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1. Introduction

Eigenvalue problems involving nonhomogeneous elliptic operators have captured special attention in the last decade.
Numerous papers have been devoted to the study of various phenomena which occur on the spectrum of such differential
operators. We just refer to the recent advances in [1–13]. The present paper wishes to extend the above investigations by
considering a new class of eigenvalue problems that will by described in the following.
LetΩ ⊂ RN (N ≥ 3) be a bounded domain with smooth boundary ∂Ω . Consider that, for each i ∈ {1, . . . ,N}, ϕi are odd,

increasing homeomorphisms from R onto R, λ is a positive real and q : Ω → (1,∞) is a continuous function. The goal of
this paper is to study the following anisotropic eigenvalue problem:−

N∑
i=1

∂i (ϕi(∂iu)) = λ|u|q(x)−2u inΩ,

u = 0 on ∂Ω.
(1)

Since the operator in the divergence form is nonhomogeneouswe introduce anOrlicz–Sobolev space setting for problems
of this type. Actually, the fact that Eq. (1) is of anisotropic type means that a classical Orlicz–Sobolev space setting is not
adequate. This leads us to seek weak solutions for problem (1) in a more general Orlicz–Sobolev type space, which will be
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introduced later in this paper. On the other hand, the term arising in the right-hand side of (1) is also nonhomogeneous and
its particular form appeals to a suitable variable exponent Lebesgue space setting.
We first recall some basic facts about Orlicz spaces. For more details we refer to the books by Adams and Hedberg [14],

Adams [15], Musielak [16] and Rao and Ren [17] and the papers by Clément et al. [18,19], García-Huidobro et al. [3] and
Gossez [20].
Assume that ϕi : R→ R, i ∈ {1, . . . ,N}, are odd, increasing homeomorphisms from R onto R. Define

Φi(t) =
∫ t

0
ϕi(s)ds, (Φi)

?(t) =
∫ t

0
(ϕi)
−1(s)ds, for all t ∈ R, i ∈ {1, . . . ,N}.

We observe that Φi, i ∈ {1, . . . ,N}, are Young functions; i.e., Φi(0) = 0, Φi are convex, and limx→∞Φi(x) = +∞.
Furthermore, since Φi(x) = 0 if and only if x = 0, limx→0Φi(x)/x = 0, and limx→∞Φi(x)/x = +∞, then Φi are called
N-functions. The functions (Φi)?, i ∈ {1, . . . ,N}, are called the complementary functions of Φi, i ∈ {1, . . . ,N}, and they
satisfy

(Φi)
?(t) = sup{st − Φi(s); s ≥ 0}, for all t ≥ 0.

We also observe that (Φi)?, i ∈ {1, . . . ,N}, are also N-functions, and Young’s inequality holds true:

st ≤ Φi(s)+ (Φi)?(t), for all s, t ≥ 0.

The Orlicz spaces LΦi(Ω), i ∈ {1, . . . ,N}, defined by the N-functions Φi (see [14,15,18]) are the spaces of measurable
functions u : Ω → R such that

‖u‖LΦi := sup
{∫

Ω

uv dx;
∫
Ω

(Φi)
?(|g|)dx ≤ 1

}
<∞.

Then (LΦi(Ω), ‖ · ‖LΦi ), i ∈ {1, . . . ,N}, are Banach spaces whose norms are equivalent to the Luxemburg norms

‖u‖Φi := inf
{
k > 0;

∫
Ω

Φi

(
u(x)
k

)
dx ≤ 1

}
.

For Orlicz spaces, Hölder’s inequality reads as follows (see [17, Inequality 4, p. 79]):∫
Ω

uvdx ≤ 2 ‖u‖LΦi ‖v‖L(Φi)? for all u ∈ LΦi(Ω) and v ∈ L(Φi)?(Ω), i ∈ {1, . . . ,N}.

We denote byW 1LΦi(Ω), i ∈ {1, . . . ,N}, the Orlicz–Sobolev spaces defined by

W 1LΦi(Ω) :=
{
u ∈ LΦi(Ω);

∂u
∂xi
∈ LΦi(Ω), i = 1, . . . ,N

}
.

These are Banach spaces with respect to the norms

‖u‖1,Φi := ‖u‖Φi + ‖|∇u|‖Φi , i ∈ {1, . . . ,N}.

We also define the Orlicz–Sobolev spacesW 10 LΦi(Ω), i ∈ {1, . . . ,N}, as the closure of C
1
0 (Ω) inW

1LΦi(Ω). By [20, Lemma
5.7], we obtain that onW 10 LΦi(Ω), i ∈ {1, . . . ,N}, we may consider the equivalent norm

‖u‖i := ‖|∇u|‖Φi .

Moreover, it can be proved that the above norm is equivalent to the following norm:

‖u‖i,1 =
N∑
j=1

‖∂ju‖Φi

(see Proposition 1 in this paper).
For an easier manipulation of Orlicz–Sobolev spaces, we define

(pi)0 := inf
t>0

tϕi(t)
Φi(t)

and (pi)0 := sup
t>0

tϕi(t)
Φi(t)

, i ∈ {1, . . . ,N}.

In this paper we assume that for each i ∈ {1, . . . ,N}we have

1 < (pi)0 ≤
tϕi(t)
Φi(t)

≤ (pi)0 <∞, ∀ t ≥ 0. (2)

The above relation implies that eachΦi, i ∈ {1, . . . ,N}, satisfies the∆2-condition; i.e.,

Φi(2t) ≤ KΦi(t), ∀ t ≥ 0, (3)

where K is a positive constant (see [21, Proposition 2.3]).
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Furthermore, in this paper we assume that for each i ∈ {1, . . . ,N} the functionΦi satisfies the following condition:

the function [0,∞) 3 t → Φi(
√
t) is convex. (4)

Conditions (3) and (4) ensure that for each i ∈ {1, . . . ,N} the Orlicz spaces LΦi(Ω) are uniformly convex spaces, and
thus reflexive Banach spaces (see [21, Proposition 2.2]). That fact implies that the Orlicz–Sobolev spaces W 10 LΦi(Ω), i ∈
{1, . . . ,N}, are also reflexive Banach spaces.

