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On noncoercive elliptic problems
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Abstract. We consider a nonlinear noncoercive elliptic equation driven
by the p-Laplacian. We show that if the L∞-perturbation has small
norm, then the problem admits a positive solution. Moreover, if the L∞-
perturbation is nonzero and nonnegative, then we find two positive solu-
tions. Also, we consider a class of semilinear equations with an indefinite
and unbounded potential. Using critical groups, we show that there is
a nontrivial solution and under a global sign condition, we show that
this solutions is nodal. Our results extend and improve a recent work of
Rădulescu (Discr. Cont. Dyn. Syst. Ser. S , 5:845–856, [14]).
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper first

(see Sect. 3), we study the following nonlinear Dirichlet problem{−Δpu(z) = β(z)u(z)p−1 + f(z, u(z)) + g(z) in Ω,
u|∂Ω = 0, u > 0, 1 < p < ∞, g ∈ L∞(Ω).

}
(1)g

Here Δp denotes the p-Laplacian differential operator defined by

Δpu = div (|Du|p−2Du) for all u ∈ W 1,p
0 (Ω).

Also β ∈ L∞(Ω) and β(z) � λ̂1(p) for a.a. z ∈ Ω with strict inequality
on a set of positive measure. Here λ̂1(p) > 0 denotes the principal eigenvalue
of (−Δp,W

1,p
0 (Ω)). The perturbation f(z, x) is a Carathéodory function (that

is, for all x ∈ R, z �−→ f(z, x) is measurable and for a.a. z ∈ Ω, x �−→
f(z, x) is continuous), which exhibits (p−1)-superlinear growth near +∞, but
without satisfying the usual Ambrosetti–Rabinowitz condition (AR-condition
for short). We show that for ||g||∞ sufficiently small, problem (1)g admits
at least one positive solution. Moreover, we show that if g is nonzero and
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nonnegative, then a second positive solution can be found. Problem (1)g was
investigated recently by Rădulescu [14], when p = 2 (semilinear equation) and
with a perturbation function f(z, x) = f(x) which is in C1(R) and satisfies the
AR-condition. Under these conditions, the author shows that the problem has
a positive solution for ‖g‖∞ small (see Theorem 2.1 of [14]). Our work here
generalizes the result of Rădulescu [14] and provides additional information
for problem (1)g.

In Sect. 4, we deal with the following semilinear problem:{−Δu(z) + β(z)u(z) = λu(z) + f(z, u(z)) in Ω,
u|∂Ω = 0.

}
(2)λ

In this problem, β ∈ Lτ (Ω) with τ > N
2 and is general indefinite. Also

λ ∈ R is a parameter and f(z, x) is a measurable function on Ω × R which
is C1 in the x ∈ R variable and x �−→ f(z, x) exhibits (p − 1)-superlinear
growth near ±∞ again without satisfying the AR-condition. We show for all
λ � λ̂1(2, β), problem (2)λ admits a nontrivial solution (by λ̂1(2, β) we denote
the principal eigenvalue of (−Δ + βI, H1

0 (Ω))). In fact, under a global sign
condition on f(z, ·), we show that any nontrivial solution of (2)λ is necessarily
nodal (sign changing), that is, the problem has no nontrivial constant sign so-
lutions. Problem (2)λ was also studied by Rădulescu [14] under the hypotheses
that β ≡ 0, f(z, x) = f(x) and f ∈ C1(R) satisfies the AR-condition and it
is strictly increasing and onto. In fact in [14] it was left as an open problem
whether the strict monotonicity and surjectivity conditions on f(·) can be re-
laxed. Here we show that the answer to this open problem is affirmative and
in fact we go even further establishing the existence of solutions for a broader
class of equations with more general perturbations f(z, x).

Our approach is variational based on the critical point theory, coupled
with suitable truncation and comparison techniques. In Sect. 4 we also use
critical groups. In the next section for the convenience of the reader, we review
the main mathematical tools that we will use in this paper.

2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗,X). Given ϕ ∈ C1(X), we say that it satisfies
the Cerami condition (the C-condition for short), if the following holds:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded
and

(1 + ||un||)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.
This is a compactness-type condition on the functional ϕ which is more

general than the more common Palais-Smale condition. The C-condition leads
to a deformation theorem, from which we can derive the minimax theory for
the critical values of ϕ. One of the main results in this theory is the so-called
“mountain pass theorem” due to Ambrosetti and Rabinowitz [4]. Here we state
this in a slightly more general form (see Gasinski and Papageorgiou [8]).
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Theorem 1. Assume that X is a Banach space, ϕ ∈ C1(X) satisfies the C-
condition, u0, u1 ∈ X with ||u1 − u0|| > ρ > 0

max{ϕ(u0), ϕ(u1)} < inf [ϕ(u) : ||u − u0|| = ρ] = ηρ

and c = inf
γ∈Γ

max
0�t�1

ϕ(γ(t)) with Γ = {γ ∈ C([0, 1],X) : γ(0) = u0, γ(1) = u1}.
Then c � ηρ and c is a critical value of ϕ.

