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Abstract We consider nonlinear nonhomogeneous Dirichlet problems driven by the
sum of a p-Laplacian and a Laplacian. The hypotheses on the reaction term incor-
porate problems resonant at both ±∞ and zero. We consider both cases p > 2 and
1 < p < 2 (singular case) and we prove four multiplicity theorems producing three or
four nontrivial solutions. For the case p > 2 we provide precise sign information for
all the solutions. Our approach uses critical point theory, truncation and comparison
techniques, Morse theory and the Lyapunoff-Schmidt reduction method.

Keywords Strong comparison principle · Nonlinear maximum principle · Critical
group · Nodal and constant sign solutions · Resonant equations · Lyapunoff-Schmidt
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1 Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω . In this paper, we study

the following nonlinear nonhomogeneous Dirichlet problem

−�pu(z) − �u(z) = f
(
z,u(z)

)
in Ω, u|∂Ω = 0. (1)
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Here �p denotes the p-Laplace differential operator defined by

�pu = div
(‖Du‖p−2Du

)
for all u ∈ W

1,p

0 (Ω) (1 < p < ∞). (2)

We consider separately the cases p > 2 and 1 < p < 2 and prove multiplicity theo-
rems for both of them. A similar study was conducted recently by Sun [42] but under
stronger conditions on the reaction f (z, x) and the results proved there are weaker
than ours. We stress that in (1) the differential operator is nonhomogeneous and this is
the source of difficulties which require new techniques. Such nonhomogeneous ellip-
tic equation were investigated recently by Cingolani & Degiovanni [14], Cingolani
& Vannella [16], and He & Li [26], who proved existence theorems. Multiplicity
theorems can be found in Papageorgiou & Smyrlis [39]. We mention that equations
like (1) (we call them (p,2)-equations for short) are important in quantum physics in
the search for solitons, see Benci, D’Avenia, Fortunato, & Pisani [7].

Compared with [39] our setting here is different. In [39] the authors deal only with
the case 2 < p < ∞ and assume that the reaction f (z, ·) exhibits a kind of oscillatory
behavior near zero and so the geometry is different and leads to the existence of more
nontrivial solutions of constant sign.

Compared with [42], our results here are considerably stronger. In [42], for the
case p > 2, the reaction f (z, x) is a C1-function on Ω ×R, which satisfies stronger
asymptotic conditions (see (f2)). The author proves a multiplicity theorem (Theo-
rem 1.1) producing three solutions. However, no nodal solution is obtained. For the
case 1 < p < 2 only an existence theorem is proved (Theorem 1.2) under the hypoth-
esis that f ∈ C(Ω ×R).

Our approach uses critical point theory, combined with suitable truncation and
comparison techniques, Morse theory and in the case where 1 < p < 2, we also em-
ploy the so-called Lyapunoff-Schmidt reduction technique. In the next section for the
convenience of the reader we recall some of the main mathematical tools which we
will use in this paper.

2 Mathematical Background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗,X). Given ϕ ∈ C1(X), we say that ϕ satisfies the “Cerami
condition” (the “C-condition” for short), if the following is true:

“Every sequence {xn}n≥1 ⊆ X such that
{
ϕ(xn)

}
n≥1 ⊆ R is bounded and

(
1 + ‖xn‖

)
ϕ′(xn) → 0 ∈ X∗ as n → ∞,

then {xn}n≥1 admits a strongly convergent subsequence”.

This compactness-type condition is in general weaker than the more common
Palais-Smale condition. Nevertheless, the C-condition suffices to prove a deforma-
tion theorem and from it derive the minimax theory of certain critical values of ϕ

(see, for example Gasinski & Papageorgiou [24], Kristaly, V. Rădulescu & Varga
[28] and Rădulescu [41]). In particular, we have the following result known in the
literature as the “mountain pass theorem”.
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Theorem 2.1 Assume ϕ ∈ C1(X) satisfies the C-condition, x0, x1 ∈ X, ‖x1 −
x0‖ > ρ

max
{
ϕ(x0), ϕ(x1)

}
< inf

[
ϕ(x) : ‖x − x0‖ = ρ

] = ηρ,

and C = infγ∈Γ maxt∈[0,1] ϕ(γ (t)), where Γ = {γ ∈ C([0,1],X) : γ (0) = x0,

γ (1) = x1}.
Then C ≥ ηρ and C is a critical value of ϕ.

In the analysis of problem (1), in addition to the Sobolev spaces W
1,p

0 (Ω) and
H 1

0 (Ω), we will also use the Banach space C1
0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

This is an ordered Banach space with positive cone C+ = {u ∈ C1
0(Ω) : u ≥

0 in Ω}. This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω and

∂u

∂n
(z) < 0 for all z ∈ ∂Ω

}
,

where n stands for the outward unit normal on ∂Ω .
Suppose f0 : Ω × R → R is a Carathéodory function (that is, for all x ∈ R, the

map z �−→ f0(z, x) is measurable and for a.a. z ∈ Ω , the map x �−→ f0(z, x) is
continuous) with subcritical growth in x ∈R, that is,

∣∣f0(z, x)
∣∣ ≤ a0(z)

(
1 + |x|r−1) for a.a. z ∈ Ω and all x ∈R,

with a0 ∈ L∞(Ω)+ and 1 < r < p∗ =
{

Np
N−p

if N > p

+∞ if N ≤ p.

We set F0(z, x) = ∫ x

0 f0(z, s) ds and consider the C1-functional Ψ0 : X → R de-
fined by

Ψ0(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 −
∫

Ω

F0
(
z,u(z)

)
dz for all u ∈ X,

where X = W
1,p

0 (Ω) if 2 < p < ∞ and X = H 1
0 (Ω) if p ∈ (1,2).

The next result is a special case of Proposition 2 of Aizicovici, Papageorgiou &
Staicu [2] and essentially it is a consequence of the nonlinear regularity results of
Ladyzhenskaya & Uraltseva [29] (p. 286) and Lieberman [30, p. 320].

Proposition 2.1 Assume that u0 ∈ W
1,p

0 (Ω) is a local C1
0(Ω)-minimizer of Ψ0,

that is, there exists ρ0 > 0 such that Ψ0(u0) ≤ Ψ0(u0 + h) for all h ∈ C1
0(Ω) with

‖h‖C1
0 (Ω) ≤ ρ0.

Then u0 ∈ C
1,β

0 (Ω) with β ∈ (0,1) and u0 is a local X-minimizer of Ψ0, that is,
there exists ρ1 > 0 such that Ψ0(u0) ≤ Ψ0(u0 + h) for all h ∈ X with ‖h‖X ≤ ρ1.

Remark We should mention that first such a result was proved by Brezis & Niren-
berg [10] for semilinear problems (that is, p = 2).
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Next let h,g ∈ L∞(Ω). We write h ≺ g, if for every compact K ⊆ Ω we can find
ε = ε(K) > 0 such that

h(z) + ε ≤ g(z) for a.a. z ∈ K.

Note that if h,g ∈ C(Ω) and h(z) < g(z) for all z ∈ Ω , then h ≺ g.
The next proposition is essentially due to Arcoya & Ruiz [4, Proposition 2.6]. The

presence of the extra linear term −�u does not affect their proof.

Proposition 2.2 Assume that ξ ≥ 0, h, g ∈ L∞(Ω),h ≺ g. Let u,v ∈ C1
0(Ω) with

v ∈ intC+ be solutions of

−�pu(z) − �u(z) + ξ
∣∣u(z)

∣∣p−2
u(z) = h(z) in Ω

−�pv(z) − �v(z) + ξv(z)p−1 = g(z) in Ω.

Then v − u ∈ intC+.

We will also need some basic facts concerning the first eigenvalue of (−�p,

W
1,p

0 (Ω)) for 1 < p < ∞. So, we consider the following nonlinear eigenvalue prob-
lem:

−�pu(z) = λ̂
∣∣u(z)

∣∣p−2
u(z) in Ω,u|∂Ω = 0.

A number λ̂ ∈ R is an eigenvalue of (−�p,W
1,p

0 (Ω)) if the above problem ad-

mits a nontrivial solution û ∈ W
1,p

0 (Ω) which is an eigenfunction corresponding to
the eigenvalue λ̂. We know that there exists a smallest eigenvalue λ̂1(p) with the fol-
lowing properties: (i) λ̂1(p) > 0; (ii) λ̂1(p) is isolated, that is, there exists ε > 0 such
that the interval [λ̂1(p), λ̂1(p)+ε) contains no other eigenvalue of (−�p,W

1,p

0 (Ω));
(iii) λ̂1(p) is simple, that is, if u,v are eigenfunctions corresponding to the eigenvalue
λ̂1(p), then u = ξv for some ξ ∈ R; (iv) the eigenvalue λ̂1(p) > 0 admits the follow-
ing variational characterization:

λ̂1(p) = inf

{‖Du‖p
p

‖u‖p
p

: u ∈ W
1,p

0 (Ω),u �= 0

}
. (3)

Moreover, in relation (3) the infimum is realized on the one-dimensional eigenspace
corresponding to λ̂1(p). From (3) it is clear that the elements of this eigenspace do
not change sign. By û1,p we denote the Lp-normalized (that is, ‖û1,p‖p = 1) positive
eigenfunction corresponding to λ̂1(p). In fact λ̂1(p) > 0 is the only eigenvalue with
eigenfunctions of constant sign. All the other eigenvalues have nodal (that is, sign-
changing) eigenfunctions. The nonlinear regularity theory (see [29, 30]) implies that
û1,p ∈ C+\{0} and the nonlinear maximum principle of Vazquez [44] says that û1,p ∈
intC+.

When p = 2 (linear eigenvalue problem), then the spectrum of (−�,H 1
0 (Ω)) is

a sequence {λ̂k(2)}k≥1 ⊆ (0,+∞) of eigenvalues such that λ̂k(2) → +∞ as k →
+∞. By E(λ̂k(2)) we denote the eigenspace corresponding to λ̂k(2), We have the
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following orthogonal direct sum decomposition H 1
0 (Ω) = ⊕

k≥1 E(λ̂k(2)). These
eigenspaces have the so-called “Unique Continuation Property” (UCP for short),
namely if u ∈ E(λ̂k(2)) and u vanishes on a set of positive Lebesgue measure, then
u = 0. The eigenvalues {λ̂k(2)}k≥1 have the following variational characterizations:

λ̂1(2) = inf

{‖Du‖2
2

‖u‖2
2

: u ∈ H 1
0 (Ω),u �= 0

}
(4)

λ̂n(2) = inf

{‖Du‖2
2

‖u‖2
2

: u ∈
⊕

k≥1

E
(
λ̂k(2)

)
, u �= 0

}

= sup

{‖Du‖2
2

‖u‖2
2

: u ∈
n⊕

k=1

E
(
λ̂k(2)

)
, u �= 0

}
for n ≥ 2. (5)

The infimum in (4) and both the infimum and the supremum in (5), are realized on
the corresponding eigenspaces E(λ̂n(2)). Similar remarks can be made for a weighted
version of the linear eigenvalue problem. So, let m ∈ L∞(Ω), m ≥ 0, m �= 0 and
consider the following weighted linear eigenvalue problem

−�u(z) = λ̃m(z)u(z) in Ω,u|∂Ω = 0. (6)

Problem (6) has a sequence {̃λk(2,m)}k≥1 of eigenvalues such that λ̃k(2,m) →
+∞ as k → +∞. These eigenvalues still have the unique continuation property and
have variational characterizations analogous to (4) and (5), in terms of the Rayleigh

quotient
‖Du‖2

2∫
Ω mu2 dz

. As a consequence of these variational characterizations and of the

UCP, we have the following monotonicity of the eigenvalues λ̃k(2,m) with respect
to the weight function m ∈ L∞(Ω)+.

Proposition 2.3 If m1,m2 ∈ L∞(Ω), 0 ≤ m1(z) ≤ m2(z) a.e. in Ω , m1 �= 0,
m1 �= m2, then λ̃k(2,m2) < λ̃k(2,m1), for all k ≥ 1.

