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Abstract. We consider a nonlinear logistic-type equation, driven by a
nonhomogeneous differential operator and with a reaction of superdiffu-
sive type. Using variational methods together with suitable truncation
and comparison techniques, we prove a bifurcation-type result describ-
ing the set of positive solutions as the parameter λ > 0 varies.
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1. Introduction

The aim of this paper is to study the existence, nonexistence and multiplicity
of positive solutions for the following nonlinear, nonhomogeneous logistic-
type equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− div a(Du(z)) + β(z)u(z)p−1 = λh(z, u(z))− f(z, u(z)) in Ω,

∂u

∂n
= 0 on ∂Ω,

u > 0 in Ω,

(Pλ)

where λ > 0.
In this problem, Ω ⊆ R

N is a bounded domain with a C2-boundary
∂Ω and a : RN → R

N is a strictly monotone, continuous map that satisfies
certain other regularity and growth conditions. The precise assumptions on
the map a(·) are given in hypotheses H(a) below and incorporate as special
cases important differential operators such as the p-Laplacian (1 < p < ∞),
the (p, q)-Laplacian (1 < q < p < ∞) and the generalized p-mean curvature
operator. In problem (Pλ), λ > 0 is a parameter and in the reaction the two
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terms h(z, x) and f(z, x) are both Carathéodory functions (that is, for all
x ∈ R, z �→ h(z, x) and f(z, x) are measurable and for a.a. z ∈ Ω, x �→ h(z, x)
and f(z, x) are continuous). The asymptotic growth conditions on h(z, ·) and
f(z, ·) correspond to a reaction of superdiffusive type. Indeed, a very special
case of our problem is when the differential operator is the p-Laplacian (that
is, a(y) = ‖y‖p−2y for all y ∈ R

N with 1 < p <∞) and the reaction is

x �→ λxq−1 − xr−1 for all x � 0,

where

1 < p < q < r < p∗ =

⎧⎨
⎩

Np

N − p
if p < N,

+∞ if N � p.

This is the superdiffusive p-logistic equation. Such equations, in contrast to
the subdiffusive and equidiffusive cases, exhibit bifurcation phenomena as the
parameter λ > 0 varies. Finally, we mention that β ∈ L∞(Ω), β(z) � 0 a.e.
in Ω, β �= 0 and in the boundary condition n(·) denotes the outward unit
normal on ∂Ω.

Under natural assumptions (as described in hypotheses H(a), H0, H1

and H2 below), the main result in this paper (see Theorem 3.12) establishes
that there exists λ∗ > 0 such that

(a) for all λ > λ∗ problem (Pλ) has at least two positive solutions;
(b) for λ = λ∗ problem (Pλ∗) has at least one positive solution;
(c) for λ ∈ (0, λ∗) problem (Pλ) has no positive solutions.

Superdiffusive p-logistic equations (that is, logistic-type equations driv-
en by the p-Laplace operator) were studied by Dong [5], Filippakis, O’Regan
and Papageorgiou [6], Takeuchi [14, 15] (Dirichlet equations) and Cardinali,
Papageorgiou and Rubbioni [4] (Neumann equations). In all the aforemen-
tioned works, the reaction has a more restricted form than in (Pλ).

The nonhomogeneity of the differential operator in (Pλ) is the source of
serious difficulties in establishing the bifurcation-type result and the methods
used in the case of p-Laplacian equations do not work here (see Cardinali,
Papageorgiou and Rubbioni [4]).

Let a : RN → R
N be an operator and let 〈 ·, · 〉 denote the inner product

in R
N . We recall (see Brezis [1]) the following basic notions:

(i) a is monotone if

〈a(x)− a(y), x− y〉 � 0 for all x, y ∈ R
N ;

(ii) a is strictly monotone if

〈a(x)− a(y), x− y〉 > 0 for all x, y ∈ R
N , x �= y;

(iii) a is maximal monotone if it is monotone and[〈a(x)− y′, x− y〉 � 0 ∀x ∈ R
N
]
=⇒ y′ = a(y).

We refer the reader to the book by Brezis [2], which gives an excellent
account of the interplay between functional analysis and partial differential
equations.
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2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈 ·, · 〉 we denote
the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X), we say that ϕ
satisfies the Palais–Smale condition (PS condition for short), if the following
is true:

“Every sequence {xn}n�1 ⊆ X such that {ϕ(xn)}n�1 ⊆ R is
bounded and ϕ′(xn)→ 0 in X∗ as n→∞ admits a strongly
convergent subsequence.”

This compactness-type condition on ϕ leads to the following minimax
theorem for critical values of ϕ. The result is known in the literature as the
“mountain pass theorem.”

Theorem 2.1. Let X be a Banach space, ϕ ∈ C1(X) satisfies the PS condition,
x0, x1 ∈ X, ‖x1 − x0‖ > r > 0,

max{ϕ(x0), ϕ(x1)} < inf
[
ϕ(x) : ‖x− x0‖ = r

]
= mr,

c = inf
γ∈Γ

max
0�t�1

ϕ(γ(t)),

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = x0, γ(1) = x1}.
Then mr � c and c is a critical value of ϕ.