Remark 1. We point out certain examples of functions ϕ : R → R which are odd, increasing homeomorphisms from R
onto R and satisfy conditions (2) and (4). For more details, the reader can consult [19, Examples 1–3, p. 243].
(1) Let

ϕ(t) = |t|p−2t, ∀ t ∈ R,

with p > 1. For this function, it can be proved that

(ϕ)0 = (ϕ)
0
= p.

(2) Consider

ϕ(t) = log(1+ |t|r)|t|p−2t, ∀ t ∈ R,

with p, r > 1. In this case, it can be proved that

(ϕ)0 = p, (ϕ)0 = p+ r.

(3) Let

ϕ(t) =
|t|p−2t

log(1+ |t|)
, if t 6= 0, ϕ(0) = 0,

with p > 2. In this case we have

(ϕ)0 = p− 1, (ϕ)0 = p.

Finally,we introduce a natural generalization of theOrlicz–Sobolev spacesW 10 LΦi(Ω) thatwill enable us to study problem

(1) with sufficient accuracy. For this purpose, let us denote by
→

Φ : Ω → RN the vectorial function
→

Φ = (Φ1, . . . ,ΦN). We
defineW 10 L→Φ (Ω), the anisotropic Orlicz–Sobolev space, as the closure of C

1
0 (Ω)with respect to the norm

‖u‖→
Φ
=

N∑
i=1

|∂iu|Φi .

It is natural to endow the space W 10 L→Φ (Ω) with the norm ‖ · ‖→Φ since Proposition 1 below is valid. In the case when

Φi(t) = |t|θi , where θi are constants for any i ∈ {1, . . . ,N} the resulting anisotropic Sobolev space is denoted byW
1,
→

θ
0 (Ω),

where
→

θ is the constant vector (θ1, . . . , θN). The theory of such spaces was developed in [22–27]. It was proved that

W 1,
→

θ
0 (Ω) is a reflexive Banach space for any

→

θ ∈ RN with θi > 1 for all i ∈ {1, . . . ,N}. This result can be easily extended
toW 10 L→Φ (Ω). Indeed, denoting X = LΦ1(Ω)× · · · × LΦN (Ω) and considering the operator T : W

1
0 L→Φ (Ω)→ X , defined by

T (u) = ∇u, it is clear thatW 10 L→Φ (Ω) and X are isometric by T , since ‖Tu‖X =
∑N
i=1 |∂iu|Φi = ‖u‖→Φ . Thus, T (W

1
0 L→Φ (Ω)) is a

closed subspace of X , which is a reflexive Banach space. By [28, Proposition III.17], it follows that T (W 10 L→Φ (Ω)) is reflexive,
and consequentlyW 10 L→Φ (Ω) is also a reflexive Banach space.

On the other hand, in order to facilitate the manipulation of the spaceW 10 L→Φ (Ω), we introduce
→

P0,
→

P0 ∈ RN as

→

P0 = ((p1)0, . . . , (pN)0),
→

P0 = ((p1)0, . . . , (pN)0),

and (P0)+, (P0)+, (P0)− ∈ R+ as

(P0)+ = max{(p1)0, . . . , (pN)0}, (P0)+ = max{(p1)0, . . . , (pN)0}, (P0)− = min{(p1)0, . . . , (pN)0}.

Throughout this paper we assume that

N∑
i=1

1
(pi)0

> 1, (5)

and define P?0 ∈ R+ and P0,∞ ∈ R+ by
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(P0)? =
N

N∑
i=1
1/(pi)0 − 1

, P0,∞ = max{(P0)+, (P0)?}.

Next, we recall some background facts concerning the variable exponent Lebesgue spaces. For more details, we refer
to the book by Musielak [16] and the papers by Edmunds et al. [29–31], Kovacik and Rákosník [32], Mihăilescu and
Rădulescu [33], and Samko and Vakulov [34].
Set

C+(Ω) = {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω), we define

h+ = sup
x∈Ω
h(x) and h− = inf

x∈Ω
h(x).

For any q(x) ∈ C+(Ω), we define the variable exponent Lebesgue space Lq(x)(Ω) (see [32]). On Lq(x)(Ω), we define the
Luxemburg norm by the formula

|u|q(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)µ
∣∣∣∣q(x) dx ≤ 1

}
.

We remember that Lq(x)(Ω) is a separable and reflexive Banach space. If 0 < |Ω| < ∞ and q1, q2 ∈ C+(Ω) satisfy
q1(x) ≤ q2(x) almost everywhere inΩ , then there exists the continuous embedding Lq2(x)(Ω) ↪→ Lq1(x)(Ω).
Let Lp

′(·)(Ω) be the conjugate space of Lp(·)(Ω), obtained by conjugating the exponent pointwise; i.e., 1/p(x)+1/p′(x) =
1, [32, Corollary 2.7]. For any u ∈ Lp(·)(Ω) and v ∈ Lp

′(·)(Ω), the following Hölder-type inequality∣∣∣∣∫
Ω

uv dx
∣∣∣∣ ≤ ( 1p− + 1

p′−

)
|u|p(·)|v|p′(·) (6)

is valid.
If (un), u ∈ Lq(x)(Ω), then the following relations hold true:

|u|q(x) > 1⇒ |u|
q−

q(x) ≤

∫
Ω

|u|q(x) dx ≤ |u|q
+

q(x) (7)

|u|q(x) < 1⇒ |u|
q+

q(x) ≤

∫
Ω

|u|q(x) dx ≤ |u|q
−

q(x) (8)

|un − u|q(x) → 0⇔
∫
Ω

|un − u|q(x) dx→ 0. (9)

2. Main results

In the following, for each i ∈ {1, . . . ,N}, we define ai : [0,∞)→ R by

ai(t) =

{
ϕi(t)
t
, for t > 0

0, for t = 0.

