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In this paper, we are concerned with the solvability of the problem
Tu = f(z,u(z)) + N(z) in £, (*

with a Robin boundary condition, where (2 is a smooth bounded domain, T := T} + T5 is an unbalanced
operator, f is a nonlinearity whose growth at +oo is different with respect to the principal eigenvalue of T7, A
is a positive parameter, and fis a given function. Under such conditions, problem (*) is of Ambrosetti-Prodi
type, in honor of the celebrated work [1].

In the present paper, we develop an original approach, whose features are the following;:
(i) the problem is driven by a nonstandard differential operator, whose associated energy is a double-phase
variational functional;
(ii) we consider the combined effects of a Robin boundary condition, an Ambrosetti-Prodi nonlinearity, and
a parametric perturbation term;

* Corresponding author at: College of Science, Hunan University of Technology and Business, 410205, Changsha, Hunan, China.
E-mail addresses: npapg@math.ntua.gr (N.S. Papageorgiou), radulescu@inf.ucv.ro (V.D. Radulescu),
zhangjian@hutb.edu.cn (J. Zhang).

https://doi.org/10.1016/j.nonrwa.2022.103640
1468-1218/© 2022 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.nonrwa.2022.103640
http://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nonrwa.2022.103640&domain=pdf
mailto:npapg@math.ntua.gr
mailto:radulescu@inf.ucv.ro
mailto:zhangjian@hutb.edu.cn
https://doi.org/10.1016/j.nonrwa.2022.103640

N.S. Papageorgiou, V.D. Rdadulescu and J. Zhang Nonlinear Analysis: Real World Applications 67 (2022) 103640

(iii) the main result establishes a global existence and multiplicity property, namely we show that there is a
critical parameter \* > 0 such that

(a) the problem has at least two solutions for all A € (0, \*);

(b) the problem has at least one solution if A = \*;

(c) there is no solution for all A > A*.

1. Introduction

Let 2 C RY be a bounded domain with a C?-boundary 942. In this paper we study the following problem
—Apu(z) = Aqu(z) + E(2)|u(z) [P ?u(z) = f(z,u(z) + M(z) in 2,

Y B |uPPu =000 82,1 < q < p,A> 0.
Onpg

(Py)

For r € (1,00) by A, we denote the r-Laplace differential operator defined by
Ayu = div(|Du|" > Du) for all u € W (£2).

In problem (P, ), the differential operator is the sum of two such Laplacians with different exponents (a
(p, q)-Laplacian with 1 < ¢ < p) plus a potential term §(z)|u|p72u. The differential operator in (P)) is not
homogeneous. In the reaction (right hand side of (Py)), we have a state independent parametric term \(-)
with § € L>(02), 6 > 0 and A > 0 is the parameter and there is a perturbation term f(z,z) which is a
Carathéodory function (that is, for all x € R, z — f(z, ) is measurable and for a.a. z € 2, x — f(z,2) is
continuous). We consider two different cases. In the first f(z,-) is (p — 1)-superlinear as  — 400 and in the

second f(z,) is (p — 1)-linear as x — +oc0. In the boundary condition 827;1 denotes the conormal derivative

of u(+) corresponding to the (p, q)-Laplacian. This directional derivative is interpreted using the nonlinear
Green'’s identity (see [2], p.210) and when u € C*(£2), then

ou
Onpq

du
on’
with n(-) being the outward unit normal on 92. The boundary coefficient 5(z) > 0 for all z € 9f2 and when

B = 0, we recover the Neumann problem. Our aim is to prove an existence and multiplicity theorem which
is global with respect to the parameter A > 0.

= |Du\p_2(Du,n)]RN + |Du|q_2(Du,n)RN = [|Du|p_2 + |Du|q_2}

The double-phase problem (P,) is motivated by numerous models arising in mathematical physics. For
instance, we can refer to the following Born—Infeld equation [3] that appears in electromagnetism:

—div _Du )L h(u) in £2.
(1= 2iDaf)12

Indeed, by the Taylor formula, we have

12 T 3
(1—2)" =145+ 5537

5!

(2n — 3)!
323"

3 DRI —
te Tt

>+

=l for 2] < 1.

Taking x = 2|Du|2 and adopting the first order approximation, we obtain problem (P)) for p = 4 and ¢ = 2.
Furthermore, the nth order approximation problem is driven by the multi-phase differential operator

(2n — 3)N
(n—1)!

We also refer to the following fourth-order relativistic operator

D 2
ursdiv (—24_py),
(1= [Duly/*

2
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which describes large classes of phenomena arising in relativistic quantum mechanics. Again, by Taylor’s

formula, we have
326 21210

+
4 32
This shows that the fourth-order relativistic operator can be approximated by the following autonomous

$2(1 _ :C4)73/4 — 22

double phase operator

u — A4U =+ %Agu

Problem (P)) belongs to a class of problems known as “Ambrosetti-Prodi-type problems”. Their inves-
tigation was initiated with the work of Ambrosetti-Prodi [1]. Since then, Ambrosetti-Prodi problems for
the Dirichlet p-Laplacian were studied by Arcoya—Ruiz [4], Koizumi-Schmitt [5] (the (p — 1)-linear case),
Arias—Cuesta [6], Miotto [7] (the (p — 1)-superlinear case) and Aizicovici-Papageorgiou-Staicu [8] (both the
linear and superlinear cases). For the Dirichlet (p, ¢)-Laplacian, there is only the work of Miotto-Miotto [9].
Beyond the Dirichlet problem, very little work has been done and there are only the papers of de Paiva—
Montenegro [10] and Presoto-de Paiva [11], both dealing with Neumann problems. In [10] the equation is
driven by the p-Laplacian, while in [11] the equation is semilinear driven by the Laplacian and the reaction is
gradient dependent. Finally, for other relevant topics involving double phase problems and elliptic equations,
we refer to the papers [12-19] and the references therein.