In the analysis of problems (1)g and (2)λ, we will use the Sobolev spaces
W 1,p

0 (Ω) and H1
0 (Ω) and the Banach space C1

0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.
The latter is an ordered Banach space with positive cone

C+ = {u ∈ C1
0 (Ω) : u(z) � 0 for all z ∈ Ω}.

This cone has a nonempty interior

intC+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n

∣∣∣∣
∂Ω

< 0
}

,

where n(·) denotes the outward unit normal on ∂Ω.
We consider the following nonlinear eigenvalue problem:

− Δpu(z) = λ̂|u(z)|p−2u(z) in Ω, u|∂Ω = 0. (3)

We say that λ̂ ∈ R is an eigenvalue of (−Δp,W
1,p
0 (Ω)), if problem (3)

admits a nontrivial solution û ∈ W 1,p
0 (Ω) known as an eigenfunction corre-

sponding to λ̂. The nonlinear regularity theory (see, for example, Gasinski
and Papageorgiou [8, pp. 737–738]), implies that û ∈ C1

0 (Ω). We know that
(−Δp,W

1,p
0 (Ω)) has a smallest eigenvalue λ̂1(p) such that:

(i) λ̂1(p) > 0 and it is isolated (that is, there exists ε > 0 such that[
λ̂1(p), λ̂1(p) + ε

)
does not contain any other eigenvalue of (−Δp,W

1,p
0

(Ω)));
(ii) λ̂1(p) is simple (that is, if û, v̂ ∈ C1

0 (Ω) are eigenfunctions corresponding
to λ̂1(p), then û = ξv̂ with ξ �= 0)

and

λ̂1(p) = inf
[ ||Du||pp

||u||pp : u ∈ W 1,p
0 (Ω), u �= 0

]
. (4)

The infimum in (4) is realized on the one-dimensional eigenspace corre-
sponding to λ̂1(p) > 0. It is clear from (4) that the elements of this eigenspace
do not change sign. Let û1(p) be the Lp-normalized (that is, ||û1(p)||p = 1),
positive eigenfunction corresponding to λ̂1(p). The nonlinear maximum prin-
ciple (see, for example, Gasinski and Papageorgiou [8, p. 738]), implies that
û1(p) ∈ int C+. We mention that λ̂1(p) is the only eigenvalue with eigenfunc-
tions of constant sign. Every eigenvalue λ̂ �= λ̂1(p) has nodal eigenfunctions.

As a consequence of the above properties of λ̂1(p) > 0 and û1(p) ∈ int C+,
we have the following lemma (see Papageorgiou and Kyritsi [10, p. 356]).
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Lemma 2. If β ∈ L∞(Ω) and β(z) � λ̂1(p) a.e. in Ω with strict inequality on
a set of positive measure, then there exists ξ0 > 0 such that

||Du||pp −
∫

Ω

β(z)|u|pdz � ξ0||Du||pp for all u ∈ W 1,p
0 (Ω).

To deal with problem (2)λ, we will use the spectrum of (−Δ+βI,H1
0 (Ω)).

So, we consider the following linear eigenvalue problem

− Δu(z) + β(z)u(z) = λu(z) in Ω, u|∂Ω = 0. (5)

Recall that β ∈ Lτ (Ω) with τ > N
2 and in general is indefinite (that is,

sign-changing). Problem (5) has a strictly increasing sequence {λ̂k(2, β)}k�1 ⊆
R of eigenvalues such that λ̂k(2, β) → +∞ as k → +∞. By E(λ̂k(2, β))
we denote the eigenspace corresponding to the eigenvalue λ̂k(2, β). We have
E(λ̂k(2, β)) ⊆ C1

0 (Ω) and the eigenspace has the so-called unique continuation
property (UCP for short), that is, if û ∈ E(λ̂k(2, β)) and û vanishes on a set
of positive measure, then û ≡ 0. We have the following variational characteri-
zations of these eigenvalues:

λ̂1(2, β) = inf
[ ||Du||22 +

∫
Ω

β(z)u2dz

||u||22
: u ∈ H1

0 (Ω), u �= 0
]

(6)

and for k � 2, we have

λ̂k(2, β) = sup
[ ||Du||22 +

∫
Ω

β(z)u2dz

||u||22
: u ∈ k⊕

i=1
E(λ̂i(2, β)), u �= 0

]

= inf
[ ||Du||22 +

∫
Ω

β(z)u2dz

||u||22
: u ∈ ⊕

i�k
E(λ̂i(2, β)), u �= 0

]
. (7)

In (6) and (7), the infimum and the supremum are realized on the corre-
sponding eigenspace E(λ̂k(2, β)) (see Kyritsi and Papageorgiou [9]).

We have the following orthogonal direct sum decomposition

H1
0 (Ω) = Hk ⊕ Ĥk

with Hk = ⊕k
i=1E(λ̂i(2, β)) and Ĥk = ⊕i�k+1E(λ̂i(2, β)).

