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a b s t r a c t

We consider a nonlinear Robin problem driven by the sum of p-Laplacian and
q-Laplacian (i.e. the (p, q)-equation). In the reaction there are competing effects of
a singular term and a parametric perturbation λf(z, x), which is Carathéodory and
(p − 1)-superlinear at x ∈ R, without satisfying the Ambrosetti–Rabinowitz condi-
tion. Using variational tools, together with truncation and comparison techniques,
we prove a bifurcation-type result describing the changes in the set of positive
solutions as the parameter λ > 0 varies.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω . In this paper, we study the following
onlinear Robin problem⎧⎨⎩

−∆pu(z) − ∆qu(z) + ξ(z)u(z)p−1 = u(z)−γ + λf(z, u(z)) in Ω ,

∂u

∂npq
+ β(z)up−1 = 0 on ∂Ω , u > 0, λ > 0, 0 < γ < 1, 1 < q < p.

⎫⎬⎭ (Pλ)

For every r ∈ (1, ∞), we denote by ∆r the r-Laplace differential operator defined by

∆ru = div (|Du|r−2
Du) for all u ∈ W 1,r(Ω).

The differential operator of (Pλ) is the sum of p-Laplacian and q-Laplacian. Such an operator is not
omogeneous and it appears in the mathematical models of various physical processes. We mention the
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works of Cherfils & Ilyasov [1] (reaction–diffusion systems) and Zhikov [2] (elasticity theory). The potential
function ξ ∈ L∞(Ω) satisfies ξ(z) ⩾ 0 for almost all z ∈ Ω . In the reaction (the right-hand side of (Pλ)), we
ave the combined effects of two nonlinearities of different nature. One nonlinearity is the singular term u−γ

nd the other nonlinearity is the parametric term λf(z, x), where f(z, x) is a Carathéodory function (that
s, for all x ∈ R, the mapping z ↦→ f(z, x) is measurable and for almost all z ∈ Ω , the mapping x ↦→ f(z, x) is
ontinuous), which exhibits (p−1)-superlinear growth near +∞ but without satisfying the usual in such cases
mbrosetti–Rabinowitz condition (the AR-condition for short). In the boundary condition, ∂u

∂npq
denotes the

onormal derivative corresponding to the (p, q)-Laplace differential operator. Then according to the nonlinear
reen’s identity (see Gasinski & Papageorgiou [3, p. 210]), we have

∂u

∂npq
= (|Du|p−2

Du + |Du|q−2
Du, n) for all u ∈ C1(Ω),

ith n(·) being the outward unit normal on ∂Ω . The boundary coefficient β ∈ C0,α(∂Ω) (with 0 < α < 1)
atisfies β(z) ⩾ 0 for all z ∈ ∂Ω .

In the past, nonlinear singular problems were studied only in the context of Dirichlet equations driven
y the p-Laplacian (a homogeneous differential operator). We mention the works of Giacomoni, Schindler &
akač [4], Papageorgiou, Rădulescu & Repovš [5,6], Papageorgiou & Smyrlis [7], Papageorgiou & Winkert [8],
nd Perera & Zhang [9]. Nonlinear elliptic problems with unbalanced growth have been studied recently by
apageorgiou, Rădulescu and Repovš [10–12]. Double-phase transonic flow problems with variable growth
ave been considered by Bahrouni, Rădulescu and Repovš [13]. A comprehensive study of semilinear singular
roblems can be found in the book of Ghergu & Rădulescu [14].

Using variational methods based on the critical point theory together with suitable truncation and
omparison techniques, we prove a bifurcation type result, describing in a precise way the dependence of
he set of positive solutions of (Pλ) on the parameter. So, we produce a critical parameter value λ∗ > 0 such
hat for all λ ∈ (0, λ∗), problem (Pλ) has at least two positive solutions, for λ = λ∗ problem (Pλ) has at
east one positive solution and for λ > λ∗ there are no positive solutions for problem (Pλ).

. Mathematical background and hypotheses

Let X be a Banach space. By X∗ we denote the topological dual of X. Given φ ∈ C1(X,R), we say that
(·) satisfies the “C-condition”, if the following property holds

“Every sequence {un}n⩾1 ⊆ X such that
{φ(un)}n⩾1 ⊆ R is bounded and (1 + ∥un∥)φ′(un) → 0 in X∗ as n → ∞,
admits a strongly convergent subsequence.”

This is a compactness type condition on the functional φ, which leads to the minimax theory of the critical
values of φ(·).

The two main spaces in the analysis of problem (Pλ) are the Sobolev space W 1,p(Ω) and the Banach
pace C1(Ω). By ∥ · ∥ we denote the norm of the Sobolev space W 1,p(Ω). We have

∥u∥ =
[
∥u∥p

p + ∥Du∥p
p

] 1
p for all u ∈ W 1,p(Ω).

The Banach space C1(Ω) is ordered with positive (order) cone given by

C+ = {u ∈ C1(Ω) : u(z) ⩾ 0 for all z ∈ Ω}.

This cone has a nonempty interior

D = {u ∈ C : u(z) > 0 for all z ∈ Ω}.
+ +
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We will also consider another order cone (closed convex cone) in C1(Ω), namely the cone

Ĉ+ =
{

u ∈ C1(Ω) : u(z) ⩾ 0 for all z ∈ Ω ,
∂u

∂n
|∂Ω∩u−1(0) ⩽ 0

}
.

his cone has a nonempty interior

int Ĉ+ =
{

u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω ,
∂u

∂n
|∂Ω∩u−1(0) < 0

}
.

To take care of the Robin boundary condition, we will also use the “boundary” Lebesgue spaces
q(∂Ω)(1 ⩽ q ⩽ ∞). More precisely, on ∂Ω we consider the (N −1)-dimensional Hausdorff (surface) measure
(·). Using this measure on ∂Ω we can define in the usual way the Lebesgue spaces Lq(∂Ω)(1 ⩽ q ⩽ ∞).
e know that there exists a continuous, linear map γ0 : W 1,p(Ω) → Lp(∂Ω), known as the “trace map”

uch that
γ0(u) = u|∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω).

So, the trace map extends the notion of boundary values to all Sobolev functions. We have

im γ0 = W
1
p′ ,p(∂Ω) (1

p
+ 1

p′ = 1) and ker γ0 = W 1,p
0 (Ω).

The trace map γ0 is compact into Lq(∂Ω) for all q ∈
[
1, (N−1)p

N−p

)
if N > p and into Lq(∂Ω) for all q ⩾ 1

f p ⩾ N . In the sequel, for the sake of notational simplicity, we drop the use of the trace map γ0(·). All
estrictions of Sobolev functions on ∂Ω are understood in the sense of traces.

For every r ∈ (1, +∞), let Ar : W 1,r(Ω) → W 1,r(Ω)∗ be defined by

⟨Ar(u), h⟩ =
∫
Ω

|Du|r−2(Du, Dh)RN dz for all u, h ∈ W 1,r(Ω).

The following proposition summarizes the main properties of this map (see Gasinski & Papageorgiou [3]).

roposition 1. The map Ar(·) is bounded (that is, it maps bounded sets to bounded sets) continu-
us, monotone (hence maximal monotone, too) and of type (S)+, that is, if un

w−→ u in W 1,r(Ω) and
im supn→∞⟨Ar(un), un − u⟩, then un → u in W 1,r(Ω).

