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a b s t r a c t

The classical Ambrosetti–Prodi problem considers perturbations of the linear
Dirichlet Laplace operator by a nonlinear reaction whose derivative jumps over the
principal eigenvalue of the operator. In this paper, we develop a related analysis for
parametric problems driven by the nonlinear Robin (p, q)-Laplace operator (sum
of a p-Laplacian and a q-Laplacian). Under hypotheses that cover both the (p−1)-
linear and the (p−1)-superlinear case, we prove an optimal existence, multiplicity,
and non-existence result, which is global in the parameter λ > 0.

© 2022 Elsevier Ltd. All rights reserved.

In this paper, we are concerned with the solvability of the problem

Tu = f(z, u(z)) + λθ̂(z) in Ω , (*)

ith a Robin boundary condition, where Ω is a smooth bounded domain, T := T1 + T2 is an unbalanced
perator, f is a nonlinearity whose growth at ±∞ is different with respect to the principal eigenvalue of T1, λ
s a positive parameter, and θ̂ is a given function. Under such conditions, problem (*) is of Ambrosetti–Prodi
ype, in honor of the celebrated work [1].

In the present paper, we develop an original approach, whose features are the following:
i) the problem is driven by a nonstandard differential operator, whose associated energy is a double-phase
ariational functional;
ii) we consider the combined effects of a Robin boundary condition, an Ambrosetti–Prodi nonlinearity, and
parametric perturbation term;
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(iii) the main result establishes a global existence and multiplicity property, namely we show that there is a
critical parameter λ∗ > 0 such that

(a) the problem has at least two solutions for all λ ∈ (0, λ∗);
(b) the problem has at least one solution if λ = λ∗;
(c) there is no solution for all λ > λ∗.

. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω . In this paper we study the following problem⎧⎨⎩−∆pu(z) − ∆qu(z) + ξ(z)|u(z)|p−2
u(z) = f(z, u(z)) + λθ̂(z) in Ω ,

∂u

∂npq
+ β(z)|u|p−2

u = 0 on ∂Ω , 1 < q < p, λ > 0. (Pλ)

For r ∈ (1,∞) by ∆r we denote the r-Laplace differential operator defined by

∆ru = div(|Du|r−2
Du) for all u ∈ W 1,r(Ω).

In problem (Pλ), the differential operator is the sum of two such Laplacians with different exponents (a
p, q)-Laplacian with 1 < q < p) plus a potential term ξ(z)|u|p−2

u. The differential operator in (Pλ) is not
omogeneous. In the reaction (right hand side of (Pλ)), we have a state independent parametric term λθ̂(·)
ith θ̂ ∈ L∞(Ω), θ̂ ≥ 0 and λ > 0 is the parameter and there is a perturbation term f(z, x) which is a
arathéodory function (that is, for all x ∈ R, z ↦→ f(z, x) is measurable and for a.a. z ∈ Ω , x ↦→ f(z, x) is
ontinuous). We consider two different cases. In the first f(z, ·) is (p− 1)-superlinear as x → +∞ and in the
econd f(z, ·) is (p− 1)-linear as x → +∞. In the boundary condition ∂u

∂npq
denotes the conormal derivative

f u(·) corresponding to the (p, q)-Laplacian. This directional derivative is interpreted using the nonlinear
reen’s identity (see [2], p.210) and when u ∈ C1(Ω̄), then

∂u

∂npq
= |Du|p−2(Du, n)RN + |Du|q−2(Du, n)RN =

[
|Du|p−2 + |Du|q−2

] ∂u
∂n

,

ith n(·) being the outward unit normal on ∂Ω . The boundary coefficient β(z) ≥ 0 for all z ∈ ∂Ω and when
β ≡ 0, we recover the Neumann problem. Our aim is to prove an existence and multiplicity theorem which
is global with respect to the parameter λ > 0.

The double-phase problem (Pλ) is motivated by numerous models arising in mathematical physics. For
instance, we can refer to the following Born–Infeld equation [3] that appears in electromagnetism:

−div
(

Du

(1 − 2|Du|2)1/2

)
= h(u) in Ω .

ndeed, by the Taylor formula, we have

(1 − x)−1/2 = 1 + x

2 + 3
2 · 22x

2 + 5!!
3! · 23x

3 + · · · + (2n− 3)!!
(n− 1)!2n−1x

n−1 + · · · for |x| < 1.

aking x = 2|Du|2 and adopting the first order approximation, we obtain problem (Pλ) for p = 4 and q = 2.
urthermore, the nth order approximation problem is driven by the multi-phase differential operator

−∆u− ∆4u− 3
2∆6u− · · · − (2n− 3)!!

(n− 1)! ∆2nu.

We also refer to the following fourth-order relativistic operator

u ↦→ div
(

|Du|2
4 3/4

Du

)
,

(1 − |Du| )
2
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which describes large classes of phenomena arising in relativistic quantum mechanics. Again, by Taylor’s
formula, we have

x2(1 − x4)−3/4 = x2 + 3x6

4 + 21x10

32 + · · · .

This shows that the fourth-order relativistic operator can be approximated by the following autonomous
double phase operator

u ↦→ ∆4u+ 3
4∆8u.

Problem (Pλ) belongs to a class of problems known as “Ambrosetti-Prodi-type problems”. Their inves-
igation was initiated with the work of Ambrosetti–Prodi [1]. Since then, Ambrosetti–Prodi problems for
he Dirichlet p-Laplacian were studied by Arcoya–Ruiz [4], Koizumi–Schmitt [5] (the (p − 1)-linear case),
rias–Cuesta [6], Miotto [7] (the (p− 1)-superlinear case) and Aizicovici–Papageorgiou–Staicu [8] (both the

linear and superlinear cases). For the Dirichlet (p, q)-Laplacian, there is only the work of Miotto–Miotto [9].
eyond the Dirichlet problem, very little work has been done and there are only the papers of de Paiva–
ontenegro [10] and Presoto–de Paiva [11], both dealing with Neumann problems. In [10] the equation is

riven by the p-Laplacian, while in [11] the equation is semilinear driven by the Laplacian and the reaction is
gradient dependent. Finally, for other relevant topics involving double phase problems and elliptic equations,
we refer to the papers [12–19] and the references therein.

2. Mathematical background and hypotheses

In the analysis of problem (Pλ) we will use the Sobolev space W 1,p(Ω), the Banach space C1(Ω̄) and the
oundary Lebesgue spaces Ls(∂Ω), 1 ≤ s < ∞.

By ∥ · ∥ we will denote the norm of W 1,p(Ω) given by

∥u∥ =
(
∥u∥p

p + ∥Du∥p
p

)1/p for all u ∈ W 1,p(Ω).

The space C1(Ω̄) will come up as a result of the regularity theory. This space is an ordered Banach space
ith positive (order) cone

C+ = {u ∈ C1(Ω̄) : u(z) ≥ 0 for all z ∈ Ω̄}.

his cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω̄

}
.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Having this measure, we
an define in the usual way the boundary Lebesgue spaces Ls(∂Ω), 1 ≤ s < ∞. The theory of Sobolev spaces
ays that there exists a continuous linear map γ0 : W 1,p(Ω) → Lp(∂Ω) such that

γ0(u) = u|∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω̄).

This map is known as the “trace map” and through it we extend the notion of boundary values to all
Sobolev functions.

We have that
im γ0 = W

1
p′ ,p(∂Ω),

(
1
p

+ 1
p′ = 1

)
, ker γ0 = W 1,p

0 (Ω).

