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Abstract. We establish the existence and multiplicity of solutions for
a class of quasilinear elliptic equations involving the anisotropic �p(·)-
Laplace operator, on a bounded domain with smooth boundary. We work
on the weighted anisotropic variable exponent Sobolev space and our main
tools are Sobolev embeddings and the mountain pass theorem.
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1. Introduction

In this paper, we are interested in the existence and multiplicity of weak solu-
tions for the nonhomogeneous anisotropic eigenvalue problem{

−∑N
i=1 ∂xi

(|∂xi
u|pi(x)−2∂xi

u) = λ|u|q(x)−2u − h(x)|u|r(x)−2u in Ω,

u = 0 on ∂Ω,

(1)

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary, λ > 0 is

a real number, pi, q, r are continuous functions on Ω such that 2 ≤ pi(x) < N ,
2 < q(x) < r(x) for any x ∈ Ω and i ∈ {1, . . . , N}, and h : Ω → R is a
continuous positive function satisfying the conditions∫

Ω

λ
r(x)

r(x)−q(x)
1

h(x)
q(x)

r(x)−q(x)

dx < ∞ (2)

and ∫
Ω

(
λ

h(x)
q(x)−2
r(x)−2

) r(x)
r(x)−q(x)

dx < ∞. (3)
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392 V. D. Rădulescu and I.-L. Stăncuţ NoDEA

We first establish the non-existence of nontrivial weak solutions for prob-
lem (1) if λ is small enough and then we get the existence of at least two
nontrivial weak solutions for problem (1) if λ is sufficiently large.

We start with preliminary basic notations and terminology on the theory
of Lebesgue–Sobolev spaces with variable exponent.

Set

C+(Ω) = {g; g ∈ C(Ω), g(x) > 1 for all x ∈ Ω}.

For any g ∈ C+(Ω) we define

g+ = sup
x∈Ω

g(x) and g− = inf
x∈Ω

g(x).

For any p ∈ C+(Ω) we define the variable exponent Lebesgue space

Lp(·)(Ω)=
{

u; u is a measurable real-valued function and
∫

Ω

|u|p(x)dx < ∞
}
,

endowed with the so-called Luxemburg norm

|u|p(·) = inf
{

μ > 0;
∫

Ω

∣∣∣∣u(x)
μ

∣∣∣∣
p(x)

dx ≤ 1
}

,

which is a separable and reflexive Banach space. If 0 < |Ω| < ∞ and p1, p2 are
variable exponents in C+(Ω) such that p1(x) ≤ p2(x) almost everywhere in Ω,
then the embedding Lp2(·)(Ω) ↪→ Lp1(·)(Ω) is continuous.

We denote by Lp′(·)(Ω) the conjugate space of Lp(·)(Ω), where 1
p(x) +

1
p′(x) = 1. For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the following Hölder type
inequality ∣∣∣∣

∫
Ω

uv dx

∣∣∣∣ ≤
(

1
p− +

1
p′−

)
|u|p(·)|v|p′(·) (4)

holds true.
An important role in handling the generalized Lebesgue spaces is played

by the p(·)-modular of the Lp(·)(Ω) space, which is the mapping ρp(·) :
Lp(·)(Ω) → R defined by

ρp(·)(u) =
∫

Ω

|u|p(x)dx.

If (un), u ∈ Lp(·)(Ω), then the following relations hold true:

|u|p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1), (5)

|u|p(·) > 1 ⇒ |u|p−

p(·) ≤ ρp(·)(u) ≤ |u|p+

p(·), (6)

|u|p(·) < 1 ⇒ |u|p+

p(·) ≤ ρp(·)(u) ≤ |u|p−

p(·), (7)

|un − u|p(·) → 0 ⇔ ρp(·)(un − u) → 0. (8)

For proofs and further related properties of variable exponent Lebesgue
spaces we refer to [13].
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By L
r(·)
h (Ω), where r : Ω → (1,∞) (with r+ < +∞) and h : Ω → [0,∞)

are continuous functions, we denote the weighted Lebesgue space

L
r(·)
h (Ω) =

{
u; u is a measurable real-valued function

and
∫

Ω

h(x)|u|r(x)dx < ∞
}

,

equipped with the norm

|u|h,r(·) = inf
{

μ > 0;
∫

Ω

h(x)
∣∣∣∣u(x)

μ

∣∣∣∣
r(x)

dx ≤ 1
}

.

We notice that, if h(x) ≡ 1 on Ω, the resulting norm is even | · |r(·).
We denote by W

1,p(·)
0 (Ω) the variable exponent Sobolev space defined by

W
1,p(·)
0 (Ω) =

{
u; u|∂Ω = 0, u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)

}
,

endowed with the equivalent norms

‖u‖p(·) = |u|p(·) + |∇u|p(·)
and

‖u‖ = inf
{

μ > 0;
∫

Ω

(∣∣∣∣∇u(x)
μ

∣∣∣∣
p(x)

+
∣∣∣∣u(x)

μ

∣∣∣∣
p(x))

dx ≤ 1
}

,

where, in the definition of ‖u‖p(·), |∇u|p(·) is the Luxemburg norm of |∇u|. We
remember that W

1,p(·)
0 (Ω) is a separable and reflexive Banach space. Also, we

note that if s ∈ C+(Ω) and s(x) < p∗(x) for all x ∈ Ω, then the embedding
W

1,p(·)
0 (Ω) ↪→ Ls(·)(Ω) is compact and continuous, where p∗(x) = Np(x)

N−p(x) and
p(x) < N .

We refer to [10–13] for more properties, details, extensions and further
references.