Next let X be a Banach space and ϕ ∈ C1(X), c ∈ R. We introduce the
following sets

ϕc = {u ∈ X : ϕ(u) � c}, Kϕ = {u ∈ X : ϕ′(u) = 0},

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For every
integer k � 0, by Hk(Y1, Y2) we denote the kth relative singular homology
group for the pair (Y1, Y2) with integer coefficients. Recall that Hk(Y1, Y2) = 0
for all k < 0. The critical groups of ϕ at an isolated critical point u ∈ Kc

ϕ are
defined by

Ck(ϕ, u) = Hk(ϕc ∩ U, ϕc ∩ U\{u}) for every k � 0,
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where U is a neighborhood of u such that ϕc ∩ Kϕ ∩ U = {u}. The excision
property of singular homology theory, implies that the above definition of
critical groups is independent of the choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the C-condition and inf ϕ(Kϕ) > −∞.
Let c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k � 0.

The second deformation theorem (see, for example, Gasinski and Papa-
georgiou [8, p. 628]), implies that this definition is independent of the choice
of level c < inf ϕ(Kϕ). If for some k � 0, Ck(ϕ, 0) �= 0, Ck(ϕ,∞) = 0, then ϕ
admits a nontrivial critical point.

We conclude this section by fixing our notation. By || · || we denote the
norm of the Sobolev space W 1,p

0 (Ω). By virtue of the Poincaré inequality, we
have

||u|| = ||Du||p for all u ∈ W 1,p
0 (Ω).

For every x ∈ R, we set x± = max{±x, 0}. Then given u ∈ W 1,p
0 (Ω), we

define u±(·) = u(·)±. We have

u± ∈ W 1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

By |·|N we denote the Lebesgue measure on R
N . Finally, if h : Ω×R → R

is a measurable function (for example, a Carathéodory function), then we
define

Nh(u)(·) = h(·, u(·)) for all u ∈ W 1,p
0 (Ω)

(the Nemytskii operator corresponding to function h(·, ·)). Note that z �−→
Nf (u)(z) is measurable.

3. Solutions for problem (1)g

In this section, we show that for ||g||∞ small, problem (1)g has at least one pos-
itive solution and for nonzero and nonnegative g, it has two positive solutions.
The hypotheses on the perturbation f(z, x), are the following:

H1 : f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for
a.a. z ∈ Ω and

(i) |f(z, x)| � a(z)(1 + xr−1) for a.a z ∈ Ω, all x � 0, with a ∈ L∞(Ω)+,

p < r < p∗ =
{ Np

N−p if p < N

+∞ if p � N
;

(ii) if F (z, x) =
∫ x

0
f(z, s)ds, then

lim
x→+∞

F (z, x)
xp

= +∞ uniformly for a.a z ∈ Ω;

(iii) there exists η0 > 0 and τ ∈
(
max{1, (r − p)N

p }, p∗
)

such that

0 < η0 � lim inf
x→+∞

f(z, x)x − pF (z, x)
xτ

uniformly for a.a. z ∈ Ω;
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(iv) lim
x→0+

f(z, x)
xp−1

= 0 uniformly for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ Ω, the applica-
tion x �−→ f(z, x) + ξρx

p−1 is nondecreasing on [0, ρ].

Remark 1. Since we are interested on positive solutions and the above hy-
potheses concern the positive semiaxis R+ = [0,+∞), without any loss of
generality, we may assume that for a.a. z ∈ Ω f(z, x) = 0 for all x � 0. Hy-
potheses H1(ii), (iii) imply that f(z, ·) is (p − 1)-superlinear near +∞, more
precisely we have

lim
x→+∞

f(z, x)
xp−1

= +∞ uniformly for a.a. z ∈ Ω.

Note that we do not employ the usual in such cases AR-condition (see [4]).
Instead we use a weaker condition (see hypothesis H1(iii)) which incorporates
in our framework (p − 1)-superlinear perturbations with “slower” growth near
+∞. For example, the function

f(x) = xp−1

[
ln x +

1
p

]
for all x � 0

(for the sake of simplicity we have dropped the z-dependence), satisfies hy-
potheses H1 but fails to satisfy the AR-condition. So, Theorem 1 of [14]
does not apply to this function. If f(z, ·) ∈ C1(R) and f ′

x(z, ·) is bounded
on bounded sets, then hypothesis H1(v) is satisfied.

First we show that we cannot have a positive solution for problem (1)g

for every g ∈ L∞(Ω). To this end, let u ∈ W 1,p
0 (Ω) be a positive solution for

problem (1)g. The nonlinear regularity theory and the nonlinear maximum
principle (see, for example, Gasinski and Papageorgiou [8, pp. 737–738]), im-
ply that u ∈ int C+. Recall that û1(p) ∈ int C+. So, invoking Lemma 3.3 of
Filippakis, Kristaly and Papageorgiou [6], we can find c1, c2 > 0 such that

c1u � û1(p) � c2u

⇒ c1 � û1(p)
u

� c2 in Ω. (8)

Let R(û1(p), u)(z)= |Dû1(p)(z)|p−|Du(z)|p−2
(
Du(z),D

(
û1(p)p

up−1

)
(z)

)
RN

.

