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Abstract

We consider a nonlinear parametric Robin problem driven by the p-Laplacian. We assume
that the reaction exhibits a concave term near the origin. First we prove a multiplicity
theorem producing three solutions with sign information (positive, negative and nodal)
without imposing any growth condition near ±∞ on the reaction. Then, for problems with
subcritical reaction, we produce two more solutions of constant sign, for a total of five
solutions. For the semilinear problem (that is, for p = 2), we generate a sixth solution
but without any sign information. Our approach is variational, coupled with truncation,
perturbation and comparison techniques and with Morse theory.
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1 Introduction
Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study the
following nonlinear parametric Robin problem:



−∆pu(z) = f (z, u(z), λ) in Ω,
∂u
∂np

(z) + β(z)|u(z)|p−2u(z) = 0 on ∂Ω .
(Pλ)

Here ∆p denotes the p-Laplacian differential operator defined by

∆pu = div (|Du|p−2Du) for all u ∈ W1,p(Ω), 1 < p < ∞.

Also ∂u
∂np

denotes the nonlinear boundary derivative defined by

∂u
∂np
= |Du|p−2(Du, n)RN for all u ∈ W1,p(Ω),

with n(z) being the outward unit normal at z ∈ ∂Ω.
The reaction f (z, x, λ) is a Carathéodory function of (z, x) ∈ Ω×R (that is, for all x ∈ R

and all λ > 0, the mapping z �−→ f (z, x, λ) is measurable, while for almost all z ∈ Ω and
all λ > 0, the application x �−→ f (z, x, λ) is continuous) and λ > 0 is a parameter, which
may enter in the reaction in a nonlinear fashion. Our hypotheses on f (z, x, λ) imply the
presence of a concave term near the origin (that is, a term exhibiting (p − 1)-superlinear
growth near zero). In the second multiplicity theorem (see Theorem 4.1), we also assume
that x �−→ f (z, x, λ) exhibits (p − 1)-superlinear growth near ±∞ but without satisfying the
usual in such cases Ambrosetti-Robinowitz condition (AR-condition for short). So, in the
second multiplicity theorem of this work, we have the combined effects of concave and
convex nonlinearities. In fact, a special case of our reaction is the function

f (z, x, λ) = f (x, λ) = λ|x|q−2x + |x|r−2x

with λ > 0 and

1 < q < p < r < p∗ =
{ N p

N−p if p < N
+∞ if N ≤ p.

Such reactions were first considered by Ambrosetti, Brezis and Cerami [4] in equations
driven by the Dirichlet Laplacian and by Garcia Azorero, Manfredi and Peral Alonso [12]
in equations driven by the Dirichlet p-Laplacian. Both works focus on positive solutions
and prove bifurcation-type results for them. Multiplicity results for Dirichlet equations
driven by the p-Laplacian and with concave terms, were also proved by Gasinski and Pa-
pageorgiou [15], Guo and Zhang [17] and Motreanu, Motreanu and Papageorgiou [23].
All the aforementioned works consider forms of the reaction in which the parameter enters
linearly.

Recently Papageorgiou and Rădulescu [26] studied a different class of coercive para-
metric Robin problems without concave terms in the reaction and proved multiplicity the-
orems providing sign information for all the solutions. Bifurcation phenomena for the
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positive solutions of nonlinear Robin problems like (Pλ), were proved in the very recent
work of Papageorgiou and Rădulescu [27]. Yet another class of parametric p-Laplacian
Robin problems, were studied by Duchateau [9], who obtained two nontrivial solutions,
but with no sign information. We also refer to Ahmad [1] and Ahmad, Lazer and Paul
[2] for pioneering contributions to the qualitative theory of nonlinear partial differential
equations of elliptic type.

Our approach is variational based on the critical point theory, combined with suitable
truncation, perturbation and comparison techniques and Morse theory (critical groups). In
the next section, for the convenience of the reader, we briefly review the main mathematical
tools that we will use in the sequel.

2 Mathematical background
Let X be a Banach space and X∗ its topological dual. By ⟨·, ·⟩we denote the duality brackets
for the pair (X, X∗). Given φ ∈ C1(X), we say that φ satisfies the “Cerami condition” (the
C-condition for short), if the following holds:

“Every sequence {un}n≥1 ⊆ X such that {φ(un)}n≥1 ⊆ R is bounded and

(1 + ||un||)φ′(un)→ 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence.”

This is a compactness-type condition on the functional φ, which compensates for the
fact that the ambient space X need not be locally compact (in general, X is infinite dimen-
sional). It allows us to prove a deformation theorem and from it to derive the minimax
theory for the critical values of φ. Prominent in that theory, is the so-called “mountain pass
theorem”, due to Ambrosetti and Rabinowitz [5]. Here we state the result in a slightly more
general form (see Gasinski and Papageorgiou [13]).

Theorem 2.1 Assume that φ ∈ C1(X) satisfies the C-condition, u0, u1 ∈ X, ||u1 − u0|| > ρ >
0,

max{φ(u0), φ(u1)} < inf[φ(u) : ||u − u0|| = ρ] = ηρ,

and c = inf
γ∈Γ

max
0≤t≤1
φ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}. Then c ≥ ηρ and

c is a critical values of φ.

In this paper, we will be dealing with the Sobolev space W1,p(Ω) and with the Banach
space C1(Ω). By || · || we denote the norm of W1,p(Ω) given by

||u|| =
[
||u||pp + ||Du||pp

]1/p
for all u ∈ W1,p(Ω).

The Banach space C1(Ω) is an ordered Banach space, with positive cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.
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This cone has a nonempty interior given by

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we consider (N − 1)-dimensional Hausdorff (surface) measure denoted by σ(·).
Using this measure, we can define the Lebesgue spaces Ls(∂Ω), 1 ≤ s ≤ ∞. From the
theory of Sobolev spaces, we know that there exists a unique continuous, linear map γ0 :
W1,p(Ω) → Lp(∂Ω), known as the trace map, such that γ0(u) = u|∂Ω for all u ∈ W1,p(Ω) ∩
C(Ω). Moreover, γ0 is compact and im γ0 = W

1
p′ ,p(∂Ω)

(
1
p +

1
p′ = 1

)
, ker γ0 = W1,p

0 (Ω). In
the sequel, for the sake of notational simplicity, we drop the use of the trace map γ0. It is
understood that all restrictions of the Sobolev functions u ∈ W1,p(Ω) on ∂Ω, are defined in
the sense of traces.

On the boundary weight function β(·), we impose the following conditions:
H(β) : β ∈ C0,α(∂Ω) with 0 < α < 1 and β(z) ≥ 0 for all z ∈ ∂Ω, β � 0.
Let f0 : Ω×R → R be a Carathéodory function satisfying a subcritical growth condition

in the x ∈ R variable, that is,

| f0(z, x)| ≤ a0(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R,

with a0 ∈ L∞(Ω), 1 < r < p∗ =


Np

N−p if p < N
+∞ if N ≤ p.

Let F0(z, x) =
∫ x

0 f0(z, s)ds and consider the C1-conditional φ0 : W1,p(Ω) → R defined
by

φ0(u) =
1
p
||Du||pp +

1
p

∫
∂Ω

β(z)|u|pdσ −
∫
Ω

F0(z, u)dz for all u ∈ W1,p(Ω).

The next result can be found in Papageorgiou and Rădulescu [26].

Proposition 2.1 Assume that u0 ∈ W1,p(Ω) is a local C1(Ω)-minimizer of φ0, that is, there
exists ρ0 > 0 such that

φ0(u0) ≤ φ0(u0 + h) for all h ∈ C1(Ω) with ||h||C1(Ω) ≤ ρ0.

Then u0 ∈ C1,τ(Ω) for some τ ∈ (0, 1) and u0 is also a local W1,p(Ω)-minimizer of φ0, that
is, there exists ρ1 > 0 such that

φ0(u0) ≤ φ0(u0 + h) for all h ∈ W1,p(Ω) with ||h|| ≤ ρ1.

Let A : W1,p(Ω)→ W1,p(Ω)∗ be the nonlinear map defined by

⟨A(u), y⟩ =
∫
Ω

|Du|p−2(Du,Dy)RN dz for all u, y ∈ W1,p(Ω).

From Papageorgiou and Kyritsi [25, p. 314], we have:

Proposition 2.2 The map A : W1,p(Ω) → W1,p(Ω)∗ defined above is bounded (that is,
maps bounded sets to bounded sets), demicontinuous, maximal monotone and of type (S )+
(that is, if un

w→ u in W1,p(Ω) and lim sup
n→∞

⟨A(un), un − u⟩ ≤ 0, then un → u in W1,p(Ω)).
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Let X be a Banach space and φ ∈ C1(X), c ∈ R. We introduce the following sets:

φc = {u ∈ X : φ(u) ≤ c}, Kφ = {u ∈ X : φ′(u) = 0}, Kc
φ = {u ∈ Kφ : φ(u) = c}.

For every topological pair (Y1, Y2) with Y1 ⊆ Y2 ⊆ X and every integer k ≥ 0, by Hk(Y2, Y1)
we denote the kth singular homology group with integer coefficients. Then given an isolated
u ∈ Kc

φ, the critical groups of φ at u are defined by

Ck(φ, u) = Hk(φc ∩ U, φc ∩ U\{u}) for all integers k ≥ 0,

where U is a neighborhood of u such that Kφ ∩ φc ∩ U = {u}. The excision property of
singular homology, implies that the above definition is independent of the particular choice
of the neighborhood U.

Let φ ∈ C1(X) and assume that φ satisfies the C-condition and −∞ < inf φ(Kφ). The
critical groups of φ at infinity, are defined by

Ck(φ,∞) = Hk(X, φc) for all integers k ≥ 0,

where c < inf φ(Kφ). The second deformation theorem (see, for example, Gasinski and
Papageorgiou [13, p. 628]), implies that the above definition is independent of the choice
of the level c.

Suppose that Kφ is infinite and define

M(t, u) =
∑
k≥0

rank Ck(φ, u)tk for all t ∈ R, all u ∈ Kφ,

P(t,∞) =
∑
k≥0

rank Ck(φ,∞)tk for all t ∈ R.

The Morse relation establishes that
∑
u∈Kφ

M(t, u) = P(t,∞) + (1 + t)Q(t) for all t ∈ R, (2.1)

where Q(t) =
∑
k≥0
βktk is a formal series in t ∈ R, with nonnegative integer coefficients βk.

Finally, let us fix our notation. Given x ∈ R, we set x± = max{±x, 0}. Then for
u ∈ W1,p(Ω), we define u±(·) = u(·)± and we have

u± ∈ W1,p(Ω), u = u+ − u−, |u| = u+ + u−.

