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1. Introduction

Eigenvalue problems involving nonhomogeneous elliptic operators have captured special attention in the last decade.
Numerous papers have been devoted to the study of various phenomena which occur on the spectrum of such differential
operators. We just refer to the recent advances in [1-13]. The present paper wishes to extend the above investigations by
considering a new class of eigenvalue problems that will by described in the following.

Let 2 C RY (N > 3) be a bounded domain with smooth boundary 052. Consider that, foreachi € {1, ..., N}, ¢; are odd,

increasing homeomorphisms from R onto R, A is a positive real and q : £2 — (1, o0) is a continuous function. The goal of
this paper is to study the following anisotropic eigenvalue problem:

N

3 (@@w) = A" in @2, 0
i=1

u=20 on os2.

Since the operator in the divergence form is nonhomogeneous we introduce an Orlicz-Sobolev space setting for problems
of this type. Actually, the fact that Eq. (1) is of anisotropic type means that a classical Orlicz-Sobolev space setting is not
adequate. This leads us to seek weak solutions for problem (1) in a more general Orlicz-Sobolev type space, which will be
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introduced later in this paper. On the other hand, the term arising in the right-hand side of (1) is also nonhomogeneous and
its particular form appeals to a suitable variable exponent Lebesgue space setting.

We first recall some basic facts about Orlicz spaces. For more details we refer to the books by Adams and Hedberg [14],
Adams [15], Musielak [16] and Rao and Ren [17] and the papers by Clément et al. [18,19], Garcia-Huidobro et al. [3] and
Gossez [20].

Assume that ¢; : R — R,i € {1, ..., N}, are odd, increasing homeomorphisms from R onto R. Define

t t
@i(t) = / @i(s)ds, (®@)*(t) = / ((pi)*l(s)ds, forallt e R, ie{1,...,N}.
0 0

We observe that @;,i € {1,..., N}, are Young functions, i.e.,, ®;(0) = 0, &; are convex, and limy_, o, ®;(x) = —+oo.
Furthermore, since ®@;(x) = 0 if and only if x = 0, lim,_,o ®;(x)/x = 0, and lim,_, o, ®;(x)/x = 400, then @&; are called
N-functions. The functions (®;)*,i € {1, ..., N}, are called the complementary functions of @;,i € {1,..., N}, and they
satisfy

(D)™ (t) = sup{st — ®;(s);s > 0}, forallt > 0.
We also observe that (®;)*,i € {1, ..., N}, are also N-functions, and Young’s inequality holds true:
st < @i(s) + (&)*(t), foralls, t > 0.

The Orlicz spaces Lg, (£2),i € {1, ..., N}, defined by the N-functions &; (see [14,15,18]) are the spaces of measurable
functions u : 2 — R such that

l[ullLy, = sup U uv dx; / ()" (lghdx < 1} < o0.
2 2

Then (Lg, (£2), || - ||L¢.l. ),i € {1,..., N}, are Banach spaces whose norms are equivalent to the Luxemburg norms

lulle; = inf{k > 0;/ P <@) dx < 1} .
Q k

For Orlicz spaces, Holder’s inequality reads as follows (see [17, Inequality 4, p. 79]):
/ uvdx <2 ||u||L¢,i ||v||L(¢_)* forallu € Lg;(£2) and v € Lig,+(£2), i € {1,...,N}.
Q 1
We denote by W1L¢i (£2),i € {1, ..., N}, the Orlicz-Sobolev spaces defined by
1 ou .
w L(pl(ﬂ) =uc L@I(Q), 8_ S Lq)i(.Q), i=1,...,N;.
Xi

These are Banach spaces with respect to the norms
lull1,e; = llulle; + IIVullle;, i€{1,...,N}.

We also define the Orlicz-Sobolev spaces W, Ly, (£2),i € {1, ..., N}, as the closure of Cj (£2) in W'Lg, (£2). By [20, Lemma
5.7], we obtain that on W(} Ly, (£2),i € {1, ..., N}, we may consider the equivalent norm

l[ulli := IVulll ;-

Moreover, it can be proved that the above norm is equivalent to the following norm:

N
lullis = > lojulle,
j=1

(see Proposition 1 in this paper).
For an easier manipulation of Orlicz-Sobolev spaces, we define

. tei(t) 0 te;(t)
i)o := inf —— and i) = sup ——, e{1,...,N}.
(Pido 0 (pi) t>103 &0 { }
In this paper we assume that for eachi € {1, ..., N} we have
t¢i(t) 0
1<) —<(pi)) <00, Yt=0. 2
(p:)o = ‘pi(t) = (pl) - ( )
The above relation implies that each &;,i € {1, ..., N}, satisfies the A,-condition; i.e.,
D;(2t) < K®i(t), Vt=0, (3)

where K is a positive constant (see [21, Proposition 2.3]).
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Furthermore, in this paper we assume that for eachi € {1, ..., N} the function @; satisfies the following condition:
the function [0, c0) > t — <1>,~(\/E) is convex. (4)
Conditions (3) and (4) ensure that for each i € {1,..., N} the Orlicz spaces Ly, (§2) are uniformly convex spaces, and

thus reflexive Banach spaces (see [21, Proposition 2.2]). That fact implies that the Orlicz-Sobolev spaces W(}L¢i([2), i€
{1, ..., N}, are also reflexive Banach spaces.

