλ(u) : u ∈ H1

0 (Ω)


⇒ σ ′

λ(uλ) = 0 (see Claim 1)
⇒ A(uλ) = Ngλ(uλ) (see Claim 1).

(17)

On (17) first we act with (uλ − ūλ)+ ∈ H1
0 (Ω). We have

A(uλ), (uλ − ūλ)+


=


Ω

gλ(x, uλ)(uλ − ūλ)+dx

=


Ω


f (x, ūλ)− ū−γ

λ


(uλ − ūλ)+dx (see (12))

6

A(ūλ), (uλ − ūλ)+


(see Proposition 5 and Definition 2)

⇒ ∥D(uλ − ūλ)+∥
2
2 6 0, hence uλ 6 ūλ.

In a similar fashion, acting on (17) with (u − uλ)+ ∈ H1
0 (Ω) and using Proposition 4, we show that u 6 uλ. So, we have

proved that

uλ ∈ [u, ūλ] =

u ∈ H1

0 (Ω) : u(x) 6 u(x) 6 ūλ(x) a.e. inΩ

. (18)

Then from (12), (17) and (18) it follows that

−∆uλ(x)+ uλ(x)−γ = λf (x, uλ(x)) a.e. inΩ, uλ|∂Ω = 0,
⇒ uλ ∈ H1

0 (Ω) ∩ L∞(Ω) is a solution of (Pλ).

The proof is now complete. �

We introduce the following sets

L = {λ > 0 : problem (Pλ) admits a solution}

S(λ) = the solution set of (Pλ).

We set λ∗ = infL. From the previous analysis, we have

L ≠ Ø and λ∗ 6 λ1
∗ (see Proposition 6).

The proof of the next proposition is essentially based on the well-known principle that between an ordered pair of upper
and lower solutions, we can locate a solution of our problem. The presence of the singular term can be accommodated using
the ideas and facts from the proof of Proposition 6. For the convenience of the reader we include the detailed proof.

Proposition 7. Assume that hypotheses H hold, λ ∈ L and λ < µ. Then µ ∈ L.

Proof. Since λ ∈ L, we can find uλ ∈ S(λ) ⊆ H1
0 (Ω) ∩ L∞(Ω). We have

−∆uλ + uλ−γ
= λf (x, uλ) 6 µf (x, uλ) inΩ (since λ < µ and f > 0)

⇒ uλ is a lower solution for problem (Pµ) (see Definition 2).

Let ũµ ∈ int C+ be the solution of problem (Auµ) produced in Proposition 3.We can find t > 1 big such that uλ 6 tũµ = u∗
µ ∈

int C+ (see Filippakis, Kristaly and Papageorgiou [10]). We have

−∆uµ∗
= −t∆ũµ = µtf (x, ũµ) > µf (x, tũµ) = µf (x, u∗

µ) inΩ (see H(iv)),
⇒ −∆u∗

µ + (u∗

µ)
−γ > µf (x, u∗

µ) inΩ,
⇒ u∗

µ ∈ int C+is an upper solution for problem (Pµ) (see Definition 2).

We introduce the following Carathéodory function

gµ(x, u) =


µf (x, uλ(x))− uλ(x)−γ if u < uλ(x)
µf (x, u)− x−γ if uλ(x) 6 u 6 u∗

µ(x)
µf (x, u∗

µ(x))− u∗

µ(x)
−γ if u∗

µ(x) < u.
(19)

Note that u∗
µ(x)

−γ 6 uλ(x)−γ and so u∗
µ(·)

−γ
∈ L1(Ω) (see Definition 1). So, we can introduce Gµ(x, u) =

 u
0 gµ(x, s)ds and

consider the functional ψµ : H1
0 (Ω) → R defined by

ψµ(u) =
1
2
∥Du∥2

2 −


Ω

Gµ(x, u(x))dx for all u ∈ H1
0 (Ω).
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Since uλ > ĉd (recall uλ ∈ S(λ) and see Definition 1), reasoning as in the proof of Proposition 6 (see Claims 1 and 2), we
show thatψµ ∈ C1(H1

0 (Ω)) and that it is sequentially weakly lower semicontinuous. Moreover, from (19) it is clear thatψµ
is coercive. So, by the Weierstrass theorem, we can find uµ ∈ H1

0 (Ω) such that

ψµ(uµ) = inf {ψµ(u) : u ∈ H1
0 (Ω)},

⇒ ψ ′

µ(uµ) = 0,
⇒ A(uµ) = Ngµ(uµ).

(20)

Acting on (20) first with (uµ − u∗
µ)

+
∈ H1

0 (Ω) and then (uλ − uµ)+ ∈ H1
0 (Ω), as in the proof of the Proposition 6, we show

that

uµ ∈ [uλ, u∗

µ] =

u ∈ H1

0 (Ω) : uλ(x) 6 u(x) 6 u∗

µ(x) a.e inΩ

,

⇒ uµ ∈ S(µ) ⊆ H1
0 (Ω) ∩ L∞(Ω) and so µ ∈ L.