By | · |N we denote the Lebesgue measure on RN , by | · | the norm of RN and by (·, ·)RN

the inner product of RN . If u, v ∈ W1,p(Ω) and v ≤ u, by [v, u] we denote the order interval
defined by

[v, u] = {y ∈ W1,p(Ω) : v(z) ≤ y(z) ≤ u(z) a.e in Ω}.
Given a measurable function h : Ω × R → R (for example, a Carathéodory function),

we define
Nh(u)(·) = h(·, u(·)) for all u ∈ W1,p(Ω),

the Nemytskii operator corresponding to h. Evidently, the application z �−→ Nh(u)(z) is
measurable.
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3 Multiple solutions for reactions of arbitrary growth
In this section, we prove a multiplicity theorem (a three solutions theorem) for problem
(Pλ), providing sign information for all the solutions, without imposing a subcritical growth
restriction on f (z, ·, λ). In fact, the behavior of x �−→ f (z, x, λ) near ±∞ is irrelevant in our
analysis. More precisely, our hypotheses on the reaction f (z, x, λ) are the following:

H1 : f : Ω×R×(0,∞)→ R is a function such that for a.a. z ∈ Ω, all λ > 0, f (z, 0, λ) = 0
and

(i) for all λ > 0, (z, x) �−→ f (z, x, λ) is a Carathéodory function;

(ii) | f (z, x, λ)| ≤ a(z, λ) + ϑ(|x|) for a.a. z ∈ Ω, all x ∈ R, with a(·, λ) ∈ L∞(Ω)+,

||a(·, λ)||∞ → 0 as λ→ 0+,

ϑ(r) > 0 for all r > 0, r �−→ ϑ(r) is bounded on bounded sets of (0,∞) and lim
r→0+

ϑ(r)
rp−1 =

0;

(iii) if F(z, x, λ) =
∫ x

0 f (z, s, λ)ds, then there exist q = q(λ) ∈ (1, p) and δ0 = δ0(λ),
c0 = c0(λ) > 0 such that

qF(z, x, λ) ≥ f (z, x, λ)x ≥ c0|x|q for a.a. z ∈ Ω, all |x| ≤ δ0.

Remark. Evidently hypothesis H1(iii) implies the presence of a concave nonlinearity near
zero. We stress that the growth of x �−→ f (z, x, λ) near +∞ can be arbitrary (see hypothesis
H1(ii)).

Examples. The following functions satisfy hypotheses H1. For the sake of simplicity we
drop the z-dependence:

f1(x, λ) = λ|x|q−2x + |x|r−2x with 1 < q < p < r < ∞

f2(x, λ) =
{
λ|x|q−2x if |x| ≤ 1
λ
2

[
|x|p−2x + |x|τ−2x

]
if |x| > 1 with 1 < q, τ < p

f3(x, λ) =
{
|x|q−2x if |x| ≤ ρ(λ)
|x|r−2x ± ξ(λ) if |x| > ρ(λ)

with 1 < q < p, r, ρ(λ) ∈ (0, 1) for all λ > 0, ρ(λ) → 0+ as λ → 0+ and ξ(λ) = ρ(λ)q−1 −
ρ(λ)r−1.

First we produce two nontrivial solutions of constant sign.

Proposition 3.1 If hypotheses H(β) and H1 hold, then there exists λ∗ > 0 such that for all
λ ∈ (0, λ∗) problem (Pλ) admits two nontrivial solutions of constant sign

u0 ∈ int C+ and v0 ∈ −int C+.
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Proof. We consider the following auxiliary Robin problem

−∆pe(z) = 1 in Ω,
∂e
∂np
+ β(z)ep−1 = 0 on ∂Ω, e > 0. (3.2)

Let η : W1,p(Ω)→ R be the locally Lipschitz functional defined by

η(u) =
1
p
||Du||pp +

1
p
||u−||pp +

1
p

∫
∂Ω

β(z)(u+)pdσ −
∫
Ω

(u+)dz

for all u ∈ W1,p(Ω).

Using Young’s inequality with ϵ > 0 (see, for example, Gasinski and Papageorgiou [13,
p. 913]), we have

u+(z) ≤ ϵ
p

u+(z)p +
1
ϵp′

with ϵ > 0 and with
1
p
+

1
p′
= 1.

Therefore we have

η(u) ≥ 1
p
||Du+||pp +

1
p

∫
∂Ω

β(z)(u+)pdσ − ϵ
p
||u+||pp +

1
p
||Du−||pp +

1
p
||u−||pp −

1
ϵp′
|Ω|N .

Let λ̂1 > 0 be the principal eigenvalue of the negative Robin p-Laplacian (see Papa-
georgiou and Rădulescu [26]). Choosing ϵ ∈ (0, λ̂1), we have

η(u) ≥ ξ0||u+||p +
1
p
||u−||p − 1

ϵp′
|Ω|N for some ξ0 > 0

⇒ η(·) is coercive.

Also, using the Sobolev embedding theorem and the compactness of the trace map we see
that η is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem we can
find e ∈ W1,p(Ω) such that

η(e) = inf[η(v) : v ∈ W1,p(Ω)] . (3.3)

Let û1 be the positive Lp-normalized (that is, ||û1||p = 1) principal eigenfunction of the
negative Robin p-Laplacian. We know that û1 ∈ int C+ (see Papageorgiou and Rădulescu
[26]). We have

η(tû1) =
tp

p
λ̂1 − t||û1||1 (recall ||û1||p = 1).

Choosing t ∈ (0, 1) small, we see that

η(tû1) < 0 (recall p > 1)
⇒ η(e) < 0 = η(0) (see (3.3)), hence e � 0.

From (3.3) we have
0 ∈ ∂η(e)



Nonlinear parametric Robin problems with combined nonlinearities 721

Proof. We consider the following auxiliary Robin problem

−∆pe(z) = 1 in Ω,
∂e
∂np
+ β(z)ep−1 = 0 on ∂Ω, e > 0. (3.2)

Let η : W1,p(Ω)→ R be the locally Lipschitz functional defined by

η(u) =
1
p
||Du||pp +

1
p
||u−||pp +

1
p

∫
∂Ω

β(z)(u+)pdσ −
∫
Ω

(u+)dz

for all u ∈ W1,p(Ω).

Using Young’s inequality with ϵ > 0 (see, for example, Gasinski and Papageorgiou [13,
p. 913]), we have

u+(z) ≤ ϵ
p

u+(z)p +
1
ϵp′

with ϵ > 0 and with
1
p
+

1
p′
= 1.

Therefore we have

η(u) ≥ 1
p
||Du+||pp +

1
p

∫
∂Ω

β(z)(u+)pdσ − ϵ
p
||u+||pp +

1
p
||Du−||pp +

1
p
||u−||pp −

1
ϵp′
|Ω|N .

Let λ̂1 > 0 be the principal eigenvalue of the negative Robin p-Laplacian (see Papa-
georgiou and Rădulescu [26]). Choosing ϵ ∈ (0, λ̂1), we have

η(u) ≥ ξ0||u+||p +
1
p
||u−||p − 1

ϵp′
|Ω|N for some ξ0 > 0

⇒ η(·) is coercive.

Also, using the Sobolev embedding theorem and the compactness of the trace map we see
that η is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem we can
find e ∈ W1,p(Ω) such that

η(e) = inf[η(v) : v ∈ W1,p(Ω)] . (3.3)
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with ∂ denoting the subdifferential in the sense of Clarke [7] of the locally Lipschitz func-
tional η(·). From Clarke [7, p. 39] we have

⟨A(e), h⟩ −
∫
Ω

(e−)p−1hdz +
∫
∂Ω

β(z)(e+)p−1hdσ ≤
∫
Ω

χ{e≥0}(z)hdz (3.4)

for all h ∈ W1,p(Ω).

In (3.4) we choose h = −e− ∈ W1,p(Ω). We obtain

||e−||p = 0, hence e ≥ 0, e � 0.

Then (3.4) becomes

⟨A(e), h⟩ +
∫
∂Ω

β(z)ep−1hdσ ≤
∫
Ω

hdz for all h ∈ W1,p(Ω),

⇒ ⟨A(e), h⟩ +
∫
∂Ω

β(z)ep−1hdσ =
∫
Ω

hdz for all h ∈ W1,p(Ω). (3.5)

Let ⟨·, ·⟩0 denote the duality brackets for the pair (W−1,p′(Ω),W1,p
0 (Ω)) (recall W1,p

0 (Ω)∗ =
W−1,p′(Ω), 1

p +
1
p′ = 1). From the representation theorem for the elements of W−1,p′(Ω) (see,

for example, Gasinski and Papageorgiou [13, p. 212]), we have

∆pe ∈ W−1,p′(Ω).

Using integration by parts, we have

⟨A(e), h⟩ =
⟨
−∆pe, h

⟩
0

for all h ∈ W1,p
0 (Ω) ⊆ W1,p(Ω).

Using this equality in (3.5) and recalling that h|∂Ω = 0 for all h ∈ W1,p
0 (Ω) we have

⟨
−∆pe, h

⟩
0
=

∫
Ω

hdz for all h ∈ W1,p
0 (Ω),

⇒ −∆pe(z) = 1 for a.a. z ∈ Ω. (3.6)

We can apply the nonlinear Green’s identity (see, for example, Gasinski and Papageor-
giou [13, p. 210]) and obtain

⟨A(e), h⟩ +
∫
Ω

(∆pe)hdz =
⟨
∂e
∂np
, h
⟩

∂Ω

for all h ∈ W1,p(Ω), (3.7)

where by ⟨·, ·⟩∂Ω we denote the duality brackets for the pair
(
W−

1
p′ ,p

′
(∂Ω),W

1
p′ ,p(∂Ω)

)
. Re-

turning to (3.5) and using (3.7), we have

−
∫
Ω

(∆pe)hdz +
⟨
∂e
∂np
, h
⟩

∂Ω

+

∫
∂Ω

β(z)ep−1hdσ =
∫
Ω

hdz

for all h ∈ W1,p(Ω),

⇒
⟨
∂e
∂np
, h
⟩

∂Ω

+

∫
∂Ω

β(z)ep−1hdσ = 0 for all h ∈ W1,p(Ω) (see (3.6)). (3.8)
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Since im γ0 = W
1
p′ ,p(∂Ω), from (3.8) it follows that

∂e
∂np
+ β(z)ep−1 = 0 on ∂Ω. (3.9)

From (3.6) and (3.9) it follows that e ∈ W1,p(Ω) is a nontrivial positive solution of the
auxiliary problem (3.2). From Winkert [29], we have e ∈ L∞(Ω) and then Theorem 2 of
Lieberman [19] implies that e ∈ C+\{0}. From (3.6), we have

∆pe(z) ≤ 0 a.e. in Ω,
⇒ e ∈ int C+ (see Vazquez [28]).

Claim 3.1 There exists λ∗ > 0 such that for every λ ∈ (0, λ∗), we can find ξ̂ = ξ̂(λ) > 0 for
which

||a(·, λ)||∞ + ϑ(ξ̂||e||∞) < ξ̂p−1.

Suppose that the Claim is not true. Then we can find λn → 0+ such that

||a(·, λn)||∞ + ϑ(ξ||e||∞) ≥ ξp−1 for all n ≥ 1, all ξ > 0.

We let n→ ∞ and use hypothesis H1(ii) to obtain

ϑ(ξ||e||∞) ≥ ξp−1 for all ξ > 0,

⇒ ϑ(ξ||e||∞)
ξp−1 ≥ 1 for all ξ > 0,

which contradicts hypothesis H1(ii). This proves the Claim.
Let λ ∈ (0, λ∗) and set ū = ξ̂e ∈ int C+. We have

∆pū(z) = ξ̂p−1 > ||a(·, λ)||∞ + ϑ(ξ̂||e||∞) (see the Claim)
≥ f (z, ū(z), λ) for a.a. z ∈ Ω (see hypothesis H1(ii)). (3.10)

We consider the following truncation-perturbation of f (z, ·, λ):

f̂+(z, x, λ) =


0 if x < 0
f (z, x, λ) + xp−1 if 0 ≤ x ≤ ū(z)
f (z, ū(z), λ) + ū(z)p−1 if ū(z) < x.