Remark 1. We point out certain examples of functions ¢ : R — R which are odd, increasing homeomorphisms from R
onto R and satisfy conditions (2) and (4). For more details, the reader can consult [19, Examples 1-3, p. 243].
(1) Let

p(t) = t]P%t, VteR,
with p > 1. For this function, it can be proved that
(@)o = (©)° =p.
(2) Consider
@(t) =log(1+ [tN|tIP%t, VteR,
with p, r > 1.In this case, it can be proved that
@o=p  @’=p+r.
(3) Let
|eP~2t
log(1+ |t])’
with p > 2. In this case we have

p(t) = ift #0, ¢(0) =0,

@o=p—1, (@°=p.

Finally, we introduce a natural generalization of the Orlicz-Sobolev spaces W(} L, (£2) that will enable us to study problem

(1) with sufficient accuracy. For this purpose, let us denote by 5 : 2 — R the vectorial function 5 = (D1, ..., Py). We
define Wo] LZ (£2), the anisotropic Orlicz-Sobolev space, as the closure of C(} (£2) with respect to the norm

N
lull> = |3iulg,
i=1

It is natural to endow the space W(}Lz(.Q) with the norm || - ||$ since Proposition 1 below is valid. In the case when

®;(t) = |t|% where 6; are constants for any i € {1, ..., N} the resulting anisotropic Sobolev space is denoted by Wol’ ?(£2),
where ¢ is the constant vector (64, ..., 6y). The theory of such spaces was developed in [22-27]. It was proved that

Wol‘z(.Q) is a reflexive Banach space for any g € RN with §; > 1foralli € {1, ..., N}. This result can be easily extended
to W(}Lg(.(Z). Indeed, denoting X = Lg, (£2) X - - x Lg, (£2) and considering the operator T : W&LZ (£2) — X, defined by
T(u) = Vu, itis clear that W(}Lg (£2) and X are isometric by T, since ||Tu||x = ZL |0iulp, = ||u||$. Thus, T(W(}Lg (£2))isa
closed subspace of X, which is a reflexive Banach space. By [28, Proposition 111.17], it follows that T (W, Lg (£2)) is reflexive,
and consequently W(}Lg (£2) is also a reflexive Banach space.

-

On the other hand, in order to facilitate the manipulation of the space W(} Lg (£2), we introduce P°, Py € RN as

PO = (@)% ..., )%, Po=((P1o, .-, (Pn)o),
and (P%)4, (Po), (Po)— € R as

(P4 = max{(p1)°, ..., (pn)°}, (Po)+ = max{(p1)o, - - -, (Pn)o} (Po)— = min{(p1)o, - - -, (Pn)o}-
Throughout this paper we assume that

N
— > 1, (5)

= (D)o

and define P; € R and P o, € R by
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N
N 9

> 1/(Pio—1
i=

(Po)* = Py oo = max{(Po)4, (Po)"}.

Next, we recall some background facts concerning the variable exponent Lebesgue spaces. For more details, we refer
to the book by Musielak [16] and the papers by Edmunds et al. [29-31], Kovacik and Rakosnik [32], Mihadilescu and
Radulescu [33], and Samko and Vakulov [34].

Set

C.(2)={h;h e C(2),h(x) > 1forallx € £2}.
For any h € C,(£2), we define

h™ =suph(x) and h~ = inf h(x).
xeQ xef2

For any q(x) € C.(£2), we define the variable exponent Lebesgue space L% (£2) (see [32]). On L% (£2), we define the
Luxemburg norm by the formula
qx)
dx<1}.

|U|q(x) = 1nf{u > 0;/
2

We remember that L1¥ (£2) is a separable and reflexive Banach space. If 0 < |2| < oo and q1, q» € C,(2) satisfy
q1(x) < g2(x) almost everywhere in £2, then there exists the continuous embedding L%2® (£2) — [11¥ ().

Let [P'©) (£2) be the conjugate space of [P) (£2), obtained by conjugating the exponent pointwise; i.e., 1/p(x) 4+ 1/p(x) =
1,32, Corollary 2.7]. For any u € [P*) () and v € LV’ (£2), the following Holder-type inequality

/ uv dx
2
is valid.