The trace operator is compact into Ls(∂Ω) for all s ∈ [1, (N−1)p
N−p ) if p < N and into Ls(∂Ω) for all

s ∈ [1,∞) if N ≤ p. In the sequel, for the sake of notational simplicity, we drop the use of the trace map
γ (·). All restrictions of Sobolev functions on ∂Ω are understood in the sense of traces.
0

3
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By L∞(Ω)+ we denote the positive (order) cone of L∞(Ω), that is,

L∞(Ω) = {h ∈ L∞(Ω) : h(z) ≥ 0 for all a.a z ∈ Ω} .

his cone has a nonempty interior given by

intL∞(Ω)+ =
{
h ∈ L∞(Ω)+ : ess inf

Ω
h > 0

}
.

n C1(Ω̄) we will also consider another open cone given by

D+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω ,

∂u

∂n
|∂Ω∩u−1(0) < 0

}
.

If h1, h2 : Ω → R are measurable functions, then we write h1 ≺ h2 if and only h1(z) ≤ h2(z) for a.a.
∈ Ω , h1 ̸= h2 (that is, h1(z) < h2(z) on a subset of Ω of positive measure). Also, if h1 ≤ h2, then we set

[h1, h2] = {h ∈ W 1,p(Ω) : h1(z) ≤ h(z) ≤ h2(z) for a.a. z ∈ Ω},

[h1) = {h ∈ W 1,p(Ω) : h1(z) ≤ h(z) for a.a. z ∈ Ω},

nd
intC1(Ω̄)[h1, h2] = the interior in C1(Ω̄) of [h1, h2] ∩ C1(Ω̄).

For every x ∈ R, Let x+ = max{x, 0} and x− = max{−x, 0}. Then if u : Ω → R is a measurable function
e define the measurable functions u± : Ω → R, by u+(z) = u(z)+ and u−(z) = u(z)− for all z ∈ Ω . We
ave u = u+ − u−, |u| = u+ + u− and if u ∈ W 1,p(Ω), then u± ∈ W 1,p(Ω).

The presence of the state independent parametric term λθ̂(·), will lead to some functionals with a mild
onsmoothness at the origin. We can overcome this difficulty using the subdifferential theory of Clarke [20].

So, let X be a Banach space. A function φ : X → R is said to be locally Lipschitz, if for every x ∈ X, we
an find U ⊆ X an open set containing x such that

|φ(v) − φ(y)| ≤ kU ∥v − y∥

or all v, y ∈ U and for some kU > 0.
By Liploc(X) we denote the space of all locally Lipschitz functions on X. Given φ ∈ Liploc(X), we can

efine the generalized directional derivative of φ at x in the direction h by

φ0(x;h) = lim sup
x′→x,t→0+

φ(x′ + th) − φ(x′)
t

.

Then φ0(x; ·) is finite, sublinear and |φ0(x;h)| ≤ c∥h∥ for all h ∈ X and some c > 0. So, we can define
he generalized subdifferential (or Clarke subdifferential) of φ(·) at x ∈ X by

∂φ(x) = {x∗ ∈ X∗ : ⟨x∗, h⟩ ≤ φ0(x;h) for all h ∈ X}.

We know that ∂φ(x) ⊆ X∗ is nonempty, convex and w∗-compact. If φ ∈ C1(X), then ∂φ(x) = {φ′(x)}.
his notion is proved to be very fruitful and has a rich calculus and many applications. We refer to the book
f Clarke [20] for details.

Let Liploc(X) and set
mφ(x) = inf {∥x∗∥∗ : x∗ ∈ ∂φ(x)} for all x ∈ X.
4
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We say that φ(·) satisfies the “nonsmooth C-condition”, if the following property holds:

“every sequence {xn}n∈N such that
{φ(xn)}n∈N ⊆ R is bounded,
(1 + ∥xn∥)mφ(xn) → 0,
admits a strongly convergent subsequence.”

If φ ∈ C1(X), then since ∂φ(x) = {φ′(x)} for all x ∈ X, we see that the above notion coincides with
the classical C-condition of the smooth critical point theory (see [21], p.366). We also refer to Tang and
Cheng [22] who proposed a new approach to restore the compactness of Palais–Smale sequences and to Tang
and Chen [23] who introduced an original method to recover the compactness of minimizing sequences. A
related approach has been developed by Chen and Tang [24] in the framework of Cerami sequences.

The nonsmooth C-condition, is a compactness condition on the functional φ(·) which compensates for the
fact that the ambient space X need not be locally compact (in most applications X is infinite dimensional).
It leads to a deformation lemma, from which one can have an extension of the classical (smooth) critical
point theory to locally Lipschitz functions. For details, we refer to the book of Gasinski–Papageorgiou [25].

Given φ ∈ Liploc(X), we define
Kφ = {u ∈ X : 0 ∈ ∂φ(u)},

the critical set of φ). If φ ∈ C1(X), then

Kφ = {u ∈ X : φ′(u) = 0}.

We introduce the conditions on the potential ξ(·), the boundary coefficient β(·) and on the function θ̂(·)
from the parametric term in the reaction.

0 : ξ ∈ L∞(Ω), β ∈ C0,α(∂Ω) (0 < α < 1), ξ(z) ≥ 0 for a.a. z ∈ Ω , β(z) ≥ 0 for all z ∈ ∂Ω , ξ ̸≡ 0 or β ̸≡ 0
and θ̂ ∈ intL∞(Ω)+.

Remark. If β ≡ 0, then we recover the Neumann problem and recall that θ̂ ∈ intL∞(Ω)+ means that
θ̂ ∈ L∞(Ω) and 0 < ess infΩ θ̂.

In what follows, we denote by γp : W 1,p(Ω) → R the C1-functional defined by

γp(u) = ∥Du∥p
p +

∫
Ω

ξ(z)|u|pdz +
∫

∂Ω

β(z)|u|pdσ

for all u ∈ W 1,p(Ω).
From Papageorgiou–Qin–Rădulescu [26], we know that

c0∥u∥p ≤ γp(u) for some c0 > 0, all u ∈ W 1,p(Ω). (1)

We consider the following nonlinear eigenvalue problem{
−∆pu(z) + ξ(z)|u(z)|p−2

u(z) = λ̂|u(z)|p−2
u(z) in Ω ,

u = 0 on ∂Ω .
(2)

We say that λ̂ ∈ R is an “eigenvalue”, if problem (2) has a nontrivial solution û ∈ W 1,p(Ω)
known as an “eigenfunction” corresponding to λ̂. From Papageorgiou–Rădulescu [27] and Fragnelli–Mugnai–
Papageorgiou [28], we know that there exists a smallest eigenvalue λ̂1(p) such that

λ̂1(p) = inf
{
γp(u)

p : u ∈ W 1,p(Ω), u ̸= 0
}
. (3)
∥u∥p

5
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From (1) it is clear that λ̂1(p) > 0 and this eigenvalue is isolated and simple and the infimum is realized on
the corresponding one dimensional eigenspace, the elements of which have fixed sign. Moreover, the nonlinear
regularity theory (see [29,30]) implies that the eigenfunctions û ∈ C1(Ω̄). Moreover, by the nonlinear

aximum principle the eigenfunctions for λ̂1(p) > 0 belong in ±intC+.
These properties lead to the following proposition (see Gasinski–O’Regan–Papageorgiou [31], Lemma 2.1).

roposition 1. If θ ∈ L∞(Ω) and θ ≺ λ̂1(p), then there exists ĉ > 0 such that for all u ∈ W 1,p(Ω),

ĉ∥u∥p ≤ γp(u) −
∫
Ω

θ(z)|u|pdz.

