Nonlinear Analysis
Theory, Methods & Applications
An International Multidisciplinary Journal

Series A: Theory and Methods

EDITORS
V. LAKSHMIKANTHAM
Florida Institute of Technology
and
J. BONA
University of Illinois

SPECIAL ISSUE
Liouville Theorems and Detours

GUEST EDITORS
Enzo Mitidieri, Ermanno Lanconelli,
Stanislav I. Pohozaev

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright
Perturbation effects in nonlinear eigenvalue problems

Vicenţiu Rădulescua,b,*, Dušan Repovšc

a Institute of Mathematics “Simion Stoilow” of the Romanian Academy, Bucharest, Romania
b Department of Mathematics, University of Craiova, 200585 Craiova, Romania
c Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubljana, P.O.B. 2964, 1001 Ljubljana, Slovenia

\textbf{ARTICLE INFO}

MSC:
35A05
35B40
35J60
37K50
92D25

Keywords:
Logistic equation
Nonlinear eigenvalue problem
Positive entire solution
Spectrum
Anisotropic potential
Perturbation
Population dynamics

\textbf{ABSTRACT}

We establish the complete bifurcation diagram for a class of nonlinear problems on the whole space. Our model corresponds to a class of semilinear elliptic equations with logistic type nonlinearity and absorption. Since this problem arises in population dynamics or in fishery or hunting management, we are interested only in situations allowing the existence of positive solutions. The proofs combine elliptic estimates with the method of sub- and super-solutions.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction and the main results

Bifurcation problems have a long history and their treatment dates back to the XVIIIth century. One of the first bifurcation problems is related to the buckling of a thin rod under thrust and was investigated by Daniel Bernoulli and Euler around 1744. In the case in which the rod is free to rotate at both end points, this yields the one-dimensional bifurcation problem

\[
\begin{align*}
 u'' + \lambda \sin u &= 0 \quad \text{in } (0, L), \\
 0 &\leq u \leq \pi, \\
 u'(0) &= u'(L) = 0.
\end{align*}
\]

In this paper we are concerned with the existence, uniqueness or the non-existence of positive solutions of the eigenvalue logistic problem with absorption

\[
-\Delta u = \lambda (V(x)u - f(u)) \quad \text{in } \mathbb{R}^N, \quad N \geq 3,
\]

where V is a smooth sign-changing potential and $f : [0, \infty) \to [0, \infty)$ is a smooth function. Equations of this type arise in the study of population dynamics. In this case, the unknown u corresponds to the density of a population, the potential V describes the birth rate of the population, while the term $-f(u)$ in (1) signifies the fact that the population is self-limiting. In the region where V is positive (resp., negative) the population has positive (resp., negative) birth rate. Since u describes a population density, we are interested in investigating only positive solutions of problem (1).
problems of this type, as well as the associated evolution equations, are naturally related to certain physical phenomena. For example, super-diffusivity equations of this type have been proposed by de Gennes [1] as a model for long-range van der Waals interactions in thin films spreading on solid surfaces. Such equations appear in the study of cellular automata and interacting particle systems with self-organized criticality, as well as to describe the flow over an impermeable plate. We also mention Brusselator type reactions, the combustion theory, dynamics of population, the Fitzhugh–Nagumo system, morphogenesis, superconductivity, superfluids, the buckling of the Euler rod, the appearance of Taylor vortices, and the onset of oscillations in an electric circuit.

Problem (1) may be treated as a linear perturbation of the logistic equation on the whole space
\[\Delta u = f(u) \quad \text{in} \quad \mathbb{R}^N, \]
but also as a nonlinear perturbation of a related linear eigenvalue problem with anisotropic potential on the whole space. We recall in what follows the results that we need later. Let \(\Omega \) be an arbitrary open set in \(\mathbb{R}^N, N \geq 3 \). Consider the eigenvalue problem
\[\begin{aligned}
-\Delta u &= \lambda V(x)u \quad \text{in} \quad \Omega, \\
u &= 0 \quad \text{on} \quad \partial \Omega.
\end{aligned} \]

Problems of this type have a long history. If \(\Omega \) is bounded and \(V \equiv 1 \), problem (2) is related to the Riesz–Fredholm theory of self-adjoint and compact operators. The case of a non-constant potential \(V \) has been first considered in the pioneering papers of Bocher [2], Hess and Kato [3], Minakshisundaran and Pleijel [4, 5]. For instance, Minakshisundaran and Pleijel [4, 5] studied the case where \(\Omega \) is bounded, \(V \in L^\infty(\Omega), V \geq 0 \) in \(\Omega \) and \(V > 0 \) in \(\Omega \subset \Omega \cap \Omega \). An important contribution in the study of the anisotropic eigenvalue problem (2) if \(\Omega \) is bounded has been given by Cuesta [6] under the assumption that \(V \) is a given potential which may change sign and satisfying
\[(H) \quad V^+ \neq 0, \quad \text{and} \quad V \in L^s(\Omega) \quad \text{for some} \quad s > N/2. \]
We have denoted \(V^+(x) = \max(V(x), 0) \). Obviously, \(V = V^+ - V^- \), where \(V^-(x) = \max(-V(x), 0) \).