(3.11)

This is a Carathéodory function. We set F̂+(z, x, λ) =
∫ x

0 f̂+(z, s, λ)ds and consider the
C1-functional φ̂λ+ : W1,p(Ω)→ R defined by

φ̂λ+(u) =
1
p
||Du||pp +

1
p
||u||pp +

1
p

∫
∂Ω

β(z)(u+)pdσ −
∫
Ω

F̂+(z, u, λ)dz

for all u ∈ W1,p(Ω).

From (3.11) and hypothesis H(β), we see that φ̂λ+ is coercive. Also, it is sequentially weakly
lower semicontinuous. So, by the Weierstrass theorem, we can find u0 ∈ W1,p(Ω) such that

φ̂λ+(u0) = inf
[
φ̂λ+(u) : u ∈ W1,p(Ω)

]
= m̂λ+. (3.12)
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≥ f (z, ū(z), λ) for a.a. z ∈ Ω (see hypothesis H1(ii)). (3.10)

We consider the following truncation-perturbation of f (z, ·, λ):

f̂+(z, x, λ) =


0 if x < 0
f (z, x, λ) + xp−1 if 0 ≤ x ≤ ū(z)
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Let δ0 > 0 be as postulated by hypothesis H1(iii) and let m̄ = min
Ω

ū > 0 (recall ū ∈

int C+). Let δ̂ = min{δ0, m̄} and choose t ∈ (0, 1) small such that tû1(z) ∈ (0, δ̂] for all
z ∈ Ω (recall û1 ∈ int C+ is the Lp-normalized principal eigenfunction of the negative
Robin p-Laplacian). We have

φ̂λ+(tû1) =
tp

p
||Dû1||pp +

tp

p

∫
∂Ω

β(z)ûp
1dσ −

∫
Ω

F(z, tû1, λ)dz (see (3.11))

≤ λ̂1

p
tp − c0tq

q
||û1||qq

(see [26], hypothesis H1(iii) and recall ||û1||p = 1).

Since p > q, by choosing t ∈ (0, 1) even smaller if necessary, we obtain

φ̂λ+(tû1) < 0,
⇒ φ̂λ+(u0) < 0 = φ̂λ+(0) (see (3.12)), hence u0 � 0.

From (3.12), we have

(φ̂λ+)′(u0) = 0,

⇒ ⟨A(u0), h⟩ +
∫
Ω

|u0|p−2u0hdz +
∫
∂Ω

β(z)(u+0 )p−1hdσ =

=

∫
Ω

f̂+(z, u0, λ)hdz for all h ∈ W1,p(Ω). (3.13)

In (3.13) we choose h = −u−0 ∈ W1,p(Ω). Then

||Du−0 ||
p
p + ||u−0 ||

p
p = 0 (see (3.11)),

⇒ u0 ≥ 0, u0 � 0.

Also in (3.13) we choose h = (u0 − ū)+ ∈ W1,p(Ω). Then

⟨
A(u0), (u0 − ū)+

⟩
+

∫
Ω

up−1
0 (u0 − ū)+dz +

∫
∂Ω

β(z)up−1
0 (u0 − ū)+dσ

=

∫
Ω

[ f (z, ū, λ) + ūp−1](u0 − ū)+dz (see (3.11))

≤
∫
Ω

[ξ̂p−1 + ūp−1](u0 − ū)+dz (see hypothesis H1(ii) and the Claim)

=
⟨
A(ū), (u0 − ū)+

⟩
+

∫
Ω

ūp−1(u0 − ū)+dz +
∫
∂Ω

β(z)ūp−1(u0 − ū)+dσ

(recall the definition of ū ∈ int C+),

⇒ ⟨
A(u0) − A(ū), (u0 − ū)+

⟩
+

∫
Ω

(up−1
0 − ūp−1)(u0 − ū)+dz +

∫
∂Ω

β(z)(up−1
0 − ūp−1)(u0 − ū)+dσ ≤ 0,

⇒ |{u0 > ū}|N = 0, hence u0 ≤ ū.
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So, we have proved that

u0 ∈ [0, ū] = {u ∈ W1,p(Ω) : 0 ≤ u(z) ≤ ū(z) a.e. in Ω}, u0 � 0.

Then (3.13) becomes

⟨A(u0), h⟩ +
∫
∂Ω

β(z)up−1
0 hdσ =

∫
Ω

f (z, u0, λ)hdz (3.14)

for all h ∈ W1,p(Ω) (see (3.11)).

From (3.14), as before, using the nonlinear Green’s identity, we infer that u0 is a non-
trivial positive solution of problem (Pλ) with λ ∈ (0, λ∗). Again, the nonlinear regularity
theory (see Lieberman [19]), implies that u0 ∈ C+\{0}. Note that hypotheses H1(ii), (iii)
imply that given ρ > 0, we can find ξρ = ξρ(λ) > 0 such that

f (z, x, λ)x + ξρ|x|p ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ.

So, we have

−∆pu0(z) + ξρu0(z)p−1 = f (z, u0(z), λ) + ξρu0(z)p−1 ≥ 0 a.e. in Ω,
⇒ ∆pu0(z) ≤ ξρu0(z)p−1 a.e. in Ω,
⇒ u0 ∈ int C+ (see Vazquez [28]).

In a similar fashion, we let u = −ξ̂e ∈ −int C+ and consider the following truncation-
perturbation of f (z, ·, λ)

f̂−(z, x, λ) =


f (z, u(z), λ) + |u(z)|p−2u(z) if x < u(z)
f (z, x, λ) + |x|p−2x if u(z) ≤ x ≤ 0
0 if 0 < x.

Using the Carathéodory function (z, x) �−→ f̂−(z, x, λ) and reasoning as above via the
direct method, we obtain a second nontrivial constant sign solution v0 ∈ int C+, u ≤ v0. �

Next we will produce a third nontrivial solution for (Pλ) (λ ∈ (0, λ∗)) which is nodal
(that is, sign changing). To this end, first we show that problem (Pλ) has extremal constant
sign solutions, that is, a smallest nontrivial positive solution and a biggest nontrivial nega-
tive solution. To this end, we need to strengthen the hypotheses on f (z, ·, λ). So, the new
conditions on the reaction, are the following:

H2 : f : Ω×R×(0,∞)→ R is a function such that for a.a. z ∈ Ω, all λ > 0, f (z, 0, λ) = 0,
hypotheses H2(i), (ii), (iii) are the same as the corresponding hypotheses H1(i), (ii), (iii) and
(iv) for every λ > 0, we can find c1 = c1(λ) > 0, c2 = c2(λ) > 0 and r = r(λ) ∈ (p, p∗) such
that

f (z, x, λ)x ≥ c1|x|q − c2|x|r for a.a. z ∈ Ω, all x ∈ R.
This extra unilateral growth condition on f (z, ·, λ), leads to the following auxiliary Robin
problem


−∆pu(z) = c1|u(z)|q−2u(z) − c2|u(z)|r−2u(z) in Ω
∂u
∂np
+ β(z)|u(z)|p−2u(z) = 0 on ∂Ω. (3.15)
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Proposition 3.2 If hypotheses H(β) hold, then problem (3.15) has a unique nontrivial pos-
itive solution u2 ∈ int C+ and since the equation is odd, v̄∗ = −ū∗ ∈ −int C+ is the unique
nontrivial negative solution of (3.15).

Proof. First we show the existence of a nontrivial positive solution. To this end, let ψ+ :
W1,p(Ω)→ R be the C1-functional defined by

ψ+(u) =
1
p
||Du||pp +

1
p
||u−||pp +

1
p

∫
∂Ω

β(z)(u+)pdσ − c1

q
||u+||qq +

c2

r
||u+||rr

for some u ∈ W1,p(Ω).

By virtue of hypothesis H(β), we have

ψ+(u) ≥ 1
p
||u||p +

[
c2

r
||u+||rr −

1
p
||u+||pp −

c1

q
||u+||qq

]

≥ 1
p
||u||p +

[c2

r
||u+||rr − c3

(
||u+||pr + ||u+||qr

)]

for some c3 > 0 (recall q < p < r)

=
1
p
||u||p +

[
c2

r
||u+||r−p

r − c3 −
c3

||u+||p−q
r

]
||u+||pr .

(3.16)

Since q < p < r, from (3.16) it is clear that ψ+ is coercive. Also, ψ+ is sequentially weakly
lower semicontinuous. So, we can find ū∗ ∈ W1,p(Ω) such that

ψ+(ū∗) = inf[ψ+(u) : u ∈ W1,p(Ω)]. (3.17)

As before (see the proof of Proposition 3.1) and since q < p < r, for t ∈ (0, 1) small we
have

ψ+(tû1) < 0,
⇒ ψ+(ū∗) < 0 = ψ+(0) (see (3.17)), hence ū∗ � 0.

From (3.17), we have

ψ′+(ū∗) = 0,

⇒ ⟨A(ū∗), h⟩ −
∫
Ω

(ū−∗ )p−1hdz +
∫
∂Ω

β(z)(ū+∗ )p−1hdσ =

c1

∫
Ω

(ū+∗ )q−1hdz − c2

∫
Ω

(ū+∗ )r−1hdz for all W1,p(Ω). (3.18)

In (3.18) we choose h = −ū−∗ ∈ W1,p(Ω). Then

||Dū−∗ ||
p
p + ||ū−∗ ||

p
p = 0,

⇒ ū∗ ≥ 0, ū∗ � 0.

Then equation (3.18) becomes

⟨A(ū∗), h⟩ +
∫
∂Ω

β(z)ūp−1
∗ hdσ = c1

∫
Ω

ūq−1
∗ hdz − c2

∫
Ω

ūr−1
∗ hdz (3.19)

for all h ∈ W1,p(Ω).
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From (3.19) as before (see the proof of Proposition 3.1), we infer that ū∗ is a nontrivial
positive solution of (3.15) and the nonlinear regularity theory (see Lieberman [19] and
Winkert [29]) implies that ū∗ ∈ C+\{0}. We have

−∆pū∗(z) ≥ −c2ū∗(z)r−1 a.e. in Ω,
⇒ ∆pū∗(z) ≤ c2||ū∗||r−p

∞ ū∗(z)p−1 a.e. in Ω,
⇒ ū∗ ∈ int C+ (see Vazquez [28]).

Next we show the uniqueness of this nontrivial positive solution. To this end, let σ+ :
L1(Ω)→ R = R ∪ {+∞} be the integral functional defined by

σ+ =


1
p
||Du1/p||pp +

1
p

∫
Ω

β(z)udσ if u ≥ 0, u1/p ∈ W1,p(Ω)

+∞ otherwise.

From Lemma 1 of Diaz and Saa [8] and hypotheses H(β), we see that σ+ is convex and
lower semicontinuous.

Let ȳ∗ ∈ W1,p(Ω) be another nontrivial positive solution of problem (3.15). Again we
can show that ȳ∗ ∈ int C+. So, for any h ∈ C1(Ω) and for |t| ≤ 1 small, we have

ūp
∗ + th, ȳp

∗ + th ∈ domσ+ = {u ∈ L1(Ω) : σ+(u) < +∞}.