Since the ϕi are odd, we deduce that, actually, ϕi(t) = ai(|t|)t for each t ∈ R and each i ∈ {1, . . . ,N}.
We say that λ ∈ R is an eigenvalue of problem (1) if there exists u ∈ W 10 L→Φ (Ω) \ {0} such that∫

Ω

{
N∑
i=1

|ai(|∂iu|)| ∂iu∂iw − λ|u|q(x)−2uw

}
dx = 0,

for allw ∈ W 10 L→Φ (Ω). For λ ∈ R an eigenvalue of problem (1), the function u from the above definition will be called aweak
solution of problem (1) corresponding to the eigenvalue λ.
The main results of this paper are given by the following theorems.

Theorem 1. Assume that the function q ∈ C(Ω) verifies the hypothesis

(P0)+ < q− ≤ q+ < (P0)?. (10)

Then any λ > 0 is an eigenvalue of problem (1).
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Theorem 2. Assume that the function q ∈ C(Ω) satisfies the conditions

1 < q− < (P0)− and q+ < P0,∞. (11)

Then there exists λ? > 0 such that any λ ∈ (0, λ?) is an eigenvalue of problem (1).

Theorem 3. Assume that the function q ∈ C(Ω) satisfies the inequalities

1 < q− ≤ q+ < (P0)−. (12)

Then there exist two positive constants λ? > 0 and λ? > 0 such that any λ ∈ (0, λ?) ∪ (λ?,∞) is an eigenvalue of problem (1).

Remark 2. By Theorem3, it is not clear if λ? < λ? or λ? ≥ λ?. In the first case, an interesting question concerns the existence
of eigenvalues of problem (1) in the interval [λ?, λ?]. We propose to the reader the study of these open problems.
In order to state the next result, we define

λ1 = inf
u∈W10 L→

Φ
(Ω)\{0}

∫
Ω

N∑
i=1
Φi(|∂iu|)dx∫

Ω
1
q(x) |u|

q(x) dx
,

and

λ0 = inf
u∈W10 L→

Φ
(Ω)\{0}

∫
Ω

N∑
i=1
ai(|∂iu|)|∂iu|2 dx∫
Ω
|u|q(x) dx

.

Theorem 4. Assume that there exist j1, j2, k ∈ {1, . . . ,N} such that

(pj1)0 = q
− and (pj2)

0
= q+, (13)

and

q+ < min{(pk)0, (P0)?}. (14)

Then 0 < λ0 ≤ λ1, and every λ ∈ (λ1,∞) is an eigenvalue of problem (1), while no λ ∈ (0, λ0) can be an eigenvalue of problem
(1).

Remark 3. At this stage, we are not able to say whether λ0 = λ1 or λ0 < λ1. In the latter case, an interesting question
concerns the existence of eigenvalues of problem (1) in the interval [λ0, λ1]. We propose to the reader the study of these
open problems.

3. Variational setting and auxiliary results

From now on, E denotes the anisotropic Orlicz–Sobolev spaceW 10 L→Φ (Ω). Define the functionals J , I , J1, I1 : E → R by

J(u) =
∫
Ω

N∑
i=1

Φi(|∂iu|)dx, I(u) =
∫
Ω

1
q(x)
|u|q(x) dx,

J1(u) =
∫
Ω

N∑
i=1

ai(|∂iu|)|∂iu|2 dx, I1(u) =
∫
Ω

|u|q(x) dx.

Standard arguments imply that J , I ∈ C1(E,R) and their Fréchet derivatives are given by

〈J ′(u), v〉 =
∫
Ω

N∑
i=1

ai(|∂iu|)∂iu∂iv dx,

〈I ′(u), v〉 =
∫
Ω

|u|q(x)−2uvdx,

for all u, v ∈ E.
Next, for each λ ∈ R, we define the energetic functional associated with problem (1), Tλ : E → R, by
Tλ(u) = J(u)− λI(u).

Clearly, Tλ ∈ C1(E,R)with
〈T ′λ(u), v〉 = 〈J

′(u), v〉 − λ〈I ′(u), v〉,
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for all u, v ∈ E. Thus, λ is an eigenvalue of problem (1) if and only if there exists u ∈ E \ {0} a critical point of Tλ. In other
words, the main idea in proving Theorems 1–4 will be to look for nontrivial critical points of functional Tλ.
In order to do that, we begin by proving certain auxiliary results which will facilitate the proof of the main result.

Lemma 1. Assume that Ω ⊂ RN (N ≥ 3) is a bounded domain with a smooth boundary. Assume that relation (5) is fulfilled. For
any q ∈ C(Ω) verifying

1 < q(x) < P0,∞ for all x ∈ Ω, (15)

the embedding

W 10 L→Φ (Ω) ↪→ Lq(·)(Ω)

is compact.

Proof. First, we point out that LΦi(Ω) is continuously embedded in L
(pi)0(Ω) for any i ∈ {1, . . . ,N}. Indeed, by [15, Lemma

8.12(b)] it is enough to show thatΦi dominates Ψi := |t|(pi)0 near infinity; i.e., there exists k > 0 and t0 > 0 such that

Ψi(t) (=|t|(pi)0) ≤ Φi(k · t), ∀ t ≥ t0.

That is a simple consequence of the definitions of (pi)0 combined with relation (15) (see, e.g., the proof of [10, Lemma 2] for
more details).
Thus, for each i ∈ {1, . . . ,N} there exists a positive constant Ci > 0 such that

|ϕ|(pi)0 ≤ Ci‖ϕ‖Φi for all ϕ ∈ L
Φi(Ω).

If u ∈ W 10 L→Φ (Ω) then ∂iu ∈ LΦi(Ω) for each i ∈ {1, . . . ,N}. The above inequalities imply that

‖u‖→
P0
=

N∑
i=1

∣∣∂xiu∣∣(pi)0 ≤ C N∑
i=1

‖∂iu‖Φi = C‖u‖→P0
,

where C = max{C1, . . . , CN}. Thus, we deduce thatW 10 L→Φ (Ω) is continuously embedded inW
1
0 L→P0

(Ω) = W 1,
→

P0
0 (Ω). On the

other hand, since relation (15) holds true, we infer that q+ < P0,∞. This fact, combined with the result of [22, Theorem 1],

implies thatW 1,
→

P0
0 (Ω) is compactly embedded in Lq

+

(Ω). Finally, since q(x) ≤ q+ for each x ∈ Ω , we deduce that Lq
+

(Ω)

is continuously embedded in Lq(·)(Ω). The above piece of information yields the conclusion that W 10 L→Φ (Ω) is compactly

embedded in Lq(·)(Ω). The proof of Lemma 1 is complete. �

Lemma 2. Assume that the hypothesis of Theorem 1 is fulfilled. Then there exist η > 0 and α > 0 such that Tλ(u) ≥ α > 0 for
any u ∈ E with ‖u‖→

Φ
= η.