We mention that if λ̂ > 0 is an eigenvalue and λ̂ ̸= λ̂1(p), then the corresponding eigenfunctions are nodal
(sign changing).

We will also consider a weighted version of (2). So, let m ∈ L∞(Ω)+\{0} and consider the following
nonlinear eigenvalue problem{

−∆pu(z) + ξ(z)|u(z)|p−2
u(z) = λ̃m(z)|u(z)|p−2

u(z) in Ω ,
u = 0 on ∂Ω .

Again we have a smallest eigenvalue λ̃1(p,m) > 0 which is isolated, simple and

λ̃1(p,m) = inf
{

γp(u)∫
Ω
m(z)|u|pdz

: u ∈ W 1,p(Ω), u ̸= 0
}
.

The infimum is realized on the corresponding one dimensional eigenspace the elements of which are in
intC+. Hence we have the following monotonicity property for the map m ↦→ λ̃1(p,m).

roposition 2. If m, m̂ ∈ L∞(Ω)+\{0}, m(z) ≤ m̂(z) for a.a. z ∈ Ω , m ̸= m̂, then

λ̃1(p, m̂) < λ̃1(p,m).

For r ∈ (1,∞), let Ar : W 1,r(Ω) → W 1,r(Ω)∗ be the nonlinear operator defined by

⟨Ar(u), h⟩ =
∫
Ω

|Du|r−2(Du,Dh)RN dz for all u, h ∈ W 1,r(Ω).

This map has the following properties (see, for example, Gasinski–Papageorgiou [32, p. 279]).

roposition 3. The operator Ar : W 1,r(Ω) → W 1,r(Ω)∗ is bounded (maps bounded sets to bounded sets),
ontinuous, monotone (hence maximal monotone too) and of type (S)+, that is,

“un
w−→ u in W 1,r(Ω) and lim sup

n→∞
⟨Ar(un), un − u⟩ ≤ 0 imply that un → u in W 1,r(Ω)”.

Now we introduce the hypotheses on the perturbation f(z, x). Recall that p∗ = Np
N−p if p < N and

p∗ = +∞ if p ≥ N .

1 : f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and
(i) |f(z, x)| ≤ a(z)(1 + |x|r−1) for a.a. z ∈ Ω , all x ∈ R, with a ∈ L∞(Ω), p ≤ r < p∗;
(ii) there exists a function η ∈ L∞(Ω) such that λ̂1(p) ≺ η and

η(z) ≤ lim inf f(z, x) uniformly for a.a. z ∈ Ω ;

x→+∞ xp−1

6
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(iii) there exists a function θ ∈ L∞(Ω) such that θ ≺ λ̂1(p) and

lim sup
x→−∞

f(z, x)
|x|p−2

x
≤ θ(z) uniformly for a.a. z ∈ Ω ;

(iv) f(z, x)x ≥ 0 for a.a. z ∈ Ω , all x ∈ R and there exist a function η0 ∈ L∞(Ω)+\{0} and τ ∈ (1, q)
such that

η0(z) ≤ lim inf
x→0

f(z, x)
|x|τ−2

x
uniformly for a.a. z ∈ Ω ;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω the function x ↦→ f(z, x) + ξ̂ρ|x|p−2
x is

nondecreasing on [−ρ, ρ].

emark. Evidently, hypothesis H1(ii) incorporates both the (p− 1)-superlinear and the (p− 1)-linear case.

We introduce the following set:

L = {λ > 0 : problem (Pλ) has a nontrivial solution}

(set of admissible parameters).
In the next section we will show that L ̸= ∅. To do this, we need some auxiliary material.
On account of hypotheses H1(ii) and H1(iii) given ε > 0 we can find c1 = c1(ε) > 0 such that

f(z, x) ≥ [θ(z) + ε]|x|p−2
x− c1 for a.a. z ∈ Ω , all x ≤ 0. (4)

Then we consider the following auxiliary Robin problem:⎧⎨⎩−∆pu(z) − ∆qu(z) + ξ(z)|u(z)|p−2
u(z) = [θ(z) + ε]|u(z)|p−2

u(z) − c1 in Ω ,
∂u

∂npq
+ β(z)|u|p−2

u = 0 on ∂Ω , u ≤ 0. (5)

roposition 4. If hypotheses H0 hold, then for all ε > 0 small, problem (5) has a unique negative solution
¯ ∈ −intC+.

roof. We consider the functional ψ̂ : W 1,p(Ω) → R defined by

ψ̂(u) = 1
p
γp(u) + 1

q
∥Du∥q

q − 1
p

∫
Ω

[θ(z) + ε](u−)pdz −
∫
Ω

c1u
−dz

for all u ∈ W 1,p(Ω).
This functional is locally Lipschitz (differentiability fails at u = 0). We have

c2∥u+∥p ≤ 1
p
γp(u+) with c2 = c0

p
(see (1)), (6)

and
1
p

[
γp(u−) −

∫
Ω

θ(z)(u−)pdz − ε∥u−∥p
p

]
≥1
p

[
ĉ− ε

λ̂1(p)

]
∥u−∥p, (see Proposition 1).

Choosing ε ∈ (0, ĉλ̂1(p)), we obtain

c3∥u−∥p ≤ 1
[
γp(u−) −

∫
θ(z)(u−)pdz − ε∥u−∥p

p

]
for some c3 > 0. (7)
p Ω

7
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Then using (6) and (7), we have

ψ̂(u) ≥ c4∥u∥p − c5∥u∥ for some c4, c5 > 0,
⇒ ψ̂(·) is coercive (recall p > 1).

Also using the Sobolev embedding theorem, we see that ψ̂(·) is sequentially weakly lower semicontinuous.
o, by the Weierstrass–Tonelli theorem, we can find ū ∈ W 1,p(Ω) such that

ψ̂(ū) = inf
{
ψ̂(u) : u ∈ W 1,p(Ω)

}
,

⇒ 0 ∈ ∂ψ̂(û) (see Clarke [20], p.38). (8)

We have
∂ψ(ū) = γ′

p(ū) +Aq(ū) − [θ(z) + ε]|ū|p−2
ū+ g(ū), (9)

here

g(ū)(z) =

⎧⎨⎩−c1, if ū(z) < 0,
{−c1v : 0 ≤ v ≤ 1}, if ū(z) = 0,
0, if ū(z) < 0,

(10)

see Clarke [20], p.39). On (9) we act with ū+ ∈ W 1,p(Ω) and using (8) and (10), we have
γp(ū+) + ∥Dū+∥q

q = 0,
⇒ ū ≤ 0, ū ̸= 0 (see (1)).

From Proposition 2.10 of Papageorgiou–Rădulescu [29], we have that ū ∈ L∞(Ω) and then the nonlinear
egularity theory of Lieberman [30] implies that ū ∈ C+\{0}. We have

∆p(−ū) + ∆q(−ū) ≤ ξ(z)(−ū)p−1 (recall ū ≤ 0),
⇒ ū ∈ −intC+

see Pucci–Serrin [33], pp.111,120).
Next we prove the uniqueness of this negative solution. To this end we consider the integral functional

: L1(Ω) → R̄ = R ∪ {+∞} defined by

j(u) =

⎧⎨⎩
1
p

∥D(u−)1/q∥p
p + 1

q
∥D(u−)1/q∥q

q + 1
p

∫
Ω

ξ(z)(u−)p/qdz, if u ≤ 0, (u−)1/q ∈ W 1,p(Ω),

+∞, otherwise;

note that ū− = −ū).
From Dı́az–Saá [34], we know that j(·) is convex. Let domj = {u ∈ L1(Ω) : j(u) < ∞} (the effective

omain of j(·)). Suppose that v̄ ∈ W 1,p(Ω) is another negative solution of (5). Again we have v̄ ∈ −intC+.
hen using Proposition 4.1.22, p.274, of [21], we infer that

|ū|
|v̄|

∈ L∞(Ω), |v̄|
|ū|

∈ L∞(Ω).