2. Mathematical background and hypotheses

In the analysis of problem (Py) we will use the Sobolev space W1?(£2), the Banach space C'(2) and the
boundary Lebesgue spaces L*(0£2), 1 < s < oo.
By || - || we will denote the norm of WP (£2) given by

llu|| = (||u||£ + HDUHZ)I/Z) for all u € Wl’p(_Q).

The space C*(2) will come up as a result of the regularity theory. This space is an ordered Banach space
with positive (order) cone
C, ={uecC ) :u(z)>0forall zc 2}

This cone has a nonempty interior given by
intCy = {ueCy:u(z)>0foral z e 2}.

On 92 we consider the (N — 1)-dimensional Hausdorff (surface) measure o (). Having this measure, we
can define in the usual way the boundary Lebesgue spaces L*(9£2), 1 < s < co. The theory of Sobolev spaces
says that there exists a continuous linear map 7o : WHP(§2) — LP(942) such that

Yo(u) = ulpq for all u € WHP(02) N C(2).

This map is known as the “trace map” and through it we extend the notion of boundary values to all
Sobolev functions.

We have that ) L1
imy, = W»"7(002), (p + i 1) , kernyg = Wy ().

The trace operator is compact into L*(9£2) for all s € [1, (NN_j;p) if p < N and into L*(92) for all
s € [1,00) if N < p. In the sequel, for the sake of notational simplicity, we drop the use of the trace map

vo(+). All restrictions of Sobolev functions on 92 are understood in the sense of traces.

3
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By L*(2), we denote the positive (order) cone of L*°({2), that is,
L*(2)={h e L>*(2): h(z) >0 for all a.a z € 2}.
This cone has a nonempty interior given by
int L°(2)4 = {h € L>(2);: eSSQinfh > 0} .
In C’l(fZ) we will also consider another open cone given by
D, = {u € Cy tu(z) >0 forall z € £2, %Lagmu—l(o) < O} .

If hi,he : 2 — R are measurable functions, then we write hy < ho if and only hy(z) < ha(z) for a.a.
z € £2, hy # ho (that is, hq(2) < h2(z) on a subset of 2 of positive measure). Also, if h; < hg, then we set

[h1,ho] = {h € W'P(2) : hy(2) < h(2) < ha(2) for a.a. z € 2},

[h1) = {h € W'P(R2) : hy(2) < h(2) for a.a. z € 2},

and
intcl(m[hl, hs] = the interior in C*(£2) of [hy, ho] N CY(R2).

For every x € R, Let 27 = max{x,0} and z~ = max{—x,0}. Then if u : 2 — R is a measurable function
we define the measurable functions u® : 2 — R, by u™(2) = u(2)T and u=(2) = u(z)~ for all z € 2. We
have u = ut —u™, |u| = ut + v~ and if u € WHP(2), then ut € WhP(12).

The presence of the state independent parametric term Aé(-), will lead to some functionals with a mild
nonsmoothness at the origin. We can overcome this difficulty using the subdifferential theory of Clarke [20].

So, let X be a Banach space. A function ¢ : X — R is said to be locally Lipschitz, if for every x € X, we
can find U C X an open set containing x such that

lp(v) —p(y)| < kullv -yl

for all v,y € U and for some ky > 0.
By Lip;,.(X) we denote the space of all locally Lipschitz functions on X. Given ¢ € Lip;,.(X), we can
define the generalized directional derivative of ¢ at x in the direction h by

P&’ +th) = (')
4

©%(x;h) = limsup
' —ax,t—0t
Then °(x;-) is finite, sublinear and |¢°(x; k)| < c||h|| for all b € X and some ¢ > 0. So, we can define
the generalized subdifferential (or Clarke subdifferential) of (-) at 2 € X by

Op(z) = {x* € X* : (x*,h) < @ (x;h) for all h € X}.

We know that dp(x) C X* is nonempty, convex and w*-compact. If ¢ € C1(X), then dp(x) = {¢'(z)}.
This notion is proved to be very fruitful and has a rich calculus and many applications. We refer to the book
of Clarke [20] for details.

Let Lip,;,.(X) and set

my(z) = inf {||z*||, : ™ € dp(x)} for all x € X.
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We say that ¢(-) satisfies the “nonsmooth C-condition”, if the following property holds:

“every sequence {x, }nen such that
{¢(zn) }nen C R is bounded,
(L4 l|zall)me(zn) — 0,

admits a strongly convergent subsequence.”

If ¢ € CY(X), then since dp(x) = {¢'(x)} for all z € X, we see that the above notion coincides with
the classical C-condition of the smooth critical point theory (see [21], p.366). We also refer to Tang and
Cheng [22] who proposed a new approach to restore the compactness of Palais—-Smale sequences and to Tang
and Chen [23] who introduced an original method to recover the compactness of minimizing sequences. A
related approach has been developed by Chen and Tang [24] in the framework of Cerami sequences.

The nonsmooth C-condition, is a compactness condition on the functional (-) which compensates for the
fact that the ambient space X need not be locally compact (in most applications X is infinite dimensional).
It leads to a deformation lemma, from which one can have an extension of the classical (smooth) critical
point theory to locally Lipschitz functions. For details, we refer to the book of Gasinski-Papageorgiou [25].

Given ¢ € Lip;,.(X), we define

K,={ue X :0€e0p(u)},

(the critical set of ). If ¢ € C1(X), then
K,={ue X :¢(u) =0}

We introduce the conditions on the potential £(-), the boundary coefficient 3(-) and on the function 6(-)
from the parametric term in the reaction.

Hy: €€ L>®(2),€C™002) (0<a<1),&z)>0foraa z€ 2, 8(z)>0forallz€ R, E£0or BZ£0
and 0 € int L>®(2),.

Remark. If 3 = 0, then we recover the Neumann problem and recall that € int L (£2)4 means that
0 € L>(£2) and 0 < essinf, 0.