Now, we will introduce the hypotheses on the map a(·).
So, let η ∈ C1(0,∞) be a function such that η(t) > 0 for all t > 0 and

0 < ĉ � tη′(t)
η(t)

� c0 for all t > 0 and some c0, ĉ > 0, (2.1)

c1t
p−1 � η(t) � c2

(
1 + tp−1

)
for all t > 0 and some c1, c2 > 0. (2.2)

Then the conditions imposed on the map a(·) are the following.

H(a): a(y) = a0(‖y‖)y for all y ∈ R
N with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t �→ ta0(t) is strictly increasing on (0,+∞), ta0(t) → 0
as t→ 0+ and

lim
t→0+

ta′0(t)
a0(t)

= c > −1;
(ii) for every y ∈ R

N \ {0}, we have

‖∇a(y)‖ � c3
η(‖y‖)
‖y‖ for some c3 > 0;

(iii) for every y ∈ R
N \ {0}, we have

(∇a(y)ξ, ξ)RN � η(‖y‖)
‖y‖ ‖ξ‖2 for all ξ ∈ R

N ;

(iv) if G0(t) =
∫ t

0
sa0(s) ds for all t > 0, then

t2a0(t)−G0(t) � c4t
p for all t > 0 and some c4 > 0.
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Remark 2.2. Evidently G0(·) is strictly convex and strictly increasing. We
set G(y) = G0(‖y‖) for all y ∈ R

N . Then G(·) is convex, G(0) = 0 and

∇G(y) = G′0(‖y‖)
y

‖y‖
= a0(‖y‖)y = a(y) for all y ∈ R

N \ {0} and ∇G(0) = 0.

Therefore, G(·) is the primitive of a(·). The convexity of G(·) and the fact
that G(0) = 0 imply that

G(y) � (a(y), y)RN for all y ∈ R
N . (2.3)

HypothesesH(a)(i), (ii), (iii) and (2.1), (2.2) lead to the following lemma
summarizing the main properties of the map a(·).
Lemma 2.3. Assume that hypotheses H(a)(i), (ii), (iii) are fulfilled. Then

(a) the map y �→ a(y) is continuous, strictly monotone, hence maximal
monotone too;

(b) there exists c5 > 0 such that ‖a(y)‖ � c5(1 + ‖y‖p−1) for all y ∈ R
N ;

(c) (a(y), y)RN � c1
p−1‖y‖p for all y ∈ R

N .

Then Lemma 2.3, (2.3) and the integral form of the mean value theorem
lead to the following growth properties of the primitive G(·).
Corollary 2.4. If hypotheses H(a)(i), (ii), (iii) hold, then

c1
p(p− 1)

‖y‖p � G(y) � c6(1 + ‖y‖p) for all y ∈ R
N and some c6 > 0.

Example 2.5. The following maps satisfy hypotheses H(a):

(a) a(y) = ‖y‖p−2y with 1 < p <∞.

This map corresponds to the p-Laplace differential operator defined by

Δpu = div(‖Du‖p−2Du) for all u ∈W 1,p(Ω).

(b) a(y) = ‖y‖p−2y + ‖y‖q−2y with 1 < q < p <∞.

This map corresponds to the (p, q)-Laplace differential operator defined by

Δpu+Δqu for all u ∈W 1,p(Ω).

Such operators arise in mathematical physics. Recently the authors studied
the existence and multiplicity of solutions for (p, 2)-equations under resonance
conditions (see Papageorgiou and Rădulescu [12]).

(c) a(y) = (1 + ‖y‖2) p−2
2 y with 1 < p <∞.

This map corresponds to the generalized p-mean curvature differential oper-
ator defined by

div

((
1 + ‖Du‖2) p−2

2 Du

)
for all u ∈W 1,p(Ω).

(d) a(y) = ‖y‖p−2y + ‖y‖p−2y
1+‖y‖p with 1 < p <∞.
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Let f0 : Ω×R→ R be a Carathéodory function with subcritical growth
in the x ∈ R variable; that is,

|f0(z, x)| � a(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R,

with a ∈ L∞(Ω)+ and 1 < r < p∗. We set F0(z, x) =
∫ x

0
f0(z, s) ds and

consider the C1-functional ψ0 : W 1,p(Ω)→ R defined by

ψ0(u) =

∫
Ω

G(Du(z)) dz −
∫
Ω

F0(z, u(z)) dz for all u ∈W 1,p(Ω).

The following result can be found in Motreanu and Papageorgiou [11]
and it is an outgrowth of the nonlinear regularity theory (see Lieberman [10]).
The first such result was proved by Brezis and Nirenberg [3] for G(y) = 1

2‖y‖2
for all y ∈ R

N and for space H1
0 (Ω).