Therefore, if h = |ū|q − |v̄|q, then for |t| < 1 small we have

|ū|q + th ∈ domj, |v̄|q + th ∈ domj.

Exploiting the convexity of j(·), we see that the directional derivative of j(·) at |ū|q and at |v̄|q in the
direction h exists and using Green’s identity, we have

j′(|ū|q)(h) =1
q

∫
Ω

∆pū+ ∆qū− ξ(z)|ū|p−2(−ū)
|ū|q−2

ū
hdz − 1

q

∫
∂Ω

β(z)|ū|p−q
hdσ

=1
q

∫
Ω

(
−[θ(z) + ε]|ū|p−q + ĉ1

|ū|q−1

)
hdz

− 1 ∫
β(z)|ū|p−q

hdσ,

q ∂Ω

8
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P

P

and
j′(|v̄|q)(h) =1

q

∫
Ω

∆pv̄ + ∆q v̄ − ξ(z)|v̄|p−2(−v̄)
|v̄|q−2

v̄
hdz − 1

q

∫
∂Ω

β(z)|v̄|p−q
hdσ

=1
q

∫
Ω

(
−[θ(z) + ε]|v̄|p−q + c1

|v̄|q−1

)
hdz

− 1
q

∫
∂Ω

β(z)|v̄|p−q
hdσ.

The convexity of j(·) implies that the monotonicity of j′(·). Hence

0 ≤
∫
Ω

−[θ(z) + ε](|ū|p−q − |v̄|p−q)(|ū|q − |v̄|q)dz

+
∫
Ω

c1

(
1

|ū|p−q − 1
|v̄|p−q

)
(|ū|q − |v̄|q)dz

−
∫

∂Ω

β(z)(|ū|p−q − |v̄|p−q)(|ū|q − |v̄|q)dσ

≤0 (recall that β ≥ 0),
⇒ū = v̄.

This proves the uniqueness of the negative solution ū ∈ −intC+ of problem (5). □

. Existence and multiplicity of solutions

First we show that L ̸= ∅. To do this we will use the solution ū ∈ −intC+ from Proposition 4. Using
¯ ∈ intC+ we introduce the following Carathéodory function

f̂(z, x) =
{
f(z, ū(z)), if x ≤ ū(z),
f(z,−x−), if ū(z) < x.

(11)

We set F̂ (z, x) =
∫ x

0 f̂(z, s)ds. Also we introduce the function Tλ(z, x) defined by

Tλ(z, x) =
{
λθ̂(z)ū(z), if x ≤ ū(z),
λθ(z)x−, if ū(z) < x.

(12)

Evidently for all x ∈ R, z ↦→ Tλ(z, x) is measurable and for a.a. z ∈ Ω , x ↦→ Tλ(z, x) is Lipschitz continuous
hence Tλ(·, ·) is jointly measurable). We consider the locally Lipschitz functional ψλ : W 1,p(Ω) → R defined
y

ψλ(u) = 1
p
γp(u) + 1

q
∥Du∥q

q −
∫
Ω

F̂ (z, u)dz −
∫
Ω

Tλ(z, u)dz

or all u ∈ W 1,p(Ω).

roposition 5. If hypotheses H0 and H1 hold, then L ̸= ∅.

roof. For every u ∈ W 1,p(Ω) we have

ψλ(u) ≥1
p
γp(u) − 1

p

∫
Ω

[θ(z) + ε](u−)pdz − c6[λ∥u∥ + 1]

for some c6 > 0 (see (4), (11) and (12))

=1
p

[
γp(u) −

∫
Ω

θ(z)|u|pdz − ε∥u∥p
p

]
− c6[λ∥u∥ + 1]

≥1
p

[
ĉ− ε

λ̂1(p)

]
∥u∥p − λc6∥u∥ − c6
(see (3) and Proposition 1).
9
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δ

S

Choosing ε ∈ (0, ĉλ̂1(p)), we obtain

ψλ(u) ≥ c7∥u∥p − λc6∥u∥ − c6 for some c7 > 0,
⇒ ψλ(·) is coercive for all λ > 0.

Using the Sobolev embedding theorem we see that ψλ(·) is sequentially weakly lower semicontinuous. So,
e can find u0 ∈ W 1,p(Ω) such that

ψλ(u0) = inf
{
ψλ(u) : u ∈ W 1,p(Ω)

}
. (13)

Let m̂ = maxΩ̄ ū < 0 (recall that ū ∈ −intC+) On account of hypothesis H1(iv), given ε > 0 we can find
∈ (0,−m̂) such that

F (z, x) ≥ 1
τ

[η0(z) − ε]|x|τ for a.a. z ∈ Ω , all |x| ≤ δ.

o, if µ ∈ (0, δ), then using (11) and (12) we have

ψλ(µ) ≤|µ|p

p

[∫
Ω

ξ(z)dz +
∫

∂Ω

β(z)dσ
]

− |µ|τ

τ

[∫
Ω

η0(z)dz − ε|Ω |N

]
+ λ|µ|

∫
Ω

θ̂(z)dz

with | · |N denoting the Lebesgue measure on RN .
Since

∫
Ω
η0(z)dz > 0 (see hypothesis H1(iv)), choosing ε > 0 small and using hypothesis H0, we have

that
ψλ(µ) ≤ c8 [|µ|p + λ|µ|] − c9|µ|τ , for some c8, c9 > 0. (14)

Since τ < q < p, choosing |µ| < 1 small, we have

c9|µ|τ − c8|µ|p ≥ d0 > 0. (15)

Then we choose λ̂ > 0 small so that

λc8|µ| < d0 for all λ ∈ (0, λ̂). (16)

Using (15), (16) in (14) we infer that

ψλ(µ) < 0 for |µ| and λ > 0 small,
⇒ ψλ(u0) < 0 = ψλ(0) (see (13))
⇒ u0 ̸= 0.

Recall that ψλ(·) is locally Lipschitz. Hence

0 ∈ ∂ψλ(u0),

⇒ γ′
p(u0) +Aq(u0) = Nf̂ (u0) + l in W 1,p(Ω)∗ (17)

with Nf̂ (u)(·) = f̂(·, u(·)) for all u ∈ W 1,p(Ω) (the Nemytskii map corresponding to the function f̂(z, x))
and l ∈ Lr′(Ω), 1

r + 1
r′ = 1, l(z) ∈ ∂xTλ(z, u0(z)) for a.a. z ∈ Ω (see Clarke [20], p.80). We know that

∂xTλ(z, x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < ū(z),
−λθ̂(z), if ū(z) < x < 0,
{−λθ̂(z)v : 0 ≤ v ≤ 1}, if x = ū(z) or x = 0,

(18)
0, if 0 < x.