Proof. First, we point out that

|u(x)|q
−

+ |u(x)|q
+

≥ |u(x)|q(x) for all x ∈ Ω. (16)

Using the above inequality and the definition of Tλ, we find that

Tλ(u) ≥
N∑
i=1

∫
Ω

Φi(|∂iu|)dx−
λ

q−

(
|u|q

−

q− + |u|
q+

q+

)
, (17)

for any u ∈ E.
Since (10) holds, then by Lemma 1 it follows that E is continuously embedded both in Lq

−

(Ω) and in Lq
+

(Ω). We deduce
there exist two positive constants B1 and B2 such that

B1‖u‖→
Φ
≥ |u|q+ , B2‖u‖→

Φ
≥ |u|q− for all u ∈ E. (18)

Next, we focus our attention on the case when u ∈ E and ‖u‖→
Φ
< 1. For such an element u, we have ‖∂iu‖Φi < 1 and, by a

relation similar to the third inequality in [10, Lemma 1], we obtain

‖u‖(P
0)+
→

Φ

N (P0)+−1
= N

(
N∑
i=1

1
N
‖∂iu‖Φi

)(P0)+
≤

N∑
i=1

‖∂iu‖
(P0)+
Φi
≤

N∑
i=1

‖∂iu‖
(pi)0
Φi
≤

N∑
i=1

∫
Ω

Φi (|∂iu|) dx. (19)
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Relations (17)–(19) imply that

Tλ(u) ≥
‖u‖(P

0)+
→

Φ

N (P0)+−1
−
λ

q−

[(
B1‖u‖→

Φ

)q+
+

(
B2‖u‖→

Φ

)q−]
=

(
B3 − B4‖u‖

q+−(P0)+
→

Φ
− B5‖u‖

q−−(P0)+
→

Φ

)
‖u‖(P

0)+
→

Φ
,

for any u ∈ E with ‖u‖→
Φ
< 1, where B3, B4 and B5 are positive constants.

Since the function g : [0, 1] → R defined by

g(t) = B3 − B4tq
+
−(P0)+ − B5tq

−
−(P0)+

is positive in a neighborhood of the origin, the conclusion of the lemma follows at once. �

Lemma 3. Assume that the hypothesis of Theorem 1 is fulfilled. Then there exists e ∈ E with ‖e‖→
Φ
> η (where η is given

in Lemma 2) such that Jλ(e) < 0.

Proof. Let ψ ∈ C∞0 (Ω), ψ ≥ 0 and ψ 6≡ 0, be fixed and let t > 1. Using relation (11) in [10], we find that

Tλ(tψ) =
∫
Ω

{
N∑
i=1

Φi (t |∂iψ |)− λ
tq(x)

q(x)
|ψ |q(x)

}
dx

≤

∫
Ω

{
N∑
i=1

t(pi)
0
Φi (|∂iψ |)− λ

tq(x)

q(x)
|ψ |q(x)

}
dx

≤ t(P
0)+

N∑
i=1

∫
Ω

Φi (|∂iψ |) dx−
λtq
−

q+

∫
Ω

|ψ |q(x) dx.

Since q− > (P0)+ by (10), it is clear that limt→∞ Tλ(tψ) = −∞. Then, for t > 1 large enough, we can take e = tψ such
that ‖e‖→

Φ
> η and Tλ(e) < 0. This completes the proof. �

Lemma 4. Assume that the hypotheses of Theorem 2 are fulfilled. Then there exists λ? > 0 such that for any λ ∈ (0, λ?) there
are ρ , a > 0 such that Tλ(u) ≥ a > 0 for any u ∈ E with ‖u‖→

Φ
= ρ .

Proof. Since (11) holds, by Lemma 1 it follows that E is continuously embedded in Lq(·)(Ω). Thus, there exists a positive
constant c1 such that

|u|q(·) ≤ c1‖u‖→
Φ
for all u ∈ E. (20)

We fix ρ ∈ (0, 1) such that ρ < 1/c1. Then, relation (20) implies that

|u|q(·) < 1 for all u ∈ E, with ‖u‖→
Φ
= ρ.

Furthermore, relation (8) yields∫
Ω

|u|q(x) dx ≤ |u|q
−

q(·) for all u ∈ E, with ‖u‖→Φ = ρ. (21)

Relations (20) and (21) imply that∫
Ω

|u|q(x) dx ≤ cq
−

1 ‖u‖
q−
→

Φ
for all u ∈ E, with ‖u‖→

Φ
= ρ. (22)

Taking into account relations (19) and (22), we deduce that for any u ∈ E with ‖u‖→
Φ
= ρ the following inequalities hold

true:

Tλ(u) ≥
1

N (P0)+−1
‖u‖(P

0)+
→

Φ
−
λ

q−

∫
Ω

|u|q(x) dx

≥
1

N (P0)+−1
‖u‖(P

0)+
→

Φ
−
λ cq

−

1

q−
‖u‖q

−

→

Φ

= ρq
−

(
1

N (P0)+−1
ρ(P

0)+−q− −
λcq

−

1

q−

)
.
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Hence, if we define

λ? =
q−

2cq
−

1 N (P
0)+−1

ρ(P
0)+−q− , (23)

then for any λ ∈ (0, λ?) and u ∈ E with ‖u‖→
Φ
= ρ the number a = ρ(P

0)+/2N (P
0)+−1 is such that

Tλ(u) ≥ a > 0.

This completes the proof. �

Lemma 5. Assume that the hypothesis of Theorem 2 is fulfilled. Then there exists θ ∈ E such that θ ≥ 0, θ 6≡ 0 and Tλ(tθ) < 0
for t > 0 small enough.