In order to find the principal eigenvalue of (2), Cuesta [6] proved that the minimization problem
\[\min \left\{ \int_\Omega |\nabla u|^2 \, dx; \quad u \in H^1_0(\Omega), \quad \int_\Omega V(x)u^2 \, dx = 1 \right\} \]
has a solution \(\psi_1 = \psi_1(\Omega) \geq 0 \) which is an eigenfunction of (2) corresponding to the eigenvalue \(\lambda_1(\Omega) = \int_\Omega |\nabla \psi_1|^2 \, dx \). Moreover, the least positive eigenvalue \(\lambda_1(\Omega) \) is simple, isolated in the spectrum and it is the unique eigenvalue associated to a nonnegative eigenfunction.

Throughout this paper the sign-changing potential \(V : \mathbb{R}^N \to \mathbb{R} \) is assumed to be a Hölder function that satisfies
\[(V) \quad V \in L^\infty(\mathbb{R}^N), \quad V^+ = V_1 + V_2 \neq 0, \quad V_1 \in L^{N/2}(\mathbb{R}^N), \quad \lim_{|x| \to \infty} |x|^2 V_2(x) = 0. \]
We suppose that the nonlinear absorption term \(f : [0, \infty) \to [0, \infty) \) is a \(C^1 \)-function such that
\[(f1) \quad f(0) = f'(0) = 0 \quad \text{and} \quad \liminf_{u \to 0^+} \frac{f(u)}{u} > 0; \]
\[(f2) \quad \text{the mapping} f(u)/u \quad \text{is increasing in} \quad (0, +\infty). \]
This assumption implies \(\lim_{u \to +\infty} f(u) = +\infty. \) We impose that \(f \) has a superlinear growth at infinity, in the sense that
\[(f3) \quad \lim_{u \to +\infty} \frac{f(u)}{u} > \|V\|_{L^1}. \]
Our framework includes the following important particular cases:
\[(i) \quad f(u) = u^2 \quad \text{that corresponds to the Fisher equation [7,8] and the Kolmogoroff–Petrovsky–Piscounoff equation [9] (see also [10] for a comprehensive treatment of these equations)}; \]
\[(ii) \quad f(u) = u^{(N+2)/(N-2)} \quad \text{for} \quad N \geq 6 \quad \text{which is related to the conform scalar curvature equation, cf. [11].} \]

For any \(R > 0 \), denote \(B_R = \{ x \in \mathbb{R}^N; |x| < R \} \) and set
\[\lambda_1(R) = \min \left\{ \int_{B_R} |\nabla u|^2 \, dx; \quad u \in H^1_0(B_R), \quad \int_{B_R} V(x)u^2 \, dx = 1 \right\}. \]

Consequently, the mapping \(R \mapsto \lambda_1(R) \) is decreasing and so, there exists
\[\lambda^* = \lim_{R \to \infty} \lambda_1(R) \geq 0. \]
We first state a sufficient condition so that \(\lambda^* \) is positive. For this aim we impose the additional assumptions
\[\text{there exists} \quad A, \alpha > 0 \quad \text{such that} \quad V^+(x) \leq A|x|^{-2-\alpha}, \quad \text{for all} \quad x \in \mathbb{R}^N \quad \text{and} \]
\[\lim_{x \to 0} |x|^{2(N-1)/N} V_2(x) = 0. \]
Theorem 1.1. Assume that V satisfies conditions (V), (4) and (5).
Then $\lambda^* > 0$.

Our main result asserts that λ^* plays a crucial role for the nonlinear eigenvalue logistic problem

$$
\begin{align*}
-\Delta u &= \lambda (V(x)u - f(u)) \quad \text{in } \mathbb{R}^N, \\
 u &> 0 \quad \text{in } \mathbb{R}^N, \\
 \lim_{|x| \to \infty} u(x) &= 0.
\end{align*}
$$

(6)

The following existence and non-existence results show that λ^* serves as a bifurcation point in our problem (6).

Theorem 1.2. Assume that V and f satisfy the assumptions (V), (4), (f1), (f2) and (f3).
Then the following hold:
(i) problem (6) has a unique solution for any $\lambda > \lambda^*$;
(ii) problem (6) does not have any solution for all $\lambda \leq \lambda^*$.