The functional σ+ is Gâteaux differentiable at ūp
∗ and at ȳp

∗ in the direction h. Moreover,
via the chain rule and the nonlinear Green’s identity, we have

σ′+(ūp
∗ )(h) =

1
p

∫
Ω

−∆pū∗

ūp−1
∗

hdz

σ′+(ȳp
∗ )(h) =

1
p

∫
Ω

−∆pȳ∗

ȳp−1
∗

hdz for all h ∈ W1,p(Ω)

(recall that C1(Ω) is dense in W1,p(Ω)). The convexity of σ+ implies the monotonicity of
σ′+ and so we have

0 ≤ 1
p

∫
Ω

−∆pū∗

ūp−1
∗

−
−∆pȳ∗

ȳp−1
∗

 (ūp
∗ − ȳp

∗ )dz

=
1
p

∫
Ω

[
c1

(
1

ūp−q
∗
− 1

ȳp−q
∗

)
− c2(ūr−p

∗ − ȳr−p
∗ )
]

(ūp
∗ − ȳp

∗ )dz ≤ 0

⇒ ū∗ = ȳ∗ (since x �−→ c1

xp−q − c2xr−p is strictly decreasing on (0,∞)).

So, the nontrivial positive solution ū∗ ∈ int C+ of (3.15) is unique.
Since equation (3.15) is odd, it follows that v̄∗ = −ū∗ ∈ −int C+ is the unique nontrivial

negative solution. �

In what follows, by S +(λ) (resp. S −(λ)) we denote the set of nontrivial positive (resp.
negative) solutions of problem (Pλ). From Proposition 3.1, we know that for all λ ∈ (0, λ∗)

∅ � S +(λ) ⊆ int C+ and ∅ � S −(λ) ⊆ −int C+.
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∞ ū∗(z)p−1 a.e. in Ω,
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1
p
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lower semicontinuous.

Let ȳ∗ ∈ W1,p(Ω) be another nontrivial positive solution of problem (3.15). Again we
can show that ȳ∗ ∈ int C+. So, for any h ∈ C1(Ω) and for |t| ≤ 1 small, we have

ūp
∗ + th, ȳp

∗ + th ∈ domσ+ = {u ∈ L1(Ω) : σ+(u) < +∞}.

The functional σ+ is Gâteaux differentiable at ūp
∗ and at ȳp

∗ in the direction h. Moreover,
via the chain rule and the nonlinear Green’s identity, we have

σ′+(ūp
∗ )(h) =

1
p

∫
Ω

−∆pū∗

ūp−1
∗

hdz

σ′+(ȳp
∗ )(h) =

1
p

∫
Ω

−∆pȳ∗

ȳp−1
∗

hdz for all h ∈ W1,p(Ω)

(recall that C1(Ω) is dense in W1,p(Ω)). The convexity of σ+ implies the monotonicity of
σ′+ and so we have

0 ≤ 1
p

∫
Ω

−∆pū∗

ūp−1
∗

−
−∆pȳ∗

ȳp−1
∗

 (ūp
∗ − ȳp

∗ )dz

=
1
p

∫
Ω

[
c1

(
1

ūp−q
∗
− 1

ȳp−q
∗

)
− c2(ūr−p

∗ − ȳr−p
∗ )
]

(ūp
∗ − ȳp

∗ )dz ≤ 0

⇒ ū∗ = ȳ∗ (since x �−→ c1

xp−q − c2xr−p is strictly decreasing on (0,∞)).

So, the nontrivial positive solution ū∗ ∈ int C+ of (3.15) is unique.
Since equation (3.15) is odd, it follows that v̄∗ = −ū∗ ∈ −int C+ is the unique nontrivial

negative solution. �

In what follows, by S +(λ) (resp. S −(λ)) we denote the set of nontrivial positive (resp.
negative) solutions of problem (Pλ). From Proposition 3.1, we know that for all λ ∈ (0, λ∗)

∅ � S +(λ) ⊆ int C+ and ∅ � S −(λ) ⊆ −int C+.
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Moreover, as in Filippakis, Kristaly and Papageorgiou [11], exploiting the monotonicity of
A (see Proposition 2.2), we know that

• S +(λ) is downward directed (that is, if u1, u2 ∈ S +(λ), then we can find u ∈ S +(λ)
such that u ≤ u1, u ≤ u2).

• S −(λ) is upward directed (that is, if v1, v2 ∈ S −(λ), then we can find v ∈ S −(λ) such
that v1 ≤ v, v2 ≤ v).

Proposition 3.3 If hypotheses H(β) and H2 hold and λ ∈ (0, λ∗), then

(a) ū∗ ≤ u for all u ∈ S +(λ);

(b) v ≤ v̄∗ for all v ∈ S +(λ).

Proof. (a) Let u ∈ S +(λ) and consider the following Carathéodory function

k+(z, x) =


0 if x < 0
c1xq−1 − c2xr−1 + xp−1 if 0 ≤ x ≤ u(z)
c1u(z)q−1 − c2u(z)r−1 + u(z)p−1 if u(z) < x.

(3.20)

We set K+(z, x) =
∫ x

0 k+(z, s)ds and consider the C1-functional τ+ : W1,p(Ω) → R
defined by

τ+(u) =
1
p
||Du||pp +

1
p
||u||pp +

1
p

∫
∂Ω

β(z)(u+)pdσ −
∫
Ω

k+(z, u)dz

for all u ∈ W1,p(Ω).

From (3.20) and hypotheses H(β), it is clear that τ+ is coercive. Also, it is sequentially
weakly lower semicontinuous. So, we can find û∗ ∈ W1,p(Ω) such that

τ+(û∗) = inf[τ+(u) : u ∈ W1,p(Ω)]. (3.21)

Since q < p < r, for t ∈ (0, 1) small we have

τ+(tû1) < 0,
⇒ τ+(û∗) < 0 = τ+(0) (see (3.21)), hence û∗ � 0.

Also, from (3.21) we have

τ′+(û∗) = 0

⇒ ⟨A(û∗), h⟩ +
∫
Ω

|û∗|p−2û∗hdz +
∫
∂Ω

β(z)(û+∗ )p−1hdσ =

=

∫
Ω

k+(z, û∗)hdz for all h ∈ W1,p(Ω). (3.22)
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As in the proof of Proposition 3.1, in (3.22) first we choose h = −û−∗ ∈ W1,p(Ω) and
then h = (û∗ − u)+ ∈ W1,p(Ω), to show that

û∗ ∈ [0, u], û∗ � 0,
⇒ û∗ is a nontrivial positive solution of (3.15) (see (3.20)),
⇒ û∗ = ū∗ (see Proposition 3.2),
⇒ ū∗ ≤ u for all u ∈ S +(λ).

Similarly we show that v ≤ v̄∗ for all v ∈ S −(λ). �

We will use this proposition to establish the existence of extremal constant sign solu-
tions for problem (Pλ) (λ ∈ (0, λ∗)).

Proposition 3.4 If hypotheses H(β) and H2 hold and λ ∈ (0, λ∗), then problem (Pλ) admits
extremal constant sign solutions

uλ∗ ∈ int C+ and vλ∗ ∈ −int C+.

Proof. Since S +(λ) is downward directed, without any loss of generality we may assume
that there exists c4 > 0 such that ||u||∞ ≤ c4 for all u ∈ S +(λ). Then from Dunford and
Schwartz [10, p. 336] we know that we can find {un}n≥1 ⊆ S +(λ) such that

inf S +(λ) = inf
n≥1

un.

We have

⟨A(un), h⟩ +
∫
∂Ω

β(z)up−1
n hdσ =

∫
Ω

f (z, un, λ)hdz for all h ∈ W1,p(Ω). (3.23)

Choosing h = un ∈ W1,p(Ω) in (3.24) and using hypotheses H(β) and H2(ii) (recall that
{un}n≥1 ⊆ L∞(Ω) is bounded), we see that {un}n≥1 ⊆ W1,p(Ω) is bounded and so, we may
assume that

un
w→ uλ∗ in W1,p(Ω) and un → uλ∗ in Lp(Ω) and in Lp(∂Ω). (3.24)

In (3.23) we choose h = un − uλ∗ ∈ W1,p(Ω), pass to the limit as n → ∞ and use (3.24).
Then

lim
n→∞

⟨
A(un), un − uλ∗

⟩
= 0,

⇒ un → uλ∗ in W1,p(Ω) (see Proposition 2.2). (3.25)

So, if in (3.23) we pass to the limit as n→ ∞ and use (3.25), then

⟨
A(uλ∗), h

⟩
+

∫
∂Ω

β(z)(uλ∗)
p−1hdσ =

∫
Ω

f (z, uλ∗ , λ)hdz (3.26)

for all h ∈ W1,p(Ω) (see hypothesis H2(i)).
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Also, from Proposition 3.3 we have

ū∗ ≤ un for all n ≥ 1,
⇒ ū∗ ≤ uλ∗ , hence uλ∗ � 0. (3.27)

From (3.26) and (3.27), as before we infer that

uλ∗ ∈ S +(λ) and uλ∗ = inf S +(λ).

Similarly we obtain v∗λ ∈ S −(λ), vλ∗ = sup S −(λ). �

Now that we have the extremal constant sign solutions, we can produce a nodal solution.
The idea is to use variational methods to locate a nontrivial solution of (Pλ) in the order
interval [vλ∗ , u

λ
∗], which is distinct from vλ∗ and uλ∗ . Then the extremality of vλ∗ and uλ∗ , implies

that this third nontrivial solution is necessarily nodal (that is, sign changing).

Proposition 3.5 If hypotheses H(β) and H2 hold and λ ∈ (0, λ∗) then problem (Pλ) admits
a nodal solution y0 ∈ C1(Ω).

Proof. We consider the following truncation-perturbation of the reaction f (z, ·, λ):

wλ(z, x) =


f (z, vλ∗(z), λ) + vλ∗(z)p−1 if x < vλ∗(z)
f (z, x, λ) + |x|p−2x if vλ∗(z) ≤ x ≤ uλ∗(z)
f (z, uλ∗(z).λ) + uλ∗(z)p−1 if uλ∗(z) < x.

(3.28)

This is a Carathéodory function. We set Wλ(z, x) =
∫ x

0 wλ(z, s)ds.
Also, we consider a corresponding truncation of the boundary term, namely the

Carathéodory function

γλ(z, x) =


|vλ∗(z)|p−2vλ∗(z) if x < vλ∗(z)
|x|p−2x if vλ∗(z) ≤ x ≤ uλ∗(z)
uλ∗(z)p−1 if uλ∗(z) < x

for all (z, x) ∈ ∂Ω × R. (3.29)

We set Γλ(z, x) =
∫ x

0 γλ(z, s)ds.
We consider the C1-functional ξλ : W1,p(Ω)→ R defined by

ξλ(u) =
1
p
||Du||pp +

1
p
||u|pp +

∫
∂Ω

β(z)Γλ(z, u)dσ −
∫
Ω

Wλ(z, u)dz for all u ∈ W1,p(Ω).

In addition, we consider also the positive and negative truncations of wλ(z, ·) and of γλ(z, ·).
So, we define

w±λ (z, x) = wλ(z,±x±) and γ±λ (z, x) = γλ(z,±x±).

These are Carathéodory functions. We set W±λ (z, x) =
∫ x

0 w±λ (z, s)ds and Γ±λ (z, x) =
x∫

0
γ±λ (z, s)ds

and consider the C1-functionals ξ±λ : W1,p(Ω)→ R defined by

ξ±λ (u) =
1
p
∥Du∥pp +

1
p
∥u∥pp +

∫

∂Ω

β(λ)Γ±λ (z, u)dσ −
∫
Ω

W±λ (z, u)dz

for all u ∈ W1,p(Ω).
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Claim 1. Kξλ ⊆ [vλ∗ , u
λ
∗], Kξ+λ = {0, u

λ
∗}, Kξ−λ = {0, v

λ
∗}.