Proposition 2.6. Assume that hypotheses H(a)(i), (ii), (iii) hold and u0 ∈
W 1,p(Ω) is a local C1(Ω)-minimizer of ψ0; that is, there exists 
1 > 0 such
that

ψ0(u0) � ψ0(u0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) � 
1.

Then u0 ∈ C1,β(Ω) for some β ∈ (0, 1) and u0 is also a local W 1,p(Ω)-mini-
mizer of ψ0; that is, there exists 
2 > 0 such that

ψ0(u0) � ψ0(u0 + h) for all h ∈W 1,p(Ω) with ‖h‖ � 
2.

Hereafter, by ‖ ·‖ we denote the norm of the Sobolev space W 1,p(Ω) de-
fined by

‖u‖ = (‖u‖pp + ‖Du‖pp
)1/p

for all u ∈W 1,p(Ω).

Note that the notation ‖ · ‖ is also used to denote the norm of RN . However,
no confusion is possible since it will always be clear from the context which
norm is used.

The Banach space C1(Ω) used in the above proposition is an ordered
Banach space with positive cone given by

C+ =
{
u ∈ C1(Ω) : u(z) � 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.
Let A : W 1,p(Ω)→W 1,p(Ω)∗ be the nonlinear map defined by

〈A(u), v〉 =
∫
Ω

(a(Du), Dv)RN dz for all u, v ∈W 1,p(Ω). (2.4)

From Gasinski and Papageorgiou [8] we have the following result.

Proposition 2.7. Assume that hypotheses H(a)(i), (ii), (iii) hold. Then the op-
erator A : W 1,p(Ω)→W 1,p(Ω)∗ defined by (2.4) is bounded (that is, it maps
bounded sets to bounded sets), demicontinuous, monotone (hence maximal
monotone too) and of type (S)+; that is,

un
w−→ u in W 1,p(Ω) and lim sup

n→∞
〈A(un), un−u〉 � 0 =⇒ un → u in W 1,p(Ω).
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Finally, let us fix our notation in this paper. Given x ∈ R, we define
x± = max{±x, 0}. Then for u ∈W 1,p(Ω), we set u±(·) = u(·)±. We have

u± ∈W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

Also, given a measurable function g : Ω×R→ R (for example, a Carathéodory
function), we define

Ng(u)(·) = g(·, u(·)) for all u in W 1,p(Ω)

(the Nemytskii map corresponding to g(·, ·)). Moreover, by | · |N we denote
the Lebesgue measure R

N .

3. Bifurcation-type theorem

The hypotheses on the other three data of (Pλ) (namely, the functions β(z),
h(z, x) and f(z, x)) are the following.

H0: β ∈ L∞(Ω), β(z) � 0 a.e. in Ω, β �= 0.

H1: h : Ω × R → R is a Carathéodory function such that for a.a. z ∈ Ω,
h(z, 0) = 0, h(z, ·) is nondecreasing on [0,∞) and

(i) for every 
 > 0, there exists a� ∈ L∞(Ω)+ such that h(z, x) � a�(z) for
a.a. z ∈ Ω, all x ∈ [0, 
];

(ii) there exists q ∈ (p, p∗) such that

0 < c7 � lim inf
x→+∞

h(z, x)

xq−1
� lim sup

x→+∞
h(z, x)

xq−1
� c8

uniformly for a.a. z ∈ Ω;
(iii) there exist 0 < c9 < c10 such that

c9 � lim inf
x→0+

h(z, x)

xq−1
� lim sup

x→0+

h(z, x)

xq−1
� c10

uniformly for a.a. z ∈ Ω;
(iv) for every μ > 0, there exists ϑμ > 0 such that f(z, x) � ϑμ for a.a.

z ∈ Ω, all x � μ.

Remark 3.1. Since we are looking for positive solutions and the above hy-
potheses concern the positive semiaxis R+ = [0,+∞), without any loss of
generality, we can set h(z, x) = 0 for a.a. z ∈ Ω, all x � 0.

Example 3.2. The following functions satisfy hypotheses H1. For the sake of
simplicity, we drop the z dependence:

h1(x) = xq−1 for all x � 0 with 1 < p < q < p∗;

h2(x) =

{
xq−1 − ξxτ−1 if x ∈ [0, 1],

(1− ξ)[xq−1 − lnx] if 1 < x

with 1 < p < q < τ , q < p∗, ξ ∈ (
0, q−1

τ−1

)
, q � 2.
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H2: f : Ω × R → R is a Carathéodory function such that for a.a. z ∈ Ω,
f(z, 0) = 0, f(z, x) � 0 for all x � 0 and

(i) f(z, x) � a(z)(1 + xr−1) for a.a. z ∈ Ω, all x � 0 with a ∈ L∞(Ω)+,
p < r < p∗;

(ii) limx→+∞
f(z,x)
xq−1 = +∞ uniformly for a.a. z ∈ Ω (here q ∈ (p, p∗) is as in

hypothesis H1(ii));

(iii) limx→0+
f(z,x)
xp−1 = 0 uniformly for a.a. z ∈ Ω;

(iv) for every 
 > 0, there exists ξ̂� > 0 such that for a.a. z ∈ Ω the function

x �→ ξ̂�x
p−1 − f(z, x) is nondecreasing on [0, 
].