Next, let us recall some basic definitions and facts from Morse theory especially
concerning critical groups. So, let Hk(Y1, Y2) denote the kth relative singular homol-
ogy group with integer coefficients for the pair (Y1, Y2). For all integers k < 0, we
have Hk(Y1, Y2) = 0.

For ϕ ∈ C1(X) and c ∈R, we introduce the following sets:

ϕc = {
x ∈ X : ϕ(x) ≤ c

}
, Kϕ = {

x ∈ X : ϕ′(x) = 0
}
,

Kc
ϕ = {

x ∈ Kϕ : ϕ(x) = c
}
.

The critical groups of ϕ at an isolated critical point x ∈ X of ϕ with ϕ(x) = c (that
is, x ∈ Kc

ϕ), are defined by

Ck(ϕ, x) = Hk

(
ϕc ∩ U , ϕc ∩ U\{x}) for all k ≥ 0,
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with U being a neighborhood of x such that Kϕ ∩ϕc ∩U = {x}. The excision property
of singular homology implies that the above definition of critical groups is indepen-
dent of the particular choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the C-condition and infϕ(Kϕ) > −∞. Let c <

infϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk

(
X,ϕc

)
for all k ≥ 0 (see Bartsch & Li [6]).

The second deformation theorem (see, for example, Gasinski & Papageorgiou [24,
p. 628]), implies that the above definition of critical groups at infinity, is independent
of the particular choice of the level c < infϕ(Kϕ).

Suppose that Kϕ is finite. We define

M(t, x) =
∑

k≥0

rankCk(ϕ, x)tk for all t ∈R and for all x ∈ Kϕ

P (t,∞) =
∑

k≥0

rankCk(ϕ,∞)tk for all t ∈R.

The Morse relation says that
∑

x∈Kϕ

M(t, x) = P(t,∞) + (1 + t)Q(t) for all t ∈R, (7)

where Q(t) = ∑
k≥0 βkt

k is a formal series in t ∈ R with nonnegative integer coeffi-
cients (see Chang [13, p. 337] and Mawhin & Willem [36, p. 184]).

For r ∈ (1,+∞), let Ar : W
1,r
0 (Ω) → W

1,r
0 (Ω)∗ = W−1,r ′

(Ω) ( 1
r

+ 1
r ′ = 1) be

the nonlinear map defined by

〈
Ar(u), y

〉 =
∫

Ω

‖Du‖r−2(Du,Dy)RN dz for all u,y ∈ W
1,r
0 (Ω). (8)

If r = 2, then A2 = A ∈ L (H 1
0 (Ω),H−1(Ω)). Concerning the map Ar we can

state the following well-known result (see Aizicovici, Papageorgiou & Staicu [1]).

Proposition 2.4 Let Ar : W
1,r
0 (Ω) → W−1,r ′

(Ω) be the nonlinear map defined
by (8). Then Ar is continuous, strictly monotone (hence, maximal monotone) and
of type (S)+.

We recall (see Brezis [9]) that if X is a real Banach space and A : X → X∗ is
a nonlinear operator, then A is said to be of type (S)+ if for any sequence {un}
converging weakly to u in X and lim supn→∞〈A(un),un − u〉 ≤ 0, then un → u.

We will also make use of some results of Cingolani & Vannella [15, 16], which
we recall here for easy reference. In those works, the authors showed that (p,2)-
equations can be embedded in a Hilbert space setting and this makes possible the
use of Morse theoretic methods. So, let f (z, x) be a measurable function such that
f (z, ·) ∈ C1(R) for a.a. z ∈ Ω and assume that

∣∣f ′
x(z, x)

∣∣ ≤ a(z)
(
1 + |x|r−1) for a.a. z ∈ Ω, all x ∈R,
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with a ∈ L∞(Ω)+ and 2 < p ≤ r < p∗. We set F(z, x) = ∫ x

0 f (z, s) ds and consider

the C2-functional ϕ : W 1,p

0 (Ω) → R defined by

ϕ(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 −
∫

Ω

F
(
z,u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

We have that for all u,y, v ∈ W
1,p

0 (Ω)

〈
ϕ′′(u)y, v

〉 =
∫

Ω

(
1 + ‖Du‖p−2)(Dy,Dv)RN dz

+ (p − 2)

∫

Ω

‖Du‖p−4(Du,Dy)RN (Du,Dv)RN dz

−
∫

Ω

f ′
x(z, u)yv dz.

The nonlinear regularity theory implies that if u0 ∈ Kϕ , then u0 ∈ C1
0(Ω) (see [26,

27]). Therefore

b = ‖Du0‖(p−4)/2Du0 ∈ L∞(
Ω,RN

)
.

Let Hb be the closure of C∞
c (Ω) under the inner product

(y, v)b =
∫

Ω

[(
1 + ‖b‖2)(Dy,Dv)RN + (p − 2)(b,Dy)RN (b,Dv)RN

]
dz.

Let ‖ · ‖b be the corresponding Hilbert norm, which is evidently equivalent to the
Sobolev norm ‖ · ‖H 1

0 (Ω). Therefore, we have that W
1,p

0 (Ω) is embedded continu-

ously into Hb . Defining Lb ∈ L(Hb,H
∗
b ) by

〈
Lb(u), v

〉 = (u, v)b −
∫

Ω

f ′
x(z, u0)uv dz for all u,v ∈ Hb,

we note that Lb is a Fredholm operator of index zero and in fact is the extension of
ϕ′′(u0) on Hb . We consider the orthogonal direct sum decomposition

Hb = H− ⊕ H 0 ⊕ H+,

where H−, H 0, H+ are respectively the negative, null and positive subspaces ac-
cording to the spectral decomposition of Lb. The spaces H− and H 0 are finite di-
mensional. Since u0 ∈ C1

0(Ω), from standard regularity theory, we have

H− ⊕ H 0 ⊆ W
1,p

0 (Ω) ∩ L∞(Ω).

Set V = H− ⊕ H 0 and W = H+ ∩ W
1,p

0 (Ω). Then

W
1,p

0 (Ω) = V ⊕ W and
〈
ϕ′′(u0)y, y

〉 ≥ β‖y‖2
b for all y ∈ W,

for some β > 0 (see Cingolani & Vannella [15]).
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Hereafter, by ‖ · ‖ we denote the norm of W
1,p

0 (Ω), where 1 < p < ∞. By virtue

of the Poincaré inequality, we have ‖u‖ = ‖Du‖p for all u ∈ W
1,p

0 (Ω).
By ‖ · ‖ we also denote the norm of RN . No confusion is possible, since it will

always be clear from the context which norm is used.
For every x ∈ R, we set x± = max{±x,0}. Then for u ∈ W

1,p

0 (Ω) (1 < p < ∞),

we set u±(·) = u(·)±. We know that u± ∈ W
1,p

0 (Ω), u = u+−u− and |u| = u++u−.
Finally, if h : Ω ×R → R is a measurable function (for example, a Carathéodory

function), then we define

Nh(u)(·) = h
(·, u(·)) for all u ∈ W

1,p

0 (Ω).

We denote by | · |N the Lebesgue measure on R
N .

3 The Case 2 < p < ∞

Throughout this section we assume that 2 < p < ∞.
Let f : Ω × R → R be a Carathéodory function such that f (z,0) = 0 for a.a.

z ∈ Ω . We impose the following conditions on the reaction f (z, x):
H1: (i) |f (z, x)| ≤ a(z)(1 + |x|r−1) for a.a. z ∈ Ω and for all x ∈ R, with a ∈

L∞(Ω)+ and p ≤ r < p∗;
(ii) if F(z, x) = ∫ x

0 f (z, s) ds, then lim supx→±∞
pF(z,x)

|x|p ≤ λ̂1(p) uniformly for
a.a. z ∈ Ω and there exists ξ > 0 such that f (z, x)x − pF(z, x) ≥ −ξ for a.a. z ∈ Ω

and for all x ∈R;
(iii) there are an integer m ≥ 2, δ0 > 0 and η ∈ L∞(Ω) with η(z) ≥ λ̂m(2) a.e.

in Ω,η �= λ̂m(2) such that η(z)x2 ≤ f (z, x)x ≤ λ̂m+1(2)x2 for a.a. z ∈ Ω and for
|x| ≤ δ0;

(iv) for every ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ Ω,x �−→ f (z, x) +
ξρ |x|p−2x is nondecreasing in [−ρ,ρ].

Remarks Hypothesis H1(ii) allows for resonance to occur at ±∞ with respect to
the principal eigenvalue λ̂1(p). Such resonant p-Laplacian equations were studied
by Jiu & Su [27], Liu & Liu [33], Liu & Su [34] and Zhang, Li, Liu & Feng [45],
using the additional condition that

lim
x→±∞

[
f (z, x)x − pF(z, x)

] = +∞ uniformly for a.a. z ∈ Ω.

Evidently our hypothesis H1(ii) is weaker. Hypothesis H1(iii) implies that we can
have resonance at zero with respect to λ̂m+1(2). So, we have a “double resonance”
situation. Clearly, hypothesis H1(iv) is much weaker than assuming the monotonicity
of f (z, ·).

We consider the positive and negative truncations of f (z, ·), namely

f±(z, x) = f
(
z,±x±)

.
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Both are Carathéodory functions. We set F±(z, x) = ∫ x

0 f±(z, s) ds and consider

the C1-functionals ϕ,ϕ± : W 1,p

0 (Ω) → R defined by

ϕ(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 −
∫

Ω

F
(
z,u(z)

)
dz for all u ∈ W

1,p

0 (Ω)

ϕ±(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 −
∫

Ω

F±
(
z,u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

Proposition 3.1 If hypotheses H1 hold, then the functionals ϕ and ϕ± are coercive.

Proof We do the proof for ϕ+, the proofs for ϕ− and ϕ being similar.
Note that for a.a. z ∈ Ω and all x > 0, we have

d

dx

F+(z, x)

xp
= f+(z, x)xp − pxp−1F+(z, x)

x2p

= f+(z, x)x − pF+(z, x)

xp+1

≥ − ξ

xp+1

(
see hypothesis H1(ii)

)

⇒ F+(z, x)

xp
− F+(z, u)

up
≥ ξ

p

[
1

xp
− 1

up

]

for a.a. z ∈ Ω and fo all x ≥ u ≥ 0.

Let x → +∞. Then by virtue of hypothesis H1(ii), we have

λ̂1(p)

p
− F+(z, u)

up
≥ − ξ

p

1

up
for a.a. z ∈ Ω and for all u > 0

⇒ pF+(z, u) − λ̂(p)
(
u+)p ≤ ξ for all u ∈R. (9)

Arguing by contradiction, suppose that ϕ+ is not coercive. Then we can find

{un}n≥1 ⊆ W
1,p

0 (Ω) and M1 > 0 such that

‖un‖ → +∞ and ϕ+(un) ≤ M1 for all n ≥ 1. (10)

From relations (10), (9) and (3), we deduce that

{
u−

n

}
n≥1 ⊂ W

1,p

0 (Ω) is bounded. (11)

So, from (10) it follows that ‖u+
n ‖ → ∞. Let yn = u+

n

‖u+
n ‖ . Then ‖yn‖ = 1 for all

n ≥ 1 and so we may assume that

yn
w→ y in W

1,p

0 (Ω) and yn → y in Lr(Ω). (12)
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We have

1

p
‖Dyn‖p

p + 1

2‖u+
n ‖p−2

‖Dyn‖2
2 −

∫

Ω

F+(z, u+
n )

‖u+
n ‖p

dz ≤ M2

‖u+
n ‖p

for some M2 > M1 > 0 (see (11))

⇒ 1

p
‖Dyn‖p

p + 1

2‖u+
n ‖p−2

‖Dyn‖2
2 − λ̂1(p)

p
‖yn‖p

p − ξ |Ω|N
p‖u+

n ‖p
≤ M2

‖u+
n ‖p

for all n ≥ 1
(
see (9)

)

⇒ ‖Dy‖p
p ≤ λ̂1(p)‖y‖p

p

(
see (12) and recall 2 < p

)

⇒ y = μû1,p with μ ≥ 0 (recall y ≥ 0).