This completes the proof. �

Proposition 8. If hypotheses H hold, then λ∗ > 0.
Proof. We argue by contradiction. So, suppose that λ∗ = 0. Let {λn}n>1 ⊆ Lwith λn ↓ 0 and un ∈ S(λn) ⊆ H1

0 (Ω)∩L∞(Ω).
From the proof of Proposition 7, it is clear that we can choose {un}n>1 to be decreasing. We have

A(un)+ un
−γ

= λnNf (un), (21)

⇒ ∥Dun∥
2
2 6 λn


Ω

f (x, un)undx 6 λ1


Ω

f (x, un)undx for all n > 1. (22)

Since un 6 u1 for all n > 1, from (22) and hypothesis H(i) it follows that {un}n>1 ⊆ H1
0 (Ω) is bounded. So, we may assume

that

un
w
→ u in H1

0 (Ω) and un → u in L2(Ω) and a.e. inΩ. (23)

Suppose that u = 0. From (21) we have
Ω

un
−γ

|y|dx 6 M1∥y∥ for all y ∈ C1
c (Ω), all n > 1 and some M1 > 0.

On the other hand by Fatou’s lemma and since we have assumed that u = 0, we have
Ω

un
−γ

|y|dx → +∞, a contradiction.

Therefore u ≠ 0. From (21) we see that for every y ∈ H1
0 (Ω) ∩ L∞(Ω), y > 0, we have

Ω

(Dun,Dy)RN dx +


Ω

un
−γ y dx = λn


Ω

f (x, un)y dx for all n > 1. (24)

Note that
Ω

(Dun,Dy)RN dx →


Ω

(Du,Dy)RN dx (see (23)),

and λn

Ω
f (x, un)y dx → 0 (recall that λn ↓ 0, un 6 u1 for all n > 1 and see H(i)).

Also, from Fatou’s lemma we have

lim inf
n→∞


Ω

un
−γ y dx >


Ω

u−γ y dx (see (23)).

So, if in (24) we pass to the limit as n → ∞, then
Ω

(Du,Dy)RN dx +


Ω

u−γ y dx 6 0 for all y ∈ H1
0 (Ω) ∩ L∞(Ω), y > 0.

Let y = u ∈ H1
0 (Ω) ∩ L∞(Ω), u > 0. Then

∥Du∥2
2 +


Ω

u1−γ dx 6 0,

⇒ u = 0, a contradiction.

This proves that λ∗ > 0. �

So, summarizing the situation for problem (Pλ), we can formulate the following theorem describing the existence and
nonexistence of solutions for problem (Pλ) as λ > 0 varies.
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Theorem 9. If hypothesesH hold and γ ∈ (0, 1), then there exists λ∗ > 0 such that for all λ > λ∗ problem (Pλ) admits a solution
uλ ∈ H1

0 (Ω) ∩ L∞(Ω) with uλ−γ
∈ L1(Ω) and uλ > ĉd for some ĉ > 0; moreover for λ ∈ (0, λ∗) there is no positive solution.

Remark 2. It is open what happens in the critical case λ = λ∗. It will be interesting to study what happens to the positive
solution as λ ↓ λ∗. Such a study will provide information on what happens in the critical case λ = λ∗.

4. Case γ > 1

It is natural to ask what happens when γ > 1. The next theorem settles this case.

Theorem 10. Assume that hypotheses H hold, λ > 0 and γ > 1. Then problem (Pλ) has no solution uλ ∈ H1
0 (Ω) ∩ L∞(Ω).

Proof. Arguing indirectly, suppose that for some λ > 0, we can find a solution uλ ∈ H1
0 (Ω)∩L∞(Ω) for problem (Pλ). From

Lazer and McKenna [13] we know that
Ω

uλ−γ dx = +∞ (recall γ > 1). (25)

For every integer k > 1, we consider the open set

Ωk =


x ∈ Ω : d(x, ∂Ω) >

1
k


.

We have

−∆uλ = λf (x, uλ)− uλ−γ in Ω̄k and λf (·, uλ(·))− uλ(·)−γ ∈ L∞(Ω),

⇒


Ωk

(−∆uλ)dx +


Ωk

uλ−γ dx = λ


Ωk

f (x, uλ)dx 6 λ


Ω

f (x, uλ)dx (since f > 0, see H(ii)). (26)

By Green’s identity (see Gasinski and Papageorgiou [7, p. 209]), we have
Ωk

∆uλdx =


∂Ωk

∂uλ
∂n

dσ . (27)

Using (27) in (26), we obtain

−


∂Ωk

∂uλ
∂n

dσ +


Ωk

uλ−γ dx 6 M2 for someM2 > 0 (see H(i)).

Let k → ∞. We obtain

−


∂Ω

∂uλ
∂n

dσ +


Ω

uλ−γ dx 6 M2,

which contradicts (25). This proves the theorem. �
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