10
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On (17) we act with u+
0 ∈ W 1,p

0 (Ω) and obtain

γp(u+
0 ) + ∥Du+

0 ∥q
q ≤ 0 (see (11), (18)),

⇒ u0 ≤ 0, u0 ̸= 0.

lso on (17) we act with (ū− u0)+ ∈ W 1,p(Ω). We have

⟨γ′
p(u0), (ū− u0)+⟩ + ⟨Aq(u0), (ū− u0)+⟩

=
∫
Ω

f(z, ū)(ū− u0)+dz

≥
∫
Ω

(
[θ(z) + ε]|ū|p−2

ū− c1

)
(ū− u0)+dz (see (1))

= ⟨γ′
p(ū), (ū− u0)+⟩ + ⟨Aq(ū), (ū− u0)+⟩ (see Proposition 4),

⇒ ū ≤ u0.

e have proved that
u0 ∈ [ū, 0], u0 ̸= 0. (19)

The nonlinear regularity theory (see Lieberman [30]) implies that u0 ∈ (−C+)\{0}. Moreover, from (19),
11), (18) and (17) we have

∆p(−u0) + ∆q(−u0) − ξ(z)(−u0)p−1 = f(z, u0) + l(z) in Ω ,

⇒ ∆p(−u0) + ∆q(−u0) ≤ ∥ξ∥∞(−u0)p−1

(see hypothesis H1(iv) and (18)),
⇒ u0 ∈ −intC+ (see Pucci–Serrin [33]).

Let ρ = ∥u0∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis H1(v). We have

− ∆pū− ∆qū+ [ξ(z) + ξ̂ρ]|ū|p−2
ū

= [θ(z) + ε]|ū|p−2
u− c1 + ξ̂ρ|ū|p−2

ū (see Proposition 4)
≤ f(z, ū) + ξ̂ρ|ū|p−2

ū+ λθ̂(z) (see (1) and hypotheses H0)
≤ f(z, u0) + ξ̂ρ|u0|p−2

u0 + λθ̂(z) (see (19) and H1(v))
= −∆pu0 − ∆qu0 + [ξ(z) + ξ̂ρ]|u0|p−2

u0. (20)

Since λθ̂(z) ≥ λm̂ > 0 (m̂ = ess inf θ̂, see H0), from (20) and Proposition 2.10 of Papageorgiou–Rădulescu–
epovš [35] we infer that

ū(z) < u0(z) for all z ∈ Ω .

ence from (18) we infer that l(z) = λθ̂(z) and so (17) implies that u0 ∈ −intC+ is a solution of (Pλ),
∈ (0, λ̂). Therefore (0, λ̂) ⊆ L ̸= ∅. □

Let Sλ denote the set of nontrivial solutions of (Pλ). From Proposition 2.10 of Papageorgiou–Rădulescu [29]
e have that Sλ ⊆ L∞(Ω). Then we apply the nonlinear regularity theory of Lieberman [30] and conclude

hat
Sλ ⊆ C1(Ω̄)\{0} for all λ > 0. (21)

Next we establish a structural property of the set L , namely we show that L is connected.

roposition 6. If hypotheses H and H hold, λ ∈ L and µ ∈ (0, λ), then µ ∈ L .
0 1

11
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f

T

Proof. Since λ ∈ L we can find uλ ∈ Sλ ⊂ C1(Ω̄)\{0} (see (21)). Let gµ : Ω ×R → R be the Carathéodory
function defined by

gµ(z, x) =
{
f(z, x) + µθ̂(z), if x ≤ uλ(z),
f(z, uλ(z)) + µθ̂(z), if uλ(z) < x.

(22)

We set Gµ(z, x) =
∫ x

0 gµ(z, s)ds and consider the C1-functional φµ : W 1,p(Ω) → R defined by

φµ(u) = 1
p
γp(u) + 1

q
∥Du∥q

q −
∫
Ω

Gµ(z, u)dz for all u ∈ W 1,p(Ω).

Hypotheses H1(i), H1(iii) and (22) imply that given ε > 0, we can find c10 = c10(ε) > 0 such that

Gµ(z, x) ≤ 1
p

[θ(z) + ε]|x|p + c10|x| for a.a. z ∈ Ω , all x ≤ 0. (23)

Also hypothesis H1(i) and (22) imply that

Gµ(z, x) ≤ c11x for a.a. z ∈ Ω , all x ≥ 0, some c11 > 0. (24)

Then for u ∈ W 1,p(Ω) we have

φλ(u) =1
p
γp(u+) + 1

q
∥Du+∥q

q − c11∥u+∥1

+ 1
p
γp(u−) + 1

q
∥Du−∥q

q − 1
p

∫
ω

θ(z)(u−)pdz

− ε

p
∥u−∥p

p − c10∥u−∥1 (see (23) and (24))

≥c0∥u+∥p + 1
p

(ĉ− ε)∥u−∥p − c12∥u∥

for soame c12 > 0 (see (1) and Proposition 1)
≥c13∥u∥p − c12∥u∥

for some c13 > 0 (choosing ε ∈ (0, ĉ)),
⇒ φλ(·) is coercive.

Using the Sobolev embedding theorem, we see that φλ(·) is sequentially weakly lower semicontinuous. So,
we can find uµ ∈ W 1,p(Ω) such that

φµ(uµ) = inf
{
φµ(u) : u ∈ W 1,p(Ω)

}
,

⇒ φ′
µ(uµ) = 0,

⇒ ⟨γ′
p(uµ), h⟩ + ⟨Aq(uµ), h⟩ =

∫
Ω

gµ(z, uµ)hdz (25)

or all h ∈ W 1,p(Ω).
We choose h = (uµ − uλ)+ ∈ W 1,p(Ω). We have

⟨γ′
p(uµ), (uµ − uλ)+⟩ + ⟨Aq(uµ), (uµ − uλ)+⟩

=
∫
Ω

[
f(z, uλ) + µθ̂

]
(uµ − uλ)+dz (see (22))

≤
∫
Ω

[
f(z, uλ) + λθ̂

]
(uµ − uλ)+dz (since µ < λ and θ̂ ≥ 0)

=⟨γ′
p(uλ), (uµ − uλ)+⟩ + ⟨Aq(uλ), (uµ − uλ)+⟩ (since uλ ∈ Sλ),

⇒ uµ ≤ uλ.

From (22) and (25) it follows that
uµ ∈ Sµ and so µ ∈ L .
he proof is now complete. □

12
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A byproduct of the above proof is the following corollary.

Corollary 7. If hypotheses H0 and H1 hold, λ ∈ L , uλ ∈ Sλ and µ ∈ (0, λ), then µ ∈ L and there exists
µ ∈ Sµ such that uµ ≤ uλ.

We can improve this corollary as follows:

roposition 8. If hypotheses H0 and H1 hold, λ ∈ L , uλ ∈ Sλ and µ ∈ (0, λ), then µ ∈ L and there exists
µ ∈ Sµ such that uλ − uµ ∈ D+.

roof. From Corollary 7 we already know that µ ∈ L and there exists uµ ∈ Sµ such that

uµ ≤ uλ. (26)

Let ρ = max{∥uµ∥∞, ∥uλ∥∞} and let ξ̂ρ > 0 be as postulated by hypothesis H1(v). We have

− ∆puµ − ∆quµ + [ξ(z) + ξ̂ρ]|uµ|p−2
uµ

= f(z, uµ) + µθ̂ + ξ̂ρ|uµ|p−2
uµ

≤ f(z, uλ) + λθ̂ + ξ̂ρ|uλ|p−2
uλ (see (26), H1(v) and since µ < λ)

= −∆puλ − ∆quλ + [ξ(z) + ξ̂ρ]|uλ|p−2
uλ (since uλ ∈ Sλ). (27)

The hypothesis on θ̂(·) (see H0) implies that

0 < (λ− µ)m̂ ≤ (λ− µ)θ̂ (m̂ = ess inf
Ω

θ̂ > 0).