The additional condition (4) implies that $V^+ \in L^{N/2}(\mathbb{R}^N)$, which does not follow from the basic hypothesis (V). As we shall see in the next section, this growth assumption is essential in order to establish the existence of positive solutions of (1) decaying to zero at infinity.

In particular, Theorem 1.2 shows that if $V(x) < 0$ for sufficiently large $|x|$ (that is, if the population has negative birth rate) then any positive solution (that is, the population density) of (1) tends to zero as $|x| \to \infty$.

2. Existence of solutions for λ large

We show in this section that λ^* plays a crucial role in our analysis, in the sense that the logistic equation (1) has entire positive solutions if λ is sufficiently large. However, at this stage, we are not able to establish that this solution decays to zero at infinity.

Proposition 2.1. Assume that the functions V and f satisfy conditions (V), (f1), (f2) and (f3). Then the problem

$$
\begin{align*}
-\Delta u &= \lambda (V(x)u - f(u)) \quad \text{in } \mathbb{R}^N, \\
 u &> 0 \quad \text{in } \mathbb{R}^N
\end{align*}
$$

(7)

has at least one solution, for any $\lambda > \lambda^*$.

Proof. For any $R > 0$, consider the boundary value problem

$$
\begin{align*}
-\Delta u &= \lambda (V(x)u - f(u)) \quad \text{in } B_R, \\
 u &> 0 \quad \text{in } B_R, \\
 u &= 0 \quad \text{on } \partial B_R.
\end{align*}
$$

(8)

We first prove that problem (8) has at least one solution, for any $\lambda > \lambda_1(R)$. Indeed, the function $\bar{u}(x) = M$ is a supersolution of (8), for any M large enough. This follows from (f3) and the boundedness of V. Next, in order to find a positive sub-solution, let us consider the problem

$$
\min_{u \in H^1_0(B_R)} \int_{B_R} (|\nabla u|^2 - \lambda V(x)u^2) \, dx.
$$

Since $\lambda > \lambda_1(R)$, it follows that the least eigenvalue μ_1 is negative. Moreover, the corresponding eigenfunction e_1 satisfies

$$
\begin{align*}
-\Delta e_1 - \lambda V(x)e_1 &= \mu_1 e_1 \quad \text{in } B_R, \\
e_1 &> 0 \quad \text{in } B_R, \\
e_1 &= 0 \quad \text{on } \partial B_R.
\end{align*}
$$

(9)

Then the function $u(x) = \varepsilon e_1(x)$ is a sub-solution of the problem (8). Indeed, it is enough to check that

$$
-\Delta (\varepsilon e_1) - \lambda \varepsilon V e_1 + \lambda f(\varepsilon e_1) \leq 0 \quad \text{in } B_R,
$$

that is, by (9),

$$
\varepsilon \mu_1 e_1 + \lambda f(\varepsilon e_1) \leq 0 \quad \text{in } B_R.
$$

(10)

But

$$
f(\varepsilon e_1) = \varepsilon^p f(0)e_1 + \varepsilon e_1 o(1), \quad \text{as } \varepsilon \to 0.
$$

So, since $f'(0) = 0$, relation (10) becomes

$$
\varepsilon e_1 (\mu_1 + o(1)) \leq 0
$$

which is true, provided $\varepsilon > 0$ is small enough, due to the fact that $\mu_1 < 0$.

Fix $\lambda > \lambda^*$ and an arbitrary sequence $R_1 < R_2 < \cdots < R_n < \cdots$ of positive numbers such that $R_n \to \infty$ and $\lambda_1(R_n) < \lambda$. Let u_n be the solution of (8) on B_{R_n}. Fix a positive number M such that $f(M)/M > \|V\|_{L^0(\mathbb{R}^N)}$. The above arguments show that we can assume that $u_n \leq M$ in B_{R_n}, for any $n \geq 1$. Since u_{n+1} is a super-solution of (8) for $R = R_n$, we can also assume that $u_n \leq u_{n+1}$ in B_{R_n}. Thus the function $u(x) := \lim_{n \to \infty} u_n(x)$ exists and is well defined and positive in \mathbb{R}^N. Standard elliptic regularity arguments imply that u is a solution of problem (7).\qed

The above result shows the importance of assumption (4) in the statement of Theorem 1.2. Indeed, assuming that V satisfies only the hypothesis (V), it is not clear whether or not the solution constructed in the proof of Proposition 2.1 tends to 0 as $|x| \to \infty$. However, it is easy to observe that if $\lambda > \lambda^*$ and V satisfies (4) then problem (6) has at least one solution. Indeed, we first observe that

$$u(x) = \begin{cases} e_1(x), & \text{if } x \in B_R \\ 0, & \text{if } x \notin B_R \end{cases}$$