Finally, we present the anisotropic variable exponent Sobolev space
W

1,�p(·)
0 (Ω), where �p : Ω → R

N is the vectorial function �p(·) = (p1(·), . . . , pN (·))
and the components pi ∈ C+(Ω), i ∈ {1, . . . , N}, are logarithmic Hölder con-
tinuous, that is, there exists M > 0 such that |pi(x)−pi(y)| ≤ −M/log(|x−y|)
for any x, y ∈ Ω with |x−y| ≤ 1/2 and i ∈ {1, . . . , N}. W

1,�p(·)
0 (Ω) is the closure

of C∞
0 (Ω) under the norm

‖u‖�p(·) =
N∑

i=1

|∂xi
u|pi(·)

and is a reflexive Banach space. This space is a natural generalization of the
variable exponent Sobolev space W

1,p(·)
0 (Ω).

Now, we introduce �P+, �P− ∈ R
N as

�P+ = (p+
1 , . . . , p+

N ), �P− = (p−
1 , . . . , p−

N ),

and P+
+ , P+

− , P−
− ∈ R

+ as

P+
+ = max{p+

1 , . . . , p+
N}, P+

− = max{p−
1 , . . . , p−

N}, P−
− = min{p−

1 , . . . , p−
N}.
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We also always assume that
N∑

i=1

1
p−

i

> 1,

and define P ∗
−, P−,∞ ∈ R

+ by

P ∗
− =

N∑N
i=1 1/p−

i − 1
, P−,∞ = max{P+

− , P ∗
−}.

2. Main results

In this paper we seek weak solutions for problem (1) in a subspace of
W

1,�p(·)
0 (Ω). Let E be the weighted anisotropic variable exponent Sobolev space

defined by

E =
{

u ∈ W
1,�p(·)
0 (Ω);

∫
Ω

h(x)|u|r(x)dx < ∞
}

,

equipped with the norm

‖u‖E = ‖u‖�p(·) + |u|h,r(·).

By a weak solution for problem (1) we understand a function u ∈ E with
u(x) = 0 almost everywhere on ∂Ω so that∫

Ω

{
N∑

i=1

|∂xi
u|pi(x)−2∂xi

u∂xi
v − λ|u|q(x)−2uv + h(x)|u|r(x)−2uv

}
dx = 0

(9)

for all u, v ∈ E.
Let Φ : E → R be the energy functional defined by

Φ(u) =
∫

Ω

{
N∑

i=1

|∂xi
u|pi(x)

pi(x)
− λ

q(x)
|u|q(x) +

h(x)
r(x)

|u|r(x)

}
dx.

By standard arguments we have Φ ∈ C1(E,R) and the derivative is given by

〈Φ′(u), v〉=
∫

Ω

{
N∑

i=1

|∂xi
u|pi(x)−2∂xi

u∂xi
v−λ|u|q(x)−2uv+h(x)|u|r(x)−2uv

}
dx

for all u, v ∈ E. Thus, the weak solutions of problem (1) coincide with the
critical points of Φ.

Theorem 2.1. Assume that the function q ∈ C(Ω) verifies the hypothesis

max
x∈Ω

q(x) < P−,∞.

Then there exists λ∗ > 0 such that for any λ ∈ (0, λ∗] problem (1) does not
have a nontrivial weak solution.

Author's personal copy
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Theorem 2.2. Assume that q ∈ C(Ω) and r ∈ C(Ω) satisfy the inequalities

max
x∈Ω

q(x) < P−,∞, max
x∈Ω

r(x) < P−,∞ and P+
+ < q−.

Then there exists λ0 > 0 such that for λ > λ0 problem(1) possesses at least
two nontrivial weak solutions.

Remark 2.3. Similar results as those presented above were obtained in the
linear case, for Laplace equations, in [1,8,18]. Also, for p-Laplace equations,
for a general case these can be found in [20], and for a particular case we refer
to [14] and [15].

The arguments in our proofs are inspired by the methods developed in
the paper by Pucci and Rădulescu [14]. However, in the present paper there
are several technical difficulties that are mainly due to the presence of several
variable exponents. For instance, the standard energy estimates follow by more
delicate computation as well as the standard Lp-estimates; in our case, due to
variable exponents, it is often more efficient to use the p( · )-modular instead
of the standard Lp norm.

We conclude this section by mentioning the pioneering paper by
Ambrosetti, Brezis and Cerami [2] on concave–convex nonlinearities in the
semilinear case. This result was extended by Autuori and Pucci [4] to the qua-
silinear case and by Autuori and Pucci [5] and Brändle, Colorado, de Pablo,
and Sánchez [6] to elliptic equations involving the fractional Laplacian.

3. Proof of Theorem 2.1

We assume by contradiction that u ∈ E is a weak solution of problem (1).
Taking v = u in (9) we get∫

Ω

N∑
i=1

|∂xi
u|pi(x)dx +

∫
Ω

h(x)|u|r(x)dx = λ

∫
Ω

|u|q(x)dx. (10)

Let us recall now the Young’s inequality

ab ≤ aα

α
+

bβ

β
, ∀a, b > 0

where α, β > 1 fulfill 1
α + 1

β = 1.

Put a = h(x)
q(x)
r(x) |u|q(x), b = λ

h(x)
q(x)
r(x)

, α = r(x)
q(x) and β = r(x)

r(x)−q(x) so that

λ|u|q(x) ≤ q(x)
r(x)

h(x)|u|r(x) +
r(x) − q(x)

r(x)
· λ

r(x)
r(x)−q(x)

h(x)
q(x)

r(x)−q(x)

.