From the nonlinear Picone identity of Allegretto and Huang [3], we have

0 �
∫
Ω

R(û1(p), u)dz

= ||Dû1(p)||pp −
∫
Ω

(−Δpu)
û1(p)p

up−1
dz

(using the nonlinear Green’s identity, see Gasinski and Papageorgiou[[8], p. 211]

= λ̂1(p)||û1(p)||pp −
∫
Ω

[
β(z)up−1 + f(z, u) + g(z)

] û1(p)p

up−1
dz

=

∫
Ω

[
λ̂1(p) − β(z)

]
û1(p)pdz −

∫
Ω

f(z, u)
û1(p)p

up−1
dz −

∫
Ω

g(z)
û1(p)p

up−1
dz. (9)



NoDEA On noncoercive elliptic problems Page 7 of 17  42 

We know that

ϑ0 =
∫

Ω

[
λ̂1(p) − β(z)

]
û1(p)pdz > 0. (10)

As we already observed, hypotheses H1(ii), (iii) imply that

lim
x→+∞

f(z, x)
xp−1

= +∞ uniformly for a.a z ∈ Ω. (11)

From (11) and hypothesis H1(i), we see that given ξ > ϑ0 we can find
c3 = c3(ξ) > 0 such that

f(z, x) � ξxp−1 − c3 for a.a. z ∈ Ω, all x � 0. (12)

Returning to (9) and using (10) and (12), we have
∫

Ω

(g(z) − c3)
(

û1(p)
u

)p−1

û1(p)dz � ϑ0 − ξ||û1(p)||pp < 0

(recall that ξ > ϑ0 and ||û1(p)||p = 1). Since û1(p)
u ∈ L∞(Ω)+ (see (8)), if

g(z) > c3 for almost all z ∈ Ω, we have a contradiction. This suggests that in
order to guarantee a positive solution of (1)g we need to restrict ||g||∞.

Let g ∈ L∞(Ω) and let eg : Ω × R → R be the Carathéodory function
defined by

eg(z, x) =
{

g(z) if x � 0
β(z)xp−1 + f(z, x) + g(z) if x > 0.

(13)

We set Eg(z, x) =
∫ x

0
eg(z, s)ds and consider the C1-functional ϕg :

W 1,p
0 (Ω) → R defined by

ϕg(u) =
1
p
||Du||pp −

∫
Ω

Eg(z, u)dz for all u ∈ W 1,p
0 (Ω).

From Papageorgiou and Smyrlis [13], we have:

Proposition 3. If hypotheses H1 hold then for every g ∈ L∞(Ω) the functional
ϕg satisfies the C-condition.

The next result is an immediate consequence of hypothesis, H1(ii) and
(13).

Proposition 4. If hypotheses H1 hold, u ∈ intC+ and g ∈ L∞(Ω), then
ϕg(tu) → −∞ as t → +∞.

The next proposition shows that the mountain pass geometry (see The-
orem 1) is satisfied by the functional ϕg for ||g||∞ small.

Proposition 5. If hypotheses H1 hold, then there exist δ0 > 0 and ρ0 = ρ0(δ0) >
0 such that

||g||∞ < δ0 ⇒ ϕg(u) � m0 > 0 for all u ∈ W 1,p
0 (Ω) with ||u|| = ρ0.
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Proof. Hypotheses H1(i) and (iv) imply that given ε > 0, we can find c5 =
c5(ε) > 0 such that

F (z, x) � ε

p
xp + c5x

r for a.a. z ∈ Ω, all x � 0. (14)

Then for every u ∈ W 1,p
0 (Ω), we have

ϕg(u) =
1
p
||Du||pp −

∫
Ω

Eg(z, u)dz

� 1
p
||Du||pp − 1

p

∫
Ω

β(z)|u|pdz −
∫

Ω

F (z, u)dz − c6||g||∞||u||
for some c6 > 0 (see (13))

� 1
p

[
ξ0 − ε

λ̂1(p)

]
||u||p − c7||u||r − c6||g||∞||u|| for some c7 > 0

(see Lemma 2 and (4))

Choosing ε ∈ (0, λ̂1(p)ξ0), we obtain

ϕg(u) � c8||u||p − c7||u||r − c6||g||∞||u|| with c8 =
λ̂1(p)ξ0 − ε

pλ̂1(p)
> 0

=
[
c8 − (

c7||u||r−p + c6||g||∞||u||1−p
)] ||u||p. (15)

Let γ(t) = c7t
r−p + c6||g||∞t1−p for all t � 0. Evidently γ ∈ C1(0,∞)

and since 1 < p < r, we have

γ(t) → +∞ as t → 0+ and t → +∞.