Let u ∈ Kξλ . Then

⟨A(u), h⟩ +
∫

Ω

|u|p−2uhdz +
∫

∂Ω

β(z)γλ(z, u)hdσ =
∫

Ω

wλ(z, u)hdz (3.30)

for all h ∈ W1,p(Ω).

In (3.30) we choose h = (u − uλ∗)
+ ∈ W1,p(Ω). Then

⟨A(u), (u − uλ∗)
+⟩ +
∫

Ω

up−1(u − uλ∗)
+dz +

∫

∂Ω

β(z)(uλ∗)
p−1(u − uλ∗)

+dσ

=

∫

Ω

[
f (z, uλ∗ , λ) + (uλ∗)

p−1
]

(u − uλ∗)
+dz (see (3.28), (3.29))

= ⟨A(uλ∗), (u − uλ∗)
+⟩ +
∫

Ω

(uλ∗)
p−1(u − uλ∗)

+dz +
∫

∂Ω

β(z)(uλ∗)
p−1(u − uλ∗)

+dσ

(since uλ∗ ∈ S +(λ)),

⇒ ⟨A(u) − A(uλ∗), (u − uλ∗)
+⟩ +
∫

Ω

(up−1 − (uλ∗)
p−1)(u − uλ∗)

+dz = 0,

⇒ |{u > uλ∗}|N = 0, hence u ≤ uλ∗ .

Also, in (3.30) we choose h = (vλ∗ − u)+ ∈ W1,p(Ω) and obtain u ≥ vλ∗ . Therefore,

u ∈ [vλ∗ , u
λ
∗],

⇒ Kξλ ⊆ [vλ∗ , u
λ
∗].

In a similar fashion, we show that

Kξ+λ ⊆ [0, uλ∗] and Kξ−λ ⊆ [vλ∗ , 0].

The extremality of vλ∗ and uλ∗ implies that

Kξ+λ = {0, u
λ
∗} and Kξ−λ = {0, v

λ
∗}.

This proves Claim 1.
Claim 2. uλ∗ ∈ int C+ and vλ∗ ∈ −int C+ are local minimizers of the functional ξλ.
Evidently the functional ξ+λ is coercive (see (3.28) and (3.29)). Also, it is sequentially

weakly lower semicontinuous. So, we can find ûλ∗ ∈ W1,p(Ω) such that

ξ+λ (ûλ∗) = inf
[
ξ+λ (u) : u ∈ W1,p(Ω)

]
. (3.31)

Since q < p, as in the proof of Proposition 3.1, by choosing t ∈ (0, 1) small (at least such
that tû1(z) ≤ min

Ω

uλ∗ ; recall û1, uλ∗ ∈ int C+), we have

ξ+λ (tû1) < 0,
⇒ ξ+λ (ûλ∗) < 0 = ξ+λ (0) (see (3.31)), hence ûλ∗ � 0.
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From (3.31) we have

ûλ∗ ∈ Kξ+λ \ {0},
⇒ ûλ∗ = uλ∗ ∈ int C+ (see Claim 1).

Note that ξ+λ
����
C+
= ξλ

����
C+

. Therefore uλ∗ is a local C1(Ω)-minimizer of ξλ. Invoking Proposi-

tion 2.1, we conclude that uλ∗ is a local W1,p(Ω)-minimizer of ξλ. Similarly we show that
vλ∗ ∈ −int C+ is a local minimizer of ξλ, using this time the functional ξ−λ . This proves Claim
2.

Without any loss of generality, we may assume ξλ(vλ∗) ≤ ξλ(uλ∗) (the analysis is similar
if the opposite inequality holds). Because of Claim 2, we can find ρ ∈ (0, 1) small such that

ξλ(vλ∗) ≤ ξλ(uλ∗) < inf
[
ξλ(u) : ∥u − uλ∗∥ = ρ

]
= ηλρ, ∥vλ∗ − uλ∗∥ > ρ (3.32)

(see Gasinski and Papageorgiou [14], proof of Theorem 2.12). From (3.28) and (3.29) it is
clear that ξλ is coercive, hence it satisfies the C-conditions. This fact and (3.32), permit the
use of Theorem 2.1 (the mountain pass theorem). So, we can find y0 ∈ W1,p(Ω) such that

y0 ∈ Kξλ and ηλρ ≤ ξλ(y0),

⇒ y0 ∈ [vλ∗ , u
λ
∗], y0 � {vλ∗ , uλ∗} (see Claim 1 and (3.32)),

⇒ y0 is a solution of (Pλ) (see (3.28), (3.29))
and

y0 ∈ C1(Ω) (by the nonlinear regularity theory).

It remains to show that y0 � 0. Since y0 is a critical point of mountain pass type for the
functional ξλ, we have

C1(ξλ, y0) � 0. (3.33)

Next we compute the critical groups of ξλ at the origin. We mention that Moroz [22] was
the first to compute the critical groups of functionals defined on H1

0(Ω) and concave near
the origin. Jiu and Su [18] extended the work of Moroz to functionals defined on W1,p

0 (Ω).
Claim 3. Ck(ξλ, 0) = 0 for all k ≥ 0.
From (3.28) and hypothesis H2(iii), we see that

Wλ(z, x) ≥ c0

q
|x|q − c5|x|r for a.a. z ∈ Ω, all x ∈ R, some c5 > 0. (3.34)

For all u ∈ W1,p(Ω) and t > 0, we have

ξλ(tu) ≤ tp

p
∥Du∥pp +

tp

p
∥u∥pp +

tp

p

∫

∂Ω

β(z)|u|pdσ + c5tr∥u∥rr −
c0tq

q
∥u∥qq (3.35)

(see (3.29) and (3.34)).

Since q < p < r, from (3.35) it is clear that we can find t∗ = t∗(u) ∈ (0, 1) such that

ξλ(tu) < 0 for all t ∈ (0, t∗). (3.36)
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Suppose u ∈ W1,p(Ω), 0 < ∥u∥ ≤ 1 and ξλ(u) = 0. Then

d
dt
ξλ(tu)

����
t=1

= ⟨ξ′λ(u), u⟩

= ∥Du∥pp + ∥u∥pp +
∫

∂Ω

β(z)γλ(z, u)udσ −
∫

Ω

wλ(z, u)udz

=

(
1 − q

p

)
∥Du∥pp +

(
1 − q

p

)
∥u∥pp +

∫

∂Ω

β(z)
[
γλ(z, u)u − qΓλ(z, u)

]
dσ

−
∫

Ω

[
wλ(z, u)u − qWλ(z, u)

]
dz (since ξλ(u) = 0)

≥
(
1 − q

p

)
∥u∥p +

∫

Ω

[
qWλ(z, u) − wλ(z, u)u

]
dz (see (3.29)

and hypotheses H(β))
≥ c6∥u∥p − c7∥u∥r for some c6, c7 > 0 with r > p

(see hypothesis H2(iii) and (3.28)).

Since r > p, we see that for ρ ∈ (0, 1) small we have

d
dt
ξλ(tu)

����
t=1
> 0 for all u ∈ W1,p(Ω) with 0 < ∥u∥ ≤ ρ, ξλ(u) = 0. (3.37)

Let u ∈ W1,p(Ω) with 0 < ∥u∥ ≤ ρ and ξλ(u) = 0. We will show that

ξλ(tu) ≤ 0 for all t ∈ [0, 1]. (3.38)

Suppose that (3.38) does not hold. Then we can find t0 ∈ (0, 1) such that ξλ(t0u) > 0. Recall
that ξλ(u) = 0. So, we can find t1 ∈ (t0, 1] such that ξλ(t1u) = 0. Define

t∗ = min{t ∈ (t0, 1] : ξλ(tu) = 0} > t0 > 0.

Then we have

ξλ(tu) ≥ 0 for all t ∈ [t0, t∗]. (3.39)

Let v = t∗u. We have 0 < ∥v∥ ≤ ∥u∥ ≤ ρ and ξλ(v) = 0. So, from (3.37) it follows that

d
dt
ξλ(tv)

����
t=1
> 0. (3.40)

From (3.39) we have

ξλ(v) = ξλ(t∗u) = 0 < ξλ(tu) for all t ∈ [t0, t∗),

⇒ d
dt
ξλ(tv)

����
t=1
= t∗

d
dt
ξλ(tu)

����
t=t∗
= t∗ lim

t→t−∗

ξλ(tu)
t − t∗

≤ 0. (3.41)
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Suppose u ∈ W1,p(Ω), 0 < ∥u∥ ≤ 1 and ξλ(u) = 0. Then

d
dt
ξλ(tu)

����
t=1

= ⟨ξ′λ(u), u⟩

= ∥Du∥pp + ∥u∥pp +
∫

∂Ω

β(z)γλ(z, u)udσ −
∫

Ω

wλ(z, u)udz

=

(
1 − q

p

)
∥Du∥pp +

(
1 − q

p

)
∥u∥pp +

∫

∂Ω

β(z)
[
γλ(z, u)u − qΓλ(z, u)

]
dσ

−
∫

Ω

[
wλ(z, u)u − qWλ(z, u)

]
dz (since ξλ(u) = 0)

≥
(
1 − q

p

)
∥u∥p +

∫

Ω

[
qWλ(z, u) − wλ(z, u)u

]
dz (see (3.29)

and hypotheses H(β))
≥ c6∥u∥p − c7∥u∥r for some c6, c7 > 0 with r > p

(see hypothesis H2(iii) and (3.28)).
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d
dt
ξλ(tu)

����
t=1
> 0 for all u ∈ W1,p(Ω) with 0 < ∥u∥ ≤ ρ, ξλ(u) = 0. (3.37)
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d
dt
ξλ(tv)

����
t=1
> 0. (3.40)
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⇒ d
dt
ξλ(tv)

����
t=1
= t∗

d
dt
ξλ(tu)

����
t=t∗
= t∗ lim

t→t−∗

ξλ(tu)
t − t∗

≤ 0. (3.41)



734 N.S. Papageorgiou, V.D. Rădulescu

Comparing (3.40) and (3.41), we reach a contradiction. This proves (3.38).
By choosing ρ ∈ (0, 1) even smaller if necessary, we can have Kξλ ∩ Bρ = {0} (here

Bρ = {u ∈ W1,p(Ω) : ∥u∥ ≤ ρ}). Let h : [0, 1] × (ξ0λ ∩ Bρ) → ξ0λ ∩ Bρ be the continuous
function defined by

h(t, u) = (1 − t)u for all (t, u) ∈ [0, 1] × (ξ0λ ∩ Bρ).

From (3.38) we see that this deformation is well-defined and shows that the set ξ0λ ∩ Bρ is
contractible in itself.

Consider u ∈ Bρ with ξλ(u) > 0. We show that there exists unique t(u) ∈ (0, 1) such that

ξλ(t(u)u) = 0. (3.42)

Since ξλ(u) > 0 and t �−→ ξλ(tu) is continuous, from (3.36) and Bolzano’s theorem, we see
that we can find t(u) ∈ (0, 1) such that (3.42) holds. We need the uniqueness of the t(u).
Suppose 0 < t̂1 = t(u)1 < t̂2 = t(u)2 < 1 both satisfy (3.42). Then from (3.38), we have

µ(t) = ξλ(tt̂2u) ≤ 0 for all t ∈ [0, 1].