Taking into account that q(x)
r(x) < 1 and r(x)−q(x)

r(x) < 1 and integrating over Ω
we obtain

λ

∫
Ω

|u|q(x)dx <

∫
Ω

h(x)|u|r(x)dx +
∫

Ω

λ
r(x)

r(x)−q(x)
1

h(x)
q(x)

r(x)−q(x)

dx.
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Considering the last inequality and (10) we get∫
Ω

N∑
i=1

|∂xi
u|pi(x)dx <

∫
Ω

λ
r(x)

r(x)−q(x)
1

h(x)
q(x)

r(x)−q(x)

dx. (11)

Clearly
∫

Ω

h(x)|u|r(x)dx ≥ 0, which together with (10) yield that

∫
Ω

N∑
i=1

|∂xi
u|pi(x)dx ≤ λ

∫
Ω

|u|q(x)dx. (12)

On the other hand, the embedding W
1,�p(·)
0 (Ω) ↪→ Lq(·)(Ω) is continuous. Thus,

there exists a constant C > 1 such that

|u|q(·) ≤ C‖u‖�p(·), ∀u ∈ W
1,�p(·)
0 (Ω). (13)

Let u ∈ W
1,�p(·)
0 (Ω) be such that ‖u‖�p(·) < 1

C . Then (13) implies

|u|q(·) < 1 for all u ∈ W
1,�p(·)
0 (Ω) with ‖u‖�p(·) <

1
C

.

Hence, by property (7) we have∫
Ω

|u|q(x)dx ≤ |u|q−

q(·). (14)

Combining (12), (13) and (14) it follows that∫
Ω

N∑
i=1

|∂xi
u|pi(x)dx ≤ λCq−‖u‖q−

�p(·). (15)

Also, ‖u‖�p(·) < 1 yields |∂xi
u|pi(·) < 1 and thus, by (7), we infer that

N∑
i=1

|∂xi
u|p

+
i

pi(·) ≤
∫

Ω

N∑
i=1

|∂xi
u|pi(x)dx. (16)

If we apply the Jensen inequality to the convex function a : R+ → R
+, a(t) =

tP
+
+ , P+

+ ≥ 2, we get

‖u‖P+
+

�p(·)
NP+

+ −1
= N

(∑N
i=1 |∂xi

u|pi(·)
N

)P+
+

≤
N∑

i=1

|∂xi
u|P

+
+

pi(·) ≤
N∑

i=1

|∂xi
u|p

+
i

pi(·). (17)

Taking in consideration (16) and (17) we deduce that

‖u‖P+
+

�p(·) ≤ NP+
+ −1

∫
Ω

N∑
i=1

|∂xi
u|pi(x)dx. (18)

By a simple computation, using (15) and (18), one has

1(
λCq−N

q−(P+
+ −1)

P
+
+

) P
+
+

q−−P
+
+

≤
∫

Ω

N∑
i=1

|∂xi
u|pi(x)dx.
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This last inequality together with (11) lead us to

λ >

(
CN

P
+
+ −1

P
+
+

)−q−( ∫
Ω

λ
r(x)

r(x)−q(x)
1

h(x)
q(x)

r(x)−q(x)

dx

)P
+
+ −q−

P
+
+

for any u ∈ E with ‖u‖�p(·) < 1
C . Denoting the term in the right-hand side of

the previous inequality by λ∗ , we conclude that Theorem 2.1 holds true.

4. Proof of Theorem 2.2

First, we will establish some auxiliary results.

Lemma 4.1. The energy functional Φ is coercive on E.

Proof. The proof of this Lemma relies on the inequality:
For any k1, k2 > 0 and 0 < q < r, a straightforward computation shows

that

k1|t|q − k2|t|r ≤ Ck1

(
k1

k2

) q
r−q

, ∀t ∈ R, (19)

where C > 0 is a constant depending on q and r.
If we choose in (19) q = q(x), r = r(x), k1 = λ

q(x) and k2 = h(x)
2r(x) we

obtain

λ

q(x)
|u|q(x) − h(x)

2r(x)
|u|r(x) ≤ C

λ

q(x)

(
λ

q(x)
· 2r(x)

h(x)

) q(x)
r(x)−q(x)

= C

(
1

q(x)

) r(x)
r(x)−q(x) (

2r(x)
) q(x)

r(x)−q(x)

λ
r(x)

r(x)−q(x) 1

h(x)
q(x)

r(x)−q(x)

.

But the terms
(

1
q(x)

) r(x)
r(x)−q(x)

, (2r(x))
q(x)

r(x)−q(x) are bounded (since 2 < q(x) <

r(x) < P−,∞), so the above inequality becomes

λ

q(x)
|u|q(x) − h(x)

2r(x)
|u|r(x) ≤ C1λ

r(x)
r(x)−q(x) 1

h(x)
q(x)

r(x)−q(x)

.

Integrating the previous inequality over Ω and taking into account the hypoth-
esis (2) we deduce that there exists a constant C2 > 0 so that∫

Ω

(
λ

q(x)
|u|q(x) − h(x)

2r(x)
|u|r(x)

)
dx ≤ C2.

Thus

Φ(u) =
∫

Ω

N∑
i=1

|∂xi
u|pi(x)

pi(x)
dx − λ

∫
Ω

1
q(x)

|u|q(x)dx +
∫

Ω

h(x)
r(x)

|u|r(x)dx

=
∫

Ω

N∑
i=1

|∂xi
u|pi(x)

pi(x)
dx −

∫
Ω

(
λ

q(x)
|u|q(x) − h(x)

2r(x)
|u|r(x)

)
dx

Author's personal copy
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−1
2

∫
Ω

h(x)
r(x)

|u|r(x)dx +
∫

Ω

h(x)
r(x)

|u|r(x)dx

≥
∫

Ω

N∑
i=1

|∂xi
u|pi(x)

pi(x)
dx +

1
2

∫
Ω

h(x)
r(x)

|u|r(x)dx − C2

≥ 1
P+

+

∫
Ω

N∑
i=1

|∂xi
u|pi(x)dx +

1
2r+

∫
Ω

h(x)|u|r(x)dx − C2. (20)

To proceed further, let v ∈ Lr(·)(Ω), r ∈ C+(Ω), provided that |v|r(·) > 1. By
relation (6) we get

|v|r−
r(·) ≤

∫
Ω

|v|r(x)dx ≤ |v|r+

r(·).