In what follows, we denote by 7, : W1?(£2) — R the C'-functional defined by
) = IDulg+ [ s+ [ ppupdo

for all uw € WHP(02).
From Papageorgiou—Qin—Radulescu [26], we know that

col|u||P < 7, (u) for some co > 0,all u € WHP(R2). (1)

We consider the following nonlinear eigenvalue problem

{—Apu(z) + &) ()P ?u(z) = Aju(2)Pu(z) i 2, )
u=20 on Of2.

We say that A € R is an “eigenvalue”, if problem (2) has a nontrivial solution & € W'P(£)
known as an “eigenfunction” corresponding to A. From Papageorgiou—Rédulescu [27] and Fragnelli-Mugnai—
Papageorgiou [28], we know that there exists a smallest eigenvalue A (p) such that

Xl(p):inf{’yp(u) 'ueVVl’p(Q),u;AO}. (3)

lullp
5
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From (1) it is clear that A (p) > 0 and this eigenvalue is isolated and simple and the infimum is realized on
the corresponding one dimensional eigenspace, the elements of which have fixed sign. Moreover, the nonlinear
regularity theory (see [29,30]) implies that the eigenfunctions @ € C'(£2). Moreover, by the nonlinear
maximum principle the eigenfunctions for A (p) > 0 belong in +int C. .

These properties lead to the following proposition (see Gasinski—O’Regan—Papageorgiou [31], Lemma 2.1).

Proposition 1. If € L>=(£2) and 0 < A\ (p), then there exists ¢ > 0 such that for all u € WP (1),
elullP < yp(u) — /Q 0(2)|ul’dz.

We mention that if A > 0 is an eigenvalue and A #* Xl(p), then the corresponding eigenfunctions are nodal
(sign changing).

We will also consider a weighted version of (2). So, let m € L*(£2)4\{0} and consider the following
nonlinear eigenvalue problem

{—ApU(Z) +&(2)|u(2)["*u(z) = Am(2)|u(z)Pulz)  in 2,
u=0 on 0f2.

Again we have a smallest eigenvalue A (p,m) > 0 which is isolated, simple and

3 . Tp(u) 1
A (p,m) = inf { cu € WHP(02),u # 0} .
Jom(z)|ul’dz
The infimum is realized on the corresponding one dimensional eigenspace the elements of which are in
+int C'y. Hence we have the following monotonicity property for the map m — Ay (p, m).

Proposition 2. If m,m € L>(2):\{0}, m(z) < m(z) for a.a. z € 2, m # 1, then

A1(p7 m) < Al(pv m)
For r € (1,00), let A, : W (£2) — WT(£2)* be the nonlinear operator defined by

(Ar(u), h) = / |Du|""?(Du, Dh)gndz for all u,h € W (£2).
e}

This map has the following properties (see, for example, Gasinski-Papageorgiou [32, p. 279]).

Proposition 3. The operator A, : WL (2) — WL (02)* is bounded (maps bounded sets to bounded sets),
continuous, monotone (hence mazximal monotone too) and of type (S)4, that is,

“Up 2w in WET(2) and lim sup(A,(uy,), u, —u) < 0 imply that w, — u in WH"(02)”.

n—oo

Now we introduce the hypotheses on the perturbation f(z,z). Recall that p* = ]\],V—f’ if p < N and

P
p*=+oc0if p > N.

Hy: f: 2 xR — Risa Carathéodory function such that f(z,0) =0 for a.a. z € 2 and
() |f(z,2)| < a(z)(1+ |z ") for a.a. z € 2, all z € R, with a € L=®(2), p < r < p*;
(ii) there exists a function n € L>(£2) such that A;(p) < n and

o ing £G22)
LR

6

uniformly for a.a. z € §2;
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(iii) there exists a function § € L>(£2) such that § < A;(p) and
f(z,2)

lim sup - < 0(z) uniformly for a.a. z € (2;
T——00 |.7,‘|p €T

(iv) f(z,x)x > 0 for a.a. z € {2, all x € R and there exist a function ny € L>®(2):\{0} and 7 € (1,q)
such that
[z, 2)

< lim inf iformly for a.a. £2;
no(z) < im in a2z uniformly for a.a. z € 2;

(v) for every p > 0, there exists ép > 0 such that for a.a. z € {2 the function z — f(z,2) + £p|x|p_2:c
nondecreasing on [—p, p].

is

Remark. Evidently, hypothesis H; (ii) incorporates both the (p — 1)-superlinear and the (p — 1)-linear case.

We introduce the following set:

Z ={A>0: problem (P)) has a nontrivial solution}

(set of admissible parameters).

In the next section we will show that . # (). To do this, we need some auxiliary material.
On account of hypotheses H;(ii) and H;(iii) given € > 0 we can find ¢; = ¢;(¢) > 0 such that

f(z,x) > [0(2) + €]z’ %z — ¢; for a.a. z € 2, all 2 < 0. (4)
Then we consider the following auxiliary Robin problem:

— Ayu(z) = Agu(z) + E@u()ulz) = [6(2) + el Ju(=) P~ 2u(z) — e1 in 2,

Ou + B(2)[uf’?u =0 on 82,u < 0. (5)
ONpq

Proposition 4. If hypotheses Hy hold, then for all € > 0 small, problem (5) has a unique negative solution

Proof. We consider the functional ¢ : W'?(£2) — R defined by

1

! ! p dz — | cqudz
9lu) = 2pla) + ZI1Duly /Q 0(2) + €] (u” )Pdz /Q d

for all u € WHP(02).
This functional is locally Lipschitz (differentiability fails at uw = 0). We have

1
ol [P < =p(ut) with s = 2 (see (1)), (6)
p p

and
1

)= [ o)z — <l ]

1
>— [é— c 1 |[u™||”, (see Proposition 1).