Evidently, the (S)+-property is useful in verifying the C-condition.
Now we introduce the conditions on the potential function ξ(·) and on the boundary coefficient β(·).
H(ξ): ξ ∈ L∞(Ω) and ξ(z) ⩾ 0 for almost all z ∈ Ω .
H(β): β ∈ C0,α(∂Ω) with 0 < α < 1 and β(z) ⩾ 0 for all z ∈ ∂Ω .
H0: ξ ̸≡ 0 or β ̸≡ 0.

Remark 1. When β ≡ 0 we have the usual Neumann problem.

The next two propositions can be found in Papageorgiou & Rădulescu [15].

Proposition 2. If ξ ∈ L∞(Ω), ξ(z) ⩾ 0 for almost all z ∈ Ω and ξ ̸≡ 0, then c0∥u∥p ⩽ ∥Du∥p
p +∫

Ω
ξ(z)|u|pdz for some c0 > 0 and all u ∈ W 1,p(Ω).

Proposition 3. If β ∈ L∞(∂Ω), β(z) ⩾ 0 for σ-almost all z ∈ ∂Ω and β ̸≡ 0, then c1∥u∥p ⩽
∥Du∥p +

∫
β(z)|u|pdσ for some c > 0 and all u ∈ W 1,p(Ω).
p ∂Ω 1
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In what follows, let γp : W 1,p(Ω) → R be defined by

γp(u) = ∥Du∥p
p +

∫
Ω

ξ(z)|u|pdz +
∫

∂Ω

β(z)|u|pdσ for all u ∈ W 1,p(Ω).

If hypotheses H(ξ), H(β), H0 hold, then from Propositions 2 and 3 we can infer that

c2∥u∥p ⩽ γp(u) for some c2 > 0 and all u ∈ W 1,p(Ω). (1)

As we have already mentioned in the Introduction, our approach also involves truncation and comparison
echniques. So, the next strong comparison principle, a slight variation of Proposition 4 of Papageorgiou &
myrlis [7], will be useful.

roposition 4. If ξ̂ ∈ L∞(Ω) with ξ̂(z) ⩾ 0 for almost all z ∈ Ω , h1, h2 ∈ L∞(Ω),

0 < c3 ⩽ h2(z) − h1(z) for almost all z ∈ Ω ,

nd the functions u1, u2 ∈ C1(Ω)\{0}, u1 ⩽ u2, u−γ
1 , u−γ

2 ∈ L∞(Ω) satisfy

−∆pu1 − ∆qu1 + ξ̂(z)up−1
1 − u−γ

1 = h1 for almost all z ∈ Ω ,

−∆pu2 − ∆qu2 + ξ̂(z)up−1
2 − u−γ

2 = h2 for almost all z ∈ Ω ,

hen u2 − u1 ∈ int Ĉ+.

Consider a Carathéodory function f0 : Ω × R → R satisfying

|f0(z, x)| ⩽ a0(z)[1 + |x|r−1] for almost all z ∈ Ω and all x ∈ R,

ith a0 ∈ L∞(Ω) and 1 < r ⩽ p∗ =

⎧⎨⎩
Np

N − p
if p < N

+∞ if N ⩽ p
(the critical Sobolev exponent corresponding to

).
We set F0(z, x) =

∫ x

0 f0(z, s)ds and consider the C1-functional φ0 : W 1,p(Ω) → R defined by

φ0(u) = 1
p

γp(u) + 1
q

∥Du∥q
q −

∫
Ω

F0(z, u)dz for all u ∈ W 1,p(Ω) (recall that q < p).

The next proposition can be found in Papageorgiou & Rădulescu [16] and essentially is an outgrowth of
the nonlinear regularity theory of Lieberman [17].

Proposition 5. If u0 ∈ W 1,p(Ω) is a local C1(Ω)-minimizer of φ0, that is, there exists ρ0 > 0 such that

φ0(u0) ⩽ φ0(u0 + h) for all ∥h∥C1(Ω) ⩽ ρ0,

hen u0 ∈ C1,α(Ω) for some α ∈ (0, 1) and u0 is also a local W 1,p(Ω)-minimizer of φ0, that is, there exists
1 > 0 such that

φ0(u0) ⩽ φ0(u + h) for all ∥h∥ ⩽ ρ1.

The next fact about ordered Banach spaces is useful in producing upper bounds for functions and can be
ound in Gasinski & Papageorgiou [18, p. 680] (Problem 4.180).

roposition 6. If X is an ordered Banach space with positive (order) cone K,

int K ̸= ∅ and e ∈ int K

hen for every u ∈ X we can find λ > 0 such that λ e − u ∈ K.
u u

4
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Under hypotheses H(ξ), H(β), H0, the differential operator u ↦→ −∆pu + ξ(z)|u|p−2
u with the Robin

oundary condition, has a principal eigenvalue λ̂1(p) > 0 which is isolated, simple and admits the following
ariational characterization:

λ̂1(p) = inf
{

γp(u)
∥u∥p

p
: u ∈ W 1,p(Ω), u ̸= 0

}
. (2)

The infimum is realized on the corresponding one-dimensional eigenspace, the elements of which have fixed
sign. By û1(p) we denote the positive, Lp-normalized (that is, ∥û1(p)∥p = 1) eigenfunction corresponding to
λ̂1(p) > 0. The nonlinear Hopf theorem (see, for example, Gasinski & Papageorgiou [3, p. 738]) implies that
û1(p) ∈ D+.

Let us fix some basic notation which we will use throughout this work. So, if x ∈ R, we set x± =
max{±x, 0} and the for u ∈ W 1,p(Ω) we define u±(z) = u(z)± for all z ∈ Ω . We know that

u± ∈ W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

If φ ∈ C1(W 1,p(Ω),R), then by Kφ we denote the critical set of φ, that is,

Kφ = {u ∈ W 1,p(Ω) : φ′(u) = 0}.

Also, if u, y ∈ W 1,p(Ω), with u ⩽ y, then we define

[u, y] = {h ∈ W 1,p(Ω) : u(z) ⩽ h(z) ⩽ y(z) for almost all z ∈ Ω},

[u) = {h ∈ W 1,p(Ω) : u(z) ⩽ h(z) for almost all z ∈ Ω},

intC1(Ω)[u, y] = the interior in the C1(Ω)-norm of [u, y] ∩ C1(Ω).