Taking v(x) = h(x)
1

r(x) u(x) we see that

|u|r−
h,r(·) ≤

∫
Ω

h(x)|u|r(x)dx ≤ |u|r+

h,r(·). (21)

Also, let u ∈ E be such that |∂xi
u|pi(·) > 1 for all i ∈ {1, . . . , N}, whence

‖u‖�p(·) > 1. By (6) we have

N∑
i=1

|∂xi
u|p

−
i

pi(·) ≤
∫

Ω

N∑
i=1

|∂xi
u|pi(x)dx. (22)

Applying Jensen’s inequality to the convex function b : R+ → R
+, b(t) = tP

−
− ,

P−
− ≥ 2, we find that

‖u‖P −
−

�p(·)
NP −

− −1
= N

(∑N
i=1 |∂xi

u|pi(·)
N

)P −
−

≤
N∑

i=1

|∂xi
u|P

−
−

pi(·) ≤
N∑

i=1

|∂xi
u|p

−
i

pi(·). (23)

Consequently, (20), (21), (22) and (23) yield to

Φ(u) ≥
‖u‖P −

−
�p(·)

P+
+ NP −

− −1
+

1
2r+

|u|r−
h,r(·) − C2

≥ C3

(‖u‖�p(·) + |u|h,r(·)
) − C2 = C3‖u‖E − C2,

where C3 = min
{

1

P+
+ N

P
−
− −1

, 1
2r+

}
. We infer that Φ(u) → ∞ as ‖u‖E → ∞.

This means that Φ is coercive on E. �

Lemma 4.2. Assume that (un) is a sequence in E such that Φ(un) is bounded.
Then there exists a subsequence of (un), still denoted by (un), which converges
weakly in E to some u0 ∈ E and

Φ(u0) ≤ lim inf
n→∞ Φ(un).

Proof. Since Φ(un) is bounded, the inequality (20) implies that
∑N

i=1

∫
Ω

|∂xi
un|pi(x)dx and

∫
Ω

h(x)|un|r(x)dx are bounded.
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Let (un) be such that |∂xi
un|pi(·) > 1 for all i ∈ {1, . . . , N}, wherefrom

‖un‖�p(·) > 1. By (6) we get

1 < |∂xi
un|pi(·) <

N∑
i=1

|∂xi
un|pi(·) <

N∑
i=1

|∂xi
un|p

−
i

pi(·) ≤
N∑

i=1

∫
Ω

|∂xi
un|pi(·)dx,

hence ‖un‖�p(·) is bounded.
Also, let vn ∈ Lr(·)(Ω), r ∈ C+(Ω), provided that |vn|r(·) > 1. Therefore,

by inequality (6) and taking vn(x) = h(x)
1

r(x) un(x) we obtain

1 < |un|h,r(·) < |un|r−
h,r(·) ≤

∫
Ω

h(x)|un|r(x)dx,

whence |un|h,r(·) is bounded. Hence ‖un‖E is bounded. Consequently, there
exists a subsequence of (un), labeled again (un), which converges weakly to
some u0 ∈ E. In fact, there exists u0 ∈ E so that

un ⇀ u0 in W
1,�p(·)
0 (Ω),

un → u0 in L
r(·)
h (Ω).

We define

F (x, u) =
λ

q(x)
|u|q(x) − h(x)

r(x)
|u|r(x)

and

f(x, u) = Fu(x, u) = λ|u|q(x)−2u − h(x)|u|r(x)−2u.

We notice that

fu(x, u) = λ(q(x) − 1)|u|q(x)−2 − h(x)(r(x) − 1)|u|r(x)−2.

Using again (19) for k1 = λ(q(x) − 1), k2 = h(x)(r(x) − 1), q = q(x) − 2 and
r = r(x) − 2 it follows that

fu(x, u) ≤ Cλ(q(x) − 1)
(

λ(q(x) − 1)
h(x)(r(x) − 1)

) q(x)−2
r(x)−q(x)

= C

(
q(x) − 1
r(x) − 1

) q(x)−2
r(x)−q(x)

· (q(x) − 1) · λ
r(x)−2

r(x)−q(x)

h(x)
q(x)−2

r(x)−q(x)

.

Since 2 < q(x) < r(x) < P−,∞ we can see that
(

q(x)−1
r(x)−1

) q(x)−2
r(x)−q(x)

· (q(x) − 1) is

a bounded expression. It follows that

fu(x, u) ≤ C1
λ

r(x)−2
r(x)−q(x)

h(x)
q(x)−2

r(x)−q(x)

. (24)
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According to the definitions of Φ and F we obtain the following estimate

Φ(u0) − Φ(un) =
∫

Ω

N∑
i=1

|∂xi
u0|pi(x)

pi(x)
dx −

∫
Ω

N∑
i=1

|∂xi
un|pi(x)

pi(x)
dx

+
∫

Ω

[F (x, un) − F (x, u0)]dx. (25)

Clearly the following∫ s

0

fu(x, u0 + t(un − u0))dt =
1

un − u0
[f(x, u0 + s(un − u0)) − f(x, u0)]

=
1

un − u0
[Fu(x, u0 + s(un − u0)) − Fu(x, u0)]

hold true. Integrating the previous relation over [0, 1] we find that∫ 1

0

∫ s

0

fu(x, u0 + t(un − u0))dt ds

=
1

un − u0

∫ 1

0

[Fu(x, u0 + s(un − u0)) − Fu(x, u0)]ds

=
1

(un − u0)2
[F (x, un) − F (x, u0)] − f(x, u0)

un − u0
.