(11)

is a sub-solution of problem (6), for some fixed $R > 0$, where e_1 satisfies (9). Next, we observe that $\bar{u}(x) = n/(1 + |x|^2)$ is a super-solution of (6). Indeed, \bar{u} satisfies

$$-\Delta \bar{u}(x) = \frac{2n(1 + |x|^2) - 4|x|^2}{(1 + |x|^2)^2} u(x), \quad x \in \mathbb{R}^N.$$

It follows that \bar{u} is a super-solution of (6) provided

$$\frac{2n(1 + |x|^2) - 4|x|^2}{(1 + |x|^2)^2} \geq \lambda \mathcal{V}(x) - \lambda f \left(\frac{n}{1 + |x|^2} \right), \quad x \in \mathbb{R}^N.$$

This inequality follows from (13) and (4), provided that n is large enough.

3. Proof of Theorem 1.1

For any $R > 0$, fix arbitrarily $u \in H^1_0(B_R)$ such that $\int_{B_R} V(x)u^2dx = 1$. We have

$$1 = \int_{B_R} V(x)u^2dx \leq \int_{B_R} V^+(x)u^2dx = \int_{B_R} V_1(x)u^2dx + \int_{B_R} V_2(x)u^2dx.$$

Since $V_1 \in L^{N/2}(\mathbb{R}^N)$, using the Cauchy–Schwarz inequality and Sobolev embeddings we obtain

$$\int_{B_R} V_1(x)u^2dx \leq \|V_1\|_{L^{N/2}(B_R)} \|u\|_{L^{2^*_0}(B_R)}^2 \leq C_1 \|V_1\|_{L^{N/2}(\mathbb{R}^N)} \int_{B_R} |\nabla u|^2dx,$$

(12)

where $2^* = 2N/(N - 2)$.

Fix $\epsilon > 0$. By our assumption (V), there exists positive numbers δ, R_1 and R such that $R^{-1} < \delta < R_1 < R$ such that for all $x \in B_R$ satisfying $|x| \geq R_1$ we have

$$|x|^2V_2(x) \leq \epsilon.$$

(13)

On the other hand, by (V), for any $x \in B_R$ with $|x| \leq \delta$ we have

$$|x|^{2(N - 1)/N}V_2(x) \leq \epsilon.$$

(14)

Define $\Omega := \omega_1 \cup \omega_2$, where $\omega_1 := B_R \setminus B_{R_1}, \omega_2 := B_R \setminus B_{R_1}$, and $\omega := B_{R_1} \setminus B_R$.

By (13) and Hardy’s inequality we find

$$\int_{\omega_1} V_2(x)u^2dx \leq \epsilon \int_{\omega_1} \frac{u^2}{|x|^2}dx \leq C_2 \epsilon \int_{B_R} |\nabla u|^2dx.$$

(15)

Now using (14) and Hölder’s inequality we obtain

$$\int_{\omega_2} V_2(x)u^2dx \leq \epsilon \int_{\omega_2} \frac{u^2}{|x|^{2(N - 1)/N}}dx$$

$$\leq \epsilon \left[\int_{\omega_2} \frac{1}{|x|^{2(N - 1)/N}}dx \right]^{N/2} \|u\|_{L^2(B_R)}^2$$

$$\leq C\epsilon \left[\int_{B_R} \frac{1}{s^{N-1}n_0}ds \right]^{2/N} \int_{B_R} |\nabla u|^2dx$$

$$\leq C_3 \left(\frac{\delta}{\epsilon} \right)^{2/N} \int_{B_R} |\nabla u|^2dx.$$