Now we introduce our hypotheses on the perturbation f(z, x).
H(f): f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for almost all z ∈ Ω and

(i) f(z, x) ⩽ a(z)(1 + xr−1) for almost all z ∈ Ω and all x ⩾ 0 with a ∈ L∞(Ω), p < r < p∗;
ii) if F (z, x) =

∫ x

0 f(z, s)ds, then limx→+∞
F (z,x)

xp = +∞ uniformly for almost all z ∈ Ω ;
iii) there exists τ ∈ ((r − p) max

{
N
p , 1

}
, p∗) such that

0 < β̂0 ⩽ lim inf
x→+∞

f(z, x)x − pF (z, x)
xτ

uniformly for almost all z ∈ Ω ;

iv) for every ϑ > 0, there exists mϑ > 0 such that

mϑ ⩽ f(z, x) for almost all z ∈ Ω and all x ⩾ ϑ;

v) for every ρ > 0 and λ > 0, there exists ξ̂λ
ρ > 0 such that for almost all z ∈ Ω , the function

x ↦→ f(z, x) + ξ̂λ
ρ xp−1 is nondecreasing on [0, ρ].

emark 2. Since we are looking for positive solutions and the above hypotheses concern the positive
emiaxis, without any loss of generality we may assume that

f(z, x) = 0 for almost all z ∈ Ω and all x ⩽ 0. (3)

From hypotheses H(f), (ii), (iii) it follows that

lim f(z, x) = +∞ uniformly for almost all z ∈ Ω .

x→+∞ xp−1

5



N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovš Nonlinear Analysis: Real World Applications 58 (2021) 103217

t
A

c
“

(
t

3

P
u

Hence, for almost all z ∈ Ω , the perturbation f(z, ·) is (p − 1)-superlinear near +∞. However,
his superlinearity of f(z, ·) is not expressed by using the well-known AR-condition. We recall that the
R-condition (unilateral version due to (3)) says that there exist q > p and M > 0 such that

0 < qF (z, x) ⩽ f(z, x)x for almost all z ∈ Ω and all x ⩾ M, (4a)
0 < ess inf

Ω
F (·, M). (4b)

Integrating (4a) and using (4b), we obtain the following weaker condition

c4xq ⩽ F (z, x) for almost all z ∈ Ω all x ⩾ M, and some c4 > 0,
⇒ c4xq−1 ⩽ f(z, x) for almost all z ∈ Ω and all x ⩾ M.

So, the AR-condition dictates at least (q − 1)-polynomial growth for f(z, ·). Here, we replace the AR-
ondition with hypothesis H(f)(iii) which is less restrictive and permits superlinear nonlinearities with
slower” growth near +∞. For example, the function

f(x) = xp−1 ln(1 + x) for all x ⩾ 0.

for the sake of simplicity we have dropped the z-dependence) satisfies hypotheses H(f), but fails to satisfy
he AR-condition.

We introduce the following sets:

L = {λ > 0 : problem (Pλ) has a positive solution},
Sλ = the set of positive solutions of (Pλ).

Also we set
λ∗ = sup L.

. Some auxiliary Robin problems

Let η > 0. First, we examine the following auxiliary Robin problem⎧⎨⎩
−∆pu(z) − ∆qu(z) + ξ(z)u(z)p−1 = η in Ω ,

∂u

∂npq
+ β(z)up−1 = 0 on ∂Ω , u > 0.

⎫⎬⎭ (6)

roposition 7. If hypotheses H(ξ), H(β), H0 hold, then for every η > 0 problem (6) has a unique solution
˜η ∈ D+, the mapping η ↦→ ũη is strictly increasing (that is, η < η′ ⇒ ũη′ − ũη ∈ int Ĉ+) and

ũη → 0 in C1(Ω) as η → 0+.

Proof. Consider the map V : W 1,p(Ω) → W 1,p(Ω)∗ defined by

⟨V (u), h⟩ = ⟨Ap(u), h⟩ + ⟨Aq(u), h⟩ +
∫
Ω

ξ(z)|u|p−2
uhdz +

∫
∂Ω

β(z)|u|p−2
uhdσ (7)

for all u, h ∈ W 1,p(Ω).

Evidently, V (·) is continuous, strictly monotone (hence maximal monotone, too) and coercive (see (1)).
Therefore V (·) is surjective (see Gasinski & Papageorgiou [3, Corollary 3.2.31, p. 319]). So, we can find
ũη ∈ W 1,p(Ω), ũη ̸= 0 such that

V (ũη) = η.

The strict monotonicity of V (·) implies that ũη is unique. We have

⟨V (ũη), h⟩ = η

∫
hdz for all h ∈ W 1,p(Ω). (8)
Ω

6
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In (8) we choose h = −ũ−
η ∈ W 1,p(Ω). Then

c2∥ũ−
η ∥p ⩽ 0 (see (1)),

⇒ ũη ⩾ 0, ũη ̸= 0.

From (8) we have⎧⎨⎩
−∆pũη(z) − ∆qũη(z) + ξ(z)ũη(z)p−1 = η for almost all z ∈ Ω ,

∂ũη

∂npq
+ β(z)ũp−1

η = 0 on ∂Ω .

⎫⎬⎭ (9)

rom (9) and Proposition 7 of Papageorgiou & Rădulescu [16] we deduce that

ũη ∈ L∞(Ω).

Then the nonlinear regularity theory of Lieberman [17] implies that

ũη ∈ C+\{0}.

From (9) we have

∆pũη(z) + ∆qũη(z) ⩽ ∥ξ∥∞ũη(z)p−1 for almost all z ∈ Ω ,

⇒ ũη ∈ D+ (see Pucci & Serrin [19, pp. 111, 120]).

Suppose that 0 < η1 < η2 and let ũη1 , ũη2 ∈ D+ be the corresponding solutions of problem (6). We have

−∆pũη1 − ∆qũη1 + ξ(z)ũp−1
η1 = η1 < η2 = −∆pũη2 − ∆qũη2 + ξ(z)ũη2

for almost all z ∈ Ω ,

⇒ ũη2 − ũη1 ∈ int Ĉ+ (see Proposition 4),
⇒ η ↦→ ũη is strictly increasing from (0, +∞) into C1(Ω).

Finally, let ηn → 0+ and let ũn = ũηn ∈ D+ be the corresponding solutions of (6). As before, invoking
roposition 7 of Papageorgiou & Rădulescu [16], we can find c5 > 0 such that

∥ũn∥∞ ⩽ c5 for all n ∈ N.

Then from Lieberman [17] we infer that there exist α ∈ (0, 1) and c6 > 0 such that

ũn ∈ C1,α(Ω), ∥ũn∥C1,α(Ω) ⩽ c6 for all n ∈ N.

Exploiting the compact embedding of C1,α(Ω) into C1(Ω), the monotonicity of the sequence {ũn}n⩾1 ⊆
+ and the fact that for η = 0, u ≡ 0 is the only solution of (6) we obtain

ũn → 0 in C1(Ω).

he proof is now complete. □

Using Proposition 7, we see that we can find η0 > 0 such that

η ⩽ ũη(z)−γ for all z ∈ Ω , 0 < η ⩽ η0. (10)

We consider the following purely singular problem{
−∆pu(z) − ∆qu(z) + ξ(z)u(z)p−1 = u(z)−γ in Ω ,

∂u + β(z)up−1 = 0 on ∂Ω , u > 0, 0 < γ < 1.

}
(11)
∂npq

7
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In the first place, by a solution of (11) we understand a weak solution, that is, a function u ∈ W 1,p(Ω)
such that

u−γh ∈ L1(Ω) and ⟨Ap(u), h⟩ + ⟨Aq(u), h⟩ +
∫
Ω

ξ(z)up−1hdz +
∫

∂Ω
β(z)up−1hdσ

=
∫
Ω

u−γhdz for all h ∈ W 1,p(Ω).