Hence

F (x, un) − F (x, u0) = (un − u0)2
∫ 1

0

∫ s

0

fu(x, u0 + t(un − u0))dt ds

+ (un − u0)f(x, u0). (26)

Combining the relations (25) and (26), then applying (24) we infer that

Φ(u0) − Φ(un) =
∫

Ω

N∑
i=1

|∂xi
u0|pi(x)

pi(x)
dx −

∫
Ω

N∑
i=1

|∂xi
un|pi(x)

pi(x)
dx

+
∫

Ω

(un − u0)2
∫ 1

0

∫ s

0

fu(x, u0 + t(un − u0))dt ds dx

+
∫

Ω

(un − u0)f(x, u0)dx

≤
∫

Ω

N∑
i=1

|∂xi
u0|pi(x)

pi(x)
dx −

∫
Ω

N∑
i=1

|∂xi
un|pi(x)

pi(x)
dx

+C2

∫
Ω

(un − u0)2
λ

r(x)−2
r(x)−q(x)

h(x)
q(x)−2

r(x)−q(x)

dx +
∫

Ω

(un − u0)f(x, u0)dx,

(27)

where C2 > 0 is a constant. Now, we need to demonstrate that the last two
integrals converge to 0 as n → ∞.
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We define J : E → R by

J(v) =
∫

Ω

f(x, u0)v dx.

Evidently, J is linear. We want to prove that J is also continuous. We have

|J(v)| ≤
∫

Ω

|f(x, u0)v|dx =
∫

Ω

∣∣λ|u0|q(x)−2u0 − h(x)|u0|r(x)−2u0

∣∣ · |v|dx

≤ λ

∫
Ω

|u0|q(x)−1|v|dx +
∫

Ω

h(x)|u0|r(x)−1|v|dx. (28)

Applying the Hölder type inequality (4) we find that∫
Ω

|u0|q(x)−1|v|dx ≤
(

1(
q

q−1

)− +
1
q−

)∣∣|u0|q(x)−1
∣∣

q(·)
q(·)−1

|v|q(·).

On the other hand, the embedding W
1,�p(·)
0 (Ω) ↪→ Lq(·)(Ω) is continuous and,

thus, there exists a positive constant C0 such that

|v|q(·) ≤ C0‖v‖�p(·), ∀v ∈ W
1,�p(·)
0 (Ω).

We have also

‖v‖�p(·) ≤ ‖v‖E .

The last three inequalities imply that∫
Ω

|u0|q(x)−1|v|dx ≤ C̃‖v‖E , (29)

where C̃ > 0 is a constant. Using again Hölder’s inequality (4) we have∫
Ω

h(x)|u0|r(x)−1|v|dx

=
∫

Ω

(
h(x)

r(x)−1
r(x) |u0|r(x)−1

)(
h(x)

1
r(x) |v|)dx

≤
(

1(
r

r−1

)− +
1
r−

)∣∣∣∣h(x)
r(x)−1
r(x) |u0|r(x)−1

∣∣∣∣
r(·)

r(·)−1

∣∣∣∣h(x)
1

r(x) |v|
∣∣∣∣
r(·)

= C|v|h,r(·) ≤ C‖v‖E , (30)

where C is a positive constant.
So, from (28), (29) and (30) we can see that there exists a constant Ĉ > 0

so that

|J(v)| ≤ Ĉ‖v‖E , ∀v ∈ E,

that is J is continuous. Now, considering that un ⇀ u0 in E and J is linear
and continuous we conclude that

J(un) → J(u0).

This shows that

lim
n→∞

∫
Ω

f(x, u0)(un − u0)dx = 0. (31)
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Next, we prove that

lim
n→∞

∫
Ω

(un − u0)2
λ

r(x)−2
r(x)−q(x)

h(x)
q(x)−2

r(x)−q(x)

dx = 0. (32)

We know that un ⇀ u0 in W
1,�p(·)
0 (Ω). Since the embedding W

1,�p(·)
0 (Ω) ↪→

Lr(·)(Ω) is compact, it follows that un → u0 in Lr(·)(Ω), that is,∫
Ω

|un − u0|r(x)dx → 0.

Therefore ∫
Ω

(|un − u0|2
) r(x)

2 dx < ∞
or equivalently

(un − u0)2 ∈ L
r(·)
2 (Ω).

We notice that the condition (3) may be equivalently reformulated as
λ

r(x)−2
r(x)−q(x)

h(x)
q(x)−2

r(x)−q(x)
∈ L

r(·)
r(·)−2 (Ω). Hence, we get

∫
Ω

(un − u0)2
λ

r(x)−2
r(x)−q(x)

h(x)
q(x)−2

r(x)−q(x)

dx

≤
(

1(
r
2

)− +
1(

r
r−2

)−

)∣∣∣∣∣ λ
r(x)−2

r(x)−q(x)

h(x)
q(x)−2

r(x)−q(x)

∣∣∣∣∣
r(·)

r(·)−2

∣∣(un − u0

)2∣∣
r(·)
2

via Hölder type inequality (4). We notice that also

ρ r(·)
2

((un − u0)2) =
∫

Ω

|(un − u0)2|
r(x)
2 dx =

∫
Ω

|un − u0|r(x)dx → 0.