(16)
By compactness and our assumption \((V)\), there exists a finite covering of \(\bar{\omega}\) by the closed balls \(\bar{B}_1(x_1), \ldots, \bar{B}_k(x_k)\) such that, for all \(1 \leq j \leq k\)
\[
\text{if } |x - x_j| \leq r_j \text{ then } |x - x_j|^{2(N-1)/N} V_2(x) \leq \epsilon. \tag{17}
\]
There exists \(r > 0\) such that, for any \(1 \leq j \leq k\)
\[
\text{if } |x - x_j| \leq r \text{ then } |x - x_j|^{2(N-1)/N} V_2(x) \leq \frac{\epsilon}{k}.
\]
Define \(A := \bigcup_{j=1}^k B_r(x_j)\). The above estimate, Hölder’s inequality and Sobolev embeddings yield
\[
\int_{B_r(x_j)} V_2(x)u^2dx \leq \frac{\epsilon}{k} \int_{B_r(x_j)} \frac{u^2}{|x - x_j|^{2(N-1)/N}}dx \\
\leq \frac{\epsilon}{k} \int_{B_r(x_j)} \left(\frac{|x - x_j|^{-2(N-1)/N}}{N/2}\right)N/2 dx \left\|u\right\|^2_{2^*} (B_r) \\
\leq C \frac{\epsilon}{k} \left(\int_{B_r(x_j)} \frac{1}{|x|^{N-1}}dx \right)^{2/N} \int_{B_r} |\nabla u|^2 dx \\
= C \frac{\epsilon}{k} \left(\int_{0}^{r} \frac{1}{s^{N-1}} ds \right)^{2/N} \int_{B_r} |\nabla u|^2 dx \\
= C \epsilon \int_{B_r} |\nabla u|^2 dx,
\]
for any \(j = 1, \ldots, k\). By addition we find
\[
\int_{A} V_2(x)u^2dx \leq C_4 \int_{B_r} |\nabla u|^2 dx. \tag{18}
\]
It follows from (17) that \(V_2 \in L^{\infty}(\omega \setminus A)\). Actually, if \(x \in \omega \setminus A\) it follows that there exists \(j \in \{1, \ldots, k\}\) such that \(r_j > |x - x_j| > r > 0\). Thus,
\[
V_2(x) \leq r^{-2(N-1)/\epsilon}.
\]
Hence
\[
\int_{\omega \setminus A} V_2(x)u^2dx \leq C \epsilon r^{-2(N-1)/\epsilon} \int_{\omega \setminus A} u^2dx \leq C_5 \int_{B_r} |\nabla u|^2 dx. \tag{19}
\]
Now from inequalities (12), (15), (16), (18) and (19) we have
\[
\lambda_1(R) \geq \left| C_1 \|V_1\|_{L^{N/2}(\omega \setminus A)} + C_2 \epsilon + C_3 \left(\delta - R^{-1}\right)^{2/N} + C_4 + C_5 \right|^{-1}
\]
and passing to the limit as \(R \to \infty\) we conclude that
\[
\lambda^* \geq \left| C_1 \|V_1\|_{L^{N/2}(\omega \setminus A)} + C_2 \epsilon + C_3 \delta^{2/N} + C_4 + C_5 \right|^{-1} > 0.
\]
This completes the proof of Theorem 1.1. □

4. Proof of Theorem 1.2

We split the proof of our main result into several steps. Throughout this section we assume that the hypotheses of Theorem 1.2 are fulfilled.

Proposition 4.1. Let \(u\) be an arbitrary solution of problem (6). Then there exists \(C > 0\) such that \(|u(x)| \leq C |x|^{2-N} \) for all \(x \in \mathbb{R}^N\).

Proof. Let \(\omega_N\) be the surface area of the unit sphere in \(\mathbb{R}^N\). Consider the function \(V^+u\) as a Newtonian potential and define
\[
v(x) = \frac{1}{(N-2)\omega_N} \int_{\mathbb{R}^N} \frac{V^+(y)u(y)}{|x - y|^{N-2}} dy.
\]
A straightforward computation shows that
\[
-\Delta v = V^+(x)u \quad \text{in } \mathbb{R}^N.
\] But, by (4) and since \(u\) is bounded,
\[
V^+(y)u(y) \leq C |y|^{-2-\alpha}, \quad \text{for all } y \in \mathbb{R}^N.
\]
So, by Lemma 2.3 in Li and Ni [11],
\[v(x) \leq C|x|^{-\alpha}, \quad \text{for all } x \in \mathbb{R}^N, \]
provided that \(\alpha < N - 2 \). Set \(w(x) = C v(x) - u(x) \). Hence \(w(x) \to 0 \) as \(|x| \to \infty \). Let us choose \(C \) sufficiently large so that \(w(0) > 0 \). We claim that this implies
\[w(x) > 0, \quad \text{for all } x \in \mathbb{R}^N. \] (21)
Indeed, if not, let \(x_0 \in \mathbb{R}^N \) be a local minimum point of \(w \). This means that \(w(x_0) < 0, \nabla w(x_0) = 0 \) and \(\Delta w(x_0) \geq 0 \). But
\[\Delta w(x_0) = -CV^+(x_0)u(x_0) + \lambda (V(x_0)u(x_0) - f(u(x_0))) < 0, \]
provided that \(C > \lambda \). This contradiction implies (21). Consequently,
\[u(x) \leq C v(x) \leq C|x|^{-\alpha}, \quad \text{for any } x \in \mathbb{R}^N. \]

So, using (4) again,
\[V^+(x)u(x) \leq C|x|^{-2\alpha}, \quad \text{for all } x \in \mathbb{R}^N. \]

Lemma 2.3 in [11] yields the improved estimate
\[v(x) \leq C|x|^{-2\alpha}, \quad \text{for all } x \in \mathbb{R}^N, \]
provided that \(2\alpha < N - 2 \), and so on. Let \(n_\alpha \) be the largest integer such that \(n_\alpha \alpha < N - 2 \). Repeating \(n_\alpha + 1 \) times the above argument based on Lemma 2.3 (i) and (iii) in [11] we obtain
\[u(x) \leq C|x|^{-N}, \quad \text{for all } x \in \mathbb{R}^N. \]

Proposition 4.2. Let \(u \) be a solution of problem (6). Then \(V^+u, V^-u, f(u) \in L^1(\mathbb{R}^N) \), and \(u \in H^1(\mathbb{R}^N) \).