Choosing ¢ € (0,2 (p)), we obtain

csllu™|? < % {’yp(u_) —/ 0(z)(u")Pdz — €||u_|g] for some c3 > 0. (7)
2

7
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Then using (6) and (7), we have
() > cqllul|P — csl|ul| for some ¢y, c5 > 0,
= 4(-) is coercive (recall p > 1).

Also using the Sobolev embedding theorem, we see that 1[)() is sequentially weakly lower semicontinuous.
So, by the Weierstrass—Tonelli theorem, we can find @ € W1P(£2) such that

$(@) = inf {zﬁ(u) e Wl’p(ﬁ)} ,

= 0 € dP(a) (see Clarke [20], p.38). (8)
We have
Oy(@) = 7, (@) + Ay (@) — [6(2) + €]lal”*a + g(a), (9)
where
—c1, if ’17/(2) < 0,
gla)(z) =< {—cv:0<v <1}, ifu(z) =0, (10)
0, if u(z) <0,
(see Clarke [20], p.39). On (9) we act with ut € W1P(£2) and using (8) and (10), we have

(") + [Dut | =0,
= u<0,u#0 (see (1)).
From Proposition 2.10 of Papageorgiou-Radulescu [29], we have that u € L*°(2) and then the nonlinear
regularity theory of Lieberman [30] implies that u € C\{0}. We have
Ap(—u) + Ag(—1) < E(2)(—u)"~" (recall w < 0),
= u € —int Cy
(see Pucci-Serrin [33], pp.111,120).

Next we prove the uniqueness of this negative solution. To this end we consider the integral functional
j:LY(2) - R=RU{+oco} defined by

1 1
: ~|D(u™)Y9)B 4+ 2| D(u”) |2 + / Pdz, ifu <0, (um)Ve WhP(R),
iy = 4 P+ DG 1§+~ &= <0, (u”) (£2)
+00, otherwise;
(note that u~ = —u).

From Diaz-Sa4 [34], we know that j(-) is convex. Let domj = {u € L!(
domain of j(-)). Suppose that v € W1P(£2) is another negative solution of (5
Then using Proposition 4.1.22, p.274, of [21], we infer that

2) : j(u) < oo} (the effective
). Again we have v € —int Cy.

Pl e poe ().

" al
Therefore, if h = |u|? — |v]?, then for |t| < 1 small we have
|u|? + th € domy, |v|? + th € domj.

Exploiting the convexity of j(-), we see that the directional derivative of j(-) at |u|? and at |5|? in the
direction h exists and using Green’s identity, we have

(1714 1 Apu + Agu — 5(2)\ﬂ|p72(*ﬂ) 1 _p—q
ianm = | Fra= hiz— o [ gl hdo

o0
1 pP—q
:q/9< 0(a) + el ™"+ 1>hdz

1 / B(2)[al"*hdo,
q Jon

8
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and

(1519 _1 Apﬂ"'Aqﬁ_g(z)mp_g(—ﬁ) 1 _p—q
3" () (h) = /Q hdz q/wﬁ(z)m hdo

q ikt

1 —1p—q €1
:5/Q (—[0(2) +e]|o)" T + |vq1> hdz

1 =|p—a
q/ag B(2)|v|""*hdo.

The convexity of j(-) implies that the monotonicity of j'(-). Hence

0< /Q —[6(=) + <]l =[5 (jal — [o]7)d=

1 1
+ e | —— — —— ) (Ja]? = |9|)d=
/ 1(u|,,q )l = 1ol
- /8 BP0 = o)l ~ o17)do
e
<0 (recall that g > 0),

=u =".

This proves the uniqueness of the negative solution u € —int C'y of problem (5). O

3. Existence and multiplicity of solutions

First we show that .Z # 0. To do this we will use the solution u € —int Cy from Proposition 4. Using
u € int C'y we introduce the following Carathéodory function

7 _ f(zaﬁ(z))v if x § ﬂ(z)a
fz2) = {f(z —x7), ifu(z) <. (11)

We set F (z,z) fo f(2,5)ds. Also we introduce the function Ty(z,z) defined by

_JA(2)u(z), ifz<u(z),
Tz 7) = {)\9(2)93, if u(z) < @. (12)

Evidently for all z € R, z — T\ (z, z) is measurable and for a.a. z € 2, x — Ty(z,x) is Lipschitz continuous
(hence T (-, -) is jointly measurable). We consider the locally Lipschitz functional 1 : WP(£2) — R defined
by 1 1
o) = o)+ S [Duly ~ [ Fleupde— [ Ty

p q Q 2

for all u € WHP(02).

Proposition 5. If hypotheses Hy and Hy hold, then & #+ (.

0 2 o9p(0) = 5 [ [6) + (e = colAu] + 1
(7
for some ¢ > 0 (see (4), (11) and (12))

{Vp(U) - /Q 0(2)|ul"dz — el|ul[j| — co[Allull + 1]

€
e—= [[ull” = Aceull — cs
[ A(p )]
ee (3) and Proposition 1).
9
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Choosing ¢ € (0, (p)), we obtain

Ya(u) > crllul|? — Acgllul| — c6 for some ¢z > 0,

= 1 (+) is coercive for all A > 0.

Using the Sobolev embedding theorem we see that 1, (+) is sequentially weakly lower semicontinuous. So,
we can find ug € WHP(£2) such that

¥a(ug) = inf {¥\(u) :u e WP(2)}. (13)

Let 7 = maxp @ < 0 (recall that u € —int C'y) On account of hypothesis H; (iv), given € > 0 we can find
§ € (0, —m) such that

1
F(z,z) > =[no(z) — g]|z|” for a.a. z € 2, all |z| < 4.
T

So, if u € (0,6), then using (11) and (12) we have

dum)g%riég@Mz+Emﬁ@ﬁ%——%r{%;mwﬁz—eﬁm

+ )\|p|/ 0(z)dz
Q

with |- |, denoting the Lebesgue measure on RY.
Since [, 10(2)dz > 0 (see hypothesis Hy(iv)), choosing ¢ > 0 small and using hypothesis Hy, we have
that
a(p) < cs[|pl” + Alpl] — colp|™, for some cg,cg > 0. (14)

Since 7 < ¢ < p, choosing |u| < 1 small, we have
colp|” = es|ul” = do > 0. (15)
Then we choose A > 0 small so that
Aes|p| < do for all X € (0, ). (16)
Using (15), (16) in (14) we infer that

¥a(p) <0 for |p| and A > 0 small,

= a(up) < 0=1x(0) (see (13))
= Ug 7'5 0.

