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BIFURCATION ANALYSIS OF A SINGULAR ELLIPTIC

PROBLEM MODELLING THE EQUILIBRIUM

OF ANISOTROPIC CONTINUOUS MEDIA

Giovanni Molica Bisci — Vicenţiu D. Rădulescu

Abstract. In this work we obtain an existence result for a class of sin-
gular quasilinear elliptic Dirichlet problems on a smooth bounded domain

containing the origin. By using a Caffarelli–Kohn–Nirenberg type inequal-

ity, a critical point result for differentiable functionals is exploited, in order
to prove the existence of a precise open interval of positive eigenvalues for

which the treated problem admits at least one nontrivial weak solution.

In the case of terms with a sublinear growth near the origin, we deduce
the existence of solutions for small positive values of the parameter. More-

over, the corresponding solutions have smaller and smaller energies as the

parameter goes to zero.

1. Introduction

Stationary problems involving singular nonlinearities, as well as the associ-

ated evolution equations, describe naturally several physical phenomena. At our

best knowledge, the first study in this direction is due to Fulks and Maybee [12],

who proved existence and uniqueness results by using a fixed point argument;

moreover, they showed that solutions of the parabolic problem tend to the unique

solution of the corresponding stationary equation.
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Nonlinear singular boundary value problems arise in the context of chemical

heterogeneous catalysts and chemical catalyst kinetics, in the theory of heat

conduction in electrically conducting materials, singular minimal surfaces, as

well as in the study of non-Newtonian fluids, boundary layer phenomena for

viscous fluids; we refer for more details to [13], [14], [18], [19].

The problem we study in this paper corresponds to a model that describes

several physical phenomena related to the equilibrium of anisotropic continuous

media which possibly are somewhere “perfect” insulators or “perfect” conductors

(see [11, p. 79]).

We are interested in the existence of solutions for the following singular

elliptic Dirichlet problem

(Da,b
λ )

−div(|x|−2a∇u) = λ|x|−2bf(u) in Ω,

u = 0 on ∂Ω,

where λ is a real positive parameter and Ω is a bounded domain in RN (N > 2)

with smooth boundary ∂Ω containing the origin, a and b are real numbers such

that

0 ≤ a < N − 2

2
and a ≤ b < a+ 1,

and f : R→ R is a continuous function satisfying the following subcritical growth

condition

(h∞) |f(t)| ≤ a1 + a2|t|r−1 for all t ∈ R,

for some nonnegative constants a1, a2 and r ∈ ]1, r?[, where

r? := 2 min

{
(N − 2b)

N − 2(a+ 1)
,

N

N − 2

}
.

If r? = 2N/(N − 2) some concentration phenomena may occur, due to the action

of the non compact group of dilations in RN .

The most relevant feature in problem (Da,b
λ ) is due to the presence of the

singular coefficients |x|−2a and |x|−2b, which play a key role in the problem of

existence of solutions when 0 ∈ Ω.

In 1984, Caffarelli, Kohn and Nirenberg proved in [6], in the context of some

more general inequalities, the following nice result:

Given 1 < p < N , there exists a positive constant Ca,b such that, for every

u ∈ C∞0 (Ω),

(CKN)

(∫
Ω

|x|−bq|u(x)|q dx
)p/q

≤ Ca,b
∫

Ω

|x|−ap|∇u(x)|p dx,

where

−∞ < a <
N − p
p

, a ≤ b ≤ a+ 1, q =
Np

N − p(1 + a− b)
,
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and Ω ⊆ RN is an arbitrary open domain.

Note that the Caffarelli–Kohn–Nirenberg inequality (CKN) reduces to the

classical Sobolev inequality (if a = b = 0) and to the Hardy inequality (if a = 0

and b = 1). Relation (CKN) proves to be an important tool in studying de-

generate elliptic problems. It is also related with the understanding of some

important phenomena such as best constants, existence or nonexistence of ex-

tremal functions, symmetry properties of minimizers, compactness of minimizing

sequences and concentration phenomena. We refer the reader to [3], [7]–[9], [15]

and [17], [24], [27], [30], [31] for some relevant applications of (CKN); see also

[26] for a Caffarelli–Kohn–Nirenberg type inequality with variable exponent and

applications to PDE’s.

In particular, in order to handle singular problems, various extensions of

(CKN) were achieved; see, for instance [1]. Moreover, in the last few years,

existence, nonexistence and multiplicity of nonnegative solutions either for (Da,b
λ )

or some its variants, were obtained, where the nonlinear term is of pure power

type; see [2], [20], [32], and references therein. In this direction, Ghergu and

Rădulescu [16] studied the following nonlinear singular elliptic equation

−div(|x|−2a∇u) = K(x)|x|−bp|u|p−2u+ λg(x) in RN ,

where g belongs to an appropriate weighted Sobolev space and p denotes the

Caffarelli–Kohn–Nirenberg critical exponent associated to the data a, b, and

to the Euclidean dimension N . Under some natural assumptions on the pos-

itive potential K(x), the existence of some λ0 > 0 was proved such that the

above problem has at least two distinct solutions provided that λ ∈ (0, λ0). The

proof relies on Ekeland’s variational principle and on the mountain pass theo-

rem without the Palais–Smale condition, combined with a weighted variant of the

celebrated Brezis–Lieb lemma (see [5] for the original version of the Brezis–Lieb

lemma). More recently, Kristály studied problem (Da,b
λ ) and prove the existence

of infinitely many distinct nonnegative solutions when f is a continuous function

oscillating either at the origin or at infinity; see [21, Theorems 1, 2].