In fact, using the nonlinear regularity theory, we will be able to establish more regularity for the solution of
11), which in fact, is a strong solution (that is, the equation can be interpreted pointwise almost everywhere
n Ω).

roposition 8. If hypotheses H(ξ), H(β), H0 hold, then problem (11) admits a unique solution v ∈ D+.

roof. Let η ∈ (0, η0] (see (10)) and recall that ũη ∈ D+. So mη = minΩ ũη > 0 and

η ⩽ ũ−γ
η ⩽ m−γ

η (see (10)),
⇒ ũ−γ

η ∈ L∞(Ω). (12)

We consider the following truncation of the reaction in problem (11):

k(z, x) =
{

ũη(z)−γ if x ⩽ ũη(z)
x−γ if ũη(z) < x.

(13)

This is a Carathéodory function. We set K(z, x) =
∫ x

0 k(z, s)ds and consider the C1-functional Ψ :
1,p(Ω) → R defined by

Ψ(u) = 1
p

γp(u) + 1
q

∥Du∥q
q −

∫
Ω

K(z, u)dz for all u ∈ W 1,p(Ω).

From (12) and (13), we see that Ψ(·) is coercive. Also the Sobolev embedding theorem and the
ompactness of the trace map, imply that Ψ(·) is sequentially weakly lower semicontinuous. So, we can
nd v ∈ W 1,p(Ω) such that

Ψ(v) = inf{Ψ(u) : u ∈ W 1,p(Ω)},

⇒ Ψ ′(v) = 0,

⇒ ⟨Ap(v), h⟩ + ⟨Aq(v), h⟩ +
∫
Ω

ξ(z)|v|p−2
vhdz +

∫
∂Ω

β(z)|v|p−2
vhdσ =∫

Ω

k(z, v)hdz for all h ∈ W 1,p(Ω). (14)

In (14) we choose (ũη − v)+ ∈ W 1,p(Ω). Then

⟨Ap(v), (ũη − v)+⟩ + ⟨Aq(v), (ũη − v)+⟩ +
∫
Ω

ξ(z)|v|p−2
v(ũη − v)+dz +∫

∂Ω

β(z)|v|p−2
v(ũη − v)+dσ =

∫
Ω

ũ−γ
η (ũη − v)+dz (see (13))

⩾
∫
Ω

η(ũη − v)+dz (see (10) and recall that 0 < η ⩽ η0)

= ⟨Ap(ũη), (ũη − v)+⟩ + ⟨Aq(ũη), (ũη − v)+⟩ +
∫
Ω

ξ(z)ũp−1
η (ũη − v)+dz +∫

∂Ω

β(z)ũp−1
η (ũη − v)+dσ (see Proposition 7),

⇒ ũ ⩽ v. (15)
η

8
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Then from (13), (14), (15) we obtain⎧⎨⎩
−∆pv(z) − ∆qv(z) + ξ(z)v(z)p−1 = v(z)−γ for almost all z ∈ Ω ,

∂v

∂npq
+ β(z)vp−1 = 0 on ∂Ω

⎫⎬⎭ (16)

(see Papageorgiou & Rădulescu [20]).

From (15) we have v−γ ⩽ ũ−γ
η ∈ L∞(Ω) (see (12)). So, from (16) and [16] we have v ∈ L∞(Ω). Then the

nonlinear regularity theory of Lieberman [17] implies that v ∈ C+. Hence it follows from (15) that

v ∈ D+.

Next, we show that this positive solution is unique. To this end, let v̂ ∈ W 1,p(Ω) be another positive
olution of (11). Again we have v̂ ∈ D+. Then

⟨Ap(v), (v̂ − v)+⟩ + ⟨Aq(v), (v̂ − v)+⟩ +
∫
Ω

ξ(z)vp−1(v̂ − v)+dz +∫
∂Ω

β(z)vp−1(v̂ − v)+dσ

=
∫
Ω

v−γ(v̂ − v)+dz

⩾
∫
Ω

v̂−γ(v̂ − v)+dz

= ⟨Ap(v̂), (v̂ − v)+⟩ + ⟨Aq(v̂), (v̂ − v)+⟩ +
∫
Ω

ξ(z)v̂p−1(v̂ − v)+dz +∫
∂Ω

β(z)v̂p−1(v̂ − v)+dσ

⇒ v̂ ⩽ v.

Interchanging the roles of v and v̂ in the above argument, we obtain

v ⩽ v̂,
⇒ v = v̂.

This proves the uniqueness of the positive solution of the purely singular problem (11). □

Next, we consider the following nonlinear Robin problem⎧⎨⎩
−∆pu(z) − ∆qu(z) + ξ(z)u(z)p−1 = v(z)−γ + 1 in Ω ,

∂u

∂npq
+ β(z)up−1 = 0 on ∂Ω , u > 0.

⎫⎬⎭ (17)

roposition 9. If hypotheses H(ξ), H(β), H0 hold, then problem (17) admits a unique solution u ∈ D+
nd v ⩽ u.

Proof. We know that v−γ ∈ L∞(Ω) (see (12) and (15)). Then the existence and uniqueness of the solution
u ∈ W 1,p(Ω)\{0}, u ⩾ 0 of (17) follow from the surjectivity and strict monotonicity of the map V (·) (see
he proof of Proposition 7). The nonlinear regularity theory and the nonlinear Hopf’s theorem imply that

u ∈ D+.
Moreover, we have

⟨Ap(u), (v − u)+⟩ + ⟨Aq(u), (v − u)+⟩ +
∫
Ω

ξ(z)up−1(v − u)+dz +∫
β(z)up−1(v − u)+dσ
∂Ω

9
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=
∫
Ω

[v−γ + 1](v − u)+dz (see (17))

⩾
∫
Ω

v−γ(v − u)+dz

= ⟨Ap(v), (v − u)+⟩ + ⟨Aq(v, (v − v)+)⟩ +
∫
Ω

ξ(z)vp−1(v − v)+dz +∫
∂Ω

β(z)vp−1(v − v)+dσ

⇒ v ⩽ u.

he proof is now complete. □

. Positive solutions

In this section we prove the bifurcation-type theorem described in the Introduction.

roposition 10. If hypotheses H(ξ), H(β), H0, H(f) hold, then L ≠ ∅ and Sλ ⊆ D+.

roof. Let v ∈ D+ be the unique positive solution of the auxiliary problem (11) (see Proposition 8) and
u ∈ D+ the unique solution of (17) (see Proposition 9). We know that v ⩽ u (see Proposition 9). Since
u ∈ D+, hypothesis H(f)(i) implies that

0 ⩽ f(z, u(z)) ⩽ c7 for some c7 > 0 and almost all z ∈ Ω .

So, we can find λ0 > 0 so small that

0 ⩽ λf(z, u(z)) ⩽ 1 for almost all z ∈ Ω and all 0 < λ ⩽ λ0. (18)

We consider the following truncation of the reaction in problem (Pλ)

ϑλ(z, x) =

⎧⎨⎩ v(z)−γ + λf(z, v(z)) if x < v(z)
x−γ + λf(z, x) if v(z) ⩽ x ⩽ u(z)
u(z)−γ + λf(z, u(z)) if u(z) < x.