The above relation together with (8) implies∣∣(un − u0

)2∣∣
r(·)
2

→ 0.

Therefore, it turns out that (32) holds true.
Now, to conclude Lemma 4.2 we prove that the functional Λ :

W
1,�p(·)
0 (Ω) → R,

Λ(u) =
∫

Ω

N∑
i=1

|∂xi
u|pi(x)

pi(x)
dx

is convex. Indeed, taking in consideration that the function

[0,∞) � t → tγ

is convex for each γ > 1 it follows that for any x ∈ Ω fixed it the inequality∣∣∣∣α + β

2

∣∣∣∣
pi(x)

≤
∣∣∣∣ |α| + |β|

2

∣∣∣∣
pi(x)

≤ 1
2
|α|pi(x) +

1
2
|β|pi(x),

∀ α, β ∈ R, i ∈ {1, . . . , N} (33)
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holds. Using (33) we obtain∣∣∣∣∂xi
u + ∂xi

v

2

∣∣∣∣
pi(x)

≤ 1
2
|∂xi

u|pi(x) +
1
2
|∂xi

v|pi(x),

∀ u, v ∈ W
1,�p(·)
0 (Ω), x ∈ Ω, i ∈ {1, . . . , N}.

Multiplying by 1
pi(x) , summing from 1 to N and integrating over Ω we deduce

that

Λ
(

u + v

2

)
≤ 1

2
Λ(u) +

1
2
Λ(v), ∀ u, v ∈ W

1,�p(·)
0 (Ω).

Therefore Λ is convex on W
1,�p(·)
0 (Ω). A way to prove that the functional Λ

is weakly lower semicontinuous on W
1,�p(·)
0 (Ω) is to show that this is lower

semicontinuous on W
1,�p(·)
0 (Ω) via Corollary III.8 in [7]. To this aim, we fix

u ∈ W
1,�p(·)
0 (Ω) and ε > 0. Let v ∈ W

1,�p(·)
0 (Ω) be arbitrary. The fact that Λ is

convex and inequality (4) holds lead us to

Λ(v) ≥ Λ(u) + 〈Λ′(u), v − u〉

= Λ(u) +
∫

Ω

N∑
i=1

|∂xi
u|pi(x)−2∂xi

u∂xi
(v − u)dx

≥ Λ(u) −
∫

Ω

N∑
i=1

|∂xi
u|pi(x)−1|∂xi

(v − u)|dx

≥ Λ(u) − c1

N∑
i=1

∣∣|∂xi
u|pi(x)−1

∣∣
pi(·)

pi(·)−1
|∂xi

(v − u)|pi(·)

≥ Λ(u) − c2‖v − u‖�p(·)
≥ Λ(u) − ε

for any v ∈ W
1,�p(·)
0 (Ω) with ‖v − u‖�p(·) < ε/c2, where c1, c2 are two positive

constants. Thus Λ is lower semicontinuous on W
1,�p(·)
0 (Ω) and so weakly lower

semicontinuous. This means that

lim inf
n→∞ Λ(un) ≥ Λ(u0),

that is

lim inf
n→∞

∫
Ω

N∑
i=1

|∂xi
un|pi(x)

pi(x)
dx ≥

∫
Ω

N∑
i=1

|∂xi
u0|pi(x)

pi(x)
dx.

Passing to the limit in (27) and using (31), (32) and the above inequality it
follows that

lim inf
n→∞ Φ(un) ≥ Φ(u0).

We conclude that Lemma 4.2 holds true. �
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Proof of Theorem 2.2. By Lemmas 4.1, 4.2 and Theorem 1.2 in [17]
we deduce that there exists a global minimizer of Φ, that is

Φ(u) = inf
v∈E

Φ(v).

It is obvious that u is weak solution of problem (1). Our goal is to show that
u �≡ 0 in E. For this purpose, we will prove that infE Φ < 0 providing that λ
is large enough.

Set

λ=inf
{

q+

∫
Ω

N∑
i=1

|∂xi
u|pi(x)

pi(x)
dx+q+

∫
Ω

h(x)
r(x)

|u|r(x)dx;u∈E,

∫
Ω

|u|q(x)dx=1
}

.

We want to point out that λ > 0. For all u ∈ E with
∫
Ω

|u|q(x)dx = 1,
Hölder type inequality (4) yields

λ =
∫

Ω

λ

h(x)
q(x)
r(x)

h(x)
q(x)
r(x) |u|q(x)dx ≤ C

∣∣∣∣ λ

h(x)
q(x)
r(x)

∣∣∣∣
r(·)

r(·)−q(·)

∣∣∣∣h(x)
q(x)
r(x) |u|q(x)

∣∣∣∣
r(·)
q(·)

(34)

where C = 1
( r
r−q )− + 1

( r
q )− .

Next, we focus our attention on the case when u ∈ E such that∣∣∣∣h(x)
q(x)
r(x) |u|q(x)

∣∣∣∣
r(·)
q(·)

> 1.

Thus, by (6), (7) and (34) it follows that

λ ≤ C

( ∫
Ω

λ
r(x)

r(x)−q(x)

h(x)
q(x)

r(x)−q(x)

dx

)1/( r
r−q )±( ∫

Ω

h(x)|u|r(x)dx

)1/( r
q )−

.

Hence, we get

∫
Ω

h(x)|u|r(x)dx ≥ ( λ
C )(

r
q )−

( ∫
Ω

λ
r(x)

r(x)−q(x)

h(x)
q(x)

r(x)−q(x)

dx

)( r
q )−/( r

r−q )± .