If μ = 0, then y = 0 and so we have yn → 0 in W
1,p

0 (Ω) (since ‖Dyn‖p → 0),
a contradiction to the fact that ‖yn‖ = 1 for all n ≥ 1. So, μ > 0 and we have y(z) > 0
for all z ∈ Ω (recall û1,p ∈ intC+). This implies that u+

n (z) → +∞ for a.a. z ∈ Ω as
n → ∞. Recall that

1

p

∥∥Du+
n

∥∥p

p
+ 1

2

∥∥Du+
n

∥∥2
2 −

∫

Ω

F
(
z,u+

n

)
dz ≤ M1 for all n ≥ 1

(
see (10)

)

⇒
∫

Ω

[
λ̂1(p)

p

(
u+

n

)p − F
(
z,u+

n

)]
dz +

∫

Ω

λ̂1(2)

2

(
u+

n

)2
dz ≤ M1

(
see (3)

)

⇒ λ̂1(2)

2

∫

Ω

(
u+

n

)2
dz ≤ M1 + ξ |Ω|N

(
see (9)

)
. (13)

But u+
n (z) → +∞ for a.a. z ∈ Ω and so, by Fatou’s lemma,

∫
Ω

(u+
n )2 dz → +∞ as

n → ∞, which contradicts (13). This proves the coercivity of ϕ+. Similarly we show
the coercivity of the functionals ϕ− and ϕ. �

Using this proposition and the direct method, we can produce two nontrivial solu-
tions of constant sign.

Proposition 3.2 Assume that hypotheses H1 hold. Then problem (1) has at least two
nontrivial solutions of constant sign u0 ∈ intC+, v0 ∈ − intC+ and both are local
minimizers of the functional ϕ.

Proof From Proposition 3.1, we know that the functional ϕ+ is coercive. Also, using
the Sobolev embedding theorem, we can easily check that ϕ+ is sequentially weakly
lower semi-continuous. So, by the Weierstrass theorem we can find u0 ∈ W

1,p

0 (Ω)

such that

ϕ+(u0) = inf
{
ϕ+(u) : u ∈ W

1,p

0 (Ω)
}
. (14)

Let δ0 > 0 be as in hypotheses H1(iii) and let t ∈ (0,1) be small such that
t û1,2(z) ∈ [0, δ0] for all z ∈ Ω̄ (recall that û1,2 ∈ intC+). Using H1(iii) and ‖û1,2‖2 =
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1 we obtain

ϕ+(t û1,2) = tp

p
‖Dû1,2‖p

p + t2

2
‖Dû1,2‖2

2 −
∫

Ω

F+(z, t û1,2) dz

≤ tp

p
‖Dû1,2‖p

p + t2

2

[
λ̂1(2) − λ̂m(2)

]
. (15)

We have λ̂1(2) < λ̂m(2) (recall m ≥ 2). Since p > 2, by choosing t ∈ (0,1) even
smaller if necessary, from (15) we have

ϕ+(t û1,2) < 0 ⇒ ϕ+(u0) < 0 = ϕ+(0)
(
see (14)

)
,

hence u0 �= 0. From (14) we have

ϕ′+(u0) = 0 ⇒ Ap(u0) + A(u0) = Nf+(u0). (16)

On (16) we act with −u−
0 ∈ W

1,p

0 (Ω). Then ‖Du−
0 ‖p

p +‖Du−
0 ‖2

2 = 0, hence u0 ≥
0, u0 �= 0. Then (16) becomes

Ap(u0) + A(u0) = Nf (u0)

⇒ −�pu0(z) − �u0(z) = f
(
z,u0(z)

)
a.e. in Ω,u0|∂Ω = 0. (17)

From Ladyzhenskaya & Uraltseva [29, p. 286] and Fan & Zhao [20, Theorem 4.1],
we have u0 ∈ L∞(Ω). Then we can apply the regularity result of Lieberman [30,
p. 320] and infer that u0 ∈ C+\{0}. Let ρ = ‖u0‖∞ and let ξρ > 0 be as postulated
by hypothesis H1(iv). Then from (17) we have

�pu0(z) + �u0(z) ≤ ξρu0(z)
p−1 a.e. in Ω.

From the strong maximum principle of Pucci & Serrin [40, p. 111], we have
u0(z) > 0 for all z ∈ Ω . Then we can apply the boundary point theorem of Pucci
& Serrin [40, p. 120] and conclude that u0 ∈ intC+. Note that ϕ+|C+ = ϕ|C+ . So,
u0 ∈ intC+ is a local C1

0(Ω̄)-minimizer of ϕ, hence by virtue of Proposition 2.1 it

is also a local W
1,p

0 (Ω)-minimizer of ϕ. Similarly, working with the functional ϕ−,
we produce a second nontrivial constant sign solution v0 ∈ − intC+, which is also a
local minimizer of ϕ. �

In fact, we can show that problem (1) has extremal constant sign solutions, that is,
a smallest nontrivial positive solution and a biggest nontrivial negative solution. The
existence of such extremal constant sign solutions will lead to nodal (sign–changing)
solutions.

From hypotheses H1(i), (iii) we see that we can find c1 > λ̂1(2) and c2 > 0 such
that

f (z, x)x ≥ c1x
2 − c2|x|r for a.a. z ∈ Ω and for all x ∈ R. (18)

This unilateral growth estimate leads to the following auxiliary problem

−�pu(z) − �u(z) = c1u(z) − c2
∣∣u(z)

∣∣r−2
u(z) in Ω,u|∂Ω = 0. (19)
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Proposition 3.3 Problem (19) has a unique nontrivial positive solution u∗ ∈ intC+
and because the problem is odd we have that v∗ = −u∗ ∈ − intC+ is the unique
nontrivial negative solution of (19).

Proof We start by proving the existence of a nontrivial positive solution for prob-
lem (19).

Let Ψ+ : W 1,p

0 (Ω) → R be the C1-functional defined by

Ψ+(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 − c1

2

∥∥u+∥∥2
2 + c2

r

∥∥u+∥∥r

r
for all u ∈ W

1,p

0 (Ω).

Since p > 2, then Ψ+ is coercive. Also, it is sequentially weakly lower semi-
continuous. So, we can find u∗ ∈ W

1,p

0 (Ω) such that

Ψ+(u∗) = inf
{
Ψ+(u) : u ∈ W

1,p

0 (Ω)
}
. (20)

Since c1 > λ̂1(2) and 2 < p ≤ r , as before (see the proof of Proposition 3.2), for
t ∈ (0,1) small, we have Ψ+(t û1,2) < 0. Thus, by (20), Ψ+(u∗) < 0 = Ψ+(0), hence
u∗ �= 0.

Relation (20) yields

Ψ ′+(u∗) = 0 ⇒ Ap(u∗) + A(u∗) = c1u
+∗ − c2

(
u+∗

)r−1
. (21)

On (21) we act with −u−∗ ∈ W
1,p

0 (Ω) and obtain u∗ ≥ 0 and u∗ �= 0. Then

Ap(u∗) + A(u∗) = c1u∗ − c2u
r−1∗

⇒ −�pu∗(z) − �u∗(z) = c1u∗(z) − c2u∗(z)r−1 a.e. in Ω,u∗|∂Ω = 0.

Hence u∗ is a nontrivial positive solution of the auxiliary problem (19). As in the
proof of Proposition 3.2, using the nonlinear regularity theory (see [20, 29, 30]) and
the results of Pucci & Serrin [40, pp. 111 and 120], we show that u∗ ∈ intC+.

Next, we show the uniqueness of this nontrivial positive solution. To this end,

let G0(t) = tp

p
+ t2

2 for all t ≥ 0 and set G(y) = G0(‖y‖) for all y ∈ R
N . Then

G ∈ C1(RN) and ∇G(y) = a(y) = ‖y‖p−2y + y for all y ∈R
N . The mapping G0(·)

is increasing on R+ and t �−→ G0(t
1/2) is convex and we have

diva(Du) = �pu + �u for all u ∈ W
1,p

0 (Ω).

We consider the integral functional μ+ : L1(Ω) → R̄ = R∪ {+∞} defined by

μ+(u) =
{∫

Ω
G(Du1/2) dz if u ≥ 0 and u1/2 ∈ W

1,p

0 (Ω)

+∞ otherwise.

Let u1, u2 ∈ domμ+ and let y = (tu1 + (1 − t)u2)
1/2 ∈ W

1,p

0 (Ω) for t ∈ [0,1].
From Benguria, Brezis & Lieb [8, Lemma 4] (see also Diaz & Saa [17, Lemma 1])
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we have

∥∥Dy(z)
∥∥ ≤ (

t
∥∥Du1(z)

1/2
∥∥2 + (1 − t)

∥∥Du2(z)
1/2

∥∥2)1/2 a.e. in Ω

⇒ G0
(∥∥Dy(z)

∥
∥) ≤ G0

((
t
∥
∥Du1(z)

1/2
∥
∥2 + (1 − t)

∥
∥Du2(z)

1/2
∥
∥2)1/2)

(since G0 is increasing)

≤ tG0
(∥∥Du1(z)

1/2
∥∥) + (1 − t)G0

(∥∥Du2(z)
1/2

∥∥)

(
since t �−→ G0

(
t1/2

)
is convex

)

⇒ G
(
Dy(z)

) ≤ tG
(
Du1(z)

1/2) + (1 − t)G
(
Du2(z)

1/2)

⇒ μ+ is convex.

Suppose u,y ∈ W
1,p

0 (Ω) are two nontrivial positive solutions of (19). From the
first part of the proof, we have u,y ∈ intC+ and so u2, y2 ∈ domμ+. Let h ∈ C1

0(Ω̄).
For t ∈ [−1,1] small in absolute value, we have u2 + th, y2 + th ∈ domμ+. The
Gâteaux derivative of μ+ at u2, y2 in the direction h exists and by the chain rule and
the density of C1

0(Ω̄) in W
1,p

0 (Ω), we have for all h ∈ W
1,p

0 (Ω)

μ′+
(
u2)(h) = 1

2

∫

Ω

−�pu − �u

u
hdz (22)

μ′+
(
y2)(h) = 1

2

∫

Ω

−�py − �y

y
hdz. (23)

Since μ+ is convex, μ′+ is monotone, we have

0 ≤ 〈
μ′+

(
u2) − μ′+

(
y2), u2 − y2〉

L1(Ω)

= 1

2

∫

Ω

(−�pu − �u

u
− −�py − �y

y

)(
u2 − y2)dz

= c2

2

∫

Ω

(
yr−2 − ur−2)(u2 − y2)dz ≤ 0

⇒ u = y.

This proves the uniqueness of u∗.
Since the auxiliary problem (19) is odd, then v∗ = −u∗ ∈ − intC+ is the unique

nontrivial negative solution of (19). �

Using u∗ ∈ intC+ and v∗ ∈ − intC+, we can produce extremal constant sign so-
lutions for problem (1).

Proposition 3.4 Assume that hypotheses H1 hold. Then problem (1) has a smallest
nontrivial positive solution u+ ∈ intC+ and a biggest nontrivial negative solution
v− ∈ − intC+.
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Proof Let S+ be the set of nontrivial positive solutions for problem (1). From Propo-
sition 3.2 and its proof, we have S+ �= ∅ and S+ ⊆ intC+.

Claim: If ũ ∈ S+, then u∗ ≤ ũ.
We consider the following Carathéodory function

h(z, x) =
⎧
⎨

⎩

0 if x < 0
c1x − c2x

r−1 if 0 ≤ x ≤ ũ(z)

c1ũ(z) − c2ũ(z)r−1 if ũ(z) < x.