So, we can find t0 ∈ (0,+∞) such that

γ(t0) = inf
t�0

γ

⇒ γ′(t0) = 0

⇒ (r − p)c7t
r−p−1
0 = (p − 1)c6||g||∞t−p

0

⇒ t0 =
[
(p − 1)c6||g||∞

(r − p)c7

] 1
r−1

.

Then γ(t0) → 0+ as ||g||∞ → 0+. So, we can find δ0 > 0 such that

||g||∞ < δ0 ⇒ γ(t0) < c8

⇒ ϕg(u) � m0 > 0 = ϕg(0) for all ||u|| = t0 = ρ0.

This completes the proof. �

These propositions lead to the following existence theorem for problem
(1)g when ||g||∞ is small.

Theorem 6. If hypotheses H1 hold, then there exists δ1 ∈ (0, δ0] such that if
||g||∞ < δ1, then problem (1)g has at least one positive solution u0 ∈ intC+.
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Proof. Propositions 3, 4 and 5 imply that when ||g||∞ < δ0, then the functional
ϕg satisfies the mountain pass geometry and the C-condition. So, we can apply
Theorem 1 (the mountain pass theorem) and find u0 ∈ W 1,p

0 (Ω) such that

ϕ′
g(u0) = 0 and ϕg(0) = 0 < m0 � ϕg(u0)

⇒ u0 �= 0.

In particular, let g ≡ 0 and let ū0 be the critical point of ϕ0 obtained
above. We have

A(ū0) = Ne0(ū0). (16)

On (16) we act with −ū−
0 ∈ W 1,p

0 (Ω). Then

||Dū0||pp = 0 (see (13) with g ≡ 0)
⇒ ū0 � 0, ū0 �= 0.

So, ū0 is a positive solution of problem (1)0 (with g ≡ 0). Nonlinear
regularity theory, implies that ū0 ∈ C+\{0}. Let ρ = ||ū0||∞ and let ξρ > 0 be
as postulated by hypothesis H1(v). We have

−Δpū0(z) + ξρū0(z)p−1

= β(z)u0(z)p−1 + f(z, u0(z)) + ξρū0(z)p−1 � 0 a.e. in Ω

⇒ Δpū0(z) � ξρū0(z)p−1 a.e. in Ω
⇒ ū0 ∈ int C+ (by the nonlinear maximum principle, see [8, p. 738]).

So, every positive solution of (1)0 (with g ≡ 0), belongs to int C+.
Now, let {gn}n�1 ⊆ L∞(Ω) with ||gn||∞ < δ0 for all n � 1 and assume

that gn → 0 in L∞(Ω). Let {un}n�1 ⊆ W 1,p
0 (Ω) be the corresponding critical

points of ϕgn
obtained in the beginning of the proof via the mountain pass

theorem (see Theorem 1). We have

−Δpun(z) = egn
(z, un(z)) a.e. in Ω, un|∂Ω = 0, n � 1.

From Gasinski and Papageorgiou [8, p. 737], we can find c9 > 0 such that

||un||∞ � c9 for all n � 1.

So, there exist α ∈ (0, 1) and c10 > 0 such that

un ∈ C1,α
0 (Ω) and ||un||C1,α

0 (Ω) � c10 for all n � 1

(see Gasinski and Papageorgiou [8, p. 738]). Exploiting the compact embedding
of C1,α

0 (Ω) into C1(Ω), we may assume that

un → ũ in C1
0 (Ω), with ũ solution of (1)0. (17)

Recall that for all n � 1 we have

ϕgn(un) � m0 > 0 = ϕgn(0)

(note that, by Proposition 5, since ||gn||∞ <δ0 for all n∈N, m0 does not depend on n)

⇒ ϕ0(ũ) � m0 > 0 = ϕ0(0) (see (17) and (13))

⇒ ũ �= 0, hence ũ ∈ int C+ as established earlier.
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From (17) it follows that

un ∈ intC+ for all n � n0.

Therefore, we can find δ1 ∈ (0, δ0] such that for ||g||∞ < δ1 problem (1)g

has at least one positive solution u0 ∈ int C+. �

We can improve the conclusion of the above theorem and produce a
second positive solution, provided g is nonzero and nonnegative and as before
has small L∞(Ω)-norm.

Theorem 7. If hypotheses H1 hold then there exists δ1 ∈ (0, δ0] such that if
0 < ||g||∞ < δ1 and g � 0, then problem (1)g has at least two positive solutions

u0, û ∈ intC+, u0 � û, u0 �= û.

Proof. From Theorem 6 we know that there exists δ1 ∈ (0, δ0] such that if
||g||∞ < δ1, then problem (1)g has at least one positive solution u ∈ int C+.

Now we assume that 0 < ||g||∞ < δ1 and g � 0. Let η ∈ (0, δ1 − ||g||∞)
and let g∗ = g + η. Evidently ||g∗||∞ < δ1 and so problem (1)g∗ has a positive
solution u∗ ∈ int C+.

Claim 1. We can find a positive solution u0 ∈ intC+ of (1)g such that u0 � u∗.