If (u,), u € L1%(£2), then the following relations hold true:

)
w

1 1
<\ =+ =) lubolvly (6)
(p— p’) p(IYIp' ()

- +
gy > 1= Jully, < / [ dx < [ul", (7)
2
. .
ulgeo < 1= ulT, < /9 9 de < Jul, (8)
|tn — gy — 0 & / |up — u]?™ dx — 0. (9)
2

2. Main results

In the following, for eachi € {1, ..., N}, we define g; : [0, c0) — R by

t ’

@i(t)
a;(t) = fort >0
0, fort =0.

Since the ¢; are odd, we deduce that, actually, ¢;(t) = a;(|t])t foreacht € R and eachi € {1,...,N}.
We say that 1 € R is an eigenvalue of problem (1) if there exists u € W(}Lg (£2) \ {0} such that

N
/ {Z la;(|8iu])| dudw — AlulI¥2uw § dx = 0,
2

i=1
forallw € W, Lg (£2).For A € R an eigenvalue of problem (1), the function u from the above definition will be called a weak

solution of problem (1) corresponding to the eigenvalue A.
The main results of this paper are given by the following theorems.

Theorem 1. Assume that the function q € C($2) verifies the hypothesis

(P <q” <q" < (Po)". (10)

Then any A > 0 is an eigenvalue of problem (1).
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Theorem 2. Assume that the function q € C(£2) satisfies the conditions

1<q < (@Py)- and q" < Pyco. (11)
Then there exists A, > 0 such that any A € (0, A,) is an eigenvalue of problem (1).
Theorem 3. Assume that the function q € C(2) satisfies the inequalities

1<q =<q" < P)-. (12)
Then there exist two positive constants A, > 0 and A* > 0 such that any A € (0, A,) U (A*, 00) is an eigenvalue of problem (1).

Remark 2. By Theorem 3,itis notclearif A, < A*or A, > A*.Inthe first case, an interesting question concerns the existence
of eigenvalues of problem (1) in the interval [A,, A*]. We propose to the reader the study of these open problems.
In order to state the next result, we define

N
fo Z D;(|oul)dx
M= inf =1 ,
ueW&LZ(Q)\{O} fo $|u|q<") dx
and
N
fo Zai(|aiu|)|aiu|2 dx
A= inf =l
uEW] L~ (2)\(0) [ 1u]a® dx
Theorem 4. Assume that there exist jy, jo, k € {1, ..., N} such that
Po=q and (p,)°=q", (13)
and
q" < min{(pr)o, (Po)*}. (14)

Then0 < Ag < Ay, and every A € (A1, 00) is an eigenvalue of problem (1), while no A € (0, X¢) can be an eigenvalue of problem
(1)
Remark 3. At this stage, we are not able to say whether A; = A; or Ag < A;p. In the latter case, an interesting question

concerns the existence of eigenvalues of problem (1) in the interval [1q, A1]. We propose to the reader the study of these
open problems.

3. Variational setting and auxiliary results

From now on, E denotes the anisotropic Orlicz-Sobolev space Wo1 LZ (£2). Define the functionals J, I, J;,I; : E — R by

N
1
= E:cp,-ai dx, Iu) = | —|u/' dx,
JW) /Q (I;u])dx (w) fgq(x)lul x

i=1

N
11<u)=/ > a(gubloul? dx, 11(u>=/ " dx.
2 =1 2

Standard arguments imply that J, I € C'(E, R) and their Fréchet derivatives are given by

N
(J'(w),v) = f Zai(|aiu|)aiuaiv dx,
2 =1

(I'(w), v) = / [ul19~2ypdx,
forallu, v € E. ?
Next, for each A € R, we define the energetic functional associated with problem (1), T;, : E — R, by
L) =Ju) — Alu).
Clearly, T, € C'(E, R) with
(T, (W), v) = (' (W), v) — A{I'(w), v),
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for all u, v € E. Thus, X is an eigenvalue of problem (1) if and only if there exists u € E \ {0} a critical point of T;. In other
words, the main idea in proving Theorems 1-4 will be to look for nontrivial critical points of functional T;.
In order to do that, we begin by proving certain auxiliary results which will facilitate the proof of the main result.