(24)

We set H(z, x) = ∫ x

0 h(z, s) ds and consider the C1-functional Ψ : W 1,p

0 (Ω) → R

defined by

Ψ (u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 −
∫

Ω

H
(
z,u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

It is clear from (24) that Ψ is coercive. Also, it is sequentially weakly lower semi-
continuous. So, we can find ũ∗ ∈ W

1,p

0 (Ω) such that

Ψ (ũ∗) = inf
{
Ψ (u) : u ∈ W

1,p

0 (Ω)
}
. (25)

Recall that ũ ∈ intC+. So we can find t ∈ (0,1) small such that t ũ1,2 ≤ ũ. Then
we have

Ψ (tû1,2) = tp

p
‖Dû1,2‖p

p + t2

2
‖Dû1,2‖2

2 −
∫

Ω

H(z, tû1,2) dz

≤ tp

p
‖Dû1,2‖p

p + t2

2

[
λ̂1(2) − c1

] + t r c2

r
‖û1,2‖r

r

(
see (24) and recall ‖û1,2‖2 = 1

)
.

Since c1 > λ̂1(2) and 2 < p ≤ r , choosing t ∈ (0,1) even smaller if necessary, we
have

Ψ (tû1,2) < 0

⇒ Ψ (ũ∗) < 0 = Ψ (0)
(
see (25)

)
, hence ũ∗ �= 0.

From (25) we have

Ψ ′(ũ∗) = 0 ⇒ Ap(ũ∗) + A(ũ∗) = Nh(ũ∗). (26)

On (26) we act with −ũ−∗ ∈ W
1,p

0 (Ω) and obtain ũ∗ ≥ 0, ũ∗ �= 0. Also, we act

with (ũ∗ − ũ)+ ∈ W
1,p

0 (Ω). Then
〈
Ap(ũ∗), (ũ∗ − ũ)+

〉 + 〈
A(ũ∗), (ũ∗ − ũ)+

〉

=
∫

Ω

h(z, ũ∗)(ũ∗ − ũ)+ dz
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=
∫

Ω

(
c1ũ − c2ũ

r−1)(ũ∗ − ũ)+ dz
(
see (24)

)

≤
∫

Ω

h(z, ũ)(ũ∗ − ũ)+ dz
(
see (18)

)

= 〈
Ap(ũ), (ũ∗ − ũ)+

〉 + 〈
A(ũ), (ũ∗ − ũ)+

〉
(since ũ ∈ S+)

⇒ ∥∥D(ũ∗ − ũ)+
∥∥2

2 ≤ 0 (see Proposition 2.4),

hence ũ∗ ≤ ũ.
So, we have proved that

ũ∗ ∈ [0, ũ] = {
u ∈ W

1,p

0 (Ω) : 0 ≤ u(z) ≤ ũ(z)a.e. in Ω
}
, ũ∗ �= 0.

Then (26) becomes

Ap(ũ∗) + A(ũ∗) = c1ũ∗ − c2ũ
r−1∗

(
see (24)

)

⇒ −�pũ∗(z) − �ũ∗(z) = c1ũ∗(z) − c2ũ∗(z)r−1 a.e. in Ω, ũ∗|∂Ω = 0

⇒ ũ∗ = u∗ (see Proposition 3.3)

⇒ u∗ ≤ ũ.

This proves the Claim.
From Filippakis, Kristaly & Papageorgiou [21] (Proposition 4.2 and Lemma 4.3)

we have that S+ is downward directed (that is, if u1, u2 ∈ S+, then we can find u ∈ S+
such that u ≤ u1, u ≤ u2). So, without any loss of generality we may assume that
there exists M3 > 0 such that u(z) ≤ M3 for all z ∈ Ω̄ and all u ∈ S+. Let C ⊆ S+ be
a chain (that is, a totally ordered subset of S+). From Dunford & Schwartz [19], we
know that we can find {un}n≥1 ⊆ C such that infC = infn≥1 un.

We have

Ap(un) + A(un) = Nf (un),u∗ ≤ un ≤ M3

for all n ≥ 1 (see the Claim)

⇒ {un}n≥1 ⊆ W
1,p

0 (Ω) is bounded. (27)

We may assume that

un
w→ u in W

1,p

0 (Ω) and un → u in Lr(Ω). (28)

On (27) we act with un − u ∈ W
1,p

0 (Ω), pass to the limit as n → ∞ and use (28).
Then

lim
n→∞

[〈
Ap(un),un − u

〉 + 〈
A(un),un − u

〉] = 0

⇒ lim sup
n→∞

[〈
Ap(un),un − u

〉 + 〈
A(u),un − u

〉] ≤ 0

(due to the monotonicity of A)
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⇒ lim sup
n→∞

〈
Ap(un),un − u

〉 ≤ 0
(
see (28)

)

⇒ un → u in W
1,p

0 (Ω) (see Proposition 2.4) and u∗ ≤ u
(
see (27)

)
. (29)

So, if in (27) we pass to the limit as n → ∞ and use (29), then

Ap(u) + A(u) = Nf (u), u∗ ≤ u

⇒ u ∈ S+ and u = infC.

Since C is an arbitrary chain in S+, from the Kuratowski–Zorn lemma we know
that we can find a minimal element u+ ∈ S+ ⊆ intC+. Since S+ is downward di-
rected, if u ∈ S+ we can find û ∈ S+ such that û ≤ u+ and û ≤ u. The minimality of
u+ implies that û = u+ and so u+ ≤ u for all u ∈ S+.

Let S− be the set of nontrivial negative solutions of (1). We have

S− �= Ø and S− ⊂ − intC+ (see Proposition 3.2).

The set S− is upward directed (that is, if v1, v2 ∈ S−, then we can find such that
v1 ≤ v, v2 ≤ v; see [21]). Reasoning as above, via the Kuratowski-Zorn lemma, we
produce v− ∈ − intC+ the biggest nontrivial negative solution of (1). �

Using these extremal constant sign solutions, we can produce nodal solutions.
To do this, we need to strengthen the conditions on the reaction f (z, x). The new
hypotheses on f (z, x), are the following:

H2: f : Ω ×R → R is a measurable function such that for a.a. z ∈ Ω,f (z,0) = 0,

f (z, ·) ∈ C1(R) and
(i) |f ′

x(z, x)| ≤ a(z)(1 + |x|r−2) for a.a. z ∈ Ω , all x ∈ R, with a ∈ L∞(Ω), p ≤
r < p∗;

(ii) lim supx→±∞
pF(z,x)

|x|p ≤ λ̂1(p) uniformly for a.a. x ∈ Ω and there exists ξ > 0
such that

f (z, x)x − pF(z, x) ≥ −ξ for a.a. z ∈ Ω , all x ∈R;
(iii) there are δ0 > 0, an integer m ≥ 2 and η ∈ L∞(Ω), such that η(z) ≥ λ̂m(2)

a.e. in Ω,η �= λ̂m(2) and

η(z)x2 ≤ f (z, x)x ≤ λ̂m+1(2)x2 for a.a. z ∈ Ω , all |x| ≤ δ0;
(iv) for every ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ Ω , the map x �−→

f (z, x) + ξρ |x|p−2x is nondecreasing on [−ρ,ρ].

Remark In this setting hypothesis H2(iv) is satisfied, if for example there exists
δ0 > 0 such that f ′

x(z, x) ≥ 0 for a.a. z ∈ Ω , all |x| ≤ δ0 (that is, f (z, ·) is increasing
near zero).

Proposition 3.5 Assume that hypotheses H2 are fulfilled. Then problem (1) has a
nodal solution y0 ∈ intC1

0 (Ω̄)[v−, u+], that is, y0 ∈ C1
0(Ω̄) and u+ − y0, y0 − v− ∈

intC+.
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Proof Let u+ ∈ intC+ and v− ∈ intC+ be the two extremal constant sign solutions
produced in Proposition 3.4. We introduce the following Carathéodory function

ĝ(z, x) =
⎧
⎨

⎩

f (z, v−(z)) if x < v−(z)

f (z, x) if v−(z) ≤ x ≤ u+(z)

f (z,u+(z)) if u+(z) < x.

(30)

We set Ĝ(z, x) = ∫ x

0 ĝ(z, s) ds and consider the C1-functional ϕ̂ : W 1,p

0 (Ω) → R

defined by

ϕ̂(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 −
∫

Ω

Ĝ
(
z,u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

Also let ĝ±(z, x) = ĝ(z,±x±), Ĝ±(z, x) = ∫ x

0 ĝ±(z, s) ds and consider the C1-

functionals ϕ̂± : W 1,p

0 (Ω) → R defined by

ϕ̂±(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 −
∫

Ω

Ĝ±
(
z,u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

Claim 1: Kϕ̂ ⊆ [v−, u+] = {u ∈ W
1,p

0 (Ω) : v−(z) ≤ u(z) ≤ u+(z) a.e. in Ω},Kϕ̂+ =
{0, u+},Kϕ̂− = {0, v−}.

Let u ∈ Kϕ̂ . Then we have

Ap(u) + A(u) = Nĝ(u). (31)

On (31) we act with (u − u+)+ ∈ W
1,p

0 (Ω). Then

〈
Ap(u), (u − u+)+

〉 + 〈
A(u), (u − u+)+

〉

=
∫

Ω

ĝ(z,u)(u − u+)+ dz

=
∫

Ω

f (z,u+)(u − u+)+ dz
(
see (30)

)

= 〈
Ap(u+), (u − u+)+

〉 + 〈
A(u+), (u − u+)+

〉

⇒ ∥∥D(u − u+)+
∥∥2

2 ≤ 0 (since Ap is monotone, see Proposition 2.4)

⇒ u ≤ u+.

Similarly, acting on (31) with (v− − u)+ ∈ W
1,p

0 (Ω), we show that v− ≤ u. It
follows that Kϕ̂ ⊆ [v−, u+].

Reasoning in a similar way, we show that

Kϕ̂+ ⊂ [0, u+] = {
u ∈ W

1,p

0 (Ω) : 0 ≤ u(z) ≤ u+(z) a.e. in Ω
}

Kϕ̂− ⊂ [v−,0] = {
u ∈ W

1,p

0 (Ω) : v−(z) ≤ u(z) ≤ 0 a.e. in Ω
}
.
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The extremality of v− ∈ − intC+ and u+ ∈ intC+ (see Proposition 3.4), implies
that

Kϕ̂+ = {0, u+} and Kϕ̂− = {0, v−}.
This proves Claim 1.

Claim 2: u+ ∈ intC+ and v− ∈ − intC+ are local minimizers of the functional ϕ̂.
From (30) it is clear that ϕ̂ is coercive. Also, it is sequentially weakly lower semi-

continuous. So, we can find ũ ∈ W
1,p

0 (Ω) such that

ϕ̂+(ũ) = inf
{
ϕ̂+(u) : u ∈ W

1,p

0 (Ω)
}
. (32)

Integrating hypothesis in H2(iii), we have

η(z)

2
x2 ≤ F(z, x) ≤ λ̂m+1(2)

2
x2 for a.a. z ∈ Ω , all |x| ≤ δ0.

As before (see the proof of Proposition 3.4), for t ∈ (0,1) small we have by (32)

ϕ̂+(t û1,2) < 0 ⇒ ϕ̂+(ũ) < 0 = ϕ̂+(0),

hence ũ �= 0.
From (32) we have

ũ ∈ Kϕ̂+ , ũ �= 0 ⇒ ũ = u+ (see Claim 1).