Then t̂1/t̂2 ∈ (0, 1) is a maximizer of the function µ and so

d
dt
µ(t)
����
t= t̂1

t̂2

= 0,

⇒ t̂1
t̂2

d
dt
ξλ(tt̂2u)

����
t= t̂1

t̂2

=
d
dt
ξλ(tt̂1u)

����
t=1
= 0,

which contradicts (3.37). This proves the uniqueness of t(u) ∈ (0, 1) satisfying (3.42). The
uniqueness of t(u) ∈ (0, 1) implies that

ξλ(tu) < 0 for t ∈ (0, t(u)) (see (3.36)) (3.43)
ξλ(tu) > 0 for t ∈ (t(u), 1] (see (3.42) and recall ξλ(u) > 0).

We introduce the function ϑ : Bρ \ {0} → (0, 1] defined by

ϑ(u) =
{

1 if u ∈ Bρ \ {0}, ξλ(u) ≤ 0
t(u) if u ∈ Bρ \ {0}, ξλ(u) > 0.

(3.44)

It is easily seen that ϑ(·) is continuous. Then using ϑ(·), we can define the map τ : Bρ\{0} →
(ξ0λ ∩ Bρ) \ {0} by setting

τ(u) =
{

u if u ∈ Bρ \ {0}, ξλ(u) ≤ 0
ϑ(u)u if u ∈ Bρ \ {0}, ξλ(u) > 0.

(3.45)

The continuity of ϑ(·) implies that τ(·) is continuous too. Also, we have

τ
����
(ξ0λ∩Bρ)\{0}

= id
����
(ξ0λ∩Bρ)\{0}

(see (3.45)),

⇒ (ξ0λ ∩ Bρ) \ {0} is a retract of Bρ \ {0}, with retraction τ.
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But Bρ \ {0} is contractible in itself. Hence so is (ξ0λ ∩ Bρ) \ {0}. Recalling that ξ0λ ∩ Bρ is
contractible in itself (it was established earlier), we have

Hk(ξ0λ ∩ Bρ, (ξ0λ ∩ Bρ) \ {0}) = 0 for all k ≥ 0
(see Granas and Dugundji [16, p. 389]),

⇒ Ck(ξλ, 0) = 0 for all k ≥ 0.

This proves Claim 3.
From Claim 3 and (3.33) we infer that y0 � 0. Since y0 ∈ [vλ∗ , u

λ
∗], y0 � {vλ∗ , uλ∗} it

follows that y0 ∈ C1(Ω) is a nodal solution of problem (Pλ) with λ ∈ (0, λ∗). �

So, we can state the following multiplicity theorem for problem (Pλ). Note that our
result provides sign information for all the solutions produced and the reaction satisfies a
very general growth condition and no asymptotic conditions at ±∞ are imposed.

Theorem 3.1 If hypotheses H(β) and H2 hold, then there exists λ∗ > 0 such that for all
λ ∈ (0, λ∗) problem (Pλ) admits at least three distinct nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0 ∈ [v0, u0] ∩C1(Ω) nodal.

4 Five and six nontrivial solutions
In this section, we assume that the reaction f (z, ·, λ) exhibits subcritical growth and satisfies
certain asymptotic conditions at ±∞which imply that x �−→ f (z, x, λ) is (p−1)-superlinear.
However, we do not employ the usual in such cases AR-condition (see [5]). Instead, we
use an alternative condition (see hypothesis H3(iv)), which incorporates in our framework
superlinear reaction with “slow” growth near ±∞.

The new hypotheses on f (z, x, λ) are the following:
H3: f : Ω×R×(0,∞)→ R is a function such that for a.a. z ∈ Ω, all λ > 0, f (z, 0, λ) = 0

and

(i) for all λ > 0, (z, x) �−→ f (z, x, λ) is a Carathéodory function;

(ii) | f (z, x, λ)| ≤ a(z, λ) + c|x|r−1 for a.a. z ∈ Ω, all x ∈ R, with a(·, λ) ∈ L∞(Ω)+,

∥a(·, λ)∥∞ → 0 as λ→ 0+,

c > 0 and p < r < p∗;

(iii) if F(z, x, λ) =
x∫

0
f (z, s, λ)ds, then

lim
x→±∞

F(z, x, λ)
|x|p = +∞ uniformly for a.a. z ∈ Ω;

(iv) if kλ(z, x) = f (z, x, λ)x − pF(z, x, λ), then there exists β∗λ ∈ L1(Ω)+ such that

kλ(z, x′) ≤ kλ(z, x) + β∗λ(z) for a.a. z ∈ Ω, all 0 ≤ x′ ≤ x or x′ ≤ x ≤ 0;
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(v) there exist q = q(λ) ∈ (1, p) and δ0 = δ0(λ), c0 = c0(λ) > 0 such that

qF(z, x, λ) ≥ f (z, x, λ)x ≥ c0|x|q for a.a. z ∈ Ω, all a ≤ |x| ≤ δ0;

(vi) for every ρ > 0 and λ > 0, there exists ξλρ > 0 such that for a.a. z ∈ Ω,

x �−→ f (z, x, λ) + ξλρ |x|p−2x

is nondecreasing on [−ρ, ρ].

Remark. Hypothesis H3(iii) implies that for a.a. z ∈ Ω, all λ > 0, the primitive F(z, ·, λ)
is p-superlinear. Hypotheses H3(iii), (iv) imply that the reaction x �−→ f (z, x, λ) is (p − 1)-
superlinear (see Li and Yang [20, Lemma 2.4]). A slightly more restrictive version of
hypothesis H3(iv) was used earlier by Miyagaki and Souto [21] and Li and Yang [20].
Examples. The following functions satisfy hypotheses H3. As before, for the sake of
simplicity we drop the z-dependence:

f1(x) = λ|x|q−2x + |x|r−2x with 1 < q < p < r < p∗,

f2(x) = λ|x|q−2x + |x|p−2x
[
ln |x| + 1

p

]
with 1 < q < p.

Note that f2 does not satisfy the AR-condition (see [5]).

Under the above conditions, we can prove a multiplicity theorem producing five non-
trivial solutions, all with sign information.

Theorem 4.1 If hypotheses H(β) and H3 hold, then there exists λ∗ > 0 such that for all
λ ∈ (0, λ∗) problem (Pλ) has at least five nontrivial solutions

u0, û ∈ int C+, u0 ≤ û, u0 � û

v0, v̂ ∈ −int C+, v̂ ≤ v0, v0 � v̂

y0 ∈ [v0, u0] ∩C1(Ω) nodal.

Proof. From Theorem 3.1, we know that there exists λ∗ > 0 such that for all λ ∈ (0, λ∗)
problem (Pλ) has at least three nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0 ∈ [v0, u0] ∩C1(Ω) nodal.

By virtue of Proposition 3.4, without any loss of generality, we may assume that u0 and v0
are extremal constant sign solutions.

We will use u0 ∈ int C+ and v0 ∈ −int C+ to produce two more nontrivial constant sign
solutions.

First we produce a second positive solution. To this end, using u0 ∈ int C+ we introduce
the following truncation-perturbation of the reaction f (z, ·, λ):

g+λ (z, x) =
{

f (z, u0(z), λ) + u0(z)p−1 if x < u0(z)
f (z, x, λ) + xp−1 if u0(z) ≤ x. (4.46)
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We also introduce a corresponding truncation of the boundary term:

η+(z, x) =
{
β(z)u0(z)p−1 if x < u0(z)
β(z)xp−1 if u0(z) ≤ x, (4.47)

for all (z, x) ∈ ∂Ω × R. Both are Carathéodory functions. We set

G+λ (z, x) =

x∫

0

g+λ (z, s)ds and H+(z, x) =

x∫

0

η+(z, s)ds

and consider the C1-functional τ+λ : W1,p(Ω)→ R defined by

τ+λ (u) =
1
p
∥Du∥pp +

1
p
∥u∥pp +

∫

∂Ω

H+(z, u)dσ −
∫

Ω

G+λ (z, u)dz for all u ∈ W1,p(Ω).

Claim 1. We may assume that u0 ∈ int C+ is a local minimizer of the functional τ+λ .
Let u ∈ int C+ be as in the proof of Proposition 3.1. We know that

u0 ∈ [0, u].

We introduce the following truncations of g+λ (z, ·) and η+(z, ·):

ĝ+λ (z, x) =
{

g+λ (z, x) if x < u(z)
g+λ (z, u(z)) if u(z) ≤ x, (4.48)

η̂+(z, x) =
{
η+(z, x) if x < u(z)
η+(z, u(z)) if u(z) ≤ x, (4.49)

for all (z, x) ∈ ∂Ω × R.
Both are Carathéodory functions. We set

Ĝ+λ (z, x) =

x∫

0

ĝ+λ (z, s)ds and Ĥ+(z, x) =

x∫

0

η̂+(z, s)ds

and consider the C1-functional τ̂+λ : W1,p(Ω)→ R defined by

τ̂+λ (u) =
1
p
∥Du∥pp +

1
p
∥u∥pp +

∫

∂Ω

Ĥ+(z, u)dσ −
∫

Ω

Ĝ+λ (z, u)dz for all u ∈ W1,p(Ω).

From (4.48) and (4.49) it is clear that τ̂+λ (·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find û0 ∈ W1,p(Ω) such that

τ̂+λ (û0) = inf
[
τ̂+λ (u) : u ∈ W1,p(Ω)

]
,

⇒ (τ̂+λ )′(û0) = 0,

⇒ ⟨A(û0), h⟩ +
∫

Ω

|û0|p−2û0hdz +
∫

∂Ω

η̂+(z, û0)hdσ =
∫

Ω

ĝ+λ (z, û0)hdz (4.50)

for all h ∈ W1,p(Ω).
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In (4.50), first we choose h = (u0 − û0)+ ∈ W1,p(Ω). Then

⟨A(û0), (u0 − û0)+⟩ +
∫

Ω

|û0|p−2û0(u0 − û0)+dz +
∫

∂Ω

β(z)up−1
0 (u0 − û0)+dσ

=

∫

Ω

[
f (z, u0, λ) + up−1

0

]
(u0 − û0)+dz (see (4.46), (4.47), (4.48), (4.49))

= ⟨A(u0), (u0 − û0)+⟩ +
∫

Ω

up−1
0 (u0 − û0)+dz +

∫

∂Ω

β(z)up−1
0 (u0 − û0)+dσ

(since u0 ∈ S +(λ))

⇒ ⟨A(u0) − A(û0), (u0 − û0)+⟩ +
∫

Ω

(up−1
0 − |û0|p−2û0)(u0 − û0)+dz = 0,

⇒ |{u0 > û0}|N = 0, hence u0 ≤ û0.

Next in (4.50) we choose h = (û0 − u)+ ∈ W1,p(Ω). Then

⟨A(û0), (û0 − u)+⟩ +
∫

Ω

ûp−1
0 (û0 − u)+dz +

∫

∂Ω

β(z)up−1(u0 − u)+dσ

=

∫

Ω

[
f (z, u, λ) + up−1

]
(û0 − u)+dz (see (4.46), (4.47), (4.48), (4.49))

≤
∫

Ω

[
ξ̂p−1 + up−1

]
(û0 − u)+dz (see the Claim in the proof of Proposition 3.1)

= ⟨A(u), (û0 − u)+⟩ +
∫

Ω

up−1(û0 − u)+dz +
∫

∂Ω

β(z)up−1(û0 − u)+dσ,

⇒ ⟨A(û0) − A(u), (û0 − u)+⟩ +
∫

Ω

(ûp−1
0 − up−1)(û0 − u)+dz ≤ 0,

⇒ |{û0 > u}|N = 0, hence û0 ≤ u.