Lemma 1. Assume that 2 C RN (N > 3) is a bounded domain with a smooth boundary. Assume that relation (5) is fulfilled. For
any q € C(£2) verifying

1<q(x) <Pyo forallx e 2, (15)
the embedding
1r q()
WoLqD (2) — LT (2)

is compact.
Proof. First, we point out that L, (£2) is continuously embedded in LPDo(2) foranyi € {1, ..., N}.Indeed, by [15, Lemma
8.12(b)] it is enough to show that @; dominates ¥; := |t|?)0 near infinity; i.e., there exists k > 0 and t, > 0 such that

wi(t) (=|t|P0) < di(k-t), V>t

That is a simple consequence of the definitions of (p;)o combined with relation (15) (see, e.g., the proof of [ 10, Lemma 2] for
more details).
Thus, for eachi € {1, ..., N} there exists a positive constant C; > 0 such that

[0l < Gillplle; forallg e L?(£2).
Ifue W(}Lg(fz) then dju € Ly, (§2) foreachi € {1, ..., N}. The above inequalities imply that

N N
lully; = > 18qu] 5, < CZ I3ullo, = Clull.
i=

i=1

where C = max{C, ..., Cy}. Thus, we deduce that W(}Lg (£2) is continuously embedded in W, Lo (2) = W(}’PO (£2).0n the
0

other hand, since relation (15) holds true, we infer that g* < Py . This fact, combined with the result of [22, Theorem 1],

implies that WO] ’PO(.Q) is compactly embedded in Lq+(9). Finally, since q(x) < q* for each x € §2, we deduce that L (£2)
is continuously embedded in L9 (£2). The above piece of information yields the conclusion that W(}Lg(.Q) is compactly

embedded in L") (£2). The proof of Lemma 1 is complete. O

Lemma 2. Assume that the hypothesis of Theorem 1 is fulfilled. Then there exist n > 0 and « > 0 such that T, (u) > « > 0 for
any u € E with ||u||$ =

Proof. First, we point out that

)T + ue) > u®)|"® forallx e 2. (16)

Using the above inequality and the definition of T;, we find that

N
A _
T,(u) > Z/ Pi(luldx — = (rul?” + ity (17)
i=1 /%

foranyu € E.

Since (10) holds, then by Lemma 1 it follows that E is continuously embedded both in LY (£2) and in 17" (£2). We deduce
there exist two positive constants B; and B, such that

B1||u||$ > |ulg+, Bz||u||$ > |ulg- forallu € E. (18)
Next, we focus our attention on the case when u € E and ||u||$ < 1. For such an element u, we have ||9;ul|¢;, < 1and, by a

relation similar to the third inequality in [10, Lemma 1], we obtain

llul

|(PO)+ N POy N N
P 1 PO+ ®)°
e =N 2 loille, < 21 19iullg, " < 21 1ullg” < 21 | @i (13ul) dx. (19)
1= 1= 1=

i=1
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Relations (17)-(19) imply that

(P%)+
”u”q) A B q B q-
N o (Bl )+ (Bl )

g+ =) ) P9
= (Bs = Ballul s~ = Bsfu T ) g O,
] (] [

+

T, (u)

for any u € E with ||u||g < 1, where B3, B4 and Bs are positive constants.
Since the function g : [0, 1] — R defined by

g(t) — B3 _ B4tq+—(P0)+ _ Bstq_—(P0)+

is positive in a neighborhood of the origin, the conclusion of the lemma follows at once. O

Lemma 3. Assume that the hypothesis of Theorem 1 is fulfilled. Then there exists e € E with ||e||g > n (where n is given
in Lemma 2) such that J,(e) < 0.

Proof. Let v € C§°(£2), ¥ > 0and ¥ # 0, be fixed and let t > 1. Using relation (11) in [10], we find that

n(rw:/ {Zab (c1ap]) — A ()w@}dx
2
0 9™
/ th @i (|0]) — A——[y|"™ § dx
2 | i=1 Q(X)
0 o AT
t(P )+ / D; (|0; dx — —/ ) dx.
; | PilayDde— = | I dx

Since g~ > (P%), by (10), it is clear that lim,_, o, T)(t¥/) = —oc. Then, for t > 1 large enough, we can take e = t such
that ||e||g > nand T, (e) < 0. This completes the proof. O

IA

IA

Lemma 4. Assume that the hypotheses of Theorem 2 are fulfilled. Then there exists A, > 0 such that for any . € (0, A,) there
are p, a > 0 such that T, (u) > a > 0 for any u € E with ||u||g = p.

Proof. Since (11) holds, by Lemma 1 it follows that E is continuously embedded in L) (£2). Thus, there exists a positive
constant c¢; such that

[ulgey < clllullg forallu € E. (20)
We fix p € (0, 1) such that p < 1/c;. Then, relation (20) implies that
lulgey <1 forallu € E, with ||u||g = p.

Furthermore, relation (8) yields

/ ul?® dx < |ul], forallu e E, with lull— = p. (21)
Q
Relations (20) and (21) imply that
/ [u]9® dx < cﬁrllullq; forallu € E, with |ul|- = p. (22)
2 ® @
Taking into account relations (19) and (22), we deduce that for any u € E with ||u||$ = p the following inequalities hold
true:
A
(W) > —s— ||u ||“’ " Jul?™ dx
N(P )+—1 q Q
PO rcd -
> — el &7 — = Ju)l”
NPD+-1

-
= p7 1 PP+ _ A )
NP1 q
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Hence, if we define

P q p(PO)Jr—q*’ (23)
2] NPO+-1

then for any A € (0, 2,) and u € E with [lul| > = p the number a = p P+ 72NPD+=1 is such that

T)L(U) >a>0.