(19)

This is a Carathéodory function. We set θλ(z, x) =
∫ x

0 ϑλ(z, s)ds and consider the functional µλ :
1,p(Ω) → R (λ ∈ (0, λ0]) defined by

µλ(u) = 1
p

γp(u) + 1
q

∥Du∥q
q −

∫
Ω

θλ(z, u)dz for all u ∈ W 1,p(Ω).

Since 0 ⩽ u−γ ⩽ v−γ ∈ L∞(Ω), we see that µλ ∈ C1(W 1,p(Ω)). Also, it is clear from (1) and (19), that
λ(·) is coercive. In addition, it is sequentially weakly lower semicontinuous. So, we can find uλ ∈ W 1,p(Ω)
uch that

µλ(uλ) = inf
{

µλ(u) : u ∈ W 1,p(Ω)
}

,

⇒ µ′
λ(uλ) = 0,

⇒ ⟨Ap(uλ), h⟩ + ⟨Aq(uλ), h⟩ +
∫
Ω

ξ(z)|uλ|p−2
uλhdz +

∫
∂Ω

β(z)|uλ|p−2
uλhdσ

=
∫
Ω

ϑλ(z, uλ)hdz for all h ∈ W 1,p(Ω). (20)
10
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In (20) first we choose h = (uλ − u)+ ∈ W 1,p(Ω). Then

⟨Ap(uλ), (uλ − u)+⟩ + ⟨Aq(uλ), (uλ − u)+⟩ +
∫
Ω

ξ(z)up+
λ (uλ − u)+dz +∫

∂Ω

β(z)up−1
λ (uλ − u)dσ

=
∫
Ω

[u−γ + λf(z, u)](uλ − u)+dz (see (19)))

⩽
∫
Ω

[u−γ + 1](uλ − u)+dz (see (18))

⩽
∫
Ω

[v−γ + 1](uλ − u)+dz (since v ⩽ u)

= ⟨Ap(u), (uλ − u)+⟩ + ⟨Aq(u), (uλ − u)+⟩ +
∫
Ω

ξ(z)up−1(uλ − u)+dz

+
∫

∂Ω

β(z)up−1(uλ − u)+dσ (see Proposition 9),

⇒ uλ ⩽ u.

Next, in (20) we choose h = (v − uλ)+ ∈ W 1,p(Ω). Then

⟨Ap(uλ), (v − uλ)+⟩ + ⟨Aq(uλ), (v − uλ)+⟩ +
∫
Ω

ξ(z)|uλ|p−2
uλ(v − uλ)+dz +∫

∂Ω

β(z)|uλ|p−2
uλ(v − uλ)+dσ

=
∫
Ω

[v−γ + λf(z, v)](v − uλ)+dz(see (19))

⩾
∫
Ω

v−γ(v − uλ)+dz(since f ⩾ 0)

= ⟨Ap(v), (v − uλ)+⟩ + ⟨Aq(v), (v − uλ)+⟩ +
∫

λ

ξ(z)vp−1(v − uλ)+dz

+
∫

∂Ω

β(z)vp−1(v − uλ)+dσ (see Proposition 8),

⇒ v ⩽ uλ.

So, we have proved that
uλ ∈ [v, u]. (21)

From (19), (20), (21) it follows that⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆puλ(z) − ∆quλ(z) + ξ(z)uλ(z)p−1 = uλ(z)−γ + λf(z, uλ(z))
for almost all z ∈ Ω ,

∂uλ

∂npq
+ β(z)up−1

λ = 0 on ∂Ω , (see [20]).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (22)

By (22) and Proposition 7 of Papageorgiou & Rădulescu [16], we have that uλ ∈ L∞(Ω). So, the nonlinear
egularity theory of Lieberman [17] implies that uλ ∈ D+ (see (21)). Therefore we have proved that

(0, λ0] ⩽ L ≠ ∅ and Sλ ⊆ D+.

he proof is now complete. □
11
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Next, we establish a lower bound for the elements of Sλ.

roposition 11. If hypotheses H(ξ), H(β), H0, H(f) hold, λ ∈ L and u ∈ Sλ, then v ⩽ u.

roof. From Proposition 10 we know that u ∈ D+. Then Proposition 7 implies that for η > 0 small enough,
e have ũη ⩽ u. So, we can define the following Carathéodory function

e(z, x) =

⎧⎪⎨⎪⎩
ũη(z)−γ if x < ũη(z)
x−γ if ũη(z) ⩽ x ⩽ u(z)
u(z)−γ if u(z) < x.

(23)

We set E(z, x) =
∫ x

0 e(z, s)ds and consider the functional d : W 1,p(Ω) → R defined by

d(u) = 1
p

γp(u) + 1
q

∥Du∥q
q −

∫
Ω

E(z, u)dz for all u ∈ W 1,p(Ω).

As before, we have d ∈ C1(W 1,p(Ω)). Also, d(·) is coercive (see (23)) and weakly lower semicontinuous.
ence, we can find v̂ ∈ W 1,p(Ω) such that

d(û) = inf{d(u) : u ∈ W 1,p(Ω)},
⇒ d′(v̂) = 0,

⇒ ⟨Ap(v̂), h⟩ + ⟨Aq(v̂), h⟩ +
∫
Ω

ξ(z)|v̂|p−2
v̂hdz +

∫
∂Ω

β(z)|v̂|p−2
v̂hdσ =∫

Ω

e(z, v̂)hdz for all h ∈ W1,p(Ω).

(24)

In (24) first we choose h = (v̂ − u)+ ∈ W 1,p(Ω). Exploiting the fact that u ∈ Sλ and recalling that f ⩾ 0,
e obtain v̂ ⩽ u. Next, in (24) we test with h = (ũη − v)+ ∈ W 1,p(Ω). Using (23), (10) and Proposition 7,
e obtain ũη ⩽ v̂. Therefore

v̂ ∈ [ũη, u]. (25)

From (23), (24), (25) and Proposition 8, we conclude that

v̂ = v,
⇒ v ⩽ u for all u ∈ Sλ.

he proof is now complete. □

Now we can deduce a structural property of L.

roposition 12. If hypotheses H(ξ), H(β), H0, H(f) hold, λ ∈ L, 0 < µ < λ and uλ ∈ Sλ ⊆ D+, then
∈ L and we can find uµ ∈ Sµ ⊆ D+ such that uλ − uµ ∈ int Ĉ+.

Proof. From Proposition 11 we know that v ⩽ uλ. Therefore we can define the following Carathéodory
function

k̂µ(z, x) =

⎧⎨⎩ v(z)−γ + µf(z, v(z)) if x < v(z)
x−γ + µf(z, x) if v(z) ⩽ x ⩽ uλ(z)
uλ(z)−γ + µf(z, uλ(z)) if uλ(z) < x.