Recall that v, () is locally Lipschitz. Hence

0e 81/1)\(160),
= %(uo) + Ag(ug) = (uo) +1in WhP(02)* (17)
with N g(u)(- - u(+)) for all u € WP(£2) (the Nemytskii map corresponding to the function f(z,z))

) = f(
and 1 € L" (1), 14+ L =1,1(2) € 0,T\(2,up(2)) for a.a. z € 2 (see Clarke [20], p.80). We know that

s

0, if x < u(z),
—X(2) ifu(z) <x <0
0:T(z,x) = 5 i ’ s
222) {=M(z)v:0<v <1}, ifz=u(z)orz=0, -
0, if 0 < 2.
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On (17) we act with ud € W;?(£2) and obtain

Wp(ug) + 1 Dug 7 <0 (see (11), (18)),
= ug < 0,up 75 0.

Also on (17) we act with (z — ug)™ € WHP(£2). We have
(rp(u0), (@ — o) ™) + (Aq(uo), (@ —uo)™)
:/ £z, @)(@ — o) tdz
Q

SP=2= oo +
> /Q ([9(2) +e]|lul""u cl) (@ — ug)Tdz (see (1))
= (v,(@), (@ —uo)™) + (Aq(a), (@ — uo)™) (see Proposition 4),
= u < ug.
We have proved that
Ug € [’I], 0},11,0 75 0. (19)

The nonlinear regularity theory (see Lieberman [30]) implies that ug € (—C4)\{0}. Moreover, from (19),
(11), (18) and (17) we have

Ap(—uo) + Ag(—uo) — §(2)(—uo)"™" = f(2,u0) +U(2) in £2,
= Ap(—uo) + Ag(~u0) < [|€]lc ()"~
(see hypothesis H(iv) and (18)),
= ug € —int C; (see Pucci-Serrin [33]).

Let p = |lug|ls and let €, > 0 be as postulated by hypothesis H;(v). We have

— Apu — Aqu+ [£§(2) + ép]|a|p_2a

= [0(2) + el|al’u — e1 + E,|al’ @ (see Proposition 4)

< f(z,a) + E,|al’ ">+ M(2) (see (1) and hypotheses Hy)

< f(zu0) + Epluol’ uo + M(2) (see (19) and Hi(v))

= —Ayuo — Aquo + [€(2) + &) luol” uo. (20)

Since AJ(z) > A > 0 (1h = essinf 0, see Hy), from (20) and Proposition 2.10 of Papageorgiou-Rédulescu—
Repovs [35] we infer that
u(z) < up(z) for all z € 2.

A~

Hence from (18) we infer that I(z) = A(z) and so (17) implies that ug € —int C} is a solution of (Py),
X € (0, \). Therefore (0,\) C & # 0.

Let Sy denote the set of nontrivial solutions of (Py ). From Proposition 2.10 of Papageorgiou—Radulescu [29]
we have that Sy C L°°(2). Then we apply the nonlinear regularity theory of Lieberman [30] and conclude
that

Sy C CH(2)\{0} for all A > 0. (21)

Next we establish a structural property of the set £, namely we show that % is connected.

Proposition 6. If hypotheses Hy and Hy hold, A € £ and u € (0, ), then p € L.

11
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Proof. Since A € £ we can find uy € Sy C C1(£2)\{0} (see (21)). Let g,, : 2 xR — R be the Carathéodory
function defined by .
f(z,x) + pb(z), if x < wy(z),
4 ) = A . 22
o) = { i, ey .
We set G (2, @) = [ gu(z,s)ds and consider the C'-functional ¢, : WP (£2) — R defined by

1 1
ou(u) = E’yp(u) + 5||Du||g - / G,.(z,u)dz for all u € W'P(02).
2

Hypotheses Hi (i), Hi(iii) and (22) imply that given & > 0, we can find ¢19 = ¢10(¢) > 0 such that
Gu(z,x) < %[0(2) +¢]|zl? + cio|z| for a.a. z € 2,all < 0. (23)
Also hypothesis H; (i) and (22) imply that
Gu(z,x) < ez for a.a. z € 2,all > 0,some ¢11 > 0. (24)

Then for u € WP(£2) we have

1 1
ea(u) :Z;Vp(uﬂ + QIIDWIIZ —cnlutly

1 1 1

+ =y, (u” +7Du*q77/92 u )Pdz
p’yp( ) qll g o) (z)(u™)
€

— 5||U7H£ — cyol|u |1 (see (23) and (24))

Seollat P + 7.6 = )l " = exalul

for soame c12 > 0 (see (1) and Proposition 1)
Zcys|[ull” — crzlull

for some c¢13 > 0 (choosing € € (0,¢)),
= pa(+) is coercive.

Using the Sobolev embedding theorem, we see that ¢, (-) is sequentially weakly lower semicontinuous. So,
we can find u, € WHP(£2) such that

u(u,) = inf {gpu(u) Tu € Wl’p(Q)} ,
= @L(uu) =0,
> (o) + (A ) = [ gz ht (25)
for all h € WLP(02).
We choose h = (u, —uy)™ € WHP(£2). We have
<’yl')(u#), (up — ux) ") + (Ag(up), (u, — ux)™)
:/Q {f(Z,U,\) + ﬂé} (uy, —uy)Tdz (see (22))
§/ [f(z,uA) + )\é} (u, — ux)Tdz (since p < A and 4 > 0)
2
=(vp(ux), (uy — un) ")+ (Ag(un), (uy, —un)™) (since uy € Sy),

= Uy < Uy
From (22) and (25) it follows that
u, €5, and so u € .Z.
The proof is now complete. [

12
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A byproduct of the above proof is the following corollary.