Remark 3.3. As we did for h(z, x), without any loss of generality, we assume
that f(z, x) = 0 for a.a. z ∈ Ω, all x � 0.

Example 3.4. The following functions satisfy hypotheses H2. Again, for the
sake of simplicity, we drop the z dependence:

f1(x) = xr−1 for all x � 0 with q < r < p∗,

f2(x) =

{
xτ−1 − xq−1 if x ∈ [0, 1],

xq−1 lnx if 1 < x
with 1 < p < τ < q < p∗.

Remark 3.5. If a(y) = ‖y‖p−2y with 1 < p < ∞ (that is, the differential
operator is the p-Laplacian) and the reaction is λh1(x)−f1(x) = λxq−1−xr−1

with p < q < r < p∗, then problem (Pλ) recovers the classical p-logistic
equation of superdiffusive type.

For λ > 0, let

S(λ) = the set of positive solutions of problem (Pλ).

Also, we introduce the set

L = {λ > 0 : problem (Pλ) admits a positive solution (that is, S(λ) �= ∅)}.
We start with a simple lemma.

Lemma 3.6. Assume that β ∈ L∞(Ω), β � 0 a.e. in Ω and β �= 0. Then there
exists ξ0 > 0 such that

ξ0‖u‖p � ψ(u) =
c1

p− 1
‖Du‖pp +

∫
Ω

β(z)|u(z)|p dz for all u ∈W 1,p(Ω).

Proof. Suppose the lemma is not true. Then exploiting the p-homogeneity of
the functional ψ(·), we can find {un}n�1 ⊆W 1,p(Ω) such that

‖un‖ = 1 for all n � 1 and ψ(un) ↓ 0 as n→∞.

By passing to a suitable subsequence if necessary, we may assume that

un
w−→ u in W 1,p(Ω) and un → u in Lp(Ω).
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Since the norm in the Banach space Lp(Ω,RN ) is weakly lower semicontinu-
ous, in the limit as n→∞, we have

0 � c1
p− 1

‖Du‖pp � −
∫
Ω

β(z)|u|p dz � 0 =⇒ u ≡ ξ ∈ R.

If ξ = 0, then Dun → 0 in Lp(Ω,RN ) and so un → 0 in W 1,p(Ω), a contra-
diction to the fact that ‖un‖ = 1 for all n � 1.

So, ξ �= 0 and we have

0 � −|ξ|p
∫
Ω

β(z) dz < 0,

a contradiction again. �

Using the previous lemma, we have the following result.

Proposition 3.7. Assume that hypotheses H(a), H0, H1 and H2 hold. Then
inf L > 0 (if L = ∅, then inf L = +∞).

Proof. Let ξ0 > 0 be as postulated by Lemma 3.6 and let ξ ∈ (0, ξ0). Hy-

potheses H1 and H2 imply that we can find λ̂ = λ̂(ξ) > 0 small such that

λ̂h(z, x)− f(z, x) � ξxp−1 for a.a. z ∈ Ω, all x � 0. (3.1)

Let λ ∈ (0, λ̂] and suppose that λ ∈ L. Then we can find u ∈ S(λ) and so we
have

A(u) + βup−1 = λnNh(u)−Nf (u). (3.2)

On (3.2) we act with u � 0 and using the nonlinear Green’s identity (see
Gasinski and Papageorgiou [7, p. 210]), we have∫

Ω

(a(Du), Du)RNdz +

∫
Ω

β(z)|u|p dz = λ

∫
Ω

h(z, u)u dz −
∫
Ω

f(z, u)u dz

=⇒ c1
p− 1

‖Du‖pp +
∫
Ω

β(z)|u|p dz
� ξ‖u‖pp � ξ‖u‖p (see Lemma 2.3(c) and (3.1))

=⇒ (ξ0 − ξ)‖u‖p � 0 (see Lemma 3.6),

a contradiction since ξ ∈ (0, ξ0).

Therefore, λ /∈ L and so inf L � λ̂ > 0. �

Next we establish that L �= ∅ (hence inf L ∈ (0,+∞)).

Proposition 3.8. Assume that hypotheses H(a), H0, H1 and H2 hold. Then
L �= ∅ and for every λ ∈ L we have S(λ) ⊆ intC+.