(26)

We set K̂µ(z, x) =
∫ x

0 k̂µ(z, s)ds and consider the C1-functional Ψ̂µ : W 1,p(Ω) → R defined by

Ψ̂µ(u) = 1
γp(u) + 1∥Du∥q

q −
∫

K̂µ(z, u)dz for all u ∈ W 1,p(Ω).

p q Ω

12
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Evidently, Ψ̂µ(·) is coercive (see (26)) and sequentially weakly lower semicontinuous. So, we can find
uµ ∈ W 1,p(Ω) such that

Ψ̂µ(uµ) = inf
{
Ψ̂µ(u) : u ∈ W 1,p(Ω)

}
,

⇒ Ψ̂ ′
µ(uµ) = 0,

⇒ ⟨Ap(uµ), h⟩ + ⟨Aq(uµ), h⟩ +
∫
Ω

ξ(z)|uµ|p−2
uµhdz +

∫
∂Ω

β(z)|uµ|p−2
uµhdσ

=
∫
Ω

k̂µ(z, uµ)hdz for all h ∈ W 1,p(Ω). (27)

In (27) first we choose h = (uµ − uλ)+ ∈ W 1,p(Ω). Using (26), the fact that µ < λ and that f ⩾ 0 and
ecalling that uλ ∈ Sλ, we conclude that uµ ⩽ uλ. Next, in (27) we choose h = (v − uµ)+ ∈ W 1,p(Ω). From
26), the fact that f ⩾ 0 and Proposition 8, we infer that v ⩽ uµ. Therefore we have proved that

uµ ∈ [v, uλ]. (28)

From (26), (27), (28) it follows that

uµ ∈ Sµ ⊆ D+(see Proposition 10).

Let ρ = ∥uλ∥∞ and let ξ̂λ
ρ > 0 be as postulated by hypothesis H(f)(v). We have

−∆puλ(z) − ∆quµ(z) +
[
ξ(z) + ξ̂λ

ρ

]
uµ(z)p−1 − uµ(z)−γ

= µf(z, uµ(z)) + ξ̂λ
ρ uµ(z)p−1

= λf(z, uµ(z)) + ξ̂λ
ρ uµ(z)p−1 − (λ − µ)f(z, uµ(z))

< λf(z, uµ(z)) + ξ̂λ
ρ uλ(z)p−1 (recall that λ > µ)

⩽ λf(z, uλ(z)) + ξ̂λ
ρ uλ(z)p−1 (see (28) and hypothesis H(f)(v))

= −∆puλ(z) − ∆quλ(z) +
[
ξ(z) + ξ̂λ

ρ

]
uλ(z)p−1 − uλ(z)−λ for almost all z ∈ Ω (29)

(recall that uλ ∈ Sλ).

We know that
0 ⩽ u−γ

µ , u−γ
λ ⩽ v−γ ∈ L∞(Ω).

Also, from hypothesis H(f)(iv) and since uµ ∈ D+, we have

0 < c8 ⩽ (λ − µ)f(z, uµ(z)) for almost all z ∈ Ω .

Invoking Proposition 4, from (29) we conclude that

uλ − uµ ∈ int Ĉ+.

he proof is now complete. □

roposition 13. If hypotheses H(ξ), H(β), H0, H(f) hold, then λ∗ < +∞.

roof. On account of hypotheses H(f)(i) → (iv), we can find λ0 > 0 so big that

x−γ + λ f(z, x) ⩾ xp−1 for almost all z ∈ Ω and all x ⩾ 0. (30)
0

13
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Let λ > λ0 and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ D+ (see Proposition 10). Then
λ = minΩ uλ > 0. For δ ∈ (0, 1) we set mδ

λ = mλ + δ and for ρ = ∥uλ∥∞ let ξ̂λ
ρ > 0 be as postulated by

ypothesis H(f)(v). We have

−∆pmδ
λ − ∆qmδ

λ + [ξ(z) + ξ̂ρ](mδ
λ)p−1 − (mδ

λ)−γ

= [ξ(z) + ξ̂λ
ρ ]mp−1

λ − m−γ
λ + χ(δ) with χ(δ) → 0+as δ → 0+

< ξ(z)mp−1
λ + (1 + ξ̂λ

ρ )mp−1
λ − m−γ

λ + χ(δ)
⩽ λ0f(z, mλ) + [ξ(z) + ξ̂λ

ρ ]mp−1
λ + χ(δ) (see (30))

⩽ λ0f(z, uλ) + [ξ(z) + ξ̂λ
ρ ]up−1

λ + χ(δ)( see hypothesis H(f)(v))
= λf(z, uλ) + [ξ(z) + ξ̂λ

ρ ]up−1
λ − (λ − λ0)f(z, uλ) + χ(δ)

= λf(z, uλ) + [ξ(z) + ξ̂λ
ρ ]up−1

λ for δ ∈ (0, 1) small
(recall that uλ ∈ D+and see H(f)(iv))

= −∆puλ − ∆quλ + [ξ(z) + ξ̂λ
ρ ]up−1

λ − u−γ
λ . (31)

Since (λ − λ0)f(z, uλ) − χ(δ) ⩾ c9 > 0 for almost all z ∈ Ω and for δ ∈ (0, 1) small (just recall that
λ ∈ D+ and use hypothesis H(f)(iv)), invoking Proposition 4, from (31) we infer that

uλ − mδ
λ ∈ int Ĉ+ for all δ ∈ (0, 1) small enough.

However, this contradicts the definition of mλ. It follows that λ /∈ L and so λ∗ ⩽ λ0 < +∞. □

Therefore we have
(0, λ∗) ⊆ L ⊆ (0, λ∗].

roposition 14. If hypotheses H(ξ), H(β), H0, H(f) hold and λ ∈ (0, λ∗), then problem (Pλ) has at least
wo positive solutions

u0, û ∈ D+, u0 ̸= û.

roof. Let 0 < µ < λ < η < λ∗. According to Proposition 12, we can find uη ∈ Sη ⊆ D+, u0 ∈ Sλ ⊆ D+
nd uµ ∈ Sµ ⊆ D+ such that

uη − u0 ∈ int Ĉ+ and u0 − uµ ∈ int Ĉ+,

⇒ u0 ∈ intC1(Ω̂)[uµ, uη].
(32)

We introduce the following Carathéodory function

τ̃λ(z, x) =

⎧⎨⎩ uµ(z)−γ + λf(z, uµ(z)) if x < uµ(z)
x−γ + λf(z, x) if uµ(z) ⩽ x ⩽ uη(z)
uη(z)−γ + λf(z, uη(z)) if uη(z) < x.

(33)

Set T̃λ(z, x) =
∫ x

0 τ̃λ(z, s)ds and consider the C1-functional Ψ̃λ : W 1,p(Ω) → R defined by

Ψ̃λ(u) = 1
p

γp(u) + 1
q

∥Du∥q
q −

∫
λ

T̃λ(z, u)dz for all u ∈ W 1,p(Ω).

Using (33) and the nonlinear regularity theory, we can easily check that

KΨ̃λ
⊆ [uµ, uη] ∩ D+. (34)

Also, consider the Carathéodory function

τ∗
λ(z, x) =

{
uµ(z)−γ + λf(z, uµ(z)) if x ⩽ uµ(z)

−γ (35)

x + λf(z, x) if uµ(z) < x.

14
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We set T ∗
λ (z, x) =

∫ x

0 τ∗
λ(z, s)ds and consider the C1-functional Ψ∗

λ : W 1,p(Ω) → R defined by

Ψ∗
λ(u) = 1

p
γp(u) + 1

q
∥Du∥q

q −
∫
Ω

T ∗
λ (z, u)dz for all u ∈ W 1,p(Ω).