So, (27) and Proposition 2.10 of [35], imply that

uλ − uµ ∈ D+.

he proof is now complete. □

Let λ∗ = sup L .

roposition 9. If hypotheses H0 and H1 hold, then λ∗ < ∞.

roof. Arguing by contradiction, suppose we can find {λn}n∈N ⊆ L such that λn → +∞. Let un ∈ Sλn ,
∈ N. We have

γ′
p(un) +Aq(un) = Nf (un) + λnθ̂ in W 1,p(Ω)∗, n ∈ N (28)

recall Nf (u)(·) = f(·, u(·)) for all u ∈ W 1,p(Ω)). Acting with −u−
n ∈ W 1,p(Ω) on (28), we obtain

γp(u−
n ) + ∥Du−

n ∥q
q

=
∫
Ω

f(z, un)(−u−
n )dz − λn

∫
Ω

θ̂u−
n dz

≤
∫
Ω

f(z,−u−
n )(−u−

n )dz (recall θ̂ ≥ 0)

≤
∫
Ω

[θ(z) + ε](u−
n )pdz + c1

∫
Ω

u−
n dz for all n ∈ N (see (4)),

⇒ γp(u−
n ) −

∫
Ω

θ(z)(u−
n )pdz − ε∥u−

n ∥p ≤ c14∥u−
n ∥

for some c14 > 0, all n ∈ N,
− p−1
⇒ [ĉ− ε]∥un ∥ ≤ c14 for all n ∈ N (see Proposition 1).

13
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Choosing ε ∈ (0, ĉ), we conclude that

{u−
n }n∈N ⊆ W 1,p(Ω) is bounded. (29)

Suppose that ∥u+
n ∥ → ∞ and let yn = u+

n

∥u+
n ∥

, n ∈ N. Then ∥yn∥ = 1, yn ≥ 0 for all n ∈ N. So, we may
ssume that

yn
w−→ y in W 1,p(Ω) and yn → y in Lr(Ω) and in Lp(∂Ω). (30)

rom (28) we have

γ′
p(yn) = Nf (u+

n )
∥u+

n ∥p−1 + λn

∥u+
n ∥p−1 θ̂ + v∗

n (31)

ith v∗
n ∈ W 1,p(Ω)∗, v∗

n → 0 in W 1,p(Ω)∗ (see (29)), and Nf (u)(·) = f(·, u(·)) for all u ∈ W 1,p(Ω) (the
emytskii operator for f(z, x)).
First assume that f(z, ·) is (p − 1)-linear as x → +∞ (that is, r = p in H1(i)). In (31) we see that the

eft hand side is bounded. Note that{
Nf (u+

n )
∥u+

n ∥p−1

}
n∈N

⊆ Lp′
(Ω) is bounded (see H1(i) with r = p).

herefore, {
λn

∥u+
n ∥p−1

}
n∈N

⊆ (0,+∞) must be bounded.

Acting on (31) with yn − y ∈ W 1,p(Ω), passing to the limit as n → ∞ and using (30), we obtain

lim
n→∞

⟨Ap(yn), yn − y⟩ = 0,

⇒ yn → y in W 1,p(Ω) and so ∥y∥ = 1, y ≥ 0. (32)

From (31) and Proposition 2.10 of Papageorgiou–Rădulescu [29], we have that {yn}n∈N ⊆ L∞(Ω) is
ounded. So, we have that {

Nf (u+
n )

∥u+
n ∥p−1 + λn

∥u+
n ∥p−1 θ̂

}
n∈N

⊆ L∞(Ω) is bounded.

herefore, we may assume that

Nf (u+
n )

∥u+
n ∥p−1 + λn

∥u+
n ∥p−1 θ̂

w∗
−−→ ĝ∗ in L∞(Ω) (33)

ith ĝ∗(z) = η̂(z)y(z)p−1 + b̂(z), η̂, b̂ ∈ L∞(Ω), η(z) ≤ η̂(z) for a.a. z ∈ Ω and b̂ = µθ̂, µ ≥ 0. If in (31) we
ass to the limit as n → ∞ and use (32) and (33), we have

γ′
p(y) = η̂yp−1 + b̂ in W 1,p(Ω)∗,

⇒

{
−∆py + ξ(z)yp−1 = η̂(z)yp−1 + b̂, in Ω ,
∂y

∂np
+ β(z)yp−1 = 0, on ∂Ω ,

(34)

ith ∂y
∂np

= |Dy|p−2 ∂y
∂n . From [29] we have that y ∈ L∞(Ω) and then the nonlinear regularity theory of

ieberman [30] says that y ∈ C+\{0}. Moreover, form (34) we have

∆py ≤ ∥ξ∥∞y
p−1 in Ω ,

⇒ y ∈ intC+ (by the nonlinear maximum principle, see [2], p.738).
14
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First suppose b̂ ≡ 0. From Proposition 2 and since η ≤ η̂ we have

λ̃1(p, η̂) < λ̃1(p, λ̂1(p)) = 1.

Therefore, from (34), it follows that y is sign changing, a contradiction.
Next suppose b̂ ̸= 0. For λ ∈ (0, 1), let η̂λ = λη̂ and consider the following auxiliary Robin problem⎧⎨⎩−∆pv + ξ(z)|v|p−2

v = η̂λ|v|p−2
v + b̂(z), in Ω ,

∂v

∂np
+ β(z)|v|p−2

v = 0, on ∂Ω ,
(35)

Evidently, y ∈ intC+ is an upper solution for (35). Also v = 0 is a lower solution of (35). Truncating the
reaction of (35) at {0, y(z)} and using the direct method of the calculus of variations, we produce uλ(·) a
olution of (35) such that uλ ∈ [0, y] ∩ (C+\{0}). But for λ ∈ (0, 1) small the antimaximum principle (see

Motreanu–Motreanu–Papageorgiou [36, p. 263]), implies that uλ ∈ -intC+, a contradiction.
Now we assume that f(z, ·) is (p− 1)-superlinear as x → +∞, that is, limx→+∞

f(z,x)
xp−1 = +∞ uniformly

or a.a. z ∈ Ω (see H1(ii)). In this case, from (31) it follows that y = 0,{
Nf (u+

n )
∥u+

n ∥p−1

}
n∈N

⊆ Lr′
(Ω) and

{
λn

∥u+
n ∥p−1

}
n∈N

⊆ (0,+∞) are bounded.

cting with yn ∈ W 1,p(Ω) we obtain

γp(yn) + 1
∥u+

n ∥p−q
∥Dyn∥q

q =
∫
Ω

Nf (u+
n )

∥u+
n ∥p−1 yndz + λn

∥u+
n ∥p−1

∫
Ω

θ̂yndz,

⇒ γp(yn) ≤ εn, for all n ∈ N, with εn → 0+,

⇒ yn → 0 in W 1,p(Ω) (see (1)),

a contradiction (recall ∥yn∥ = 1, n ∈ N).
Therefore in both cases, we have a contradiction and this means that {u+

n }n∈N ⊆ W 1,p(Ω) is bounded.
his and (29) imply that {un}n∈N ⊆ W 1,p(Ω) is bounded. Using this in (28) we have a contradiction to the

act that λn → ∞. we conclude that λ∗ < ∞. □

Therefore we can say that
(0, λ∗) ⊆ L ⊆ (0, λ∗]. (36)

For λ ∈ (0, λ∗) we have a multiplicity result.

roposition 10. If hypotheses H0 and H1 hold, and λ ∈ (0, λ∗), then problem (Pλ) has at least two solutions
λ, ûλ ∈ C1(Ω̄)\{0}, uλ ̸= ûλ.

roof. Let 0 < µ < λ < ν < λ∗, we know that µ, λ, ν ∈ L (see (36)). On account of Proposition 8, we can
nd uν ∈ Sν , uλ ∈ Sλ and uµ ∈ Sµ such that

uν − uλ ∈ D+ and uλ − uµ ∈ D+,

⇒ uλ ∈ intC1(Ω̄)[uµ, uν ]. (37)

We introduce the Carathéodory functions f̂(z, x) and f̂∗(z, x) defined by

f̂(z, x) =
{
f(z, uµ(z)), if x ≤ uµ(z), (38)

f(z, x), if uµ(z) < x,

15
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s
R
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f̂∗(z, x) =
{
f̂(z, x), if x ≤ uν(z),
f̂(z, uν(z)), if uν(z) < x.