Proof. Let H(z, x) =
∫ x

0
h(z, s) ds and F (z, x) =

∫ x

0
f(z, s) ds and, for λ > 0,

we consider the C1-functional ϕλ : W 1,p(Ω)→ R defined by

ϕλ(u) =

∫
Ω

G(Du) dz +
1

p

∫
Ω

β(z)|u|p dz

− λ

∫
Ω

H(z, u) dz +

∫
Ω

F (z, u) dz for all u ∈W 1,p(Ω).
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By virtue of hypotheses H1(i), (ii), we can find c11 > 0 such that

H(z, x) � c11(1 + xq) for a.a. z ∈ Ω, all x � 0. (3.3)

Moreover, hypotheses H2(i), (ii) imply that, given any ξ > 0, we can find
c12 = c12(ξ) > 0 such that

F (z, x) � ξxq − c12 for a.a. z ∈ Ω, all x � 0. (3.4)

Therefore, for all u ∈W 1,p(Ω) we have

ϕλ(u) =

∫
Ω

G(Du) dz +
1

p

∫
Ω

β(z)|u|p dz − λ

∫
Ω

H(z, u) dz +

∫
Ω

F (z, u) dz

� 1

p

[
c1

p− 1
‖Du‖pp +

∫
Ω

β(z)|u|p dz
]
− λc11‖u‖qq

+ ξ‖u‖qq − (λc11 + c12)|Ω|N (see Corollary 2.4 and (3.3), (3.4))

� ξ0
p
‖u‖p + (ξ − λc11)‖u‖qq − (λc11 + c12)|Ω|N (see Lemma 3.6).

Choosing ξ > λc11, we see that ϕλ is coercive. Also, using the Sobolev em-
bedding theorem, we can easily check that ϕλ is sequentially weakly lower
semicontinuous. So, by the Weierstrass theorem, we can find uλ ∈ W 1,p(Ω)
such that

ϕλ(uλ) = inf
[
ϕλ(u) : u ∈W 1,p(Ω)

]
. (3.5)

By hypotheses H1(iii) and H2(iii), we can find δ > 0 and c13 > 0 such that

H(z, x) � c13
q

xq and F (z, x) � 1

p
xp for a.a. z ∈ Ω, all x ∈ [0, δ].

(3.6)
So, if ξ ∈ (0, δ], then

ϕλ(ξ) �
ξp

p

[‖β‖1 + |Ω|N ]− λc13
q

ξq|Ω|N (see (3.6)).

Choosing λ > 0 big, we infer that

ϕλ(ξ) < 0 = ϕλ(0)

=⇒ ϕλ(uλ) < 0 = ϕλ(0) (see (3.5)) and so uλ �= 0.

From (3.5) we have

ϕ′λ(uλ) = 0

=⇒ A(uλ) + β|uλ|p−2uλ = λNh(uλ)−Nf (uλ). (3.7)

On (3.7) we act with −u−λ ∈W 1,p(Ω). Using Lemma 2.3(c) and recalling that
for a.a. z ∈ Ω and all x � 0, we have h(z, x) = f(z, x) = 0, we obtain

c1
p− 1

‖Du−λ ‖pp +
∫
Ω

β(u−λ )
p dz � 0,

=⇒ ξ0‖u−λ ‖p � 0 (see Lemma 3.6), hence uλ � 0, uλ �= 0.
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Then from (3.7) and using the nonlinear Green’s identity, as in Gasinski and
Papageorgiou [8] (see the proof of Theorem 3.9), we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− div a(Duλ(z)) + β(z)uλ(z)

p−1 = λh(z, uλ(z))− f(z, uλ(z)) a.e. in Ω,

∂uλ

∂n
= 0 on ∂Ω,

uλ � 0, uλ �= 0 in Ω,

(3.8)

which implies that uλ ∈ S(λ) and so L �= ∅.
Let λ ∈ L and let uλ ∈ S(λ). Then (3.8) holds. From Hu and Papageor-

giou [9] and Winkert [16], we have uλ ∈ L∞(Ω). Then we can apply the non-
linear regularity result of Lieberman [10, p. 320] and infer that uλ ∈ C+\{0}.
Let 
 = ‖uλ‖∞ and let ξ̂� > 0 be as postulated by hypothesis H2(iv). Then

− div a(Duλ(z)) + (β(z) + ξ̂�)uλ(z)
p−1

= λh(z, uλ(z))− f(z, uλ(z)) + ξ̂�uλ(z)
p−1

� 0 a.e. in Ω (see H2(iv) and recall that h � 0)

=⇒ div a(Duλ(z)) � (‖β‖∞ + ξ̂�)uλ(z)
p−1 a.e. in Ω.

Let γ(t) = ta0(t) for all t > 0. Then

tγ′(t) = t2a′0(t) + ta0(t)

=⇒
∫ t

0

sγ′(s) ds = tγ(t)−
∫ t

0

γ(s) ds (by integration by parts)

= t2a0(t)−G0(t) � c4t
p for all t > 0.