Note that ϕ̂+|C+ = ϕ̂|C+ . So, u+ is a local C1
0(Ω̄)-minimizer of ϕ̂. Hence by virtue

of Proposition 2.1, it is also a local W
1,p

0 (Ω)-minimizer of ϕ̂.
Similarly for v− ∈ − intC+ using this time the functional ϕ̂−. This proves Claim 2.
Without any loss of generality we may assume that ϕ̂(v−) ≤ ϕ̂(u+) (the analysis is

similar if the opposite inequality is true). From Claim 2 we know that u+ ∈ intC+ is
a local minimizer of the functional ϕ̂. So, as in Filippakis, Kristaly & Papageorgiou
[21] (proof of Proposition 3.2) or from de Figueiredo [23, Theorem 5.10], we can
find ρ ∈ (0,1) small such that

ϕ̂(v−) ≤ ϕ̂(u+) < inf
[
ϕ̂(u) : ‖u − u+‖ = ρ

] = η̂+
ρ , ‖v− − u+‖ > ρ. (33)

Since ϕ̂ is coercive (see (30)), it satisfies the C-condition. This fact and (33) permit
the use of Theorem 2.1 (the mountain pass theorem). So, we can find y0 ∈ W

1,p

0 (Ω)

such that

y0 ∈ Kϕ̂ ⊂ [v−, u+] (see Claim 1) and η̂+
ρ ≤ ϕ̂(y0). (34)

From (33) and (34) it follows that

y0 /∈ {v−, u+}. (35)
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We have

Ap(y0) + A(y0) = Nf (y0)
(
see (30)

)

⇒ −�py0(z) − �y0(z) = f
(
z, y0(z)

)
a.e. in Ω,y0|∂Ω = 0.

As before the nonlinear regularity theory implies that y0 ∈ C1
0(Ω̄). Set

ρ = max
{‖u+‖∞,‖v−‖∞

}

and let ξρ > 0 be such that for a.a. z ∈ Ω , the mapping x → f (z, x) + ξρ |x|p−2x is
nondecreasing on [−ρ,ρ]. Then

−�py0(z) − �y0(z) + ξp

∣∣y0(z)
∣∣p−2

y0(z)

= f
(
z, y0(z)

) + ξρ

∣∣y0(z)
∣∣p−2

y0(z)

≤ f
(
z,u+(z)

) + ξρu+(z)p−1 (since y0 ≤ u+)

= −�pu+(z) − �u+(z) + ξρu+(z)p−1 a.e. in Ω. (36)

As in the proof of Proposition 3.3, let a :RN → R
N be the C1-map, defined by

a(y) = ‖y‖p−2y + y for all y ∈R
N.

We have

diva(Du) = �pu + �u for all u ∈ W
1,p

0 (Ω).

We have

∇a(y) = ‖y‖p−2
[
I + (p − 2)

y ⊗ y

‖y‖
]

+ I

⇒ (∇a(y)ξ, ξ
)
RN ≥ ‖ξ‖2 for all y, ξ ∈ R

N. (37)

Then relation (37) permits the use of the tangency principle of Pucci & Serrin [40,
p. 35] and we have

y0(z) < u+(z) for all z ∈ Ω.

Then from (36) and Proposition 2.2, we have

u+ − y0 ∈ intC+.

In a similar manner, we show that

y0 − v− ∈ intC+.

Therefore

y0 ∈ intC1
0 (Ω)[v−, u+].
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So, we have

Ck(ϕ̂|C1
0 (Ω̄), y0) = Ck(ϕ|C1

0 (Ω̄), y0)

⇒ Ck(ϕ̂, y0) = Ck(ϕ, y0) for all k ≥ 0 (38)

(see Bartsch [5, Proposition 2.6] and Palais [38]).
Recall that y0 ∈ C1

0(Ω̄) is a critical point of mountain pass type for the func-
tional ϕ̂. Therefore C1(ϕ̂, y0) �= 0, hence C1(ϕ, y0) �= 0.

The next Claim can be found in [39]. For completeness and the convenience of the
reader, we present the detailed proof.

Claim 3: Ck(ϕ, y0) = δk,1Z for all k ≥ 0.
It is known from [16, Lemma 2.2] that there are ρ > 0 and ξ : V ∩ Bρ → R (with

V as in Sect. 2 and Bρ = {u ∈ W
1,p

0 (Ω) : ‖u‖ ≤ ρ}) such that
〈
ξ ′′(0)v,w

〉 = 〈
ϕ′′(y0)v,w

〉
for all v,w ∈ V.

Moreover, ξ ′′(0) is Fredholm and ker ξ ′′(0) = H 0 (see Sect. 2). From [15, p. 286],
we have

Ck(ϕ, y0) = Ck(ξ,0) for all k ≥ 0.

Hence it follows that

C1(ξ,0) �= 0.

Therefore we have d = dimH− ≤ 1 (see for example [15, Theorem 2.5]). Let d0 =
dimH 0.

First we assume that d0 = 0. In this case the origin is a nondegenerate critical point
of ξ with Morse index d . Hence

Ck(ξ,0) = δk,dZ for all k ≥ 0.

It follows that d = 1 and so we have

Ck(ξ,0) = δk,1Z for all k ≥ 0.

Next assume that d0 > 0. In this case the origin is a degenerate critical point of ξ .
Invoking the Shifting Theorem (see Chang [12]) we have

Ck(ξ,0) = Ck−d(ξ̂ ,0) for all k ≥ 0,

where ξ̂ = ξ |H 0 .
Assume d = 1. Then we have

C0(ξ̂ ,0) �= 0

and so from Chang [12, Theorem 5.1.20], we have

Ck(ξ, y0) = δk,1Z for all k ≥ 0.
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Next we assume that d = 0. We have

Ck(ξ,0) = Ck(ξ̂ ,0) for all k ≥ 0,

hence C1(ξ̂ ,0) �= 0.
We show that “if σ(ξ̂ ′′(0)) ⊆ [0,∞) (the spectrum of ξ̂ ′′(0) is in R+), then

dim ker ξ ′′(0) ≤ 1”.
Under the hypothesis on the spectrum of ξ̂ ′′(0), for ker ξ ′′(0) to be nontrivial it

amounts to saying that 1 is the first eigenvalue of the weighted linear eigenvalue
problem (see Sect. 2)

−div
((

1 + ‖b‖2)Du + (p − 2)(b,Du)RN

) = λf ′
x(z, y0)u in Ω, u|∂Ω = 0.

But as it is well known (see, for example, de Figueiredo [22] and Gasinski & Papa-
georgiou [24, Sect. 6.1]), this first eigenvalue is simple. So, we can apply Theorem
5.1.20 of Chang [12] and have

Ck(ϕ, y0) = δk,1Z for all k ≥ 0.

This proves Claim 4.
From Claim 4 we have

Ck(ϕ̂, y0) = δk,1Z for all k ≥ 0.

Claim 4: Cdm(ϕ̂,0) �= 0 where dm = dim
⊕m

i=1 E(λ̂i(2)) ≥ 2.
Set

Y = W
1,p

0 (Ω) ∩
[ m⊕

i=1

E
(
λ̂i (2)

)]
and V = W

1,p

0 (Ω) ∩
[ ⊕

i≥m+1

E
(
λ̂i (2)

)]
.

Then W
1,p

0 (Ω) = Y ⊕ V .
Note that Y is finite dimensional and Y ⊆ C1

0(Ω̄). So, we can find ρ0 ∈ (0,1) such
that

‖y‖ ≤ ρ0 ⇒ ‖y‖C1
0 (Ω̄) ≤ δ0 for all y ∈ Y.

Here δ0 > 0 is as postulated by hypothesis H2(iii). Then for y ∈ Y with ‖y‖ ≤ ρ0

we have

ϕ(y) = 1

p
‖Dy‖p

p + 1

2
‖Dy‖2

2 −
∫

Ω

F
(
z, y(z)

)
dz

≤ 1

p
‖Dy‖p

p + 1

2
‖Dy‖2

2 − 1

2

∫

Ω

ηy2 dz
(
see hypothesis H2(iii)

)

≤ 1

p
‖y‖p − c3

2
‖y‖2

H 1
0 (Ω)

for some c3 > 0
(
see (5)

)
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≤ 1

p
‖y‖p − c4‖y‖2 for some c4 > 0

(Y is finite dimensional so all norms are equivalent)

⇒ ϕ(y) ≤ 0 for all ‖y‖ ≤ ρ̂0 with ρ̂0 ≤ ρ0 (since p > 2). (39)

Next, let v ∈ V . From hypotheses H2(i), (iii) we have

F(z, x) ≤ λ̂m+1(2)

2
x2 + c5|x|q

for a.a. z ∈ Ω , all x ∈R and some c5 > 0,p < q. (40)

Then for v ∈ V , we have

ϕ(v) = 1

p
‖Dv‖p

p + 1

2
‖Dv‖2

2 −
∫

Ω

F(z, v) dz

≥ 1

p
‖v‖p − c6‖v‖q for some c6 > 0

(
see (40) and (5)

)
.

Because q > p, we can find ρ̃0 ∈ (0, ρ̂0] such that

ϕ(v) > 0 for all v ∈ V with 0 < ‖v‖ ≤ ρ̃0. (41)

From (39) and (41) we see that ϕ has local linking at the origin and we can apply
Proposition 2.2 of Bartsch & Li [6] and infer that

Cdm(ϕ,0) �= 0 ⇒ Cdm(ϕ̂,0) �= 0
(
see (38)

)
.

This proves Claim 3.
From Claim 3 and since dm ≥ 2, we have that y0 �= 0. Since y0 ∈ [v−, u+], y0 /∈

{v−, u+}, we see that y0 is a solution of (1) (see (30)) and the extremality of v− and
u+ implies that y0 is nodal. Finally from the nonlinear regularity theory (see [29, 30])
we deduce that y0 ∈ C1

0(Ω̄). �

Now, we can state our first multiplicity theorem for problem (1). Our theorem
improves Theorem 1.1 of Sun [42], where the hypotheses on the reaction f (z, x)

are more restrictive, no sign information is given for the third solution, no regularity
properties are established for the solutions and, finally, no location information is
given for them.

Theorem 3.1 Assume H2 and 2 < p < ∞. Then problem (1) has at least three non-
trivial solutions u0 ∈ intC+, v0 ∈ − intC+ and y0 ∈ intC1

0 (Ω̄)[v0, u0] nodal.

In fact, by strengthening the condition on f (z, ·) near the origin (see hypothesis
H2(iii)), we can improve the conclusion of the above multiplicity theorem and pro-
duce a second nodal solution for a total of four nontrivial solutions, two of constant
sign and two nodal (sign changing).
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The new hypotheses on the reaction f (z, x) are the following:
H3: f : Ω ×R →R is a measurable function such that for a.a. z ∈ Ω , f (z,0) = 0,

f (z, ·) ∈ C1(R), hypotheses H3(i), (ii) are the same as the corresponding hypotheses
H2(i), (ii), and (iii) there exists an integer m ≥ 2 such that

f ′
x(z,0) ∈ [

λ̂m(2), λ̂m+1(2)
]

a.e. in Ω,f ′
x(·,0) �= λ̂m(2), f ′

x(·,0) �= λ̂m+1(2)

and

f ′
x(z,0) = lim

x→0

f (z, x)

x
uniformly for a.a. z ∈ Ω.

Remark Now we do not allow for resonance to occur at the origin. Instead we have
nonuniform non-resonance in the spectral interval [λ̂m(2), λ̂m+1(2)].

Theorem 3.2 Assume H3 and 2 < p < ∞. Then problem (1) has at least four non-
trivial solutions u0 ∈ intC+, v0 ∈ − intC+ and y0, ŷ ∈ intC1

0 (Ω̄)[v0, u0] nodal.

Proof From Theorem 3.1 we already have three nontrivial solutions

u0 ∈ intC+, v0 ∈ − intC+, and y0 ∈ intC1
0 (Ω̄)[v0, u0] nodal.

By virtue of Proposition 3.4, we can always assume that u0 ∈ intC+ and v0 ∈
− intC+ are the extremal nontrivial constant sign solutions of (1) (that is, u0 =
u+, v0 = v−). From Claim 2 in the proof of Proposition 3.5, we know that u0 and
v0 are local minimizers of the functional ϕ̂, hence

Ck(ϕ̂, u0) = Ck(ϕ̂, v0) = δk,0Z for all k ≥ 0. (42)

We have

Ck(ϕ̂, y0) = δk,1Z for all k ≥ 0. (43)

Using the new stronger condition near the origin (see H3(iii)), we can improve
Claim 4 in the proof Proposition 3.5.