Proof. For any \(R > 0 \) consider the average function
\[\overline{u}(R) = \frac{1}{\omega_N R^{N-1}} \int_{B_R} u(x) \, d\sigma = \frac{1}{\omega_N} \int_{B_1} u(rx) \, d\sigma, \]
where \(\omega_N \) denotes the surface area of \(S^{N-1} \). Then
\[\overline{u}'(R) = \frac{1}{\omega_N} \int_{B_1} \frac{\partial u}{\partial \nu} (rx) \, d\sigma = \frac{1}{\omega_N R^{N-1}} \int_{B_R} \frac{\partial u}{\partial \nu} (x) \, d\sigma = \frac{1}{\omega_N R^{N-1}} \int_{B_R} \nabla u(x) \, dx. \]
Hence
\[\omega_N R^{N-1} \overline{u}'(R) = -\lambda \int_{B_R} (V(x)u - f(u)) \, dx \]
\[= -\lambda \int_{B_R} V^+(x)u \, dx + \lambda \int_{B_R} (V^-(x)u + f(u)) \, dx. \] (22)

By Proposition 4.1, there exists \(C > 0 \) such that \(|\overline{u}(r)| \leq Cr^{-N+2} \), for any \(R > 0 \). So, by (4),
\[\int_{1 \leq |x| \leq r} V^+(x)u \, dx \leq CA \int_{1 \leq |x| \leq r} |x|^{-N-\alpha} \, dx \leq C, \]
where \(C \) does not depend on \(r \). This implies \(V^+u \in L^1(\mathbb{R}^N) \).

By contradiction, assume that \(V^-u + f(u) \notin L^1(\mathbb{R}^N) \). So, by (22), \(\overline{u}'(r) > 0 \) if \(r \) is sufficiently large. It follows that \(\overline{u}(r) \) does not converge to 0 as \(r \to \infty \), which contradicts Proposition 4.1. So, \(V^-u + f(u) \in L^1(\mathbb{R}^N) \). Next, in order to establish that \(u \in L^2(\mathbb{R}^N) \), we observe that our assumption (f1) implies the existence of some positive numbers \(a \) and \(\delta \) such that \(f'(t) > at \), for any \(0 < t < \delta \). This implies \(f(t) > at^2/2 \), for any \(0 < t < \delta \). Since \(u \) decays to 0 at infinity, it follows that the set \(\{ u \in \mathbb{R}^N; u(x) \geq \delta \} \) is compact. Hence
\[\int_{\mathbb{R}^N} u^2 \, dx = \int_{|u| \geq \delta} u^2 \, dx + \int_{|u| < \delta} u^2 \, dx \]
\[\leq \int_{|u| \geq \delta} u^2 \, dx + \frac{2}{a} \int_{|u| < \delta} f(u) \, dx \]
\[< +\infty, \]
since \(f(u) \in L^1(\mathbb{R}^N) \).
It remains to prove that \(\nabla u \in L^2(\mathbb{R}^N)^N \). We first observe that after multiplication by \(u \) in (1) and integration we find

\[
\int_{B_R} |\nabla u|^2 \, dx - \int_{\partial B_R} u(x) \frac{\partial u}{\partial v}(x) \, d\sigma = \lambda \int_{B_R} (V(x)u - f(u)) \, dx.
\]

for any \(r > 0 \). Since \(Vu - f(u) \in L^1(\mathbb{R}^N) \), it follows that the left-hand side has a finite limit as \(r \to \infty \). Arguing by contradiction and assuming that \(\nabla u \not\in L^2(\mathbb{R}^N)^N \), it follows that there exists \(R_0 > 0 \) such that

\[
\int_{\partial B_R} u(x) \frac{\partial u}{\partial v}(x) \, d\sigma \geq \frac{1}{2} \int_{B_R} |\nabla u|^2 \, dx, \quad \text{for any } R \geq R_0. \tag{23}
\]

Define the functions

\[
A(R) := \int_{\partial B_R} u(x) \frac{\partial u}{\partial v}(x) \, d\sigma;
\]

\[
B(R) := \int_{\partial B_R} u^2(x) \, d\sigma;
\]

\[
C(R) = \int_{B_R} |\nabla u(x)|^2 \, dx.
\]

The integro-differential inequality (23) can be rewritten as

\[
A(R) \geq \frac{1}{2} C(R), \quad \text{for any } R \geq R_0. \tag{24}
\]