This completes the proof. O

Lemma 5. Assume that the hypothesis of Theorem 2 is fulfilled. Then there exists 6 € E suchthat 8 > 0,60 % 0and T, (t0) < 0
for t > 0 small enough.

Proof. Assumption (11) implies that g~ < (Py)_. Let ¢¢ > 0 be such that g~ + € < (Py)_. On the other hand, since
q € C(£2), it follows that there exists an open set §2, C §2 such that |q(x) — q~| < € for all x € £2,. Thus, we conclude that
qx) < q +¢€9 < (Py)_ forallx € £2,. . .

Let 8 € C§°(£2) be such that supp(@) D £2,,0(x) = 1forallx € £2,and 0 < # < 1in £2. Then, using the above
information and the definition of (p;)o, for any t € (0, 1), we have

Y e o | g
T, (t0) = ®; (t19;0]) — A——|0]1
A(>K;; (t1361) == 1917t d

N

A
< t(pi)o/ CD-(IB-GI)dx——/ tq(X)|9|q(X) dx
; Q2 s 9 Je
N A
< tPo)— / ®; (18;0]) dx — _/ tq(X)|9|q(X) dx
; e qt Je,
N _
Atd e
< ¢Po)- Zf @; (180]) dx — f 1019 dx.
i=1 7% qa* 2
Therefore,
T, (t6) < 0,

fort < §V/((Po)——a"—€0) with

2 N
0 < 8 < min 1,—/ IQIQ(")dx/E:/ ®; (13;0]) dx ! .
{ qt Je, -1 /2 Y

This is possible since we claim that Zf\'ﬂ fQ @;(|0;0])dx > 0.Indeed, it is clear that

/ 1619® dxg/ |6]9% dxf/ 1019 dx.
2 2 2

On the other hand, E is continuously embedded in LY (£2), and thus there exists a positive constant ¢, such that
< —
0l < callOll-

The last two inequalities imply that

1015, >0

and combining this fact with relation (7) or relation (8), the claim follows at once. The proof of the lemma is now com-
pleted. O

Lemma 6. Assume that the hypotheses of Theorem 3 are fulfilled. Then the functional T, is coercive on E.
Proof. By relations (17) and (18) we deduce that, for all u € E,

N —
nszLQMWM—%meﬁ-%MMQﬂ. (24)
i=1

Now, we focus our attention on the elements u € E with ||u||g > 1. Using the same techniques as in the proof of (27)
combined with relation (24), we find that

q+
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B 2 o il =N = 2 (B )"+ (Bl )
jtl N(P) q 1 @ 2 @ 5

for any u € E with ||u||; > 1. Since by relation (12) we have (Py)_ > q* > q~, we infer that T, (1) — oo as ||u||£ — 0oQ.
In other words, T;, is coercive in E, completing the proof. O

+

Lemma 7. Assume that condition (13) in Theorem 4 is fulfilled. Then there exists a positive constant D > 0 such that

/ |u|9® dfo(/ ¢jl(|aj]u|)+/ ¢jz(|ajzu|)), YueCl(R).
2 2 2

Proof. First, we point out that for any x € £2 the following inequality holds true:
U@ < @I +uE|”, Yue ).

Integrating the above inequality with respect to x over 2, we get

/ |u|9® dng u|?" dx+/ lul’ dx, YueC(2).
2 2 2

Combining the above inequality with inequality (11) in [22], we deduce that there exists a positive constant C; > 0 such

that
/ [ul?® dx < ¢ (/ 10, ul7" dx—l—/ |, ul? dx) , YueCiR).
2 2 2

On the other hand, by a variant of [ 10, Lemma 3], we infer that there exists a positive constant C; > 0 such that
/ (|ajlu|(le)o + |aj2u|<p;2>°> dx < c2/ (@5, (19;,ul) + D3, (18,uD)) dx, ¥ u € C(£2).
2 o)
Combining the last two inequalities. we obtain the conclusion of the lemma. O

Lemma 8. Let A > O be fixed. Assume that the hypotheses of Theorem 4 are fulfilled. The following relation holds true:
lim T,(u) =o0

llull—>—o00
[

Proof. First, we show that

w _

im
llul =00 I(u)

Assume by contradiction that the above relation does not hold true. Then there exists an M > 0 such that for eachn € N*
there exists a u, € E with ||un||g > nand

Jw) _
I(un) —
While ||un||; = Zf\'ﬂ |0;tnll; — o0 asn — oo, the sequence {||dn| e, }n (With k given in inequality (14)) is either

bounded or unbounded.
On the other hand, it is not difficult to see that

/ |u|9® 5/ lul? dx+/ lu dx, VueeE.