We have

A(u∗) = β(z)(u∗)p−1 + Nf (u∗) + g∗ � β(z)(u∗)p−1 + Nf (u∗) + g (18)

in W−1,p′
(Ω) = W 1,p

0 (Ω)∗
(

1
p

+
1
p′ = 1

)
.

We consider the following Carathéodory function

γg(z, x) =

⎧⎨
⎩

g(z) if x < 0
β(z)xp−1 + f(z, x) + g(z) if 0 � x � u∗(z)
β(z)u∗(z)p−1 + f(z, u∗(z)) + g(z) if u∗(z) < x.

(19)

We set Γg(z, x) =
∫ x

0
γg(z, s)ds and consider the C1-functional τg :

W 1,p
0 (Ω) → R defined by

τg(u) =
1
p
||Du||pp −

∫
Ω

Γg(z, u)dz for all u ∈ W 1,p
0 (Ω).

It is clear from (19) that τg is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find u0 ∈ W 1,p

0 (Ω) such that

τg(u0) = inf[τg(u) : u ∈ W 1,p
0 (Ω)]

⇒ τ ′
g(u0) = 0

⇒ A(u0) = Nγg
(u0). (20)

In (20) first we act with −u−
0 ∈ W 1,p

0 (Ω). Then

||Du−
0 ||pp =

∫
Ω

g(z)(−u−
0 )dz � 0 (see (19) and recall g � 0)

⇒ u0 � 0.
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Also, on (20) we act with (u0 − u∗)+ ∈ W 1,p
0 (Ω). Then

〈
A(u0), (u0 − u∗)+

〉
=

∫
Ω

γg(z, u0)(u0 − u∗)+dz

=
∫

Ω

[
β(z)(u∗)p−1 + f(z, u∗) + g

]
(u0 − u∗)+dz (see (19))

�
〈
A(u∗), (u0 − u∗)+

〉
(see (18)),

⇒
∫

{u0>u∗}

(|Du0|p−2Du0 − |Du∗|p−2Du∗,Du0 − Du∗)
RN dz � 0

⇒ |{u0 > u∗}|N = 0, hence u0 � u∗.

So, we have proved that

u0 ∈ [0, u∗] = {u ∈ W 1,p
0 (Ω) : 0 � u(z) � u∗(z) a.e. in Ω}.

Then from (19) and (20) it follows that u0 is a solution of (1)g and since
g �= 0, u0 �= 0. The nonlinear regularity theory and the nonlinear maximum
principle imply that u0 ∈ intC+.

Using u0 ∈ intC+ we introduce the following truncation of the reaction
of problem (1)g:

kg(z, x) =
{

β(z)u0(z)p−1 + f(z, u0(z)) + g(z) if x < u0(z)
β(z)xp−1 + f(z, x) + g(z) if u0(z) � x.

(21)

We set Kg(z, x) =
∫ x

0
kg(z, s)ds and consider the C1-functional ψg : W 1,p

0

(Ω) → R defined by

ψg(u) =
1
p
||Du||pp −

∫
Ω

Kg(z, u)dz for all u ∈ W 1,p
0 (Ω).

If [u0) = {u ∈ W 1,p
0 (Ω) : u0(z) � u(z) for almost all z ∈ Ω}, then from

(13)) we see that

ψg|[u0) = ϕ|[u0) + ξ∗ for some ξ∗ ∈ R . (22)

From (22) and Proposition 3 it follows that

ψg satisfies the C-condition. (23)

Moreover, Proposition 4 implies that for any u ∈ int C+, we have

ψg(tu) → −∞ as t → +∞. (24)

Claim 2. We have Kψg
⊆ [u0) = {u ∈ W 1,p

0 (Ω) : u0(z) � u(z) a.e. in Ω}

Indeed, let u ∈ Kψg
. Then

A(u) = Nkg
(u). (25)
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On (25) we act with (u0 − u)+ ∈ W 1,p
0 (Ω). We have〈

A(u), (u0 − u)+
〉

=

∫
Ω

kg(z, u)(u0 − u)+dz

=

∫
Ω

[
β(z)up−1

0 + f(z, u0) + g(z)
]
(u0 − u)+dz

=
〈
A(u0), (u0 − u)+

〉
(since u0 is a solution of (1)g)

⇒
∫

{u0>u}

(
|Du0|p−2Du0 − |Du|p−2Du, Du0 − Du

)
RN

dz = 0

⇒ |{u0 > u}|N = 0, hence u0 � u.

This proves Claim 2.
By virtue of Claim 2 every element of Kψg

is a positive solution of (1)g.
Arguing by contradiction, suppose Kψg

= {u0} (see (21)).

Claim 3. u0 ∈ intC+ is a local minimizer of the functional ψg.

Recall that 0 � u0 � u∗ and consider the following truncation of kg(z, ·):

k̂g(z, x) =
{

kg(z, x) if x < u∗(z)
kg(z, u∗(z)) if u∗(z) � x.