On the other hand, by the Cauchy–Schwarz inequality,

\[
A^2(R) \leq \left(\int_{\partial B_R} u^2 \, d\sigma \right) \left(\int_{\partial B_R} \left| \frac{\partial u}{\partial v} \right|^2 \, d\sigma \right) \leq B(R)C'(R).
\]

Now using (24) we obtain

\[
C'(R) \geq \frac{C^2(R)}{4B(R)}, \quad \text{for any } R \geq R_0.
\]

Hence

\[
\frac{d}{dr} \left[\frac{4}{C(r)} + \int_{0}^{r} \frac{dt}{B(t)} \right]_{r=R} \leq 0, \quad \text{for any } R \geq R_0. \tag{25}
\]

But, since \(u \in L^2(\mathbb{R}^N) \), it follows that \(\int_{0}^{\infty} B(t) \, dt \) converges, so

\[
\lim_{R \to \infty} \int_{0}^{R} \frac{dt}{B(t)} = +\infty. \tag{26}
\]

On the other hand, our assumption \(|\nabla u| \not\in L^2(\mathbb{R}^N) \) implies

\[
\lim_{R \to \infty} \frac{1}{C(R)} = 0. \tag{27}
\]

Relations (25)–(27) yield a contradiction, so our proof is complete. \(\square \)

Proposition 4.3. Let \(u \) and \(v \) be two distinct solutions of problem (6). Then

\[
\lim_{R \to \infty} \int_{\partial B_R} u(x) \frac{\partial v}{\partial v}(x) \, d\sigma = 0.
\]

Proof. By multiplication with \(v \) in (6) and integration on \(B_R \) we find

\[
\int_{B_R} \nabla u \cdot \nabla v \, dx - \int_{\partial B_R} u \frac{\partial v}{\partial v} \, d\sigma = \lambda \int_{B_R} (V(x)uv - f(u)v) \, dx.
\]

So, by **Proposition 4.2**, there exists a finite \(\lim_{R \to \infty} \int_{\partial B_R} u \frac{\partial v}{\partial v} \, d\sigma \). But, by the Cauchy–Schwarz inequality,

\[
\left| \int_{\partial B_R} u \frac{\partial v}{\partial v} \, d\sigma \right| \leq \left(\int_{\partial B_R} u^2 \, d\sigma \right)^{1/2} \left(\int_{\partial B_R} |\nabla v|^2 \, d\sigma \right)^{1/2}. \tag{28}
\]
Since \(u, |\nabla v| \in L^2(\mathbb{R}^N) \), it follows that the integral
\[
\int_0^\infty \left(\int_{\partial B_k} (u^2 + |\nabla v|^2) d\sigma \right) dx
\]
is convergent. Hence
\[
\lim_{k \to \infty} \int_{\partial B_k} (u^2 + |\nabla v|^2) d\sigma = 0. \tag{29}
\]
Our conclusion now follows by relations (28) and (29). \(\square \)

Proof of Theorem 1.2 Concluded. (i) The existence of a solution follows with the arguments given in the preceding section. In order to establish the uniqueness, let \(u \) and \(v \) be two solutions of (6). We can assume without loss of generality that \(u \leq v \). This follows from the fact that \(\bar{u} = \min\{u, v\} \) is a super-solution of (6) and \(u \) defined in (11) is an arbitrary small sub-solution. So, it is sufficient to consider the ordered pair consisting of the corresponding solution and \(v \).

Since \(u \) and \(v \) are solutions we have, by Green's formula,
\[
\int_{\partial B_k} \left(\frac{\partial v}{\partial n} - \frac{\partial u}{\partial n} \right) d\sigma = \lambda \int_{B_k} \left(\frac{f(v)}{v} - \frac{f(u)}{u} \right) dx.
\]
By Proposition 4.3, the left-hand side converges to 0 as \(R \to \infty \). So, (f1) and our assumption \(u \leq v \) force \(u = v \) in \(\mathbb{R}^N \).

(ii) Arguing by contradiction, let \(\lambda \leq \lambda^* \) be such that problem (6) has a solution for this \(\lambda \). Therefore
\[
\int_{\mathbb{R}^N} |\nabla u|^2 dx - \int_{\mathbb{R}^N} \frac{\partial u}{\partial v} dx = \lambda \int_{\mathbb{R}^N} (V(x)u^2 - f(u)u) dx.
\]
By Propositions 4.2 and 4.3 and letting \(R \to \infty \) we find
\[
\int_{\mathbb{R}^N} |\nabla u|^2 dx < \lambda \int_{\mathbb{R}^N} V(x)u^2 dx. \tag{30}
\]
On the other hand, using the definition of \(\lambda^* \) and (3) we obtain
\[
\lambda^* \int_{\mathbb{R}^N} Vz^2 dx \leq \int_{\mathbb{R}^N} |\nabla z|^2 dx, \tag{31}
\]
for any \(z \in C^2_0(\mathbb{R}^N) \) such that \(\int_{\mathbb{R}^N} Vz^2 dx > 0 \).