So, we can apply the results of Pucci and Serrin [13, pp. 111, 120] and conclude
that uλ ∈ intC+. Therefore S(λ) ⊆ intC+. �

Proposition 3.9. Assume that hypotheses H(a), H0, H1 and H2 hold, λ ∈ L
and μ > λ. Then μ ∈ L.
Proof. Let uλ ∈ S(λ) ⊆ intC+ (see Proposition 3.8). We have

A(uλ) + βup−1
λ = λNh(uλ)−Nf (uλ). (3.9)

Using uλ ∈ intC+, we introduce the following truncation of the reaction in
problem (Pλ):

kμ(z, x) =

{
μh(z, uλ(z))− f(z, uλ(z)) if x � uλ(z),

μh(z, x)− f(z, x) if uλ(z) < x.
(3.10)

Evidently kμ(z, x) is a Carathéodory function. We set

Kμ(z, x) =

∫ x

0

kμ(z, s) ds
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and consider the C1-functional ψμ : W 1,p(Ω)→ R defined by

ψμ(u) =

∫
Ω

G(Du(z)) dz +
1

p

∫
Ω

β(z)|u(z)|p dz

−
∫
Ω

Kμ(z, u(z)) dz for all u ∈W 1,p(Ω).

As we did for the functional ϕλ (see the proof of Proposition 3.8), we can
check that ψμ is coercive. Also, it is sequentially weakly lower semicontinuous.
So, by the Weierstrass theorem, we can find uμ ∈W 1,p(Ω) such that

ψμ(uμ) = inf
[
ψμ(u) : u ∈W 1,p(Ω)

]
=⇒ ψ′μ(uμ) = 0

=⇒ A(uμ) + β|uμ|p−2uμ = Nkμ(uμ).

(3.11)

On (3.11) we act with (uλ − uμ)
+ ∈W 1,p(Ω). Then

〈
A(uμ), (uλ − uμ)

+
〉
+

∫
Ω

β|uμ|p−2uμ(uλ − uμ)
+ dz

=

∫
Ω

kμ(z, uμ)(uλ − uμ)
+ dz

=

∫
Ω

[
μh(z, uλ)− f(z, uλ)

]
(uλ − uμ)

+ dz (see (3.10))

�
∫
Ω

[
λh(z, uλ)− f(z, uλ)

]
(uλ − uμ)

+ dz (since h � 0 and λ < μ)

=
〈
A(uλ), (uλ − uμ)

+
〉

+

∫
Ω

β(z)|uλ|p−1(uλ − uμ)
+ dz (since uλ ∈ S(λ))

=⇒ 〈
A(uλ)−A(uμ), (uλ − uμ)

+
〉

+

∫
Ω

β(z)(up−1
λ − |uμ|p−2uμ)(uλ − uμ)

+ dz � 0

=⇒
∫
{uλ>uμ}

(a(Duλ)− a(Duμ), Duλ −Duμ)RN dz � 0 (see H0)

=⇒ |{uλ > uμ}|N = 0 (see Lemma 2.3(a) and hypothesis H0)

=⇒ uλ � uμ.

Therefore, (3.11) becomes

A(uμ) + βup−1
μ = μNh(uμ)−Nf (uμ) (see (3.10))

=⇒ uμ ∈ S(μ) ⊆ intC+ and so μ ∈ L. �

Let λ∗ = inf L. From Proposition 3.7 we know that λ∗ > 0.
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Proposition 3.10. Assume that hypotheses H(a), H0, H1 and H2 hold and
λ > λ∗. Then problem (Pλ) admits at least two positive solutions:

u0, û ∈ intC+.

Proof. Let η ∈ (λ∗, λ) and let uη ∈ S(η) ⊆ intC+ (see Proposition 3.8). We
consider the reaction x �→ λh(z, x)− f(z, x) of problem (Pλ) and truncate it
at uη(z) as we did in the proof of Proposition 3.8 (see (3.10)). Then reasoning
as in that proof, using the direct method, we get

u0 ∈ S(λ) ⊆ intC+

such that uη � u0.

Let 
 = ‖u0‖∞ and let ξ̂� > 0 be as postulated by hypothesis H2(iv).
Let uδ

η = uη + δ ∈ intC+. Then we have

− div a(Duδ
η) + (β(z) + ξ̂�)(u

δ
η)

p−1

� − div a(Duη) + (β(z) + ξ̂�)u
p−1
η + τ(δ) with τ(δ)→ 0+ as δ → 0+

= ηh(z, uη)− f(z, uη) + ξ̂�u
p−1
η + τ(δ)

= λh(z, uη)− (λ− η)h(z, uη)− f(z, uη) + ξ̂�u
p−1
η + τ(δ).

(3.12)

Since h(z, ·) is nondecreasing (see hypotheses H1) and uη � u0, we have

λh(z, uη) � λh(z, u0). (3.13)

Since uη ∈ intC+, we have μ = minΩ uη > 0 and so by virtue of hypothesis
H1(iv) we can find ϑμ > 0 such that

(λ− η)h(z, uη) � (λ− η)ϑμ > 0. (3.14)

Moreover, hypothesis H1(iv) implies that

ξ̂�u
p−1
η − f(z, uη) � ξ̂�u

p−1
0 − f(z, u0) (recall that uη � u0). (3.15)

We return to (3.12) and use (3.13), (3.14) and (3.15). Then

− div a(Duδ
η) + (β(z) + ξ̂�)(u

δ
η)

p−1

� λh(z, u0)− f(z, u0) + ξ̂�u
p−1
0 − (λ− η)ϑμ + τ(δ).