(39)

We set F̂ (z, x) =
∫ x

0 f̂(z, s)ds and F̂∗(z, x) =
∫ x

0 f̂∗(z, s)ds.
Also we introduce the following Lipschitz integrands

T̂λ(z, x) =
{
λθ̂(z)uµ(z), if x ≤ uµ(z),
λθ̂(z)x, if uµ(z) < x,

(40)

T̂ ∗
λ (z, x) =

{
T̂λ(z, x), if x ≤ uν(z),
T̂λ(z, uν(z)), if uν(z) < x.

(41)

We consider the locally Lipschitz functionals k̂λ, k̂
∗
λ : W 1,p(Ω) → R defined by

k̂λ(u) = 1
p
γp(u) + 1

q
∥Du∥q

q −
∫
Ω

F̂ (z, u)dz −
∫
Ω

T̂λ(z, u)dz

k̂∗
λ(u) = 1

p
γp(u) + 1

q
∥Du∥q

q −
∫
Ω

F̂∗(z, u)dz −
∫
Ω

T̂ ∗
λ (z, u)dz

or all u ∈ W 1,p(Ω). Using (38), (39), (40) and (41), we show that

Kk̂λ
⊆ [uµ) ∩ C1(Ω̄) and Kk̂∗

λ
⊆ [uµ, uν ] ∩ C1(Ω̄). (42)

From (42) it is clear that we may assume that

Kk̂∗
λ

= {uλ}. (43)

Otherwise we already have a second nontrivial smooth solution (see (38) → (41) and the proof of
roposition 8) and so we are done.
From (39) and (41), it is clear that k̂∗

λ(·) is coercive. Also it is sequentially weakly lower semicontinuous.
o, we can find ũλ ∈ W 1,p(Ω) such that

k̂∗
λ(ũλ) = inf

{
k̂∗

λ(u) : u ∈ W 1,p(Ω)
}
,

⇒ ũλ ∈ Kk̂∗
λ
,

⇒ ũλ = uλ (see (43)).

Note that
k̂λ|[uµ,uν ] = k̂∗

λ|[uµ,uν ] (see (38) → (41)).

From (37) it follows that

uλ is a local C1(Ω̄)-minimizer of k̂λ(·),
⇒ uλ is a local W 1,p(Ω)-minimizer of k̂λ(·) (44)

see Bai–Gasinski–Winkert–Zeng [37]).
We assume that Kk̂λ

is finite. Otherwise, on account of (42) we already have an infinity of nontrivial
mooth solutions of (Pλ) and so we are done. Using Theorem 5.7.6, p.449 of Papageorgiou–Rădulescu–
epovš [21], we can find ρ ∈ (0, 1) small such that

k̂λ(uλ) < inf
{
k̂λ(u) : ∥u− uλ∥ = ρ

}
= m̂λ. (45)

Let û1(p) ∈ W 1,p(Ω) be the positive, Lp-normalized (that is, ∥û1(p)∥p = 1) eigenfunction corresponding
o λ̂1(p) > 0, then û1(p) ∈ intC+ and on account of hypothesis H1(ii) we have

k̂ (tû (p)) → −∞ as t → +∞. (46)
λ 1

16
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Claim: k̂λ(·) satisfies the nonsmooth C-condition.
Consider a sequence {un}n∈N ⊆ W 1,p(Ω) such that

k̂λ(un) ≤ c15 for some c15 > 0, all n ∈ N, (47)

(1 + ∥un∥)mk̂λn
(un) → 0 as n → ∞. (48)

We can find û∗
n ∈ ∂k̂λ(un) such that mk̂λn

(un) = ∥û∗
n∥∗ for all n ∈ N. We have

û∗
n = γ′

p(un) +Aq(un) −Nf̂ (un) − h∗
n (49)

ith h∗
n(z) ∈ ∂Tλ(z, un(z)) for a.a. z ∈ Ω , all n ∈ N.

From (48) and (49) we have⏐⏐⏐⏐⟨γ′
p(un), h⟩ + ⟨Aq(un), h⟩ −

∫
Ω

f̂(z, un)hdz −
∫
Ω

h∗
nhdz

⏐⏐⏐⏐ ≤ εn∥h∥
1 + ∥un∥

(50)

or all h ∈ W 1,p(Ω), with εn → 0+. In (50) we use the test function h = −u−
n ∈ W 1,p(Ω). Then

γp(u−
n ) + ∥Du−

n ∥q
q ≤

∫
Ω

f̂(z,−u−
n )(−u−

n )dz + c16

for some c16 > 0, all n ∈ N (see (40))

≤
∫
Ω

[θ(z) + ε](u−
n )pdz + c17[1 + ∥u−

n ∥]

for some c17 > 0, all n ∈ N (see (4)),
⇒ [ĉ− ε]∥u−

n ∥p ≤ c17[1 + ∥u−
n ∥] for all n ∈ N (see Proposition 1).

Choosing ε ∈ (0, ĉ) we infer that

{u−
n }n∈N ⊆ W 1,p(Ω) is bounded. (51)

Suppose that ∥u+
n ∥ → ∞ and let yn = u+

n

∥u+
n ∥

, n ∈ N. Then ∥yn∥ = 1, yn ≥ 0 for all n ∈ N. So, we may
ssume that

yn
w−→ y in W 1,p(Ω) and yn → y in Lr(Ω) and in Lp(∂Ω). (52)

From (50) we have

⟨γ′
p(yn), h⟩ + 1

∥u+
n ∥p−q

⟨Aq(yn), h⟩

≤ ε′
n∥h∥ +

∫
Ω

f̂(z, u+
n )

∥u+
n ∥p−1hdz +

∫
Ω

h∗
n

∥u+
n ∥p−1hdz (53)

or all h ∈ W 1,p(Ω), with ε′
n → 0+ (see (51)).

First we assume that f(z, ·) is (p− 1)-linear (that is, r = p in H1(i)). Let h = yn − y ∈ W 1,p(Ω) in (53)
nd pass to the limit as n → ∞. Using (52), we obtain

lim
n→∞

⟨Ap(yn), yn − y⟩ = 0,

⇒ yn → y in W 1,p(Ω) and so ∥y∥ = 1, y ≥ 0. (54)

On account of hypothesis H1(i) (with r = p), we have that{
f̂(·, un(·))
∥u+∥p−1

}
⊆ Lp′

(Ω),
(

1
p

+ 1
p′ = 1

)

n

n∈N
17
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and so using also hypothesis H1(ii), we can say that

f̂(·, un(·))
∥u+

n ∥p−1
w−→ η̂(·)yp−1 in Lp′

(Ω) (55)

ith η̂ ∈ L∞(Ω), η(z) ≤ η̂(z) for a.a. z ∈ Ω .
Passing to the limit as n → ∞ in (53) and using (54) and (55), we obtain

⟨γ′
p(y), h⟩ =

∫
Ω

η̂(z)yp−1h dz for all h ∈ W 1,p(Ω),

⇒

{
−∆py + ξ(z)yp−1 = η̂(z)yp−1, in Ω ,
∂y

∂np
+ β(z)yp−1 = 0, on ∂Ω .