(26)

This is a Carathéodory function. We set K̂g(z, x) =
∫ x

0
k̂g(z, s)ds and

consider the C1-functional ψ̂g : W 1,p
0 (Ω) → R defined by

ψ̂g(u) =
1
p
||Du||pp −

∫
Ω

K̂g(z, u)dz for all u ∈ W 1,p
0 (Ω).

Note that ψ̂g is coercive (see (26)) and sequentially weakly lower semi-
continuous. So, we can find ũ ∈ W 1,p

0 (Ω) such that

ψ̂g(ũ) = inf
[
ψ̂g(u) : u ∈ W 1,p

0 (Ω)
]

⇒ ψ̂′
g(ũ) = 0

⇒ A(ũ) = Nk̂g
(ũ). (27)

On (27), first we can act with (u0 − ũ)+ ∈ W 1,p
0 (Ω) and as before using

(21) and (26), we obtain u0 � ũ. Then on (27) we act with (ũ−u∗)+ ∈ W 1,p
0 (Ω)

and using (18), (21), (26), we show that ũ � u∗. Therefore

ũ ∈ [u0, u
∗] = {u ∈ W 1,p

0 (Ω) : u0(z) � u(z) � u∗(z) a.e. in Ω}
⇒ ũ = u0 (see (21), (26) and recall Kψg

= {u0}).

Let ρ = ||u0||∞ and let ξρ > 0 be as postulated by hypothesis H1(v).
Then

−Δpu0(z) + ξρu0(z)p−1

= β(z)u0(z)p−1 + f(z, u0(z)) + g(z) + ξρu0(z)p−1

� β(z)u∗(z)p−1 + f(z, u∗(z)) + g∗(z) + ξρu
∗(z)p−1

(see H1(v) and recall that u0 � u∗, g � g∗)
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= −Δpu
∗(z) + ξρu

∗(z)p−1 a.e. in Ω
⇒ u∗ − u0 ∈ int C+ (see Arcoya and Ruiz [5, Proposition 2.6]).

Also, recall that u0 ∈ int C+. Since ψg|[0,u∗] = ψ̂g|[0,u∗] (see (21) and
(26)) it follows that u0 ∈ int C+ is a local C1

0 (Ω)-minimizer of ψg. Then from
Garcia Azorero, Manfredi and Peral Alonso [7, Theorem 1.1], it follows that
u0 ∈ intC+ is a local W 1,p

0 (Ω)-minimizer of ψg. This proves Claim 3.
By virtue of Claim 3, we can find ρ ∈ (0, 1) small such that

ψg(u0) < inf [ψg(u) : ||u − u0|| = ρ] = ηρ (28)

(see Aizicovici, Papageorgiou and Staicu [1] (proof of Proposition 29)). From
(23), (24) and (28), we see that we can apply Theorem 1 (the mountain pass
theorem). So, there exists û ∈ W 1,p

0 (Ω) such that

û ∈ Kψg
and ηρ � ψg(û). (29)

From Claim 2, (28) and (29) it follows that

u0 � û, û �= u0 and û ∈ int C+ solves problem ((1)g) (see (21)).

This completes the proof. �

Remark 2. The results of this section can be extended to problems driven by
a nonhomogeneous differential operator div a(Du) with a : RN → R

N as in
Papageorgiou and Rădulescu [12] (see also Papageorgiou and Rădulescu [11]).
For the sake of simplicity in the presentation, we have chosen to work with the
p-Laplacian.

4. Solutions for problem (2)λ

In this section we deal with problem (2)λ.
The hypotheses on the data of problem (2)λ are the following:
H(β) : β ∈ Lτ (Ω) with τ > N

2 .
H2 : f : Ω × R → R is a measurable function such that for a.a. z ∈ Ω

f(z, 0) = 0, f(z, ·) ∈ C1(R) and
(i) |f ′

x(z, x)| � a(z)(1 + |x|r−2) for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω)+,
2 < r < 2∗;

(ii) if F (z, x) =
∫ x

0
f(z, s)ds, then

lim
x→±∞

F (z, x)
x2

= +∞ uniformly for a.a. z ∈ Ω;

(iii) there exist η0 > 0 and ϑ ∈ (
max

{
1, (r − 2)N

2

}
, 2∗) such that

0 < η0 � lim inf
x→±∞

f(z, x)x − 2F (z, x)
|x|ϑ uniformly for a.a. z ∈ Ω;

(iv) 0 = f ′
x(z, 0) = lim

x→0

f(z,x)
x uniformly for a.a. z ∈ Ω;

(v) there exists δ > 0 such that f(z, x)x � 0 for a.a. z ∈ Ω, all |x| � δ.



 42 Page 14 of 17 N. S. Papageorgiou and V. D. Rădulescu NoDEA

Theorem 8. If hypotheses H2 hold and λ � λ̂1(2), then problem (2)λ admits
at least one nontrivial solution u0 ∈ C1

0 (Ω).