For this functional using (35), we show that

KΨ∗
λ

⊆ [uµ) ∩ D+. (36)

From (33) and (35) we see that

Ψ̃λ

⏐⏐⏐
[uµ,uη ]

= Ψ∗
λ

⏐⏐⏐
[uµ,uη ]

and Ψ̃ ′
λ

⏐⏐⏐
[uµ,uη ]

= (Ψ∗
λ)′

⏐⏐⏐
[uµ,uλ]

. (37)

From (34), (36), (37), it follows that without any loss of generality, we may assume that

KΨ∗
λ

∩ [uµ, uη] = {u0}. (38)

Otherwise it is clear from (35) and (36) that we already have a second positive smooth solution for problem
Pλ) and so we are done.

Note that Ψ̃λ(·) is coercive (see (33)). Also, it is sequentially weakly lower semicontinuous. So, we can
nd û0 ∈ W 1,p(Ω) such that

Ψ̃λ(û0) = inf
{
Ψ̃λ(u) : u ∈ W 1,p(Ω)

}
,

⇒ û0 ∈ KΨ̃λ
,

⇒ û0 ∈ KΨ∗
λ

∩ [uµ, uη] (see (34),(37)) ,

⇒ û0 = u0 ∈ D+ (see (38)),
⇒ u0 is a local C1(Ω)-minimizer of Ψ∗

λ (see (32)),
⇒ u0 is a local W 1,p(Ω)-minimizer of Ψ∗

λ (see Proposition 5).

(39)

We assume that KΨ∗
λ

is finite. Otherwise on account of (35) and (36) we see that we already have an
nfinity of positive smooth solutions for problem (Pλ) and so we are done. Then (39) implies that we can
nd ρ ∈ (0, 1) small such that

Ψ∗
λ(u0) < inf {Ψ∗

λ(u) : ∥u − u0∥ = ρ} = m∗
λ

(see Papageorgiou, Rădulescu & Repovš [21, Theorem 5.7.6, p. 367]).
(40)

On account of hypothesis H(f)(ii) we have

Ψ∗
λ(tû1(p)) → −∞ as t → +∞. (41)

laim 1. Ψ∗
λ(·) satisfies the C - condition.

Let {un}n⩾1 ⊆ W1,p(Ω) be a sequence such that

|Ψ∗
λ(un)| ⩽ c10 for some c10 > 0 and all n ∈ N, (42)

(1 + ∥un∥)(Ψ∗
λ)′(un) → 0 in W 1,p(Ω)∗. (43)

From (43) we have

|⟨Ap(un), h⟩ + ⟨Aq(un), h⟩ +
∫
Ω

ξ(z)|un|p−2
unh dz +

∫
∂Ω

β(z)|un|p−2
unhdσ

−
∫

τ∗
λ(z, un)h dz| ⩽ ϵn∥h∥ for all h ∈ W 1,p, with ϵn → 0+.

(44)
Ω 1 + ∥un∥
15
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Choosing h = −u−
n ∈ W 1,p(Ω), we obtain

γp(u−
n ) + ∥Du−

n ∥q
q ⩽ c11∥u−

n ∥ for some c11 > 0 and all n ∈ N (see (35))
⇒ {u−

n }n⩾1 ⊆ W 1,p(Ω) is bounded (see (1) and recall that 1 < p). (45)

Next in (44) we choose h = u+
n ∈ W 1,p(Ω). Then

− γp(u+
n ) − ∥Du+

n ∥q
q +

∫
Ω

τ∗
λ(z, un)u+

n dz ⩽ ϵn for all n ∈ N,

⇒ −γp(u+
n ) − ∥Du+

n ∥q
q +

∫
{un⩽uµ}

[u−γ
µ + λf(z, uµ)]u+

n dz

+
∫

{uµ<un}
[u−γ

n + λf(z, un)]u+
n dz ⩽ ϵn for all n ∈ N (see (35))

(46)

On the other hand from (42) and (45), we have

γp(u+
n ) + p

q
∥Du+

n ∥q
q −

∫
{un⩽uµ}

p[u−γ
µ + λf(z, up)]u+

n dz

−
∫

{uµ<un}

[
p

1 − γ
(u1−γ

n − u1−γ
µ ) + p(λF (z, un) − λF (z, uµ))

]
dz ⩽ ϵn

for all n ∈ N (see (35)).

⇒ γp(u+
n ) + p

q
∥Du+

n ∥p
p −

∫
{un⩽uµ}

p[u−γ
µ + λf(z, uµ)]u+

n dz

−
∫

{up<un}

[
p

1 − γ
u1−γ

n + λpF (z, un)
]
dz ⩽ c12 for some c12 > 0 and all n ∈ N.

(47)

We add (46) and (47). Since p > q, we obtain

λ

∫
{uµ<un}

[f(z, un)u+
n − pF (z, un)]dz ⩽ (p − 1)

∫
{un⩽uµ}

[u−γ
µ + λf(z, uµ)]u+

n dz

+
(

p

1 − γ
− 1

) ∫
{uµ<un}

u1−γ
n dz

⇒ λ

∫
Ω

[f(z, u+
n )u+

n − pF (z, u+
n )]dz ⩽ c13

[
∥u+

n ∥1 + 1
]

(48)

for some c13 > 0, all n ∈ N.

On account of hypotheses H(f)(i), (iii) we can find β̂1 ∈ (0, β̂0) and c14 > 0 such that

β̂1xτ − c14 ⩽ f(z, x) − pF (z, x) for almost all z ∈ Ω and all x ⩾ 0. (49)

Using (49) in (48), we obtain

∥u+
n ∥τ

τ ⩽ c15
[
∥u+

n ∥τ + 1
]

for some c15 > 0 and all n ∈ N,

⇒ {u+
n }n⩾1 ⩽ Lτ (Ω) is bounded. (50)

First assume N ̸= p. From hypothesis H(f)(iii) it is clear that we may assume without any loss of
enerality that τ < r < p∗. Let t ∈ (0, 1) be such that

1 = 1 − t + t
.

r τ p∗

16
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Then from the interpolation inequality (see Papageorgiou & Winkert [22, Proposition 2.3.17, p. 116]), we
have

∥u+
n ∥r ⩽ ∥u+

n ∥1−t
τ ∥u+

n ∥t
p∗ ,

⇒ ∥u+
n ∥r

r ⩽ c16∥u+
n ∥trfor some c16 > 0 and all n ∈ N (see (50)). (51)

From hypothesis H(f)(i) we have

f(z, x)x ⩽ c17[1 + xr] for all z ∈ Ω , all x ⩾ 0 and some c17 > 0. (52)

From (44) with h = u+
n ∈ W 1,p(Ω), we obtain

γp(u+
n ) + ∥Du+

n ∥q
q −

∫
Ω

τ∗
λ(z, un)u+

n dz ⩽ ϵn for all n ∈ N,

⇒ γp(u+
n ) + ∥Du+

n ∥q
q ⩽

∫
Ω

[(u+
n )1−γ + f(z, u+

n )u+
n ]dz + c18

for some c18 > 0 and all n ∈ N (see (35) )
⩽ c19

[
1 + ∥u+

n ∥r
r

]
for some c19 > 0 and all n ∈ N (see (52))

⩽ c20[1 + ∥u+
n ∥tr] for some c20 > 0 and all n ∈ N (see (51)). (53)

The hypothesis on τ (see H(f)(iii)) implies that tr < p. So, from (53) we infer that

{u+
n }n⩾1 ⊆ W 1,p(Ω) is bounded,

⇒ {un}n⩾1 ⊆ W 1,p(Ω) is bounded (see (45)). (54)

If N = p, then p∗ = +∞ and from the Sobolev embedding theorem, we know that W 1,p(Ω) ↪→ Ls(Ω) for
ll 1 ⩽ s < ∞. Then in order for the previous argument to work, we replace p∗ = +∞ by s > r > τ and let
∈ (0, 1) as before such that

1
r

= 1 − t

τ
+ t

s
,

⇒ tr = s(r − τ)
s − τ

.