Proof. Assumption (11) implies that q− < (P0)−. Let ε0 > 0 be such that q− + ε0 < (P0)−. On the other hand, since
q ∈ C(Ω), it follows that there exists an open setΩ2 ⊂ Ω such that |q(x)− q−| < ε0 for all x ∈ Ω2. Thus, we conclude that
q(x) ≤ q− + ε0 < (P0)− for all x ∈ Ω2.
Let θ ∈ C∞0 (Ω) be such that supp(θ) ⊃ Ω2, θ(x) = 1 for all x ∈ Ω2 and 0 ≤ θ ≤ 1 in Ω . Then, using the above

information and the definition of (pi)0, for any t ∈ (0, 1), we have

Tλ(tθ) =
∫
Ω

{
N∑
i=1

Φi (t |∂iθ |)− λ
tq(x)

q(x)
|θ |q(x)

}
dx

≤

N∑
i=1

t(pi)0
∫
Ω

Φi (|∂iθ |) dx−
λ

q+

∫
Ω

tq(x)|θ |q(x) dx

≤ t(P0)−
N∑
i=1

∫
Ω

Φi (|∂iθ |) dx−
λ

q+

∫
Ω2

tq(x)|θ |q(x) dx

≤ t(P0)−
N∑
i=1

∫
Ω

Φi (|∂iθ |) dx−
λ tq

−
+ε0

q+

∫
Ω2

|θ |q(x) dx.

Therefore,

Tλ(tθ) < 0,

for t < δ1/((P0)−−q
−
−ε0) with

0 < δ < min

{
1,
λ

q+

∫
Ω2

|θ |q(x)dx
/ N∑

i=1

∫
Ω

Φi (|∂iθ |) dx

}
.

This is possible since we claim that
∑N
i=1

∫
Ω
Φi(|∂iθ |)dx > 0. Indeed, it is clear that∫

Ω2

|θ |q(x) dx ≤
∫
Ω

|θ |q(x) dx ≤
∫
Ω

|θ |q
−

dx.

On the other hand, E is continuously embedded in Lq
−

(Ω), and thus there exists a positive constant c2 such that

|θ |q− ≤ c2‖θ‖→
Φ
.

The last two inequalities imply that

‖θ‖→
p (·)

> 0,

and combining this fact with relation (7) or relation (8), the claim follows at once. The proof of the lemma is now com-
pleted. �

Lemma 6. Assume that the hypotheses of Theorem 3 are fulfilled. Then the functional Tλ is coercive on E.
Proof. By relations (17) and (18) we deduce that, for all u ∈ E,

Tλ(u) ≥
N∑
i=1

∫
Ω

Φi (|∂iu|) dx−
λ

q−

[(
B1‖u‖→

Φ

)q+
+

(
B2‖u‖→

Φ

)q−]
. (24)

Now, we focus our attention on the elements u ∈ E with ‖u‖→
Φ
> 1. Using the same techniques as in the proof of (27)

combined with relation (24), we find that
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Tλ(u) ≥
1

N (P0)−−1
‖u‖(P0)−→

Φ
− N −

λ

q−

[(
B1‖u‖→

Φ

)q+
+

(
B2‖u‖→

Φ

)q−]
,

for any u ∈ E with ‖u‖→
Φ
> 1. Since by relation (12) we have (P0)− > q+ ≥ q−, we infer that Tλ(u)→∞ as ‖u‖→

Φ
→∞.

In other words, Tλ is coercive in E, completing the proof. �

Lemma 7. Assume that condition (13) in Theorem 4 is fulfilled. Then there exists a positive constant D > 0 such that∫
Ω

|u|q(x) dx ≤ D
(∫

Ω

Φj1(|∂j1u|)+
∫
Ω

Φj2(|∂j2u|)
)
, ∀ u ∈ C10 (Ω).

Proof. First, we point out that for any x ∈ Ω the following inequality holds true:

|u(x)|q(x) ≤ |u(x)|q
−

+ |u(x)|q
−

, ∀ u ∈ C10 (Ω).

Integrating the above inequality with respect to x overΩ , we get∫
Ω

|u|q(x) dx ≤
∫
Ω

|u|q
+

dx+
∫
Ω

|u|q
−

dx, ∀ u ∈ C10 (Ω).

Combining the above inequality with inequality (11) in [22], we deduce that there exists a positive constant C1 > 0 such
that ∫

Ω

|u|q(x) dx ≤ C1

(∫
Ω

|∂j1u|
q+ dx+

∫
Ω

|∂j2u|
q− dx

)
, ∀ u ∈ C10 (Ω).

On the other hand, by a variant of [10, Lemma 3], we infer that there exists a positive constant C2 > 0 such that∫
Ω

(
|∂j1u|

(pj1 )0 + |∂j2u|
(pj2 )

0
)
dx ≤ C2

∫
Ω

(
Φj1(|∂j1u|)+ Φj2(|∂j2u|)

)
dx, ∀ u ∈ C10 (Ω).

Combining the last two inequalities. we obtain the conclusion of the lemma. �

Lemma 8. Let λ > 0 be fixed. Assume that the hypotheses of Theorem 4 are fulfilled. The following relation holds true:

lim
‖u‖→

Φ
→∞

Tλ(u) = ∞.

Proof. First, we show that

lim
‖u‖→

Φ
→∞

J(u)
I(u)
= ∞.

Assume by contradiction that the above relation does not hold true. Then there exists an M > 0 such that for each n ∈ N?
there exists a un ∈ E with ‖un‖→

Φ
> n and

J(un)
I(un)

≤ M. (25)

While ‖un‖→
Φ
=
∑N
i=1 ‖∂iun‖Φi → ∞ as n → ∞, the sequence {‖∂kun‖Φk}n (with k given in inequality (14)) is either

bounded or unbounded.
On the other hand, it is not difficult to see that∫

Ω

|u|q(x) ≤
∫
Ω

|u|q
−

dx+
∫
Ω

|u|q
+

dx, ∀ u ∈ E.

Next, using relation (11) in [22], we find that there exists a positive constant c1 such that∫
Ω

|u|q
−

dx+
∫
Ω

|u|q
+

dx ≤ c1

(∫
Ω

|∂ku|q
−

dx+
∫
Ω

|∂ku|q
+

dx
)
, ∀ u ∈ E.