Next, using relation (11) in [22], we find that there exists a positive constant c¢; such that

/lulq dx—|—/ |u|q dx < ¢ (/ [eulT dx+/ |8ku|q dx) YuekE.

Since by 1r1equa11ty (14) we have g* < (pk)o, a similar proof to that of [10, Lemma 2] shows that L, (£2) is continuously
embedded in LI (£2). The above pieces of information lead to the existence of a positive constant c, such that

(25)

/ " < collduly. + 3l 1, ¥ u ek, (26)
2
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If {||Okttn |l ¢, } is bounded, then by inequality (26) we have that {I(u,)}, is also bounded. On the other hand, denoting

o = Py i l13iunlle < 1
T @), if Bl > 1,

and using inequalities (C.9) and (C.10) in [19] (see also [10, Lemma 1]), we find that

N
J(up) = / D @i(|diun|)dx
2 =1
N .
> gl
i=1

N

(Po) - (Po) (P9
> lowallg” = > (a5 — ol )
i=1

{i§ai,n:(P0)+}

v

(Po)—
= Sl - N (27)

Consequently, in this case we obtain that lim,_, o, {EZ:; = 00, which contradicts (25).

Now, we assume that [|dxuy|le, — 00, as n — oo, on a subsequence of u, denoted again u,. We can assume that
|0kt |, > 1 for all n. Using inequality (C.10) in [19] and relation (26), we find that

Jan) o[ @llbanhdx sl

> . — > . -
1W) ™ [l dhtnlly + N9kt s ]~ Colllttally, + 19kl ]

YueE, ne N,

where c5 is a positive constant. Since by the hypothesis of Theorem 4 we have (py)o > ¢*, the above inequalities show that
J(uy)/1(uy) — o0,as n — oo, which again contradicts (25).

Next, we turn back to the proof of the relation given in Lemma 8. Assume by contradiction that the conclusion of Lemma 8
is not valid. Then there exists an M; > 0 such that for each n € N* there exists a v, € E with || v, ||; > nand

ITo.(vn)| = J(vn) — Al(vp)| < Mj.
Thus, it is clear that ||vn||; — 00 asn — o0, and since we proved that
Jo) = 0,12 = N
= N@o-—1 S ’
it follows that J(v,) — oo asn — oo. Thus, we find that for each n large enough we have
‘1 _ I(vy) < My .
J(vn) J(vn)

Then, passing to the limit as n — oo in the above inequality and taking into account the facts that J(v,)/I(v,) — oo (or,
equivalently I(v,)/J (v,) — 0)and J(v,) — oo asn — oo, we obtain a contradiction. Therefore, the conclusion of Lemma 8
isvalid. O

To end this section we prove the following proposition:

Proposition 1. Foreachi € {1, ..., N} thenorms | - |; and || - ||;,1 are equivalent.

Proof. We fixi € {1, ..., N}. First, we introduce a third norm on E, namely,

.....

Undoubtedly, we have
lulliz < llullin < Nlulli2, Yuc€eE.

Thus, the norms || - ||;; and || - ||;» are equivalent.
Next, we show that

1/2
lulli < NY2|lulliz, VueE.
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Indeed, since @; satisfies condition (4), we have

N
> 10ul?/llullf, N
Vu(x i— ' 1 du(x
/¢i(|12()|>dx:/¢i =1 dfo—/qfh(l’()')dx
17 NV2ull; 2 I?) N = NJe llull;2
Next, by the definition of || - ||, and || - ||; > and the fact that @; is an increasing function, we deduce that

0; 0;
/<Di<|]u(x)|>dx§/(D,'(“u(x)|>dx§1, Viell N
e \llulliz o \ldulle,

The last two inequalities imply that

[Vux)| .
b; Nz ) S 1;
Q N2 [ulli2
ie., lull; < NV2|ulj;, forallu € E.
Finally, we verify that
lulliy < N*Jlulli, Y u€ek.
In order to prove that, first, we remember that using [ 19, Lemma C.4(ii)] we find that

N&;(t) < ®i(Nt), Vt>0. (28)

Using the fact that @; is increasing, we deduce that

N
/Zqﬁi('aju(x)l)dfo/q)i(wu(x)')dng, Vie{l.....N}
2= llulli o llulli

Next, using the above inequality and (28), we obtain

[ 350 (B0 g 1 [ S0 (B9 g, vyem
2% \UNJul; N Jo s\ ull

Thus, we have found that

l9ulle; = Nllulli, Vje{l,...,N}

Summing from i = 1to N, we get that ||ul|;; < N?||u|; forallu € E.
The conclusion of the proposition is now clear. O