Since τ(δ)→ 0+ as δ → 0+, for δ > 0 small we have

(λ− η)ϑμ � τ(δ).

Therefore, finally we have

− div a(Duδ
η) + (β(z) + ξ̂�)(u

δ
η)

p−1

� − div a(Du0) + (β(z) + ξ̂�)u
p−1
0 (recall that u0 ∈ S(λ))

=⇒ uδ
η � u0 (acting with (uδ

η − u0)
+ ∈W 1,p(Ω) and using Lemma 2.3(a))

=⇒ u0 − uη ∈ intC+.

(3.16)
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Let ψλ : W 1,p(Ω) → R be the C1-functional introduced in the first part of
this proof. Recall that the solution u0 ∈ intC+ was obtained as a minimizer
of the functional ψλ. We introduce the set

[u0) =
{
u ∈W 1,p(Ω) : u0(z) � u(z) a.e. in Ω

}
.

Recall that ϕλ : W 1,p(Ω) → R is a C1 energy functional for problem (Pλ)
(see the proof of Proposition 3.7). We have

ϕλ

∣∣
[u0)

= ψλ

∣∣
[u0)

+ ξ∗λ with ξ∗λ ∈ R

(see (3.10) with uλ replaced by uη).

Because of (3.16), it follows that u0 ∈ intC+ is a local C1(Ω)-minimizer
of the functional ϕλ. Hence we can use Proposition 2.6 and have that u0 is a
local W 1,p(Ω)-minimizer of ϕλ.

Hypothesis H1(iii) implies that we can find δ > 0 and c14 > c10 > 0 such
that

h(z, x) � c14x
q−1 for a.a. z ∈ Ω, all x ∈ [0, δ]

=⇒ H(z, x) � c14
q

xq for a.a. z ∈ Ω, all x ∈ [0, δ]. (3.17)

Then for u ∈ C1(Ω) with ‖u‖C1(Ω) � δ, we have

ϕλ(u) �
∫
Ω

G(Du) dz +
1

p

∫
Ω

β(z)|u|p dz − λ

∫
Ω

H(z, u) dz (since F � 0)

� c1
p(p− 1)

‖Du‖pp +
1

p

∫
Ω

β(z)|u|p dz − λc14
q
‖u‖qq (see (3.17))

� ξ0
p
‖u‖p − λc15‖u‖q for some c15 > 0 (see Lemma 3.6).

(3.18)

Since q > p, from (3.18) we see that we can find δ0 ∈ (0, δ] such that

ϕλ(u) � 0 = ϕλ(0) for all u ∈ C1(Ω) with ‖u‖C1(Ω) � δ0

=⇒ u = 0 is a local C1(Ω)-minimizer of ϕλ

=⇒ u = 0 is a local W 1,p(Ω)-minimizer of ϕλ (see Proposition 2.6).

Without any loss of generality, we may assume that

0 = ϕλ(0) � ϕλ(u0).

The analysis is similar if the opposite inequality holds. Since u0 is a local
minimizer of ϕλ, we can find 
 ∈ (0, 1) small such that

0 = ϕλ(0) � ϕλ(u0) < inf[ϕλ(u) : ‖u− u0‖ = 
] = m� (3.19)

(see Papageorgiou and Rădulescu [12], proof of Proposition 3.5, Claim 2).
Recall that ϕλ is coercive (see the proof of Proposition 3.8). So, ϕλ satisfies
the PS condition. This fact and (3.19) permit the use of Theorem 2.1. We
can find û ∈W 1,p(Ω) such that

û ∈ Kϕλ
and m� � ϕλ(û).
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Then û /∈ {0, u0} (see (3.19)) and it solves problem (Pλ); that is,

û ∈ S(λ) ⊆ intC+. �

Proposition 3.11. If hypotheses H(a), H0, H1 and H2 hold, then λ∗ ∈ L.
Proof. Let {λn}n�1 ⊆ L such that

λn > λ∗ for all n � 1 and λn ↓ λ∗ as n→∞.

Then we can find un ∈ S(λn) ⊆ intC+ for all n � 1. We have

A(un) + βup−1
n = λNh(un)−Nf (un) for all n � 1. (3.20)

Hypotheses H1(i), (ii) imply that we can find c16 > 0 such that

h(z, x) � c16
(
1 + xq−1

)
for a.a. z ∈ Ω, all x � 0. (3.21)

Moreover, hypotheses H2(i), (ii) imply that, given any ξ > 0, we can find
c17 = c17(ξ) > 0 such that

f(z, x) � ξxq−1 − c17 for a.a. z ∈ Ω, all x � 0. (3.22)

On (3.20) we act with un ∈ intC+. Then∫
Ω

(a(Dun), Dun)RN dz +

∫
Ω

β(z)up
n dz (3.23)

+

∫
Ω

f(z, un)un dz = λn

∫
Ω

h(z, un)un dz,

=⇒ c1
p− 1

‖Dun‖pp +
∫
Ω

β(z)up
n dz + (ξ − λnc16)‖un‖qq (3.24)

� (c16 + c17)|Ω|N (see Lemma 2.3(c) and (3.21), (3.22))

=⇒ ξ0‖un‖p + (ξ − λnc16)‖un‖qq � (c16 + c17)|Ω|N . (3.25)

Choosing ξ > λnc16, from (3.23) we see that

{un}n�1 ⊆W 1,p(Ω) is bounded.