Proof. Let k � 1 such that λ ∈
[
λ̂k(2), λ̂k+1(2)

)
. We set

H̄k =
k⊕

i=1
E(λ̂i(2)) and Ĥk = H̄⊥

k = ⊕
i�k+1

E(λ̂i(2)).

We have the following orthogonal direct sum decomposition

H1
0 (Ω) = H̄k ⊕ Ĥk.

By virtue of hypotheses H2(iv), (v), given ε > 0, we can find δ1 ∈ (0, δ]
such that

0 � F (z, x) � ε

2
x2 for a.a. z ∈ Ω, all |x| � δ1. (30)

Since H̄k is finite dimensional, all norms are equivalent and so we can
find ρ0 > 0 such that

||u|| � ρ0 ⇒ ||u||∞ � δ1 for all u ∈ H̄k. (31)

Let ϕλ : H1
0 (Ω) → R be the energy functional for problem (2)λ defined

by

ϕλ(u) =
1
2
τ(u) − λ

2
||u||22 −

∫
Ω

F (z, u)dz for all u ∈ H1
0 (Ω)

with τ(u)= ||Du||22+
∫
Ω

β(z)u2dz for all u ∈ H1
0 (Ω). Evidently ϕλ ∈C2(H1

0 (Ω)).
For u ∈ H̄k with ||u|| � ρ0, we have

ϕλ(u) � 1
2
τ(u) − λ

2
||u||22 (see (31))

� 0 (see (7) and recall that λ � λ̂k(2)).

From (30) and hypothesis H2(i), we have

F (z, x) � ε

2
x2 + c11|x|r for a.a. z ∈ Ω, all x ∈ R, some c11 = c11(ε) > 0.

(32)

For u ∈ Ĥk, we have

ϕλ(u) � 1
2
τ(u) − λ + ε

2
||u||22 − c11||u||rr (see (32)).

Choose ε > 0 small such that λ+ε < λ̂k+1(2) (recall λ∈
[
λ̂k(2), λ̂k+1(2)

)
).

Then we have

ϕλ(u) � c12||u||2 − c13||u||r for some c12, c13 > 0 (see (7)). (33)

Since r > 2, from (33) it follows that we can find ρ ∈ (0, ρ0] small such
that

ϕλ(u) � 0 for all u ∈ Ĥk with ||u|| � ρ.
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So, we have proved that ϕλ has a local linking at the origin with respect
to the orthogonal direct sum decomposition H1

0 (Ω) = Hk ⊕ Ĥk. Since ϕλ ∈
C2(H1

0 (Ω)), from Su [16, Proposition 2.3], we have

Ck(ϕλ, 0) = δk,dk
Z with dk = dimHk. (34)

On the other hand, from Aizicovici, Papageorgiou and Staicu [2], we have

Ck(ϕλ,∞) = 0 for all k � 0. (35)

From (34) and (35) it follows that we can find u0 ∈ Kϕλ
\{0}. Then u0

solves problem (2)λ and from the regularity theory (see Struwe [15, p. 218]),
we have that u0 ∈ H1

0 (Ω). �
If we strengthen hypothesis H2(v), we can improve the conclusion of

Theorem 8 and provide more information about the solution u0.
The new hypotheses on the perturbation f(z, x) are the following:
H3 : f : Ω × R → R is a measurable function such that for a.a. z ∈ Ω,

f(z, 0) = 0, f(z, ·) ∈ C1(R), hypotheses H3(i) → (iv) are the same as the
corresponding hypotheses H2(i) → (iv) and
(v) f(z, x)x � 0 for a.a. z ∈ Ω, all x ∈ R and the inequality is strict for all
(z, x) ∈ Ω0 × R with |Ω0|N > 0 and x �= 0.

Theorem 9. If hypotheses H3 hold and λ � λ̂1(2), then problem (2)λ admits a
nodal solution u0 ∈ C1

0 (Ω).

Proof. From Theorem 8 we know that problem (2)λ has a nontrivial solution
u0 ∈ H1

0 (Ω). Suppose that u0 has constant sign and to fix things assume that
u0 � 0. We have

A(u) + β(z)u = λu + Nf (u). (36)

On (36) we act with û1(2, β) ∈ int C+. Then

〈A(u) + βu, û1(2, β)〉 = λ

∫
Ω

uû1(2, β)dz +
∫

Ω

f(z, u)û1(2, β)dz

⇒ (λ̂1(2, β) − λ)
∫

Ω

uû1(2, β)dz =
∫

Ω

f(z, u)û1(2, β)dz.

Note that (λ̂1(2, β) − λ)
∫
Ω

uû1(2, β)dz � 0, while
∫
Ω

f(z, u)û1(2, β)dz >
0 (see H3(v) and recall that we have assumed that u � 0). So, we have a
contradiction and this proves that u0 is nodal. �
Remark 3. Our results here answer the question posed in Rădulescu [14] and
show that hypothesis (8) in [14] is not necessary. Finally we stress that our
approach here differs from that of [8].
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