Therefore

λ ≥ q+

∫
Ω

h(x)

r(x)
|u|r(x)dx ≥ q+

r+

(
λ

C

)( r
q
)− ( ∫

Ω

λ
r(x)

r(x)−q(x)

h(x)
q(x)

r(x)−q(x)

dx

)−( r
q
)−/( r

r−q
)±

> 0.

Let λ > λ. Then there exists a function u1 ∈ E with
∫
Ω

|u1|q(x)dx = 1 so that

λ

∫
Ω

|u1|q(x)dx = λ > q+

∫
Ω

N∑
i=1

|∂xi
u1|pi(x)

pi(x)
dx + q+

∫
Ω

h(x)
r(x)

|u1|r(x)dx.
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Thus, we deduce that

λ

∫
Ω

1
q(x)

|u1|q(x)dx ≥ λ

q+

∫
Ω

|u1|q(x)dx >

∫
Ω

N∑
i=1

|∂xi
u1|pi(x)

pi(x)
dx

+
∫

Ω

h(x)
r(x)

|u1|r(x)dx.

Finally, we obtain

Φ(u1) =
∫

Ω

N∑
i=1

|∂xi
u1|pi(x)

pi(x)
dx − λ

∫
Ω

1
q(x)

|u1|q(x)dx +
∫

Ω

h(x)
r(x)

|u1|r(x)dx < 0,

so we infer that infu∈E Φ(u) < 0. In conclusion, there exists λ0 = λ so that the
problem (1) has a nontrivial weak solution, namely u1 ∈ E, for every λ > λ0,
satisfying Φ(u1) < 0. Since Φ(u1) = Φ(|u1|) we may assume that u1 ≥ 0 almost
everywhere in Ω. �

Next, we will try to find a second nontrivial weak solution for problem
(1). To this aim, we fix λ ≥ λ0 and set

g(x, t) =

⎧⎪⎨
⎪⎩

0, for t < 0

λtq(x)−1 − h(x)tr(x)−1, for 0 ≤ t ≤ u1(x)

λu1(x)q(x)−1 − h(x)u1(x)r(x)−1, for t > u1(x)

and

G(x, t) =
∫ t

0

g(x, s)ds.

We define the functional Ψ : E → R by

Ψ(u) =
∫

Ω

N∑
i=1

|∂xi
u|pi(x)

pi(x)
dx −

∫
Ω

G(x, u)dx.

By standard arguments, Ψ ∈ C1(E,R) and the derivative is given by

〈Ψ′(u), v〉 =
∫

Ω

N∑
i=1

|∂xi
u|pi(x)−2∂xi

u∂xi
v dx −

∫
Ω

g(x, u)v dx

for all u, v ∈ E. It is obvious that if u is a critical point of Ψ then u ≥ 0 almost
everywhere in Ω.

Let us prove now the following lemma.

Lemma 4.3. If u is a critical point of Ψ then u ≤ u1.

Proof. Denote by v+(x) = max{v(x), 0} the positive part of v. Using Theorem
7.6 in [9] it follows that if v ∈ E then v+ ∈ E. Next, we will apply the following
inequality (see formula 2.2 in [16])

(|ξi|si−2ξi − |ψi|si−2ψi)(ξi − ψi) ≥ 2−si |ξi − ψi|si , ∀ ξi, ψi ∈ R
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valid for each si ≥ 2. We have

0 = 〈Ψ′(u), (u − u1)+〉 − 〈Φ′(u1), (u − u1)+〉

=
∫

Ω

N∑
i=1

(|∂xi
u|pi(x)−2∂xi

u − |∂xi
u1|pi(x)−2∂xi

u1

)
∂xi

(u − u1)+dx

−
∫

Ω

[
g(x, u) − λu

q(x)−1
1 + h(x)ur(x)−1

1

]
(u − u1)+dx

=
∫

[u>u1]

N∑
i=1

(|∂xi
u|pi(x)−2∂xi

u − |∂xi
u1|pi(x)−2∂xi

u1

)
(∂xi

u − ∂xi
u1)dx

≥
∫

[u>u1]

N∑
i=1

2−pi(x)|∂xi
u − ∂xi

u1|pi(x)dx ≥ 0.

This holds if and only if (∂xi
u−∂xi

u1)(x) = 0 for all x ∈ ω := {y ∈ Ω; u(y) >
u1(y)}, i ∈ {1, . . . , N}. Therefore |∂xi

u − ∂xi
u1|pi(·) < 1 in ω. Thus, by (7)

|∂xi
u − ∂xi

u1|p
+
i

pi(·) ≤
∫

ω

|∂xi
u − ∂xi

u1|pi(x)dx ≤ |∂xi
u − ∂xi

u1|p
−
i

pi(·).

Since ∂xi
u−∂xi

u1 = 0 in ω we obtain that |∂xi
u−∂xi

u1|pi(·) ≤ 0 and this is a
contradiction with |∂xi

u− ∂xi
u1|pi(·) > 0. We conclude that u ≤ u1 in Ω. This

completes the proof. �

In what follows our goal is to determine a critical point u2 ∈ E of Ψ such
that Ψ(u2) > 0 via mountain pass theorem. By the previous lemma we deduce
that 0 ≤ u2 ≤ u1 in Ω. Hence

g(x, u2) = λu
q(x)−1
2 − h(x)ur(x)−1

2 and G(x, u2) =
λ

q(x)
u

q(x)
2 − h(x)

r(x)
u

r(x)
2

and we find that

Ψ(u2) = Φ(u2) and Ψ′(u2) = Φ′(u2).

So, we have the following

Φ(u2) = Ψ(u2) > 0 = Φ(0) > Φ(u1)

and

0 = Ψ′(u2) = Φ′(u2),

that is u2 is a weak solution of problem (1) such that 0 ≤ u2 ≤ u1, u2 �= 0 and
u2 �= u1.