Since by inequality (14) we have q+ < (pk)0, a similar proof to that of [10, Lemma 2] shows that LΦk(Ω) is continuously
embedded in Lq

±

(Ω). The above pieces of information lead to the existence of a positive constant c2 such that∫
Ω

|u|q(x) ≤ c2[‖∂ku‖
q+
Φk
+ ‖∂ku‖

q−
Φk
], ∀ u ∈ E. (26)
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If {‖∂kun‖Φk}n is bounded, then by inequality (26) we have that {I(un)}n is also bounded. On the other hand, denoting

αi,n =

{
(P0)+, if ‖∂iun‖Φi < 1
(P0)−, if ‖∂iun‖Φi > 1,

and using inequalities (C.9) and (C.10) in [19] (see also [10, Lemma 1]), we find that

J(un) =
∫
Ω

N∑
i=1

Φi(|∂iun|)dx

≥

N∑
i=1

‖∂iun‖
αi,n
Φi

≥

N∑
i=1

‖∂iun‖
(P0)−
Φi
−

∑
{i;αi,n=(P0)+}

(
‖∂iun‖

(P0)−
Φi
− ‖∂iun‖

(P0)+
Φi

)

≥
1

N (P0)−−1
‖un‖

(P0)−
→

Φ
− N. (27)

Consequently, in this case we obtain that limn→∞
J(un)
I(un)
= ∞, which contradicts (25).

Now, we assume that ‖∂kun‖Φk → ∞, as n → ∞, on a subsequence of un denoted again un. We can assume that
‖∂kun‖Φk > 1 for all n. Using inequality (C.10) in [19] and relation (26), we find that

J(un)
I(un)

≥
c5
∫
Ω
Φk(|∂kun|)dx

c2[‖∂kun‖
q+
Φk
+ ‖∂kun‖

q−
Φk
]

≥
c5‖∂kun‖

(pk)0
Φk

c2[‖∂kun‖
q+
Φk
+ ‖∂kun‖

q−
Φk
]

∀ u ∈ E, n ∈ N?,

where c5 is a positive constant. Since by the hypothesis of Theorem 4 we have (pk)0 > q+, the above inequalities show that
J(un)/I(un)→∞, as n→∞, which again contradicts (25).
Next, we turn back to the proof of the relation given in Lemma 8. Assume by contradiction that the conclusion of Lemma 8

is not valid. Then there exists anM1 > 0 such that for each n ∈ N? there exists a vn ∈ E with ‖vn‖→
Φ
> n and

|Tλ(vn)| = |J(vn)− λI(vn)| ≤ M1.

Thus, it is clear that ‖vn‖→
Φ
→∞ as n→∞, and since we proved that

J(vn) ≥
1

N (P0)−−1
‖vn‖

(P0)−
→

Φ
− N,

it follows that J(vn)→∞ as n→∞. Thus, we find that for each n large enough we have∣∣∣∣1− I(vn)J(vn)

∣∣∣∣ ≤ M1
J(vn)

.

Then, passing to the limit as n → ∞ in the above inequality and taking into account the facts that J(vn)/I(vn) → ∞ (or,
equivalently I(vn)/J(vn)→ 0) and J(vn)→∞ as n→∞, we obtain a contradiction. Therefore, the conclusion of Lemma 8
is valid. �

To end this section we prove the following proposition:

Proposition 1. For each i ∈ {1, . . . ,N} the norms ‖ · ‖i and ‖ · ‖i,1 are equivalent.

Proof. We fix i ∈ {1, . . . ,N}. First, we introduce a third norm on E, namely,

‖u‖i,2 = max
j∈{1,...,N}

{‖∂ju‖Φi}.

Undoubtedly, we have

‖u‖i,2 ≤ ‖u‖i,1 ≤ N‖u‖i,2, ∀ u ∈ E.

Thus, the norms ‖ · ‖i,1 and ‖ · ‖i,2 are equivalent.
Next, we show that

‖u‖i ≤ N1/2‖u‖i,2, ∀ u ∈ E.
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Indeed, sinceΦi satisfies condition (4), we have

∫
Ω

Φi

(
|∇u(x)|
N1/2‖u‖i,2

)
dx =

∫
Ω

Φi


√√√√√ N∑
j=1
|∂ju|2/‖u‖2i,2

N

 dx ≤
N∑
j=1

1
N

∫
Ω

Φi

(
|∂ju(x)|
‖u‖i,2

)
dx.

Next, by the definition of ‖ · ‖Φi and ‖ · ‖i,2 and the fact thatΦi is an increasing function, we deduce that∫
Ω

Φi

(
|∂ju(x)|
‖u‖i,2

)
dx ≤

∫
Ω

Φi

(
|∂ju(x)|
‖∂ju‖Φi

)
dx ≤ 1, ∀ j ∈ {1, . . . ,N}.

The last two inequalities imply that∫
Ω

Φi

(
|∇u(x)|
N1/2‖u‖i,2

)
≤ 1;

i.e., ‖u‖i ≤ N1/2‖u‖i,2 for all u ∈ E.
Finally, we verify that

‖u‖i,1 ≤ N2‖u‖i, ∀ u ∈ E.

In order to prove that, first, we remember that using [19, Lemma C.4(ii)] we find that

NΦi(t) ≤ Φi(Nt), ∀ t ≥ 0. (28)

Using the fact thatΦi is increasing, we deduce that∫
Ω

N∑
j=1

Φi

(
|∂ju(x)|
‖u‖i

)
dx ≤ N

∫
Ω

Φi

(
|∇u(x)|
‖u‖i

)
dx ≤ N, ∀ j ∈ {1, . . . ,N}.

Next, using the above inequality and (28), we obtain∫
Ω

N∑
j=1

Φi

(
|∂ju(x)|
N‖u‖i

)
dx ≤

1
N

∫
Ω

N∑
j=1

Φi

(
|∂ju(x)|
‖u‖i

)
dx ≤ 1, ∀ j ∈ {1, . . . ,N}.