Note that s(r−τ)
s−τ → r − τ as s → +∞. But r − τ < p (see hypothesis H(f)(iii)). We choose s > r big so

hat tr < p. Then again we have (54).
Because of (54) and by passing to a subsequence if necessary, we may assume that

un
w−→ u in W 1,p(Ω) and un → u in Lr(Ω) and Lp(∂Ω). (55)

In (44) we choose h = un − u ∈ W 1,p(Ω), pass to the limit as n → ∞ and use (55). Then

lim
n→∞

[⟨Ap(un), un − u⟩ + ⟨Aq(un), un − u⟩] = 0,

⇒ lim sup
n→∞

[⟨Ap(un), un − u⟩ + ⟨Aq(u), un − u⟩] ⩽ 0

(since Aq(·) is monotone)
⇒ lim sup

n→∞
⟨Ap(un), un − u⟩ ⩽ 0,

⇒ un → u in W 1,p(Ω) (see Proposition 1).
Therefore Ψ∗

λ(·) satisfies the C-condition. This proves the Claim.
Then (40), (41) and the Claim permit the use of the mountain pass theorem. So, we can find û ∈ W 1,p(Ω)

uch that
û ∈ KΨ∗

λ
⩽ [uµ) ∩ D+(see (36)) , m∗

λ ⩽ Ψ∗
λ(û) (see (40)) .

∗
Therefore û ∈ D+ is a second positive solution of problem (Pλ) (λ ∈ (0, λ )) distinct from u0 ∈ D+. □

17
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(
M

u

Next, we examine what can be said in the critical parameter λ∗.

roposition 15. If hypotheses H(ξ), H(β), H0, H(f) hold, then λ∗ ∈ L.

roof. Let {λn}n⩾1 ⊆ (0, λ∗) be such that λn < λ∗. We can find un ∈ Sλn ⊆ D+ for all n ∈ N.
We consider the following Carathéodory function

µn(z, x) =
{

v(z)−γ + λnf(z, v(z)) if x ⩽ v(z)
x−γ + λnf(z, x) if v(z) < x.

(56)

We set Mn(z, x) =
∫ x

0 µn(z, x)ds and consider the C1-functional jn : W 1,p(Ω) → R defined by

jn(u) = 1
p

γp(u) + 1
q

∥Du∥q
q −

∫
Ω

Mn(z, u)dz for all u ∈ W 1,p(Ω).

Also, we consider the following truncation of µn(z, ·)

µ̂n(z, x) =
{

µn(z, x) if x ⩽ un+1(z)
µn(z, un+1(z)) if un+1(z) < x

(57)

recall that v ⩽ un+1 for all n ∈ N, see Proposition 11). This is a Carathéodory function. We set
ˆ

n(z, x) =
∫ x

0 µ̂n(z, s)ds and consider the C1-functional Ĵn : W 1,p(Ω) → R defined by

Ĵn(u) = 1
p

γp(u) + 1
q

∥Du∥q
q −

∫
Ω

M̂n(z, u)dz for all u ∈ W 1,p(Ω).

From (1), (56) and (57), it is clear that Ĵn(·) is coercive. Also, it is sequentially weakly lower semicontin-
ous. So, we can find ûn ∈ W 1,p(Ω) such that

Ĵn(ûn) = inf
{

Ĵn(u) : u ∈ W 1,p(Ω)
}

. (58)

Then we have

Ĵn(ûn) ⩽ Ĵn(v)

⩽
1
p

γp(v) + 1
q

∥Dv∥q
q − 1

1 − γ

∫
Ω

v1−γdz

(see (56), (57) and recall that f ⩾ 0)

⩽ ⟨Ap(v), v⟩ + ⟨Aq(v), v⟩ −
∫
Ω

v1−γdz = 0 (59)

(see Proposition 8).

From (58) we have
ûn ∈ KĴn

⊆ [v, un+1] ∩ D+ for all n ∈ N (see (57)). (60)

Similarly, using (56) we obtain
Kjn ⊆ [v) ∩ D+. (61)

Note that
Jn|[v,un+1] = Ĵn|[v,un+1] and J ′

n|[v,un+1] = Ĵ ′
n|[v,un+1] (see (56), (57)).

Then from (59), (60), (61), we have
Jn(ûn) ⩽ 0 for all n ∈ N (62)
18
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t

d

T

(

A

N

R

⟨Ap(ûn), h⟩ + ⟨Aq(ûn), h⟩ +
∫
Ω

ξ(z)ûp−1
n hdz +

∫
∂Ω

β(z)ûp−1
n hdσ =

∫
Ω

µn(z, ûn)hdz

for all h ∈ W 1,p(Ω), all n ∈ N.

(63)

Using (62), (63) and reasoning as in the Claim in the proof of Proposition 14, we show that

{ûn}n⩾1 ⊆ W 1,p(Ω) is bounded.

So, we may assume that

ûn
w→ û∗ in W 1,p(Ω) and ûn → û∗ in Lr(Ω) and Lp(∂Ω). (64)

In (63) we choose h = ûn − û∗ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use (64). Then as before (see
he proof of Proposition 14), we obtain

ûn → û∗ in W 1,p(Ω). (65)

In (63) we pass to the limit as n → ∞ and use (65). Then

⟨Ap(û∗), h⟩ + ⟨Aq(û∗), h⟩ +
∫
Ω

ξ(z)ûp−1
∗ hdz +

∫
∂Ω

β(z)ûp−1
∗ hdz

=
∫
Ω

[û−γ
∗ + λ∗f(z, û∗)]hdz for all h ∈ W 1,p(Ω) (see (56), (61)),

⇒ û∗ ∈ Sλ∗ ⊆ D+ and so λ∗ ∈ L.

The proof is now complete. □

From this proposition it follows that
L = (0, λ∗].

The next bifurcation-type theorem summarizes our findings and provides a complete description of the
ependence of the set of positive solutions of problem (Pλ) on the parameter λ > 0.

heorem 16. If hypotheses H(ξ), H(β), H0, H(f) hold, then there exists λ∗ > 0 such that

(a) for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions

u0, û ∈ D+, u0 ̸= û;

b) for λ = λ∗ problem (Pλ) has at least one positive solution û∗ ∈ D+;
(c) for all λ > λ∗ problem (Pλ) does not have any positive solutions.
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[15] N.S. Papageorgiou, V.D. Rădulescu, Positive solutions for nonlinear nonhomogeneous parametric Robin problems, Forum
Math. 30 (2018) 553–580.
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