Now, we focus our attention to get u2 described above.

Lemma 4.4. There exists ρ ∈ (0, ‖u1‖�p(·)) and a > 0 so that Ψ(u) ≥ a, for
every u ∈ E with ‖u‖�p(·) = ρ.
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Proof. For every u ∈ E we have

Ψ(u) =
∫

Ω

N∑
i=1

|∂xi
u|pi(x)

pi(x)
dx −

∫
[u>u1]

G(x, u)dx −
∫

[u≤u1]

G(x, u)dx

=
∫

Ω

N∑
i=1

|∂xi
u|pi(x)

pi(x)
dx − λ

∫
[u>u1]

u
q(x)−1
1 u dx +

∫
[u>u1]

h(x)ur(x)−1
1 u dx

−λ

∫
[u≤u1]

1
q(x)

uq(x) dx +
∫

[u≤u1]

h(x)
r(x)

ur(x)dx

>
1

P+
+

N∑
i=1

∫
Ω

|∂xi
u|pi(x)dx − λ

∫
[u>u1]

uq(x)dx − λ

q−

∫
[u≤u1]

uq(x)dx

>
1

P+
+

N∑
i=1

∫
Ω

|∂xi
u|pi(x)dx − λ

∫
Ω

|u|q(x)dx. (35)

We know that W
1,�p(·)
0 (Ω) is continuously embedded in Lq(·)(Ω), thus there

exists a constant L > 1 so that

|u|q(·) ≤ L · ‖u‖�p(·), ∀u ∈ W
1,�p(·)
0 (Ω). (36)

We fix ρ ∈ (0, 1) such that ρ < 1
L . Then the previous relation implies

|u|q(·) < 1 for all u ∈ W
1,�p(·)
0 (Ω) with ‖u‖�p(·) = ρ.

Evidently, |∂xi
u|pi(·) < 1. In this case we have shown already in the proof of

Theorem 2.1 that

N∑
i=1

∫
Ω

|∂xi
u|pi(x)dx ≥

‖u‖P+
+

�p(·)
NP+

+ −1
.

On the other hand, (7) and (36) imply

λ

∫
Ω

|u|q(x)dx ≤ L1‖u‖q−

�p(·),

where L1 = λLq−
. So, considering (35) and the last two inequalities we have

Ψ(u) >
‖u‖P+

+

�p(·)
P+

+ NP+
+ −1

− L1‖u‖q−

�p(·) = ‖u‖P+
+

�p(·)

(
1

P+
+ NP+

+ −1
− L1‖u‖q−−P+

+

�p(·)

)
,

for all u ∈ E with ‖u‖�p(·) = ρ.
We notice that the function g : [0, 1] → R defined by

g(t) =
1

P+
+ NP+

+ −1
− L1t

q−−P+
+

is positive in a neighborhood of the origin, so that the choice of ρ ∈ (0, 1) is
so small that a = ρP+

+ g(ρ) > 0. We conclude that lemma holds true. �

Lemma 4.5. The functional Ψ is coercive in E.
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Proof. For every u ∈ E we have

Ψ(u) =
∫

Ω

N∑
i=1

|∂xi
u|pi(x)

pi(x)
dx − λ

∫
[u>u1]

u
q(x)−1
1 u dx +

∫
[u>u1]

h(x)ur(x)−1
1 u dx

−λ

∫
[u≤u1]

1
q(x)

uq(x) dx +
∫

[u≤u1]

h(x)
r(x)

ur(x)dx

>
1

P+
+

∫
Ω

N∑
i=1

|∂xi
u|pi(x)dx − λ

∫
[u>u1]

u
q(x)
1 dx − λ

q−

∫
[u≤u1]

u
q(x)
1 dx

>
1

P+
+

∫
Ω

N∑
i=1

|∂xi
u|pi(x)dx − λ

∫
Ω

u
q(x)
1 dx

=
1

P+
+

∫
Ω

N∑
i=1

|∂xi
u|pi(x)dx − L2,

where L2 > 0 is a constant. Taking u ∈ E such that ‖u‖�p(·) > 1 we obtain

Ψ(u) >
‖u‖P −

−
�p(·)

P+
+ NP −

− −1
− L2.

We conclude that Ψ(u) → ∞ as ‖u‖�p(·) → ∞. In other words, Ψ is coercive in
E, completing the proof. �

Proof of Theorem 2.2 completed. By Lemma 4.4 and the mountain
pass theorem (see [3] with the variant given by Theorem 1.15 in [19]) we derive
that there exists a sequence (un) ⊂ E so that

Ψ(un) → c > 0 and Ψ′(un) → 0 (37)

where

c = inf
γ∈Γ

max
t∈[0,1]

Ψ(γ(t))

and

Γ = {γ ∈ C([0, 1], E); γ(0) = 0, γ(1) = u1}.

Keeping in mind (37) and relying on Lemma 4.5 we infer that (un) is bounded
and, thus, passing eventually to a subsequence, labeled again (un), we may
assume that there exists u2 ∈ E so that un ⇀ u2. Standard arguments, based
on the Sobolev embeddings, help us to see that

lim
n→∞〈Ψ′(un), v〉 = 〈Ψ′(u2), v〉,

for every v ∈ C∞
0 (Ω). The above piece of information together with the fact

that E ⊂ W
1,�p(·)
0 (Ω) and C∞

0 (Ω) is dense in W
1,�p(·)
0 (Ω) yield to the fact that

u2 is a weak solution of problem (1). Thus, our conclusion is that problem (1)
has at least two nontrivial weak solutions and the proof of Theorem 2.2 is now
complete. �
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