4. Proof of Theorem 1

By Lemmas 2 and 3 and the mountain pass theorem of Ambrosetti and Rabinowitz [35], we deduce the existence of a
sequence (u,) C E such that

T,(up) > ¢>0 and T,(u,) — 0(inE*) asn— oo. (29)

We prove that (u,) is bounded in E. In order to do that, we assume by contradiction that passing eventually to a subsequence,
still denoted by (u,), we have ||u, ”T,; — oo and that ||u, ”5 > 1 for all n.
Relation (29) and the above considerations imply that for n large enough we have

1
14+ C+ llunll= = To(un) — — (T} (1), un)
q
N 1
> / (¢>.~(|aiun|) - —_sai<|a,»un|>|aiun|> dx
i—1 /%2 q
N
>11- @;(|9;u,|)dx.
> ( ); /9 (Ioja e

v

(P4
=
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Using similar arguments as in the proof of relation (27), we obtain

<P°)+> u /
(D,' 8,- n d
- ; | @il )dx

(P0)+ 1 (Pg)—
2(1— =4 (il = ). (30)

in the above inequality and passing to the limit as n — oo, we obtain a contradiction. It follows that

1+c+ ||un||$ = (1 -

Dividing by ||u]| "

(up) is bounded in E. This information, combined with the fact that E is reflexive, implies that there exist a subsequence,
still denoted by (u,), and ug € E such that (u,) converges weakly to 1 in E. Since, by Lemma 1, the space E is compactly
embedded in L1 (£2), it follows that (u,) converges strongly to ug in L1° (£2). Then, by inequality (6), we deduce that

n—oo

lim f [t |90~ 20, (1 — ug)dx = 0.
2
This fact and relation (29) yield
lim (T} (un), up — o) = 0.
n—oo

Thus, we deduce that

N
lim Z/ a; (|18iun]) Bty (jun — dittg) dx = O. (31)
i=1 2

n—o0 4

Since the (u,) converge weakly to ug in E, by relation (31), we find that

N
lim f (a; (|3ittn ) dittn — a; (|9;u10]) Ditio) (ditty — dittp) dx = 0. (32)
— 00 i—1 7]

Since, foreachi € {1, ..., N}, &; is convex, we have

oiu(x) + dv(x)
2

iu(x) — djv(x)
2

’

Di(|ux)]) < &; ( ) + a;(|9;u(x)|) du(x) -

and

diux) + div(x)
2

div(x) — oiu(x)
2

’

(| (X)) < @i < ) + ai([dv () Ddv (x) -

foreveryu,v € E,x € 2andi € {1, ..., N}. Adding the above two relations and integrating over 2, we find that

oiu + dv

! / @ (3ul)du — a1 ) - (B — d)dx = / (|l dx + / ,(|v])dx — 2 / @f(
2 2 0 0 Q 2

(33)

) dx,
foranyu,v € Eandeachi e {1,...,N}.
On the other hand, since for eachi € {1, ..., N} we know that @; : [0, c0) — R is an increasing, continuous function
with @;(0) = 0,and t — ®;(+/t) is convex, we deduce by Lamperti [36] that

1[/ ¢i(|3iu|)dx+/ ¢i(|3iv|)dx] 2/ ¢i< )dx+/ <Pi(
2 1Je I?) Q 1)

foranyu,v € E and eachi € {1,...,N}.
By (33) and (34), it follows that for eachi € {1, ..., N} we have

aiu + d;v
2

8,-u — 8,'11

) dx, (34)

8,-u — E)iv

/ (a;(|13u)diu — ai([9v])d;v) - (du — dv)dx = 4/ ?; <‘
2 o 2

)dx, Yu,veeE. (35)

Relations (32) and (35) show that actually (u,,) converges strongly to ug in E. Then, by relation (29), we have
T,(up) =¢ >0 and T, (up) =0;

i.e., Ug is a nontrivial weak solution of Eq. (1). O
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5. Proof of Theorem 2
Let A, > 0 be defined as in (23) and A € (0, A,). By Lemma 4, it follows that on the boundary of the ball centered at the

origin and of radius p in E, denoted by B, (0), we have

inf T)L > 0. (36)
3B, (0)

On the other hand, by Lemma 5, there exists & € E such that T, (t6) < O for all t > 0 small enough. Moreover, relations
(19),(22) and (8) imply that for any u € B,(0) we have

-
Py Aq -
T, (u) > T llu || R |1/

It follows that

(PO)

—oo<c:= inf T, <O.
By (0)

We let now 0 < € < infyp, ) T — infp,(0) T Applying Ekeland’s variational principle (see [37]) to the functional
T, : B,(0) — R, we find u, € B,(0) such that

T, (ue) < inf Ty + ¢
By (0)

T, (ue) <],\(u)—|—e||u—u€||g, u# ue.