Claim: Ck(ϕ̂,0) = δk,dmZ for all k ≥ 0, with dm = dim
⊕m

i=1 E(λ̂i(2)) ≥ 2.
Let ε ∈ (0, λ̂m(2)). By virtue of hypothesis H3(iii) we can find δ = δ(ε) > 0 such

that

1

2

[
f ′

x(z,0) − ε
]
x2 ≤ F(z, x) ≤ 1

2

[
f ′

x(z,0) + ε
]
x2

for a.a. z ∈ Ω , all |x| ≤ δ. (44)

Let Ψ : W 1,p

0 (Ω) → R be the C2-functional defined by

Ψ (u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 − 1

2

∫

Ω

f ′
x(z,0)u2 dz for all u ∈ W

1,p

0 (Ω).
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Evidently Ψ is coercive (recall p > 2). Also from (44) and Chang [12, p. 336] we
have

Ck(ϕ,0) = Ck(Ψ,0) for all k ≥ 0. (45)

From H3(iii) and Cingolani & Vannella [15] (see Theorem 1.1), we have

Ck(Ψ,0) = δk,dmZ for all k ≥ 0

⇒ Ck(ϕ,0) = δk,dmZ for all k ≥ 0
(
see (45)

)

⇒ Ck(ϕ̂,0) = δk,dmZ for all k ≥ 0

(recall ϕ|[v0,u0] = ϕ̂|[v0,u0] and v0 ∈ − intC+, u0 ∈ intC+).

This proves the Claim.
Recall that ϕ̂ is coercive (see (30)). Hence

Ck(ϕ̂,∞) = δk,0Z for all k ≥ 0. (46)

Suppose Kϕ̂ = {0, u0, v0, y0}. From (42), (43), (46), the Claim and the Morse
relation (see (7)) with t = −1, we have 2(−1)0 + (−1)1 + (−1)dm = (−1)0, a contra-
diction. So, we can find ŷ ∈ Kϕ̂ ⊆ [v0, u0] ∩ C1

0(Ω̄) such that ŷ /∈ {0, v0, u0, y0}. The
extremality of u0, v0 implies that ŷ ∈ C1

0(Ω̄) is the second nodal solution of (1). �

4 The Case 1 < p < 2

In this section we deal with the case in which 1 < p < 2. Now the ambient space is
the Hilbert Sobolev space H 1

0 (Ω), which creates more possibilities in the analysis of
problem (1) and compensates for the fact that −�p is singular.

We impose the following conditions on the reaction f (z, x):
H4: f : Ω × R → R is a Carathéodory function such that for a.a. z ∈ Ω ,

f (z,0) = 0, |f (z, x)| ≤ a(z)(1 + |x|) for all x ∈R with a ∈ L∞(Ω)+ and
(i) there exist an integer m ≥ 2 and a function η ∈ L∞(Ω) such that

η(z) ≤ λ̂m+1(2) for a.a. z ∈ Ω,η �= λ̂m+1(2)
(
f (z, x) − f (z, y)

)
(x − y) ≤ η(z)(x − y)2 for a.a. z ∈ Ω , all x, y ∈R;

(ii) λ̂m(2) ≤ lim infx→±∞ f (z,x)
x

uniformly for a.a. z ∈ Ω ;

(iii) limx→±∞ f (z,x)x−2F(z,x)
|x|p = −∞ uniformly for a.a. z ∈ Ω ;

(iv) for every ρ > 0, there exists ξρ > 0 such that

f (z, x)x + ξρx2 ≥ 0 for a.a. z ∈ Ω , all |x| ≤ ρ.

As we already mentioned in the Introduction, by employing the Lyapunoff–
Schmidt reduction technique, we will prove two multiplicity theorems for problem
(1) producing three and four nontrivial solutions respectively.
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Let ϕ : H 1
0 (Ω) →R be the C1-energy functional for problem (1) defined by

ϕ(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 −
∫

Ω

F
(
z,u(z)

)
dz for all u ∈ H 1

0 (Ω).

Also as before (see Sect. 3), let f±(z, x) = f (z,±x±),F±(z, x) = ∫ x

0 f±(z, s) ds

and consider the C1-functionals ϕ± : H 1
0 (Ω) →R defined by

ϕ±(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 −
∫

Ω

F±
(
z,u(z)

)
dz for all u ∈ H 1

0 (Ω).

Proposition 4.1 Assume that hypotheses H4 hold. Then the functionals ϕ± satisfy
the C-condition.

Proof We do the proof for the functional ϕ+, the proof for ϕ− being similar.
Let {un}n≥1 ⊆ H 1

0 (Ω) be a sequence such that

∣
∣ϕ+(un)

∣
∣ ≤ M4 for some m4 > 0, all n ≥ 1, (47)

(
1 + ‖un‖

)
ϕ′+(un) → 0 in H−1(Ω) = H 1

0 (Ω)∗ as n → ∞. (48)

Now ‖ · ‖ is the norm of H 1
0 (Ω) (that is, ‖u‖ = ‖Du‖2 for all u ∈ H 1

0 (Ω)). From
(48) we have for all h ∈ H 1

0 (Ω)

∣∣∣∣
〈
Ap(un),h

〉 + 〈
A(un),h

〉 −
∫

Ω

f+(z, un)hdz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖ with εn → 0+. (49)

In (49) we choose h = −u−
n ∈ H 1

0 (Ω). Then

‖Du−
n ‖p

p + ‖Du−
n ‖2

2 ≤ εn for all n ≥ 1

⇒ u−
n → 0 in H 1

0 (Ω). (50)

Using (49) and (50), we have

∣∣∣∣
〈
Ap

(
u+

n

)
, h

〉 + 〈
A

(
u+

n

)
, h

〉 −
∫

Ω

f
(
z,u+

n

)
hdz

∣∣∣∣ ≤ ε′
n‖h‖ with ε′

n → 0+. (51)

Suppose that ‖u+
n ‖ → ∞. Let yn = u+

n

‖u+
n ‖n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1. So,

we may assume that

yn
w→ y in H 1

0 (Ω) and yn → y in L2(Ω). (52)

From (51) we have for all n ≥ 1

∣∣∣∣
1

‖u+
n ‖2−p

〈
Ap(yn),h

〉 + 〈
A(yn),h

〉 −
∫

Ω

f (z,u+
n )

‖u+
n ‖ hdz

∣∣∣∣ ≤ ε′
n‖h‖. (53)
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From the growth condition on f (z, ·), it is clear that {Nf (u+
n )

‖u+
n ‖ }n≥1 ⊆ L2(Ω) is

bounded. So, we may assume that

Nf (u+
n )

‖u+
n ‖

w→ g in L2(Ω). (54)

Moreover, using H4(i), (ii), we have

g = ξ̂ y with λ̂m(2) ≤ ξ̂ (z) ≤ η(z) a.e. in Ω. (55)

In (48) we choose h = yn − y ∈ H 1
0 (Ω), pass to the limit as n → ∞ and use (52)

and (54). Then

lim
n→∞

〈
A(yn), yn − y

〉 = 0 (recall that p < 2).

⇒ yn → yin H 1
0 (Ω) (see Proposition 2.4), hence ‖y‖ = 1. (56)

If in (53) we pass to the limit as n → ∞ and use (54), (55) and (56), then

〈
A(y),h

〉 =
∫

Ω

ξ̂yhdz for all h ∈ H 1
0 (Ω) ⇒ A(y) = ξ̂ y

⇒ −�y(z) = ξ̂ (z)y(z) a.e. in Ω,y|∂Ω = 0. (57)

If ξ̂ �= λ̂m(2) (see (55)), then by Proposition 2.3, we have

λ̃m(2, ξ̂ ) < λ̃m

(
2, λ̂m(2)

) = 1 and

λ̃m+1
(
2, λ̂m+1(2)

) = 1 < λ̃m+1(2, η) ≤ λ̃m+1(2, ξ̂ ).
(58)

From (57) and (58), it follows that y = 0, which contradicts (56).
Now suppose that ξ̂ (z) = λ̂m(2) a.e. in Ω . Then y ∈ E(λ̂m(2))\{0} and so y(z) >

0 for all z ∈ Ω (by the UCP and since y ≥ 0). This implies that u+
n (z) → +∞ for a.a.

z ∈ Ω . Then hypothesis H4(iii) and Fatou’s Lemma imply that

1

‖u+
n ‖p

∫

Ω

[
f

(
z,u+

n

)
u+

n − 2F
(
z,u+

n

)]
dz → −∞ as n → ∞. (59)

From (47) and (50), we have for some M5 > 0 and for all n ≥ 1

2

p

∥
∥Du+

n

∥
∥p

p
+ ∥

∥Du+
n

∥
∥2

2 − 2
∫

Ω

F
(
z,u+

n

)
dz ≥ −M5.

Also from (51) with h = u+
n , we have

−∥∥Du+
n

∥∥p

p
− ∥∥Du+

n

∥∥2
2 +

∫

Ω

f
(
z,u+

n

)
u+

n ≥ −ε′
n

∥∥u+
n

∥∥ (60)

Adding (59) and (60), we obtain
∫

Ω

[
f

(
z,u+

n

)
u+

n − 2F
(
z,u+

n

)]
dz ≥ −M6

(
1 + ∥∥Du+

n

∥∥p

p
+ ∥∥u+

n

∥∥)
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⇒ 1

‖u+
n ‖p

∫

Ω

[
f

(
z,u+

n

)
u+

n − 2F
(
z,u+

n

)]
dz

≥ −M6

(
1

‖u+
n ‖p

+ ‖Dyn‖p
p + 1

‖u+
n ‖p−1

)
for all n ≥ 1. (61)

Comparing (59) and (61) and since p > 1, we reach a contradiction. This proves
that {u+

n }n≥1 ⊆ H 1
0 (Ω) is bounded, hence {un}n≥1 ⊆ H 1

0 (Ω) is bounded (see (50)).
So, we may assume that

un
w→ u in H 1

0 (Ω) and un → u in L2(Ω). (62)

If in (49) we choose h = un − u ∈ H 1
0 (Ω) and pass to the limit as n → ∞, then

recalling that {Nf (un)}n≥1 ⊆ L2(Ω) is bounded, we have

lim
n→∞

[〈
Ap(un),un − u

〉 + 〈
A(un),un − u

〉] = 0

⇒ lim sup
n→∞

[〈
Ap(u),un − u

〉 + 〈
A(un),un − u

〉] ≤ 0 (since Apis monotone)

⇒ lim sup
n→∞

〈
A(un),un − u

〉 ≤ 0

⇒ un → u in H 1
0 (Ω) (see Proposition 2.4).

This proves that the functional ϕ+ satisfies the C-condition. Similarly we show that
the functional ϕ− satisfies the C-condition. �

Straightforward changes in the above proof lead to the same result for the func-
tional ϕ.

Proposition 4.2 Assume that hypotheses H4 hold. Then the functional ϕ satisfies the
C-condition.

Next we verify the mountain pass geometry for the functionals ϕ±.

Proposition 4.3 Assume that hypotheses H4 hold. Then u = 0 is a local minimizer
for the functionals ϕ± and ϕ.

Proof We do the proof for the functional ϕ+, the proofs for ϕ− and ϕ being similar.
Hypotheses H4(i), (iv) imply that

lim
x→0

f (z, x)

|x|p−2x
= 0 uniformly for a.a. z ∈ Ω (recall p < 2). (63)

So, given ε > 0, we can find δ = δ(ε) > 0 such that
∣∣f (z, x)

∣∣ ≤ ε|x|p−1 for a.a. z ∈ Ω , all |x| ≤ δ

⇒ F+(z, x) ≤ ε

p

(
x+)p for a.a. z ∈ Ω , all |x| ≤ δ. (64)
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Let u ∈ C1
0(Ω̄) with ‖u‖C1

0 (Ω̄) ≤ δ. Then

ϕ+(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖2

2 −
∫

Ω

F+(z, u) dz

≥ 1 − ε

p
‖u‖p

(
see (64)

)
. (65)

Choosing ε ∈ (0,1), from (65) we see that u = 0 is a local C1
0(Ω̄)-minimizer

of ϕ+. Invoking Proposition 2.1, we deduce that u = 0 is a local H 1
0 (Ω)-minimizer

of ϕ+. Similarly for the functionals ϕ− and ϕ. �

Proposition 4.4 Assume that hypotheses H4 hold and u ∈ E(λ̂m−1(2))\{0} with
‖u‖2 = 1. Then ϕ±(tu) → −∞ as t → ±∞.