(56)

Using Proposition 2, we have
λ̃1(p, η̂) < λ̃1(p, λ̂1(p)) = 1.

So, from (56) it follows that y(·) must be nodal, a contradiction.
Now we assume that f(z, ·) is (p− 1)-superlinear. Then from (47) and (51), we have∫

Ω

F (z, u+
n )

∥u+
n ∥p

dz ≤ 1
p
γp(yn) + ε′′

n with ε′′
n → 0+.

Since the right hand side is bounded and

F (·, u+
n (·))

∥u+
n ∥p

= F (·, u+
n (·))

(u+
n (·))p

(yn(·))p, n ∈ N,

e see that y = 0. In (53) we choose h = yn ∈ W 1,p(Ω) and as before (see the proof of Proposition 9), we
ave

γp(yn) → 0,
⇒ yn → 0 in W 1,p(Ω) (see (11)),

contradiction to the fact that ∥yn∥ = 1 for all n ∈ N.
So, in both cases we have proved that

{u+
n }n∈N ⊆ W 1,p(Ω) is bounded,

⇒ {un}n∈N ⊆ W 1,p(Ω) is bounded (see (51)).

We may assume that

un
w−→ u in W 1,p(Ω) and un → u in Lr(Ω) and in Lp(∂Ω). (57)

From (48) and (49), we have⏐⏐⏐⏐⟨γ′
p(un), h⟩ + ⟨Aq(un), h⟩ −

∫
Ω

f̂(z, un)hdz −
∫
Ω

h∗
nhdz

⏐⏐⏐⏐ ≤ εn∥h∥
1 + ∥un∥

or all h ∈ W 1,p(Ω), with ε → 0+.
n

18
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Choosing h = un − u ∈ W 1,p(Ω), passing to the limit as n → ∞ and using (57), we obtain

lim
n→∞

⟨Ap(un), un − u⟩ = 0,

⇒ un → u in W 1,p(Ω) (see Proposition 3),
⇒ k̂λ(·) satisfies the nonsmooth C-condition.

his proves the Claim.
Then (45), (46) and the Claim permit the use of the mountain pass theorem. So, we can find ûλ ∈ W 1,p(Ω)

uch that

ûλ ∈ Kk̂λ
and m̂λ ≤ k̂λ(ûλ),

⇒ ûλ ∈ intC+, ûλ ≥ uµ and ûλ ̸= uλ (see (42), (45)).

Moreover, as in the proof of Proposition 8, using the comparison principle of [35] (Proposition 2.10), we
ave that

uµ(z) < ûλ(z),
⇒ ûλ ∈ Sλ.

he proof is now complete. □

Next we show the admissibility of the critical parameter value λ∗.

roposition 11. If hypotheses H0 and H1 hold, then λ∗ ∈ L .

roof. Consider a sequence {λn}n∈N ⊆ (0, λ∗) such that λn ↑ λ∗ and let un ∈ Sλn ⊆ C1(Ω̄)\{0} for all
∈ N. We claim that

ū ≤ un for all n ∈ N. (58)

For fixed n ∈ N, consider the Carathéodory function

e(z, x) =
{

(θ(z) + ε)|x−|p−2(−x−) − c1, if x ≤ −u−
n (z),

(θ(z) + ε)|u−
n (z)|p−2(−u−

n (z)) − c1, if − u−
n (z) < x.

(59)

We set E(z, x) =
∫ x

0 e(z, s)ds and consider the C1-functional ψ : W 1,p(Ω) → R defined by

ψ(u) = 1
p
γp(u) + 1

q
∥Du∥q

q −
∫
Ω

E(z, u)dz for all u ∈ W 1,p(Ω).

From (59) and using Proposition 1 and (1), we show that ψ(·) is coercive. Also, it is sequentially weakly
ower semicontinuous. So, we can find ũ ∈ W 1,p(Ω) such that

ψ(ũ) = inf
{
ψ(u) : u ∈ W 1,p(Ω)

}
,

⇒ ψ′(ũ) = 0,

⇒ ⟨γ′
p(ũ), h⟩ + ⟨Aq(ũ), h⟩ =

∫
Ω

e(z, ũ)hdz (60)

1,p
or all h ∈ W (Ω).
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In (60) we choose u = (ũ− un)+ ∈ W 1,p(Ω). Then

⟨γ′
p(ũ), (ũ− un)+⟩ + ⟨Aq(ũ), (ũ− un)+⟩

=
∫
Ω

(
[θ(z) + ε]|u−

n |p−2(−u−
n ) − c1

)
(ũ− un)+dz

(note that (ũ− un)+ ⇒ ũ ≥ −u−
n , and see (59))

≤
∫
Ω

(
f(z,−u−

n ) + λnθ̂(z)
)

(ũ− un)+dz

(see (4) and recall that θ̂ ≥ 0)

≤
∫
Ω

(
f(z, un) + λnθ̂(z)

)
(ũ− un)+dz

(on account of the sign condition, see H1(iv))
=⟨γ′

p(un), (ũ− un)+⟩ + ⟨Aq(un), (ũ− un)+⟩,
⇒ ũ ≤ un. (61)

Also choosing h = ũ+ ∈ W 1,p(Ω) in (60), we obtain

γp(ũ+) + ∥Dũ+∥q
q ≤ 0, (see (59))

⇒ ũ ≤ 0, ũ ̸= 0.

From (61), we have u−
n ≤ ũ− = −ũ ⇒ ũ ≤ −u−

n . Therefore, from (59) and Proposition 4, we infer that

ũ = ū ≤ un (see (61)).

his proves (58).
Consider the functional k̂λn(·) from the proof Proposition 10 but with uµ(·) replaced by ū(·). Then from

he proof of Proposition 10, we have

k̂λn(un) ≤ k̂λn(ū) ≤ k̂λ1(ū) = m∗, (62)

γ′
p(un) +Aq(un) = Nk̂λn

(un) + h∗
n (63)

ith h∗
n(z) ∈ ∂xTλ(z, un(z)) for a.a. z ∈ Ω .

Using (62) and (63) and reasoning as in the Claim in the proof of Proposition 10, we obtain that at least
or a subsequence, we have

un → u∗ in W 1,p(Ω),
⇒ u∗ ∈ Sλ∗ and so λ∗ ∈ L .

he proof is now complete. □

Finally, we can state the following global existence and multiplicity result for the Ambrosetti–Prodi
roblem (Pλ).

heorem 12. If hypotheses H0 and H1 hold, then there exists λ∗ > 0 such that

a) for all λ ∈ (0, λ∗), problem (Pλ) has at least two solutions uλ, ûλ ∈ C1(Ω̄)\{0}, uλ ̸= ûλ;
(b) for all λ = λ∗, problem (Pλ) has at least one solution u∗ ∈ C1(Ω̄)\{0};
(c) for all λ > λ∗, problem (P ) has no solution.
λ
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