So, we have proved that
û0 ∈ [u0, u].

Then by virtue of (4.46) − −(4.49), equation (4.50) becomes

⟨A(û0), h⟩ +
∫

∂Ω

β(z)ûp−1
0 hdσ =

∫

Ω

f (z, û0, λ)hdz for all h ∈ W1,p(Ω),

⇒ û0 ∈ S +(λ).

If û0 � u0, then this is the desired second nontrivial positive solution of (Pλ) and u0 ≤ û0.
Therefore, we may assume that û0 = u0. For δ > 0, let uδ0 = u0 + δ ∈ int C+. Let ρ = ∥u∥∞
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and let ξλρ > 0 be as postulated by hypothesis H3(v). Then

−∆puδ0 + ξ
λ
ρ(u
δ
0)p−1

≤ −∆pu0 + ξ
λ
ρu

p−1
0 + χ(δ) with χ(δ)→ 0+ as δ→ 0+

= f (z, u0, λ) + ξλρu
p−1
0 + χ(δ)

< ξ̂p−1 + ξλρu
p−1 for δ > 0 small

(see the Claim in the proof of Proposition 3.1)
= −∆pu + ξλρu

p−1 a.e. in Ω,

⇒ uδ0 ≤ u for δ > 0 small, hence u − u0 ∈ int C+.

So, we have proved that
u0 ∈ intC1(Ω)[0, u].

Note that τ+λ
����
[0,u]
= τ̂+λ

����
[0,u]

(see (4.46), (4.47), (4.48), (4.49)). So, it follows that

u0 is a local C1(Ω) −minimizer of τ+λ ,
⇒ u0 is a local W1,p(Ω) −minimizer of τ+λ (see Proposition 2.1).

This proves Claim 1.
By virtue of Claim 1, we can find ρ ∈ (0, 1) small such that

τ+λ (u0) < inf
[
τ+λ (u) : ∥u − u0∥ = ρ

]
= η+λ . (4.51)

Claim 2. The functional τ+λ satisfies the C-condition.
Let {un}n≥1 ⊆ W1,p(Ω) be a sequence such that

|τ+λ (un)| ≤ M1 for some M1 > 0, all n ≥ 1; (4.52)

(1 + ∥un∥)(τ+λ )′(un)→ 0 in W1,p(Ω)∗ as n→ ∞. (4.53)

From (4.53) we have
���������
⟨A(un), h⟩ +

∫

Ω

|un|p−2unhdz +
∫

∂Ω

η+(z, un)hdσ −
∫

Ω

g+λ (z, un)hdz

���������
≤

≤ εn∥h∥
1 + ∥un∥

for all h ∈ W1,p(Ω), with εn → 0+. (4.54)

In (4.54) first we choose h = −u−n ∈ W1,p(Ω). Using (4.46) and (4.47), we obtain

∥u−n ∥p ≤ M2 for some M2 > 0, all n ≥ 1,
⇒ {u−n }n≥1 ⊆ W1,p(Ω) is bounded. (4.55)
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and let ξλρ > 0 be as postulated by hypothesis H3(v). Then

−∆puδ0 + ξ
λ
ρ(u
δ
0)p−1

≤ −∆pu0 + ξ
λ
ρu

p−1
0 + χ(δ) with χ(δ)→ 0+ as δ→ 0+

= f (z, u0, λ) + ξλρu
p−1
0 + χ(δ)

< ξ̂p−1 + ξλρu
p−1 for δ > 0 small

(see the Claim in the proof of Proposition 3.1)
= −∆pu + ξλρu

p−1 a.e. in Ω,

⇒ uδ0 ≤ u for δ > 0 small, hence u − u0 ∈ int C+.

So, we have proved that
u0 ∈ intC1(Ω)[0, u].

Note that τ+λ
����
[0,u]
= τ̂+λ

����
[0,u]

(see (4.46), (4.47), (4.48), (4.49)). So, it follows that
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τ+λ (u0) < inf
[
τ+λ (u) : ∥u − u0∥ = ρ

]
= η+λ . (4.51)
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(1 + ∥un∥)(τ+λ )′(un)→ 0 in W1,p(Ω)∗ as n→ ∞. (4.53)

From (4.53) we have
���������
⟨A(un), h⟩ +

∫

Ω

|un|p−2unhdz +
∫

∂Ω

η+(z, un)hdσ −
∫

Ω

g+λ (z, un)hdz

���������
≤

≤ εn∥h∥
1 + ∥un∥
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Next in (4.54) we choose h = u+n ∈ W1,p(Ω). Then

−∥Du+n ∥
p
p − ∥u+n ∥

p
p −
∫

∂Ω

η+(z, u+n )u+n dσ +
∫

Ω

g+λ (z, u+n )u+n dz ≤ εn (4.56)

for all n ≥ 1.

On the other hand from (4.52) and (4.55), we have

∥Du+n ∥
p
p + ∥u+n ∥

p
p +

∫

∂Ω

pH+(z, u+n )dσ −
∫

Ω

pG+λ (z, u+n )dz ≤ M3 (4.57)

for some M3 > 0, all n ≥ 1.

Adding (4.56) and (4.57), we obtain
∫

∂Ω

[pH+(z, u+n ) − η+(z, u+n )u+n ]dσ +
∫

Ω

[g+λ (z, u+n )u+n − pG+λ (z, u+n )]dz ≤

≤ M4 for some M4 > 0, all n ≥ 1. (4.58)

From (4.47) we see that

pH+(z, x) − η+(z, x)x =
{

(p − 1)β(z)u0(z)p−1x if x ∈ [0, u0(z)]
(p − 1)β(z)u0(z)p if u0(z) < x. (4.59)

Using (4.59) in (4.58), we obtain
∫

Ω

[g+λ (z, u+n )u+n − pG+λ (z, u+n )]dz ≤ M4 for all n ≥ 1,

⇒
∫

Ω

[ f (z, u+n , λ)u
+
n − pF(z, u+n , λ)]dz ≤ M5 for some M5 > 0, (4.60)

all n ≥ 1 (see (4.46)).

Using (4.60), we will show that {u+n }n≥1 ⊆ W1,p(Ω) is bounded. Arguing by contradiction,
suppose that this is not true. By passing to a subsequence if necessary, we may assume that
∥u+n ∥ → ∞. Let yn =

u+n
∥u+n ∥ for all n ≥ 1. Then ∥yn∥ = 1 for all n ≥ 1 and so we may assume

that

yn
w→ y in W1,p(Ω) and yn → y in Lr(Ω) and in Lp(∂Ω). (4.61)

First we assume that y � 0. Let Z(y) = {z ∈ Ω : y(z) = 0}. Then

u+n (z)→ +∞ for a.a. z ∈ Ω \ Z(y).

Then hypothesis H3(iii) implies that

F(z, u+n (z), λ)
∥u+n ∥p

=
F(z, u+n (z), λ)

u+n (z)p yn(z)p → +∞ for a.a. z ∈ Ω \ Z(y), as n→ ∞.
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Using this convergence and Fatou’s lemma (see hypothesis H3(iii)), we have

lim
n→∞

∫

Ω

F(z, u+n , λ)
∥u+n ∥p

dz = +∞. (4.62)

But from (4.52) and (4.55) we have

− 1
p
∥u+n ∥p −

∫

∂Ω

H+(z, u+n )dσ +
∫

Ω

G+λ (z, u+n )dz ≤ M6 for some M6 > 0,

all n ≥ 1.

⇒
∫

Ω

F(z, u+n , λ)dz ≤ 1
p
∥u+n ∥

p
p +

1
p

∫

∂Ω

β(z)(u+n )pdσ + M7

for some M7 > 0, all n ≥ 1 (see (4.46) and (4.47))

⇒
∫

Ω

F(z, u+n , λ)
∥u+n ∥p

dz ≤ M8 for some M8 > 0, all n ≥ 1. (4.63)

Comparing (4.62) and (4.63) we reach a contradiction.
So, we may assume that y = 0. Let k > 0 and let wn = (2kp)1/pyn for all n ≥ 1.

Evidently wn → 0 in Lr(Ω) as n→ ∞ (see (4.61)). Hence
∫

Ω

G+λ (z,wn)dz→ 0 as n→ ∞. (4.64)

Let n0 ∈ N be such that

(2kp)1/p 1
∥u+n ∥p

< 1 for all n ≥ n0. (4.65)

Also, let tn ∈ [0, 1] be such that

τ+λ (tnu+n ) = max
0≤t≤1
τ+λ (tu+n ) for all n ≥ 1. (4.66)

Then from (4.65) and (4.66), we have

τ+λ (tnu+n ) ≥ τ+λ (wn)

≥ 2k −
∫

Ω

G+λ (z,wn)dz (see hypotheses H(β)),

⇒ τ+λ (tnu+n ) ≥ k for all n ≥ n1 ≥ n0 (see (4.64)).

But k > 0 is arbitrary. So, we infer that

τ+λ (tnu+n )→ +∞ as n→ ∞. (4.67)
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Observe that {τ+λ (u+n )}n≥1 ⊆ R is bounded (see (4.52) and (4.55)). Also, τ+λ (0) = 0. Hence
from (4.67) it follows that tn ∈ (0, 1) for all n ≥ 1. So, we have

d
dt
τ+λ (tu+n )

����
t=tn
= 0

⇒ tp
n ∥u+n ∥p +

∫

∂Ω

η+(z, tnu+n )(tnu+n )dσ =
∫

Ω

g+λ (z, tnu+n )(tnu+n )dz (4.68)

for all n ≥ n1.

By hypothesis H3(iv), we have

∫

Ω

kλ(z, tnu+n )dz ≤
∫

Ω

kλ(z, u+n )dz + ∥β∗λ∥1 for all n ≥ 1,

⇒
∫

Ω

kλ(z, tnu+n )dz ≤ M9 for some M9 > 0, all n ≥ 1 (see (4.60)),

⇒
∫

Ω

[g+λ (z, tnu+n )(tnu+n ) − pG+λ (z, tnu+n )]dz ≤ M10 for some M10 > 0, all n ≥ 1

(see (4.46))

⇒ ∥tnu+n ∥p +
∫

∂Ω

pH+(z, tnu+n )dσ −
∫

Ω

pG+λ (z, tnu+n )]dz ≤ M11

for some M11 > 0, all n ≥ n1 (see (4.59) and (4.68)),
⇒ pτ+λ (tnu+n ) ≤ M11 for all n ≥ n1. (4.69)

Comparing (4.67) and (4.69), we reach a contradiction. This proves Claim 2.
Hypothesis H3(iii) implies that

τ+λ (tû1)→ −∞ as t → +∞. (4.70)

Then (4.51), (4.70) and Claim 2 permit the use of Theorem 2.1 (the mountain pass theo-
rem). So, we can find û ∈ W1,p(Ω) such that

(τ+λ )′(û) = 0 and η+λ ≤ τ+λ (û). (4.71)

From (4.51) and (4.71) it follows that û � u0. Also, from the equality in (4.71), we have

⟨A(û), h⟩ +
∫

Ω

|û|p−2ûhdz +
∫

∂Ω

η+(z, û)hdσ =
∫

Ω

g+λ (z, û)hdz (4.72)

for all h ∈ W1,p(Ω).
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In (4.72) we choose h = (u0 − û)+ ∈ W1,p(Ω). Then

⟨A(û), (u0 − û)+⟩ +
∫

Ω

|û|p−2û(u0 − û)+dz +
∫

∂Ω

β(z)up−1
0 (u0 − û)+dσ

=

∫

Ω

[ f (z, u0, λ) + up−1
0 ](u0 − û)+dz (see (4.46), (4.47))

= ⟨A(û), (u0 − û)+⟩ +
∫

Ω

up−1
0 (u0 − û)+dz +

∫

∂Ω

β(z)up−1
0 (u0 − û)+dσ

⇒ ⟨A(u0) − A(û), (u0 − û)+⟩ +
∫

Ω

[up−1
0 − |û|p−2û](u0 − û)+dz = 0

⇒ |{u0 > û}|N , hence u0 ≤ û, û � u0.