Proof By virtue hypothesis H4(ii), given ε ∈ (0, λ̂m(2) − λ̂m−1(2)), we can find
M7 = M7(ε) > 0 such that

F(z, x) ≥ 1

2

(
λ̂m(2) − ε

)
x2 for a.a. z ∈ Ω , all |x| ≥ M7. (66)

For t > 0, we have

ϕ+(tu) = tp

p
‖Du‖p

p + t2

2
‖Du‖2

2 −
∫

Ω

F+(z, tu) dz

= tp

p
‖Du‖p

p + t2

2
‖Du‖2

2 −
∫

{|tu|≥M7}
F+(z, tu) dz

−
∫

{0≤|tu|<M7}
F+(z, tu) dz

≤ tp

p
‖Du‖p

p + t2

2
λ̂m−1(2) − t2

2

[
λ̂m(2) − ε

] + ξ∗(t)

with ξ∗(t) bounded
(
see (66)

)

= tp

p
‖Du‖p

p + t2

2

[
λ̂m−1(2) + ε − λ̂m(2)

] + ξ∗(t). (67)

Since λ̂m−1(2) + ε < λ̂m(2) and p < 2, from (67) we infer that

ϕ+(tu) → −∞ as t → +∞.

Similarly for the functional ϕ−. �

Now we are ready to produce two nontrivial constant sign solutions for prob-
lem (1).
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Proposition 4.5 Assume that hypotheses H4 hold. Then problem (1) has at least two
nontrivial constant sign solutions

u0 ∈ intC+ and v0 ∈ − intC+.

Proof By virtue of Proposition 4.3, u = 0 is a critical point of ϕ+. Then this is an
isolated critical point of ϕ+. Otherwise, because Kϕ+ ⊆ C+, we will have a whole
sequence of distinct nontrivial positive solutions of (1). So, we can find ρ ∈ (0,1)

small such that

ϕ+(0) = 0 < inf
[
ϕ+(u) : ‖u‖ = ρ

] = η+
ρ . (68)

Combing with Propositions 4.1 and 4.4, we see that we can apply Theorem 2.1
(the mountain pass theorem) and find u0 ∈ H 1

0 (Ω) such that

u0 ∈ Kϕ+ and η+
ρ ≤ ϕ+(u0). (69)

From (68) and (69) we deduce that u0 ≥ 0, u0 �= 0 and ϕ′+(u0) = 0, hence u0 is a
nontrivial solution of (1) and so u0 ∈ C+\{0} (nonlinear regularity).

Let ρ = ‖u0‖∞ and let ξρ > 0 be as postulated by hypothesis H4(iv). Then

−�pu0(z) − �u0(z) + ξρu0(z) = f
(
z,u0(z)

) + ξρu0(z) ≥ 0 a.e. in Ω

⇒ �pu0(z) + �u0(z) ≤ ξρu0(z) a.e. in Ω.

Invoking the boundary point theorem of Pucci & Serrin [40, p. 120], we deduce
that u0 ∈ intC+. Similarly, working with the functional ϕ−, we produce a nontrivial
negative solution v0 ∈ − intC+ for problem (1). �

Let Y = ⊕m
i=1 E(λ̂i(2)) and Ĥ = Y⊥, hence H 1

0 (Ω) = Y ⊕ Ĥ . The Lyapunoff-
Schmidt reduction technique will be based on this decomposition. We should mention
that the reduction technique was first developed for elliptic equations with a C2-
energy functional by Amann [3], Castro & Lazer [11] and Thews [43]. The next
proposition is a crucial step in the implementation of the reduction technique.

Proposition 4.6 Assume that hypotheses H4 hold. Then there exists a continuous
map γ0 : Y → Ĥ such that

ϕ
(
y + γ0(y)

) = inf
[
ϕ(y + û) : û ∈ Ĥ

]
for all y ∈ Y.

Proof Let y ∈ Y and consider the C1-functional ϕy(u) : H 1
0 (Ω) →R defined by

ϕy(u) = ϕ(y + u) for all u ∈ H 1
0 (Ω).

Let i : Ĥ → H 1
0 (Ω) be the inclusion map. We set ϕ̂y = ϕy ◦ i : Ĥ → R. From the

chain rule we have

ϕ̂′
y(û) = p

Ĥ ∗ϕ′
y(û) for all û ∈ Ĥ , (70)
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where p
Ĥ ∗ is the orthogonal projection of H−1(Ω) = H 1

0 (Ω)∗ onto Ĥ ∗. Let

û1, û2 ∈ Ĥ . We have
〈
ϕ̂′

y(û1) − ϕ̂′
y(û2), û1 − û2

〉
Ĥ

= 〈
ϕ′

y(û1) − ϕ′
y(û2), û1 − û2

〉

= 〈
Ap(y + û1) − Ap(y + û2), û1 − û2

〉 + 〈
A(û1 − û2), û1 − û2

〉

−
∫

Ω

[
f (z, y + û1) − f (z, y + û1)

]
(û1 − û2) dz

≥ ∥∥D(û1 − û2)
∥∥2

2 −
∫

Ω

η(û1 − û2)
2 dz

(
since Ap is monotone and see H4(i)

)

≥ C7‖û1 − û2‖2 for some C7 > 0
(
see H4(i) and recall û1, û2 ∈ Ĥ

)

⇒ ϕ̂′
y is strongly monotone ⇒ ϕ̂y is strictly convex.

Also, note that
〈
ϕ̂′

y(û), û
〉 = 〈

ϕ̂′
y(û) − ϕ̂′

y(0), û
〉 + 〈

ϕ̂′
y(0), û

〉 ≥ C7‖û‖2 − C8‖û‖
for some C8 > 0.

Thus, ϕ̂′
y is coercive. The map ϕ̂′

y is continuous and strongly monotone, hence it is
maximal monotone. This fact combined with the coercivity of ϕ̂′

y implies that the
map is surjective (see, for example, Gasinski & Papageorgiou [24, p. 320]). So, we
can find û0 ∈ Ĥ such that ϕ̂′

y(û0) = 0. The strong monotonicity of ϕ̂′
y implies that

this û0 is unique and in fact is the unique global minimizer of the strictly convex
functional û → ϕ̂y(û), û ∈ Ĥ . So, we can define the single valued map γ0 : Y → Ĥ

which to each y ∈ Y assigns this unique global minimizer of ϕ̂y(·). We have

0 = ϕ̂′
y

(
γ0(y)

) = p
Ĥ ∗ϕ′(y + γ0(y)

)
and

ϕ
(
y + γ0(y)

) = inf
[
ϕ(y + û) : û ∈ Ĥ

]
.

(71)

Next we show the continuity of the map γ0 : Y → Ĥ . To this end, let yn → y in Y .
The coercivity of ϕ̂′

y and (71) imply that

{
γ0(yn)

}
n≥1 ⊆ Ĥ ⊆ H 1

0 (Ω) is bounded.

So, we may assume that

γ0(yn)
w→ h in H 1

0 (Ω) and h ∈ Ĥ .

Using the Sobolev embedding theorem, we can easily check that ϕ is sequentially
weakly lower semi-continuous. Hence

ϕ(y + h) ≤ lim inf
n→∞ ϕ

(
yn + γ0(yn)

)
. (72)
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From (71) we have

ϕ
(
yn + γ0(yn)

) ≤ ϕ(yn + û) for all û ∈ Ĥ

⇒ lim sup
n→∞

ϕ
(
yn + γ0(yn)

) ≤ ϕ(y + û) for all û in Ĥ (since yn → yin Y)

⇒ ϕ(y + h) ≤ ϕ(y + û) for all û ∈ Ĥ
(
see (72)

)

⇒ h = γ0(y)
(
see (71)

)

⇒ γ0(yn)
w→ γ0(y) in H 1

0 (Ω). (73)

Moreover, again from (71), we have

p
Ĥ ∗ϕ′(yn + γ0(yn)

) = 0 for all n ≥ 1

⇒ p
Ĥ ∗

[
Ap

(
yn + γ0(yn)

) + A
(
yn + γ0(yn)

)]

= p
Ĥ ∗Nf

(
yn + γ0(yn)

)
for all n ≥ 1.

Acting on this equation with γ0(yn) − γ0(y) and passing to the limit as n → ∞,
as before (see the proof of Proposition 3.4), exploiting the monotonicity of Ap , we
obtain

lim sup
n→∞

〈
A

(
yn + γ0(yn)

)
, γ0(yn) − γ0(y)

〉 ≤ 0

⇒ γ0(yn) → γ0(y) in H 1
0 (Ω) (see Proposition 2.4)

⇒ γ0(·) is continuous. �

We consider the functional Ψ : Y →R defined by

Ψ (y) = ϕ
(
y + γ0(y)

)
for all y ∈ Y.

The next lemma is not immediately clear, since γ0 is only continuous.

Lemma 4.1 Assume that hypotheses H4 hold. Then Ψ ∈ C1(Y ).

Proof Let y, v ∈ Y and t > 0 (the analysis is similar if t < 0). Then

Ψ (y + tv) − Ψ (y)

t
≤ ϕ(y + tv + γ0(y)) − ϕ(y + γ0(y))

t

⇒ lim sup
t→0

Ψ (y + tv) − Ψ (y)

t
≤ 〈

ϕ′(y + γ0(y)
)
, v

〉
. (74)

Also, we have

Ψ (y + tv) − Ψ (y)

t
≥ ϕ(y + tv + γ0(y + tv)) − ϕ(y + γ0(y + tv))

t
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⇒ lim inf
t→0

Ψ (y + tv) − Ψ (y)

t
≥ 〈

ϕ′(y + γ0(y)
)
, v

〉

(
since ϕ ∈ C1(H 1

0 (Ω)
)

and γ0 is continuous
)
. (75)

From (74) and (75) it follows that Ψ is Gâteaux differentiable at y ∈ Y in the
direction v ∈ Y and if by iY : Y → H 1

0 (Ω) we denote the inclusion map, then

〈
Ψ ′

G(y), v
〉
Y

= 〈
ϕ′(y + γ0(y)

)
, iY (v)

〉
for all v ∈ Y

⇒ Ψ ′
G(y) = pY ∗ϕ′(y + γ0(y)

)
,

where pY ∗ is the orthogonal projection of H−1(Ω) = H 1
0 (Ω)∗ onto Y ∗. Hence by

virtue of the continuity of γ0(·) (see Proposition 4.6), we see that y → Ψ ′
G(y) is

continuous and this proves that Ψ ∈ C1(Y ). �

Proposition 4.7 Assume that hypotheses H4 hold. Then Ψ is anticoercive (that is, if
‖y‖ → +∞, y ∈ Y , then Ψ (y) → −∞).

Proof We argue by contradiction. So, suppose we can find {yn}n≥1 ⊆ Y and M8 > 0
such that ‖yn‖ → ∞ and Ψ (yn) ≥ −M8 for all n ≥ 1.