By passing to a subsequence if necessary, we may assume that

un
w−→ u∗ in W 1,p(Ω) and un → u∗ in Lr(Ω). (3.26)

On (3.20) we act with un − u∗ ∈ W 1,p(Ω), pass to the limit n → ∞ and
use (3.26). Then

lim
n→∞〈A(un), un − u∗〉 = 0

=⇒ un → u∗ in W 1,p(Ω) (see Proposition 2.7). (3.27)

So, if in (3.20) we pass to the limit as n→∞ and use (3.27), then

A(u∗) + βup−1
∗ = λ∗Nh(u∗)−Nf (u∗).

Therefore u∗ is a solution of (Pλ∗). We need to show that u∗ �= 0.
As before, from Hu and Papageorgiou [9] and Winkert [16], we know

that we can find M > 0 such that ‖un‖∞ � M for all n � 1. Then the
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nonlinear regularity result of Lieberman [10, p. 320] implies that we can find

ϑ ∈ (0, 1) and M̂ > 0 such that

un ∈ C1,ϑ(Ω) and ‖un‖C1,ϑ(Ω) � M̂ for all n � 1.

Exploiting the compact embedding of C1,ϑ(Ω) into C1(Ω) and using (3.27),
we have

un → u∗ in C1(Ω). (3.28)

Suppose that u∗ = 0. Note that

lim
x→0+

h(z, x)

xp−1
= lim

x→0+

h(z, x)

xq−1
xq−p = 0 uniformly for a.a. z ∈ Ω

(see hypothesis H1(iii)).
So, given ε > 0, we can find δ = δ(ε) > 0 such that

h(z, x) � εxp−1 for a.a z ∈ Ω, all x ∈ [0, δ]. (3.29)

Then from (3.28) and since we have assumed that u∗ = 0, we see that we can
find n0 � 1 such that

0 < un(z) � δ for all z ∈ Ω, all n � n0. (3.30)

From (3.20), as in Gasinski and Papageorgiou [8], using the nonlinear Green’s
identity, we have for all n � n0,

− div a(Dun(z)) + β(z)un(z)
p−1

= λnh(z, un(z))− f(z, un(z))

� λnh(z, un(z)) (since f � 0, see H2)

� λnεun(z)
p−1 for a.a. z ∈ Ω (see (3.29), (3.30)).

(3.31)

Acting on (3.31) with un, using the nonlinear Green’s identity (see Gasinski
and Papageorgiou [7, p. 210] and recall that ∂un/∂n = 0 on ∂Ω) and applying
Lemma 2.3(c), we have

c1
p− 1

‖Dun‖pp +
∫
Ω

β(z)up
n dz � λnε‖un‖pp � λnε‖un‖p for all n � n0

=⇒ ξ0‖un‖p � λnε‖un‖p for all n � n0 (see Lemma 3.6)

=⇒ ξ0
ε

� λn � λ1 for all n � n0.

Since ε > 0 is arbitrary, we let ε→ 0+ to reach a contradiction. Hence u∗ �= 0
and so u∗ ∈ S(λ∗) ⊆ intC+, which means that λ∗ ∈ L. �

Summarizing the situation for problem (Pλ), we can state the following
bifurcation-type theorem.

Theorem 3.12. Assume that hypotheses H(a), H0, H1 and H2 hold. Then
there exists λ∗ > 0 such that

(a) for all λ > λ∗ problem (Pλ) has at least two positive solutions:

u0, û ∈ intC+;
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(b) for λ = λ∗ problem (Pλ∗) has at least one positive solution:

u∗ ∈ intC+;

(c) for λ ∈ (0, λ∗) problem (Pλ) has no positive solutions.

Remark 3.13. When a(y) = ‖y‖p−2y with 1 < p < ∞ (the p-Laplace dif-
ferential operator) and h(z, x) = xq−1 for all x � 0 with q ∈ (p, p∗), then
Theorem 3.12 improves Theorem 3.6 of Cardinali, Papageorgiou and Rub-
bioni [4], since our hypotheses on f(z, x) (see H2) are less restrictive than
those used in [4] (see hypotheses H). For example, the function f(x) = xqlnx
for x � 1 is excluded from the hypotheses in [4], while it is admissible here. It
is interesting to know that Theorem 3.12 remains valid if β ≡ 0 (noncoercive
differential operator).
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