Corollary 7. If hypotheses Hy and Hy hold, A € £, uyx € Sy and p € (0,\), then pu € £ and there exists
u, € S, such that w, < uy.

We can improve this corollary as follows:

Proposition 8. If hypotheses Hy and Hy hold, A € £, uy € S\ and p € (0, ), then u € £ and there exists
u, € S, such that uy —u, € D,.

Proof. From Corollary 7 we already know that u € 2 and there exists u, € S, such that

Uy < UN- (26)

Let p = max{|[t,||oo, [ua]loe} and let €, > 0 be as postulated by hypothesis H;(v). We have

= Ay = Aguy, + [6(2) + ) Py
= f(Za uu) + p0 + £p|uu‘p_2uu
< fzyun) + A0A+ép|uA|p72u>\ (see (26), Hi(v) and since p < \)
= —Apuy — Aqux + [£(2) + ép]|u,\|p_2u>\ (since uy € Sy). (27)
The hypothesis on 0(-) (see Hy) implies that
0< (A=< (A=pwh (= essinfd >0).
So, (27) and Proposition 2.10 of [35], imply that
uyx —uy € Dy
The proof is now complete. [
Let A* =sup.Z.
Proposition 9. If hypotheses Hy and Hy hold, then A* < co.

Proof. Arguing by contradiction, suppose we can find {\, }neny C .Z such that A\, — +oo. Let u,, € S,
n € N. We have
Yp(tin) + Ag(un) = Ny(un) + Anf in WhP(2)*,n €N (28)

(recall Ny(u)(-) = f(,u()) for all u € WHP(82)). Acting with —u,, € WHP(£2) on (28), we obtain
Uy )+ 1Dy, [1

n dz — Ay, é_d
/fzu ) z /n U, dz
/fz —u,, )(—u, )dz (recalléZO)
7/[ () +el(u )”dz+01/ u,dz forall mn € N (see (4)),
0

= () = [ 0w = el < cualfuz |
for some ¢4 > 0,all n € N,

= [é— 8]||u;|\p71 <4 forallm e N (see Proposition 1).
13
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Choosing € € (0, ¢), we conclude that

{u;, Jnen € WHP(£2) is bounded. (29)
Suppose that ||u; || — oo and let y, = ﬁ, n € N. Then |ly,|| = 1, y, > 0 for all n € N. So, we may
assume that "
Yn —y in WHP(0) and y,, — y in L"(2) and in LP(912). (30)
From (28) we have
Yo (Un) = Tk -1 IITJIIP‘le + oy, (31)

with v € WhP(2)*, v — 0 in WHP(2)* (see (29)), and N¢(u)(-) = f(-,u(-)) for all u € WHP(£2) (the
Nemytskii operator for f(z,x)).

First assume that f(z,-) is (p — 1)-linear as * — +oo (that is, » = p in Hy(i)). In (31) we see that the
left hand side is bounded. Note that

Ny(ub /
{”1;_(”%7”)1} C LP (N2) is bounded (see H;(i) with r = p).
n neN

Therefore,

An
B — C (0, +00) must be bounded.
lur 1P~ J e

Acting on (31) with y,, —y € W1P(§2), passing to the limit as n — oo and using (30), we obtain
=y, —yin W'P(£2) and so ||y|| = 1,y > 0. (32)

From (31) and Proposition 2.10 of Papageorgiou-Radulescu [29], we have that {y,}nen C L®(£2) is
bounded. So, we have that

[ (720 (Lo

Ny(uf An A
{ () + 9} C L*(42) is bounded.
neN
Therefore, we may assume that

Ny (uy) An
(g Lo 1

§ " g, in L®(0) (33)

with §.(2) = 7(2)y(2)P~ 4+ b(2), 7,b € L=(2), n(z) < A(2) for a.a. z € 2 and b= pf, > 0. If in (31) we
pass to the limit as n — oo and use (32) and (33), we have

vo(y) = Ay? =t +bin WP(02)*,

(34)

9y 4 B(z)yP~t =0, on 912,

anp

_ {—Aperé(Z)yp‘l A(2)yP~ +b,  in 2,

with 6677; = |Dyl’ 72%. From [29] we have that y € L>°(§2) and then the nonlinear regularity theory of
Lieberman [30] says that y € C\{0}. Moreover, form (34) we have

Apy < [[€llooy? ™ in 2,
= y € int Cy (by the nonlinear maximum principle, see [2], p.738).

14
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First suppose b= 0. From Proposition 2 and since n < 7 we have

~ ~ ~

A1(p, ) < Ai(p, Mi(p)) = 1.

Therefore, from (34), it follows that y is sign changing, a contradiction.
Next suppose b # 0. For A € (0,1), let /) = A} and consider the following auxiliary Robin problem

— A + €@ 2o = ipolP o+ b(z),  in 2,
87:,, + B(z)[v[P*v =0, on 042,

(35)

Evidently, y € int C is an upper solution for (35). Also v = 0 is a lower solution of (35). Truncating the
reaction of (35) at {0,y(z)} and using the direct method of the calculus of variations, we produce uy(-) a
solution of (35) such that uy € [0,y] N (C+\{0}). But for A € (0,1) small the antimaximum principle (see

Motreanu—Motreanu—Papageorgiou [36, p. 263]), implies that u) € -int C, a contradiction.
fz2)

ap—1

Now we assume that f(z,-) is (p — 1)-superlinear as x — 400, that is, lim,_,
for a.a. z € 2 (see Hy(ii)). In this case, from (31) it follows that y = 0,

Ni(ut ’ An
{J;(u")l} CL" () and {H} C (0, +00) are bounded.
Jun [IP=1 ) en lun [P~ ) en

400 uniformly

Acting with y,, € WHP(£2) we obtain
1 Nf(u“‘) An A
Y yn) + Dyn |q :/ 7nyndz+ 7/ Qyndz7
T P A e Tkl T T
= Yp(yn) < &n, for all n € N, with ¢, — 0T,
= 9, — 0in WP(2) (see (1)),

a contradiction (recall ||y,| =1, n € N).