Then (4.72) becomes

⟨A(û), h⟩ +
∫

∂Ω

β(z)ûp−1hdσ =
∫

Ω

f (z, û, λ)hdz for all h ∈ W1,p(Ω)

(see (4.46) and (4.47))
⇒ û ∈ S +(λ) ⊆ int C+.

Similarly, using v0 ∈ −int C+, introducing

g−λ (z, x) =
{

f (z, x, λ) + |x|p−2x if x < v0(z)
f (z, v0(z), λ) + |v0(z)|p−2v0(z) if v0(z) ≤ x

and η−(z, x) =
{
β(z)|x|p−2x if x < v0(z)
β(z)|v0(z)|p−2v0(z) if v0(z) ≤ x,

for all (z, x) ∈ ∂Ω × R and reasoning as above, we produce a second nontrivial negative
solution v̂ ∈ −int C+, v̂ ≤ v0, v0 � v̂. �

In the semilinear case (that is, p = 2) and under stronger regularity conditions on the
reaction x �−→ f (z, x, λ), we can improve Theorem 4.1 and produce six nontrivial solutions.
However, we are unable to determine the sign of the sixth solution.

So, now the problem under consideration is the following:

−∆u(z) = f (z, u(z), λ) in Ω,
∂u
∂n
+ β(z)u = 0 on ∂Ω. (S λ)

The new hypotheses on the reaction f (z, x, λ) are the following:
H4: f : Ω × R × (0,∞) → R is a function such that for all λ > 0, f (z, 0, λ) = 0 for a.a.

z ∈ Ω and

(i) for all λ > 0, (z, x) �−→ f (z, x, λ) is measurable and for a.a. z ∈ Ω, f (z, ·, λ) ∈ C1(R);
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|û|p−2û(u0 − û)+dz +
∫

∂Ω

β(z)up−1
0 (u0 − û)+dσ
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(ii) | f ′∗ (z, x, λ)| ≤ a(z, λ)+c|x|r−2 for a.a. z ∈ Ω, all x ∈ R, all λ > 0, with a(·, λ) ∈ L∞(Ω)+,

∥a(·, λ)∥∞ → 0 as λ→ 0+, c > 0 and 2 < r < 2∗;

(iii) if F(z, x, λ) =
x∫

0
f (z, s, λ)ds, then

lim
x→±∞

F(z, x, λ)
|x|p = +∞ uniformly for a.a. z ∈ Ω;

(iv) if kλ(z, x) = f (z, x, λ)x − pF(z, x, λ), then there exists β∗λ ∈ L1(Ω)+ such that

kλ(z, x′) ≤ kλ(z, x) + β∗λ(z) for a.a. z ∈ Ω, all 0 ≤ x′ < x or x′ < x ≤ 0;

(v) there exist q = q(λ) ∈ (1, p) and δ0 = δ0(λ), c0 = c0(λ) > 0 such that

c0|x|q ≤ f (z, x, λ)x ≤ qF(z, x, λ) for a.a. z ∈ Ω, all 0 ≤ |x| ≤ δ0.

Remark. Evidently the differentiability of f (z, ·, λ) and hypothesis H4(ii) imply that given
ρ > 0, we can find ξλρ > 0 such that for a.a. z ∈ Ω, x �−→ f (z, x, λ) + ξλρ x is nondecreasing
on [−ρ, ρ].

Theorem 4.2 If hypotheses H(β) and H4 hold, then there exists λ∗ > 0 such that for all
λ ∈ (0, λ∗) problem (S λ) has at least six nontrivial solutions

u0, û ∈ int C+, û − u0 ∈ int C+
v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+
y0 ∈ intC1(Ω)[v0, u0] nodal and ŷ ∈ C1(Ω) \ {0}.

Proof. From Theorem 4.1, we know that there exists λ∗ > 0 such that for all λ ∈ (0, λ∗)
problem (S λ) has at least five nontrivial solutions

u0, û ∈ int C+, u0 ≤ û, u0 � û,

v0, v̂ ∈ −int C+, v̂ ≤ v0, v0 � v̂,

y0 ∈ [v0, u0] ∩C1(Ω) nodal.

Let ρ = max{∥û∥∞, ∥v̂∥∞} and let ξλρ > 0 be such that for a.a. z ∈ Ω, the function x �−→
f (z, x, λ)+ ξλρ x is nondecreasing on [−ρ, ρ] (see the Remark after hypotheses H4). We have

−∆uρ(z) + ξλρu0(z)

= f (z, u0(z), λ) + ξλρu0(z)

≤ f (z, û(z), λ) + ξλρ û(z) (recall u0 ≤ û)

= −∆û(z) + ξλρ û(z) a.e. in Ω,

⇒ ∆(û − u0)(z) ≤ ξλρ(û − u0)(z) a.e. in Ω,
⇒ û − u0 ∈ int C+ (see Vazquez [28]).
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In a similar fashion, we show that

v0 − v̂ ∈ int C+, y0 − v0 ∈ int C+, u0 − y0 ∈ int C+
⇒ intC1(Ω)[v0, u0].

Let φλ : H1(Ω)→ R be the energy functional of problem (S λ) defined by

φλ(u) =
1
2
∥Du∥22 +

1
2

∫
∂Ω

β(z)u2dσ −
∫
Ω

F(z, u, λ)dz for all u ∈ H1(Ω).

Evidently φλ ∈ C2(H1(Ω)). Let u ∈ int C+ and u ∈ −int C+ be as in the proof of Proposition
3.1. Reasoning as in the first part of the proof, we can show that

u − u0 ∈ int C+ and v0 − u ∈ int C+.

Let φ̂λ+ be the C1-functional introduced in the proof of Proposition 3.1 (now with p = 2).
From the proof of Proposition 3.1, we know that u0 ∈ int C+ is a minimizer of φ̂λ+ and from
(3.11) it follows that

φλ

����
[0,u]
= φ̂λ+

����
[0,u]
,

⇒ u0 ∈ int C+ is a local C1(Ω)-minimizer of φλ,
⇒ u0 ∈ int C+ is a local H1(Ω)-minimizer of φλ

(see Proposition 2.1).

In a similar fashion we show that v0 ∈ −int C+ is also a local minimizer of φλ. Therefore,
we have

Ck(φλ, u0) = Ck(φλ, v0) = δk,0Z for all k ≥ 0. (4.73)

From the proof of Theorem 4.1, we know that û ∈ int C+ is a critical point of mountain
pass type for the functional τ+λ . Hence

C1(τ+λ , û) � 0. (4.74)

Let [u0) = {u ∈ H1(Ω) : u0(z) ≤ u(z) a.e. in Ω}. From (4.46) and (4.47) we see that

φλ

����
[u0)
= τ+λ

����
[u0)
+ ξλ+ with ξλ+ ∈ R. (4.75)

Since û − u0 ∈ int C+, it follows from 4.75 that

Ck(φλ
����
C1(Ω)
, û) = Ck(τ+λ

����
C1(Ω)
, û) for all k ≥ 0,

⇒ Ck(φλ, û) = Ck(τ+λ , û) for all k ≥ 0

(see Palais [24] and recall that C1(Ω) is dense in H1(Ω)),
⇒ C1(φλ, û) � 0 (see 4.74). (4.76)
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Ck(φλ, u0) = Ck(φλ, v0) = δk,0Z for all k ≥ 0. (4.73)

From the proof of Theorem 4.1, we know that û ∈ int C+ is a critical point of mountain
pass type for the functional τ+λ . Hence

C1(τ+λ , û) � 0. (4.74)

Let [u0) = {u ∈ H1(Ω) : u0(z) ≤ u(z) a.e. in Ω}. From (4.46) and (4.47) we see that

φλ

����
[u0)
= τ+λ

����
[u0)
+ ξλ+ with ξλ+ ∈ R. (4.75)

Since û − u0 ∈ int C+, it follows from 4.75 that

Ck(φλ
����
C1(Ω)
, û) = Ck(τ+λ

����
C1(Ω)
, û) for all k ≥ 0,

⇒ Ck(φλ, û) = Ck(τ+λ , û) for all k ≥ 0

(see Palais [24] and recall that C1(Ω) is dense in H1(Ω)),
⇒ C1(φλ, û) � 0 (see 4.74). (4.76)
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Similarly we show that

C1(φλ, v̂) � 0. (4.77)

Since φλ ∈ C2(H1(Ω)), from (4.76) and (4.77) we infer that

Ck(φλ, û) = Ck(φλ, v̂) = δk,1Z for all k ≥ 0 (see Bartsch [6]). (4.78)

Let ξλ be the C1-functional introduced in the proof of Proposition 3.5. From Claim 3 of the
proof of Proposition 3.5, we have

Ck(ξλ, 0) = 0 for all k ≥ 0. (4.79)

We may always assume that u0 ∈ int C+ and v0 ∈ −int C+ are extremal constant sign
solutions for problem (S λ) (see Proposition 3.4). Then from (3.28) it follows that

ξλ

∣∣∣∣
[v0,w0]

= φλ

∣∣∣∣
[v0,u0]
,

⇒ Ck(ξλ
∣∣∣∣
C1(Ω)
, 0) = Ck(φλ

∣∣∣∣
C1(Ω)
, 0) for all k ≥ 0

(recall u0 ∈ int C+, v0 ∈ −int C+)
⇒ Ck(ξλ, 0) = Ck(φλ, 0) for all k ≥ 0 (see Palais [24]),
⇒ Ck(φλ, 0) = 0 for all k ≥ 0 (see (4.79)). (4.80)

Recall that y0 is a critical point of mountain pass type for the functional ξλ (see the proof
of Proposition 3.5). Since y0 ∈ intC1(Ω)[v0, u0] and ξλ

∣∣∣∣
[v0,u0]

= φλ

∣∣∣∣
[v0,u0]

, as before using the

results of Palais [24] and Bartsch [6], we have

Ck(φλ, y0) = δk,1Z for all k ≥ 0. (4.81)

Finally, using hypothesis H4(iv) and with a straightforward modification of the proof of
Proposition 3.2 of Aizicovici, Papageorgiou and Staicu [3], we have

Ck(φλ,∞) = 0 for all k ≥ 0. (4.82)

Suppose Kφλ = {0, u0, v0, û, v̂, y0}. Then from (4.73), (4.78), (4.80), (4.81), (4.82) and the
Morse relation with t = −1 (see (2.1)), we have

2(−1)0 + 2(−1)1 + (−1) = 0, a contradiction.

So, we can find ŷ ∈ Kφλ , ŷ � {0, u0, v0, û, v̂, y0}. Then ŷ is the sixth nontrivial solution of
(S λ) and the elliptic regularity theory implies that y0 ∈ C1(Ω) \ {0}. �

Remark. It is interesting to know if we can determine the sign of ŷ.
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