Thus, we have found that

‖∂ju‖Φi ≤ N‖u‖i, ∀ j ∈ {1, . . . ,N}.

Summing from i = 1 to N , we get that ‖u‖i,1 ≤ N2‖u‖i for all u ∈ E.
The conclusion of the proposition is now clear. �

4. Proof of Theorem 1

By Lemmas 2 and 3 and the mountain pass theorem of Ambrosetti and Rabinowitz [35], we deduce the existence of a
sequence (un) ⊂ E such that

Tλ(un)→ c > 0 and T ′λ(un)→ 0 (in E?) as n→∞. (29)

We prove that (un) is bounded in E. In order to do that, we assume by contradiction that passing eventually to a subsequence,
still denoted by (un), we have ‖un‖→

Φ
→∞ and that ‖un‖→

Φ
> 1 for all n.

Relation (29) and the above considerations imply that for n large enough we have

1+ c + ‖un‖→
Φ
≥ Tλ(un)−

1
q−
〈T ′λ(un), un〉

≥

N∑
i=1

∫
Ω

(
Φi(|∂iun|)−

1
q−
ϕi(|∂iun|)|∂iun|

)
dx

≥

(
1−

(P0)+
q−

) N∑
i=1

∫
Ω

Φi(|∂iun|)dx.
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Using similar arguments as in the proof of relation (27), we obtain

1+ c + ‖un‖→
Φ
≥

(
1−

(P0)+
q−

) N∑
i=1

∫
Ω

Φi(|∂iun|)dx

≥

(
1−

(P0)+
q−

)(
1

N (P0)−−1
‖un‖

(P0)−
→

Φ
− N

)
. (30)

Dividing by ‖un‖
(P0)−
→

Φ
in the above inequality and passing to the limit as n→∞, we obtain a contradiction. It follows that

(un) is bounded in E. This information, combined with the fact that E is reflexive, implies that there exist a subsequence,
still denoted by (un), and u0 ∈ E such that (un) converges weakly to u0 in E. Since, by Lemma 1, the space E is compactly
embedded in Lq(·)(Ω), it follows that (un) converges strongly to u0 in Lq(·)(Ω). Then, by inequality (6), we deduce that

lim
n→∞

∫
Ω

|un|q(x)−2un(un − u0)dx = 0.

This fact and relation (29) yield

lim
n→∞
〈T ′λ(un), un − u0〉 = 0.

Thus, we deduce that

lim
n→∞

N∑
i=1

∫
Ω

ai (|∂iun|) ∂iun (∂iun − ∂iu0) dx = 0. (31)

Since the (un) converge weakly to u0 in E, by relation (31), we find that

lim
n→∞

N∑
i=1

∫
Ω

(ai (|∂iun|) ∂iun − ai (|∂iu0|) ∂iu0) (∂iun − ∂iu0) dx = 0. (32)

Since, for each i ∈ {1, . . . ,N},Φi is convex, we have

Φi(|∂iu(x)|) ≤ Φi

(∣∣∣∣∂iu(x)+ ∂iv(x)2

∣∣∣∣)+ ai(|∂iu(x)|)∂iu(x) · ∂iu(x)− ∂iv(x)2
,

and

Φi(|∂iv(x)|) ≤ Φi

(∣∣∣∣∂iu(x)+ ∂iv(x)2

∣∣∣∣)+ ai(|∂iv(x)|)∂iv(x) · ∂iv(x)− ∂iu(x)2
,

for every u, v ∈ E, x ∈ Ω and i ∈ {1, . . . ,N}. Adding the above two relations and integrating overΩ , we find that

1
2

∫
Ω

(ai(|∂iu|)∂iu− ai(|∂iv|)∂iv) · (∂iu− ∂iv)dx ≥
∫
Ω

Φi(|∂iu|)dx+
∫
Ω

Φi(|∂iv|)dx− 2
∫
Ω

Φi

(∣∣∣∣∂iu+ ∂iv2

∣∣∣∣) dx,
(33)

for any u, v ∈ E and each i ∈ {1, . . . ,N}.
On the other hand, since for each i ∈ {1, . . . ,N} we know that Φi : [0,∞) → R is an increasing, continuous function

withΦi(0) = 0, and t 7→ Φi(
√
t) is convex, we deduce by Lamperti [36] that

1
2

[∫
Ω

Φi(|∂iu|)dx+
∫
Ω

Φi(|∂iv|)dx
]
≥

∫
Ω

Φi

(∣∣∣∣∂iu+ ∂iv2

∣∣∣∣) dx+ ∫
Ω

Φi

(∣∣∣∣∂iu− ∂iv2

∣∣∣∣) dx, (34)

for any u, v ∈ E and each i ∈ {1, . . . ,N}.
By (33) and (34), it follows that for each i ∈ {1, . . . ,N}we have∫

Ω

(ai(|∂iu|)∂iu− ai(|∂iv|)∂iv) · (∂iu− ∂iv)dx ≥ 4
∫
Ω

Φi

(∣∣∣∣∂iu− ∂iv2

∣∣∣∣) dx, ∀ u, v ∈ E. (35)

Relations (32) and (35) show that actually (un) converges strongly to u0 in E. Then, by relation (29), we have

Tλ(u0) = c > 0 and T ′λ(u0) = 0;

i.e., u0 is a nontrivial weak solution of Eq. (1). �
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5. Proof of Theorem 2

Let λ? > 0 be defined as in (23) and λ ∈ (0, λ?). By Lemma 4, it follows that on the boundary of the ball centered at the
origin and of radius ρ in E, denoted by Bρ(0), we have

inf
∂Bρ (0)

Tλ > 0. (36)

On the other hand, by Lemma 5, there exists θ ∈ E such that Tλ(tθ) < 0 for all t > 0 small enough. Moreover, relations
(19), (22) and (8) imply that for any u ∈ Bρ(0)we have

Tλ(u) ≥
1

N (P0)+−1
‖u‖(P

0)+
→

Φ
−
λ cq

−

1

q−
‖u‖q

−

→

Φ
.

It follows that
−∞ < c := inf

Bρ (0)
Tλ < 0.