Therefore in both cases, we have a contradiction and this means that {u;} },en € W1P(£2) is bounded.
This and (29) imply that {u,}neny € WHP(£2) is bounded. Using this in (28) we have a contradiction to the
fact that \,, — oco. we conclude that \* < co. [

Therefore we can say that
(0,X%) € .2 C (0, 7], (36)
For X\ € (0, A*) we have a multiplicity result.

Proposition 10. If hypotheses Hy and Hy hold, and A € (0, A*), then problem (Py) has at least two solutions
uy, Uy € CI(Q)\{O}, U\ 7é Uy.

Proof. Let 0 < < A < v < A\*, we know that p, A\, v € £ (see (36)). On account of Proposition 8, we can
find u, € Sy, ux € S\ and u, € S, such that
uy, —uy € Dy and uy —u, € Dy,

= uy € inten (g [up, wwl- (37)
We introduce the Carathéodory functions f(z, ) and f,(z,z) defined by

_ [ fzuu(2),  ifr <uy(z),

f(z,2) = {f(z,x), if u,(z) <z,

15
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; _ [f(z ), if 2 < (),
fulz,z) = {f(z w(2)),  ifu(2) < . (39)
We set F(z,2) = [ f(2,5)ds and Fy( = Jo fu(z,5)ds

Also we introduce the followmg Llpschltz mtegrands

. M(2)u,(z),  if 2 < uy(z)
7 = {0 dE)y w2 1
Mz ) {)\Q(Z)m, if u,(z) <z, (40)
- Th(z,z), if x <w,(2),
T =17 41
x(z2) {T,\(z7u,,(z)), if u, () < . (41)
We consider the locally Lipschitz functionals ky, l%j : WhP(2) — R defined by
A 1 1 A A
kx(u) = =yp(u) + =[[Dul|g — / F(z,u)dz — / Th(z,u)dz
p q n 2
. 1 1 . .
R (u) = 2yp(u) + - | Dullt — / Fu(z, u)dz - / % (2, u)dz
p q 2 [0
for all u € WHP(£2). Using (38), (39), (40) and (41), we show that
Ky, < [u,) N C*(2) and K];; C [uy,u, ] NCHRD). (42)
From (42) it is clear that we may assume that

Otherwise we already have a second nontrivial smooth solution (see (38) — (41) and the proof of
Proposition 8) and so we are done.
From (39) and (41), it is clear that k}(-) is coercive. Also it is sequentially weakly lower semicontinuous.
So, we can find @, € WHP(£2) such that
k% (@y) = inf {I%f\(u) fu € Wl”’(())} ,
= Uy € Kfc*’
A
= 1) = uy (see (43)).
Note that
Falfugn) = Kl (see (38) = (41)).
From (37) it follows that

uy is a local C*(2)-minimizer of ky(-),
= uy is a local WP(£2)-minimizer of ky(-) (44)

(see Bai-Gasinski-Winkert—Zeng [37]).

We assume that Kj is finite. Otherwise, on account of (42) we already have an infinity of nontrivial
smooth solutions of (P)) and so we are done. Using Theorem 5.7.6, p.449 of Papageorgiou—Radulescu—
Repovs [21], we can find p € (0,1) small such that

Fox (y) <inf{l§:,\(u) e — :p} . (45)

Let @1 (p) € W1P(£2) be the positive, LP-normalized (that is, ||i1(p)||, = 1) eigenfunction corresponding
to A1(p) > 0, then @4 (p) € int C and on account of hypothesis H; (i) we have

k(tiy(p)) — —o0 as t — 400. (46)

16
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Claim: k) (-) satisfies the nonsmooth C-condition.
Consider a sequence {uy, }nen € WHP(§2) such that

kx(un) < c15 for some ¢15 > 0,all n € N| (47)

(L + [lunl)my, (un) =0 asn— oo. (48)
We can find 4% € 9k (uy,) such that mg, (up) = ||a%]|« for all n € N. We have
iy, = '7;/)('“71) + Aq(un) - Nf(un) —hy, (49)

with b} (2) € 0Ta(z,un(z)) for a.a. z € £2, all n € N.
From (48) and (49) we have

Ol )+ (Ag). ) = [ e = /f2 h;hdz’ < 1?'% (50)
for all h € WP (R2), with £, — 0. In (50) we use the test function h = —u,, € W1?(2). Then
) + 1D 3 < [ o) )z + e
for some c16 > 0,all n € N (see (40))
< [ 166) + <Mz + exl + g |
ff(l)r some c17 > 0,all n € N (see (4)),
= [é —é€l||lu, ||IP < 7]l + ||u, ||] for all n € N (see Proposition 1).
Choosing € € (0, ¢) we infer that
{uy, Ynen € WHP(02) is bounded. (51)

+
Suppose that [[u,f|| — oo and let y,, = HZ—S;”, n € N. Then |ly,|| = 1, y, > 0 for all n € N. So, we may

assume that
Yn —y in WHP(0) and y,, — y in L"(R2) and in LP(912). (52)