We have

−M8 ≤ Ψ (yn) ≤ ϕ(yn) = 1

p
‖Dyn‖p

p + 1

2
‖Dyn‖2

2 −
∫

Ω

F(z, yn) dz. (76)

Let vn = yn

‖yn‖n ≥ 1. Then vn ∈ Y and ‖vn‖ = 1 for all n ≥ 1. The finite dimen-
sionality of Y implies that at least for a subsequence, we have

vn → v in H 1
0 (Ω) and v ∈ Y,‖v‖ = 1. (77)

From (76) he have

− M8

‖yn‖2
≤ 1

p

1

‖yn‖2−p
‖Dvn‖p

p + 1

2
‖Dvn‖2

2 −
∫

Ω

F(z, yn)

‖yn‖2
dz. (78)

Hypothesis H4(i) implies that
{

F(·, yn(·))
‖yn‖2

}

n≥1
⊆ L1(Ω) is uniformly integrable.

So, by the Dunford-Pettis theorem and hypothesis H4(i), we have

F(·, yn(·))
‖yn‖2

w→ 1

2
ξ∗v2in L1(Ω) with ξ∗(z) ≤ η(z) a.e. in Ω. (79)

Passing to the limit as n → ∞ in (78) and using (77) and (79), we obtain

0 ≤ 1

2
‖Dv‖2

2 − 1

2

∫

Ω

ξ∗v2 dz < 0 when ξ∗ �= λ̂m(2) (recall p < 2),
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a contradiction. If ξ∗ = λ̂m(2), then v ∈ E(λ̂m(2))\{0} and so the argument of Propo-
sition 4.1 leads again to a contradiction. This proves the anti-coercivity of Ψ . �

In particular the above proposition implies that Ψ satisfies the C-condition (since
Ψ is coercive). Now we can state the first multiplicity results for problem (1) when
1 < p < 2.

Theorem 4.1 Assume H4 and 1 < p < 2. Then problem (1) has at least three non-
trivial solutions u0 ∈ intC+, v0 ∈ − intC+ and y0 ∈ C1

0(Ω̄).

Proof From Proposition 4.5, we already have two nontrivial solutions of constant
sign, namely u0 ∈ intC+ and v0 ∈ − intC+. From the proof of Proposition 4.5 we
know that u0 ∈ intC+ is a critical point of mountain pass type for the functional ϕ+,
while v0 ∈ − intC+ is a critical point of mountain pass type for the functional ϕ−.
We know that

ϕ+|C+ = ϕ|C+ and ϕ−|−C+ = ϕ|−C+

⇒ Ck(ϕ+|C1
0 (Ω̄), u0) = Ck(ϕ|C1

0 (Ω̄), u0) and Ck(ϕ−|C1
0 (Ω̄), v0)

= Ck(ϕ|C1
0 (Ω̄), v0) for all k ≥ 0. (80)

From Bartsch [5, Proposition 2.6] and Palais [38] we have for all k ≥ 0

Ck(ϕ+|C1
0 (Ω̄), u0) = Ck(ϕ+, u0) and Ck(ϕ|C1

0 (Ω̄), u0) = Ck(ϕ,u0) (81)

Ck(ϕ−|C1
0 (Ω̄), v0) = Ck(ϕ−, v0) and Ck(ϕ|C1

0 (Ω̄), v0) = Ck(ϕ, v0). (82)

From (80), (81), (82) and since u0 and v0 are critical points of mountain pass type
for ϕ+ and ϕ− respectively, we have

C1(ϕ,u0) �= 0, C1(ϕ, v0) �= 0. (83)

Let ū0 = pY (u0) and v̄0 = pY (v0). From Liu & Li [32], we have

Ck(ϕ,u0) = Ck(Ψ, ū0) and Ck(ϕ, v0) = Ck(Ψ, v̄0) for all k ≥ 0

⇒ C1(Ψ, ū0) �= 0 and C1(Ψ, v̄0) �= 0
(
see (83)

)
. (84)

From Proposition 4.7 we know that Ψ is anticoercive on Y . Hence by the Weier-
strass theorem, we can find ȳ0 ∈ Y such that

Ψ (ȳ0) = max
[
Ψ (y) : y ∈ Y

]

⇒ Ck(Ψ, ȳ0) = δk,dmZ for all k ≥ 0

with dm = dim
m⊕

i=1

E
(
λ̂i (2)

) ≥ 2, (85)

see Chang [12].
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Finally from Proposition 4.3, we know that u = 0 is a local minimizer of ϕ, hence

Ck(Ψ,0) = Ck(ϕ,0) = δk,0Z for all k ≥ 0 (see Liu & Li [32]). (86)

From (84), (85) and (86) we infer that ȳ0 /∈ {0, ū0, v̄0}. Therefore, if y0 = ȳ0 +
γ0(ȳ0), then y0 is a critical point of ϕ distinct from {0, u0, v0}. This is the third non-
trivial solution of (1) and the nonlinear regularity theory (see [29, 30]) implies that
y0 ∈ C1

0(Ω̄). �

Next, by strengthening the regularity of f (z, ·), we can improve the above multi-
plicity theorem and produce four nontrivial solutions.

To this end, first we compute the critical groups of Ψ at infinity. To do this we
do not need the stronger conditions on f (z, ·) and in the proof we use some ideas of
Liu [31].

Proposition 4.8 If hypotheses H4 hold, then Ck(Ψ,∞) = δk,dmZ for all k ≥ 0.

Proof Let m0 < infΨ (KΨ ). Since Ψ is anti-coercive (see Proposition 4.7), we can
find η < ϑ < m0 and 0 < ρ < R such that CR ⊆ Ψ η ⊆ Cρ ⊆ Ψ ϑ , where for every
r > 0,Cr = {y ∈ Y : ‖y‖ ≥ r}.

For the triples (CR,Cρ,Y ) and (Ψ η,Ψ ϑ,Y ) we consider the corresponding long
exact sequences of homology groups. So, we have

· · · → Hk(Cρ,CR)
i∗→ Hk(Y,CR)

j∗→ Hk(Y,Cρ)
∂∗→ Hk−1(Cρ,CR) → ·· ·

↓ h∗|Cρ ↓ h∗ ↓ h∗ ↓ h∗|Cρ (87)

· · · → Hk(Ψ
ϑ,Ψ η)

î∗→ Hk(Y,Ψ η)
ĵ∗→ Hk(Y,Ψ ϑ)

∂̂∗→ Hk−1(Ψ
ϑ,Ψ η)

In (87) all the squares are commutative (see Granas & Dugundji [25] (p.377)) and
the map i∗, j∗, î∗, ĵ∗, h∗ are the group homomorphisms induced by the corresponding
inclusion maps. Also, ∂∗ and ∂̂∗ are the corresponding boundary homomorphisms.
Since η < ϑ < m0 < infΨ (KΨ ), we have that Ψ η is a strong deformation retract of
Ψ ϑ (by the second deformation theorem, see [24, p. 628]) and so

Hk

(
Ψ ϑ,Ψ η

) = 0 for all k ≥ 0. (88)

Consider the map σ : Cρ → CR defined by

σ(u) =
{

R u
‖u‖ if ρ ≤ ‖u‖ ≤ R

u if R < ‖u‖.
Clearly σ is continuous and σ |CR

= id|CR
, So, CR is a retract of Cρ . Moreover, if

h : [0,1] × Cρ → Y is defined by

h(t, u) = (1 − t)u + tR
u

‖u‖ for all t ∈ [0,1], all u ∈ Cρ,
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then we see that Cρ is deformable into CR in Y . Therefore, invoking Theorem 6.5 of
Dugundji [18, p. 325], we infer that CR is a deformation retract of Cρ . Hence

Hk(Cρ,CR) = 0 for all k ≥ 0. (89)

(see Granas & Dugundji [25] (p. 387)). From the exactness of the long homology
sequences in (87), we have

0 = imi∗ = ker j∗ and imj∗ = ker ∂∗ = Hk(Y,Cρ), see (88)

0 = imî∗ = ker ĵ∗ and imĵ∗ = ker ∂̂∗ = Hk

(
Y,Ψ ϑ

)
, see (89).

If follows that both j∗ and ĵ∗ are group isomorphisms. Then invoking Lemma D.1
of Granas & Dugundji [25, p. 610], we deduce that h∗ is an isomorphism. So, for all
k ≥ 0

Hk(Y,Cρ) = Hk

(
Y,Ψ ϑ

) ⇒ Hk(Y,Cρ) = Ck(Ψ,∞). (90)

As before, using the radical retraction and Theorem 6.5 of Dugundji [18, p. 325],
we show that ∂Bρ = {y ∈ Y : ‖y‖ = ρ} is a deformation retract of Cρ . Therefore

Hk(Y,Cρ) = Hk(Y, ∂Bρ) for all k ≥ 0

⇒ Hk(Y,Cρ) = δk,dmZ for all k ≥ 0
(
see Maunder [35, p. 121]

)

⇒ Ck(Ψ,∞) = δk,dmZ for all k ≥ 0
(
see (90)

)
. �

The new stronger conditions on f (z, x) which we will need in order to prove a
four solutions theorem for problem (1) when 1 < p < 2, are the following:

H5: f : Ω × R → R is a measurable function such that for a.a. z ∈ Ω,f (z,0) =
0, f (z, ·) ∈ C1(R) and

(i) there exist an integer m ≥ 2 and a function η ∈ L∞(Ω) such that

η(z) ≤ λ̂m+1(2) a.e. in Ω,η �= λ̂m+1(2) and
∣∣f ′

x(z, x)
∣∣ ≤ η(z) a.e. in Ω , for all x ∈R;

(ii) λ̂m ≤ lim infx→±∞ f (z,x)
x

uniformly for a.a. z ∈ Ω ;

(iii) limx→±∞ f (z,x)x−2F(z,x)
|x|p = −∞ uniformly for a.a. z ∈ Ω .

Remark From hypothesis H5(i) and the mean value theorem we have
∣∣∣∣
f (z, x)

x

∣∣∣∣ ≤ η(z) for a.a. z ∈ Ω , all x ∈R\{0}.

Remark Similarly, we see for all ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ Ω ,
x → f (z, x) + ξρx is nondecreasing on [−ρ,ρ].

Then we can state the following multiplicity theorem for problem (1) (case 1 <

p < 2).
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Theorem 4.2 Assume H5 and 1 < p < 2. Then problem (1) has at least four nontriv-
ial solutions. u0 ∈ intC+, v0 ∈ − intC+ and y0, ŷ ∈ C1

0(Ω̄).

Proof From Theorem 4.1, we already have three nontrivial solutions u0 ∈ intC+,
v0 ∈ − intC+ and y0 ∈ C1

0(Ω̄).
We know that ϕ ∈ C2(H 1

0 (Ω)\{0}). Then as in Claim 3 in the proof of Proposi-
tion 3.5 (see also Motreanu, Motreanu & Papageorgiou [37], proof of Theorem 4.2)
we can apply Proposition 2.5 of Bartsch [6] and have that

Ck(ϕ,u0) = Ck(ϕ, v0) = δk,1Z for all k ≥ 0 (91)

(see relation (85) and recall that u0 ∈ intC+ and v0 ∈ − intC+ and ϕ is C2 in neigh-
borhoods Ũ , Ṽ of u0 and v0 in the C1

0(Ω) space).
From (85) and since Ck(ϕ, y0) = Ck(Ψ, ȳ0) for all k ≥ 0 (see [32]), it follows that

Ck(ϕ, y0) = δk,dmZ for all k ≥ 0. (92)

From Proposition 4.8, we have for all k ≥ 0

Ck(Ψ,∞) = δk,dmZ ⇒ Ck(ϕ,∞) = δk,dmZ (see [32]). (93)

Finally from Proposition 4.3, we have

Ck(ϕ,0) = δk,0Z for all k ≥ 0. (94)

Suppose Kϕ = {0, u0, v0, y0}. then from (91), (92), (93), (94) and the Morse rela-
tion (see (7)) with t = −1, we have 2(−1)1 + (−1)0 + (−1)dm = (−1)dm , a contradic-
tion. Thus, there exists ŷ ∈ Kϕ such that ŷ /∈ {0, u0, v0, y0}. This the fourth nontrivial
solution of problem (1) and by the nonlinear regularity theory we have ŷ ∈ C1

0(Ω̄). �
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