Since

T,(u) < inf T, + € < 1nf T, +€ < inf Ty,
By (0) 9B, (0)

we deduce thatu, € B,(0). Now, we defineH, : B, B,(0) »> R by Hy (u) =T, (u) +€||lu —u, ||$. It is clear that u, is a minimum
point of H,, and thus
H; (ue +tv) — Hy (ue)
t
for small t > 0 and any v € B{(0). The above relation yields
T (ue + tv) — T, (u,)
t
Letting t — 0, it follows that (T} (uc), v) + e||v||$ > 0, and we infer that || T; (uc)|| < e.
We deduce that there exists a sequence (w,) C B,(0) such that

ZO’

+elvlz = 0.

Ty (wy,) — ¢ and T, (w,) — O. (37)

It is clear that (w,) is bounded in E. Thus, there exists w € E such that, up to a subsequence, (w,) converges weakly to w in
E. Actually, with similar arguments to those used at the end of Theorem 1 we can show that (w,) converges strongly to w
in E. Thus, by (37),

T,(w)=c<0 and T, (w)=0; (38)
i.e., w is a nontrivial weak solution for problem (1). This completes the proof. O

6. Proof of Theorem 3

The existence of a positive constant X, such that any A € (0, A,) is an eigenvalue of problem (1) is an immediate conse-
quence of Theorem 2. In order to prove the second part of Theorem 3, we will show that for A positive and large enough the
functional T, possesses a nontrivial global minimum point in E.

Lemma 1 and some similar arguments as those used in the proof of [38, Theorem 2] show that T, is weakly lower semi-
continuous. By Lemma 6, the functional Tj, is also coercive on E. These two facts enable us to apply [39, Theorem 1.2] in order
to find that there exists u; € E a global minimizer of T,, and thus a weak solution of problem (1).

We show that u; is not trivial for A large enough. Indeed, letting t; > 1 be a fixed real and £2; be an open subset of £2
with [£2;] > 0, we deduce that there exists vy € C;5°(£2) C E such that vy(x) = tp for any x 27and 0 < vy(x) < toin
2\ £21. We have

) = / {Z@ (Iavol) — ﬁwowm} dx

A A -
<L-— luo1™ dx < L — — td |824],
at Je, gt °
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where L is a positive constant. Thus, there exists A* > 0 such that T; (ug) < Oforany A € [A*, 00). It follows that T; (u;) < 0
for any A > A* and thus u;, is a nontrivial weak solution of problem (1) for A large enough. The proof of Theorem 3 is
complete. O

7. Proof of Theorem 4

o First, we note that by Lemma 7 we can easily infer that
u
= inf J(—) >0
ueb\{0} I (u)
On the other hand, by the definition of (p;)o,i € {1, ..., N}, we have
a;(t) - 2 = @i(t) - t > (p)o®;i(t), VYt > 0.
Combining that idea with the inequality given in Lemma 7, we conclude that
u
)\.0 = inf Jl( )
ueE\{0} I (u)

e Second, we point out that no A € (0, Ag) can be an eigenvalue of problem (1).
Indeed, assuming by contradiction that there exists A € (0, Ag) an eigenvalue of problem (1), it follows that there exists
aw, € E\ {0} such that

(' (wp), v) = Al'(wy),v), YveE.
Thus, for v = w; we find that
(' (wy), wy) = A" (wy), wy);

ie.,
Ji(w;) = Al (w;).

The fact that w;, € E \ {0} ensures that I (w;) > 0. Since A < Ao, the above information yields
Ji(w;) = Aoli(wy) > Aly(w;) = Ji(wy).

Clearly, the above inequalities lead to a contradiction. Consequently, no A € (0, A¢) can be an eigenvalue of problem (1).
e Third, we will prove that every A € (A1, 00) is an eigenvalue of problem (1).
Let A € (A4, 00) be arbitrary but fixed. By Lemma 8 we can obtain that T, is coercive; i.e., limy_, o T5.(4) = 00. On

the other hand, Lemma 1 and some similar arguments to those used in the proof of [38, Theorem 2] show that T, is weakly
lower semi-continuous. These two facts enable us to apply [39, Theorem 1.2] in order to prove that there exists u; € E a
global minimum point of T, and thus a critical point of T,. In order to conclude that A is an eigenvalue of problem (1), it is
enough to show that u, is not trivial. Indeed, since A; = inf,cg\ (0 {E—Z; and A > X4, it follows that there exists v, € E such
that

J() < Al(vy),
or
T (vy) < 0.
Thus,
infT, <0,
E
and we conclude that u; is a nontrivial critical point of Ty ; i.e., A is an eigenvalue of problem (1).

e Finally, we note that by the above arguments we can infer that 1o < A.
The proof of Theorem 4 is complete. O
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