From (50) we have

A
(Vp(Yn), h) + WM«;(%% h)
fz,uf) h;,
<l + [ LB pqsy [ P g, (53)
" @ [lu P2 @ |l [Pt

for all h € WHP(2), with €/, — 07 (see (51)).
First we assume that f(z,-) is (p — 1)-linear (that is, r = p in H;(i)). Let h = y,, —y € W1P(£2) in (53)
and pass to the limit as n — co. Using (52), we obtain

n—oQ

=y, =y in W'P(£2) and so ||y|| = 1,y > 0. (54)

On account of hypothesis H; (i) (with 7 = p), we have that

FCun()) o 1,1
{wznp—l }HENQL @ (5+5=1)
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and so using also hypothesis H; (ii), we can say that

Tl iy in 17'(9) (55)

with § € L>°(82), n(z) < f(z) for a.a. z € £2.
Passing to the limit as n — oo in (53) and using (54) and (55), we obtain

Opl)ih) = [ A2 thds for all he WHr(0),
2

—Apy+ ()P =q(z)yP, i R,
g A B(z)yP~t =0, on 92.

onyp

Using Proposition 2, we have

~ ~ ~

A1(p, ) < Ai(p, Mi(p)) = 1.

So, from (56) it follows that y(-) must be nodal, a contradiction.
Now we assume that f(z,-) is (p — 1)-superlinear. Then from (47) and (51), we have

F(Z’u’jl_) 1 1" 1
——22dz < =y, (yn) + €, with e, — ot.
A e 42 = pln) en vith <

Since the right hand side is bounded and

Fluf () Feout(), ., )
T el O ne N,

we see that y = 0. In (53) we choose h = y,, € WP(£2) and as before (see the proof of Proposition 9), we
have

Vp(Yn) = 0,
=y, — 0in WHP(0) (see (11)),

a contradiction to the fact that ||y,|| =1 for all n € N.
So, in both cases we have proved that

{u} Ynew € WHP(2) is bounded,
= {Up tnen € WHP(12) is bounded (see (51)).

We may assume that
Uy % win WHP(2) and u, — w in L7 (2) and in LP(912). (57)
From (48) and (49), we have

enl|h]

(p(n), 1Y + (Aq(un), h) = /Q f(z, un)hdz — /Qh?%hdZ‘ =T fun]

for all h € WHP(2), with g, — 0.

18
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Choosing h = u,, —u € WHP(£2), passing to the limit as n — oo and using (57), we obtain

nh_{%O(Ap(un),un —u) =0,

= u, — uin W'P(£2) (see Proposition 3),

= ky(-) satisfies the nonsmooth C-condition.
This proves the Claim.
Then (45), (46) and the Claim permit the use of the mountain pass theorem. So, we can find @, € W1P(2)
such that
Uy € KI%A and My < ]2},\(’&)\),
= 4y € int Cy, 4y > u, and 4y # uy (see (42), (45)).

Moreover, as in the proof of Proposition 8, using the comparison principle of [35] (Proposition 2.10), we
have that

UH(Z) < ’ak(z)v

= Uy € S).

The proof is now complete. [
Next we show the admissibility of the critical parameter value \*.
Proposition 11. If hypotheses Hy and Hy hold, then \* € Z.

Proof. Consider a sequence {\,}nen C (0,\*) such that A, T \* and let u,, € Sy, C C*(£2)\{0} for all
n € N. We claim that

u < wuy, forall n € N. (58)

For fixed n € N, consider the Carathéodory function

o(.7) {<e<z> +) " (—aT) — e, it < —up (2),
TG + Ol (P () — e i — () <

We set E(z,2) = [ e(z,s)ds and consider the C'-functional ¢ : W'?(£2) — R defined by

1 1
Y(u) = ];fyp(u) + 6||Du||g — / E(z,u)dz for all u € W'P(£2).
0

From (59) and using Proposition 1 and (1), we show that ¢(-) is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find @ € WP (£2) such that

Y(a) = inf {¢(u) :u € W'P(02)},
= (@) = 0,

= (7 (@), h) + (Ag(@), h) = /Q ez, @)hd= (60)

for all h € WHP(12).

19
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In (60) we choose u = (@ — u,)* € WP(£2). Then

<’7;ln(a)’ (ﬂ - un)+> + <Aq(ﬂ), (f" - un)+>
= [ (1) + 2N P ) = ) 3 wa) s
0
(note that (@ —u,)" = @ > —u,,, and see (59))
Z,—U, nA z @ —up)tdz
< [ (#G) + 2d)) @ = w)
(see (4) and recall that > 0)
< /Q (f(z7 Un) + )\nﬁ(z)) (@ — un)tdz
(on account of the sign condition, see Hq(iv))

:<’Y;;(un)a ('EL - un)+> + <Aq(un)v (’ﬂ, - un>+>7
= U< Up. (61)

Also choosing h = @™ € WHP(£2) in (60), we obtain

(@*) + [ Dat g <0, (see (59))

From (61), we have u,, <4~ = —@ = 4 < —u,, . Therefore, from (59) and Proposition 4, we infer that

This proves (58).
Consider the functional ky, (-) from the proof Proposition 10 but with uy,(+) replaced by @(-). Then from
the proof of Proposition 10, we have

ix, (tn) < fox, (@) < fo, (@) = m*, (62)

YVo(tn) + Ag(un) = Ni, (un) +h, (63)

with b (2) € 0,Th(z,un(2)) for a.a. z € £2.
Using (62) and (63) and reasoning as in the Claim in the proof of Proposition 10, we obtain that at least
for a subsequence, we have

U, — u* in WHP(02),

= u* € Sy« and so \* € .Z.

The proof is now complete. [

Finally, we can state the following global existence and multiplicity result for the Ambrosetti-Prodi
problem (P ).

Theorem 12. If hypotheses Hy and Hy hold, then there exists \* > 0 such that

(a) for all X € (0, X*), problem (Py) has at least two solutions uy, iy € C*(2)\{0}, ux # 1y;
(b) for all X = X\*, problem (Py) has at least one solution u* € C*(2)\{0};
(c) for all X > X\*, problem (Py) has no solution.
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