Fix \(\xi \in C^2(\mathbb{R}^N) \) such that \(0 \leq \xi \leq 1 \), \(\xi(x) = 1 \) if \(|x| \leq 1 \), and \(\xi(x) = 0 \) if \(|x| \geq 2 \). For any \(n \geq 1 \) define \(\psi_n(x) = \xi_n(x)u(x) \), where \(\xi_n(x) = \xi(|x|/n) \). Thus \(\psi_n(x) \to u(x) \) as \(n \to \infty \), for any \(x \in \mathbb{R}^N \). Since \(u \in H^1(\mathbb{R}^N) \), the Sobolev embedding theorem implies that \(u \in L^{2N/(N−2)}(\mathbb{R}^N) \). So, the Lebesgue dominated convergence theorem yields
\[
\psi_n \to u \quad \text{in} \quad L^{2N/(N−2)}(\mathbb{R}^N). \tag{32}
\]
We claim that
\[
\nabla \psi_n \to \nabla u \quad \text{in} \quad L^2(\mathbb{R}^N)^N. \tag{33}
\]
Indeed, let \(\Omega_n := \{ x \in \mathbb{R}^N; n < |x| < 2n \} \). Applying Hölder’s inequality we find
\[
\|\nabla \psi_n - \nabla u\|_{L^2(\mathbb{R}^N)} \leq \|\xi_n - 1\|_{L^2(\mathbb{R}^N)} + \|u\nabla \xi_n\|_{L^2(\Omega_n)} \leq \|\xi_n - 1\|_{L^2(\mathbb{R}^N)} + \|u\|_{L^{2N/(N−2)}(\Omega_n)} \cdot \|\nabla \xi_n\|_{L^2(\mathbb{R}^N)}. \tag{34}
\]
But, since \(|\nabla u| \in L^2(\mathbb{R}^N) \), it follows by Lebesgue’s dominated convergence theorem that
\[
\lim_{n \to \infty} \|\xi_n - 1\|_{L^2(\mathbb{R}^N)} = 0. \tag{35}
\]
Next, we observe that
\[
\|\nabla \xi_n\|_{L^2(\mathbb{R}^N)} = \|\nabla \xi\|_{L^2(\mathbb{R}^N)}. \tag{36}
\]
Since \(u \in L^{2N/(N−2)}(\mathbb{R}^N) \) then
\[
\lim_{n \to \infty} \|u\|_{L^{2N/(N−2)}(\Omega_n)} = 0. \tag{37}
\]
Relations (33)–(36) imply our claim (32).
Since $V^\pm u^2 \in L^1(\mathbb{R}^N)$ and $V^\pm \psi_n^2 \leq V^\pm u^2$, it follows by Lebesgue’s dominated convergence theorem that

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} V^\pm \psi_n^2 \, dx = \int_{\mathbb{R}^N} V^\pm u^2 \, dx.$$

Consequently

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} V \psi_n^2 \, dx = \int_{\mathbb{R}^N} Vu^2 \, dx. \quad (37)$$

So, by (30) and (37), it follows that there exists $n_0 \geq 1$ such that

$$\int_{\mathbb{R}^N} V \psi_n^2 \, dx > 0, \text{ for any } n \geq n_0.$$

This means that we can write (31) for ζ replaced by $\psi_n \in C_0^2(\mathbb{R}^N)$. Then using (32) and (37) we find

$$\int_{\mathbb{R}^N} |\nabla u|^2 \, dx \geq \lambda^* \int_{\mathbb{R}^N} Vu^2 \, dx. \quad (38)$$

Relations (30) and (38) yield a contradiction, so problem (6) has no solution if $\lambda \leq \lambda^*$. \[\square\]

Acknowledgments

V. Rădulescu has been supported by grants CNCSIS PNII–79/2007 (“Procese Neliiniare Degenerate şi Singulare”), CNCSIS 589/2008, and CNCSIS PCCE–55/2008 (“Sisteme Diferenţiale în Analiza Nelinieră şi Aplicaţii”). D. Repovš was supported by the Slovenian Research Agency grants P1-0292-0101 and J1-9643-0101. This paper has been completed while Vicenţiu Rădulescu was visiting University of Ljubljana during July and September 2008 with a research position funded by the Slovenian Research Agency. Some of the results contained in this paper were communicated at the International INdAM Conference ”Liouville Theorems and Detours”, Cortona (Italy), May 18–24, 2008. We would like to thank the organizers for their support and the excellent scientific atmosphere.

References