We let now 0 < ε < inf∂Bρ (0) Tλ − infBρ (0) Tλ. Applying Ekeland’s variational principle (see [37]) to the functional
Tλ : Bρ(0)→ R, we find uε ∈ Bρ(0) such that

Tλ(uε) < inf
Bρ (0)

Tλ + ε

Tλ(uε) < Jλ(u)+ ε‖u− uε‖→
Φ
, u 6= uε .

Since
Tλ(uε) ≤ inf

Bρ (0)
Tλ + ε ≤ inf

Bρ (0)
Tλ + ε < inf

∂Bρ (0)
Tλ,

we deduce that uε ∈ Bρ(0). Now, we defineHλ : Bρ(0)→ R byHλ(u) = Tλ(u)+ε‖u−uε‖→
Φ
. It is clear that uε is a minimum

point of Hλ, and thus
Hλ(uε + t v)− Hλ(uε)

t
≥ 0,

for small t > 0 and any v ∈ B1(0). The above relation yields
Tλ(uε + t v)− Tλ(uε)

t
+ ε‖v‖→

Φ
≥ 0.

Letting t → 0, it follows that 〈T ′λ(uε), v〉 + ε‖v‖→Φ > 0, and we infer that ‖T
′

λ(uε)‖ ≤ ε.
We deduce that there exists a sequence (wn) ⊂ Bρ(0) such that

Tλ(wn)→ c and T ′λ(wn)→ 0. (37)
It is clear that (wn) is bounded in E. Thus, there existsw ∈ E such that, up to a subsequence, (wn) converges weakly tow in
E. Actually, with similar arguments to those used at the end of Theorem 1 we can show that (wn) converges strongly to w
in E. Thus, by (37),

Tλ(w) = c < 0 and T ′λ(w) = 0; (38)
i.e.,w is a nontrivial weak solution for problem (1). This completes the proof. �

6. Proof of Theorem 3

The existence of a positive constant λ? such that any λ ∈ (0, λ?) is an eigenvalue of problem (1) is an immediate conse-
quence of Theorem 2. In order to prove the second part of Theorem 3, we will show that for λ positive and large enough the
functional Tλ possesses a nontrivial global minimum point in E.
Lemma 1 and some similar arguments as those used in the proof of [38, Theorem 2] show that Tλ is weakly lower semi-

continuous. By Lemma 6, the functional Tλ is also coercive on E. These two facts enable us to apply [39, Theorem 1.2] in order
to find that there exists uλ ∈ E a global minimizer of Tλ, and thus a weak solution of problem (1).
We show that uλ is not trivial for λ large enough. Indeed, letting t0 > 1 be a fixed real and Ω1 be an open subset of Ω

with |Ω1| > 0, we deduce that there exists v0 ∈ C∞0 (Ω) ⊂ E such that v0(x) = t0 for any x ∈ Ω1 and 0 ≤ v0(x) ≤ t0 in
Ω \Ω1. We have

Tλ(v0) =
∫
Ω

{
N∑
i=1

Φi (|∂iv0|)−
λ

q(x)
|v0|

q(x)

}
dx

≤ L−
λ

q+

∫
Ω1

|v0|
q(x) dx ≤ L−

λ

q+
tq
−

0 |Ω1|,
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where L is a positive constant. Thus, there exists λ? > 0 such that Tλ(u0) < 0 for any λ ∈ [λ?,∞). It follows that Tλ(uλ) < 0
for any λ ≥ λ?, and thus uλ is a nontrivial weak solution of problem (1) for λ large enough. The proof of Theorem 3 is
complete. �

7. Proof of Theorem 4

• First, we note that by Lemma 7 we can easily infer that

λ1 = inf
u∈E\{0}

J(u)
I(u)

> 0.

On the other hand, by the definition of (pi)0, i ∈ {1, . . . ,N}, we have

ai(t) · t2 = ϕi(t) · t ≥ (pi)0Φi(t), ∀ t > 0.

Combining that idea with the inequality given in Lemma 7, we conclude that

λ0 = inf
u∈E\{0}

J1(u)
I1(u)

> 0.

• Second, we point out that no λ ∈ (0, λ0) can be an eigenvalue of problem (1).
Indeed, assuming by contradiction that there exists λ ∈ (0, λ0) an eigenvalue of problem (1), it follows that there exists

awλ ∈ E \ {0} such that

〈J ′(wλ), v〉 = λ〈I ′(wλ), v〉, ∀ v ∈ E.

Thus, for v = wλ we find that

〈J ′(wλ), wλ〉 = λ〈I ′(wλ), wλ〉;

i.e.,

J1(wλ) = λI1(wλ).

The fact thatwλ ∈ E \ {0} ensures that I1(wλ) > 0. Since λ < λ0, the above information yields

J1(wλ) ≥ λ0I1(wλ) > λI1(wλ) = J1(wλ).

Clearly, the above inequalities lead to a contradiction. Consequently, no λ ∈ (0, λ0) can be an eigenvalue of problem (1).
• Third, we will prove that every λ ∈ (λ1,∞) is an eigenvalue of problem (1).
Let λ ∈ (λ1,∞) be arbitrary but fixed. By Lemma 8 we can obtain that Tλ is coercive; i.e., lim‖u‖→

Φ
→∞ Tλ(u) = ∞. On

the other hand, Lemma 1 and some similar arguments to those used in the proof of [38, Theorem 2] show that Tλ is weakly
lower semi-continuous. These two facts enable us to apply [39, Theorem 1.2] in order to prove that there exists uλ ∈ E a
global minimum point of Tλ, and thus a critical point of Tλ. In order to conclude that λ is an eigenvalue of problem (1), it is
enough to show that uλ is not trivial. Indeed, since λ1 = infu∈E\{0}

J(u)
I(u) and λ > λ1, it follows that there exists vλ ∈ E such

that

J(vλ) < λI(vλ),

or

Tλ(vλ) < 0.

Thus,

inf
E
Tλ < 0,

and we conclude that uλ is a nontrivial critical point of Tλ; i.e., λ is an eigenvalue of problem (1).
• Finally, we note that by the above arguments we can infer that λ0 ≤ λ1.
The proof of Theorem 4 is complete. �
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