Motivated by this large interest on the subject in the current literature, in

this paper we exploit a quoted critical point result for differentiable functionals

due to Ricceri (see Theorem 2.2 below) in order to prove the existence of a precise

open interval of positive eigenvalues for which the treated problem admits at least

one nontrivial weak solution; see Theorem 3.1 and Corollary 4.5. In addition, for

λ sufficiently small, the energy functional (namely Eλ) related to the problem is

negative and decreasing on the solutions; see Remark 4.3.

We also observe that when the nonlinear term is sublinear at infinity, then

the corresponding energy functional is coercive. In this case, the existence of

a solution (possibly trivial) comes from standard arguments; see Remark 4.2 for
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details. It is worth noticing that, in our context, the potential may be also not

coercive; see Example 4.6 and Remark 4.7.

We state here, as an example, the following special case of our results; see

also Remark 4.4.

Theorem 1.1. Let 0 ≤ b < 1 and f : R → R be a continuous function such

that

(h∞0 ) lim
t→0+

f(t)

t
= +∞, and lim

|t|→∞

f(t)

|t|s
= 0,

for some 0 ≤ s < (N + 2(1− 2b))/(N − 2). Then there exists λ? > 0 such that

for all λ ∈ ]0, λ?[, the following singular Dirichlet problem

(D0,b
λ )

−∆u = λ|x|−2bf(u) in Ω,

u = 0 on ∂Ω,

admits at least one nontrivial weak solution uλ ∈ H1
0 (Ω). Moreover, we have∫

Ω

|∇uλ(x)|2 dx→ 0, as λ→ 0+

and the mapping

λ 7→ 1

2

(∫
Ω

|∇uλ(x)|2 dx
)
− λ

∫
Ω

|x|−2b

(∫ uλ(x)

0

f(t) dt

)
dx,

is negative and strictly decreasing in ]0, λ?[.

The paper is organized as follows. In Section 2, we recall some basic def-

initions and our main tool, while Section 3 is devoted to our abstract results.

A concrete example is provided in the final section of thsi paper.

We refer to the monographs [16], [23], [25] for several related topics and

a careful analysis of our abstract framework.

2. Preliminaries

Let Ω be a bounded domain in RN with a smooth boundary ∂Ω and con-

taining the origin. Denote by D1,2
a (Ω) the completion of C∞0 (Ω) with respect to

the norm

‖u‖a =

(∫
Ω

|x|−2a|∇u(x)|2 dx
)1/2

.

Then the embedding j : D1,2
a (Ω) ↪→ Lr(Ω; |x|−q) is continuous if

1 ≤ r ≤ 2∗ :=
2N

N − 2
and q ≤ (1 + a)r +N

(
1− r

2

)
,

where Lr(Ω; |x|−q) is the weighted Lebesgue space endowed with the norm

‖u‖r,q =

(∫
Ω

|x|−q|u(x)|r dx
)1/r

.
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We refer to [10], [32] for more details.

Hence, there exists a positive constant Ka
r,q such that

(2.1)

(∫
Ω

|x|−q|u(x)|r dx
)1/r

≤ Ka
r,q

(∫
Ω

|x|−2a|∇u(x)|2 dx
)1/2

,

for every u ∈ D1,2
a (Ω). Moreover, the embedding j is compact if

(C) 1 ≤ r < 2∗ and q < (1 + a)r +N(1− r/2).

Set

F (ξ) :=

∫ ξ

0

f(t) dt, for every ξ ∈ R.

Consider the energy functional Eλ : D1,2
a (Ω)→ R associated to (Da,b

λ ) defined as

follows

Eλ(u) = Φ(u)− λΨ(u) for all u ∈ D1,2
a (Ω),

where

Φ(u) :=
1

2

∫
Ω

|x|−2a|∇u(x)|2 dx, Ψ(u) :=

∫
Ω

|x|−2bF (u(x)) dx.

Then Φ is a Gâteaux differentiable functional in D1,2
a (Ω) whose derivative is

given by

Φ′(u)(v) =

∫
Ω

|x|−2a∇u(x) · ∇v(x) dx,

for every v ∈ D1,2
a (Ω). Moreover, Φ is weakly lower semicontinuous and coercive.

On the other hand, we have the following preliminary result.

Lemma 2.1. Assume that f verifies the growth condition (h∞). Then the

functional Ψ: D1,2
a (Ω) → R is well defined, of class C1, and sequentially weakly

continuous.

Proof. The functional Ψ is well defined since, by using (2.1) and exploiting

(C), it follows that

Ψ(u) ≤
(
a1K

a
1,2b +

a2

r
(Ka

r,2b)
r‖u‖r−1

a

)
‖u‖a < +∞,

for every u ∈ D1,2
a (Ω).

Standard arguments show that Ψ is a continuously Gâteaux differentiable

functional whose Gâteaux derivative is

Ψ′(u)(v) =

∫
Ω

|x|−2bf(u(x))v(x) dx for every v ∈ D1,2
a (Ω).

Now, we prove that Ψ is sequentially weakly continuous arguing by contra-

diction. Hence, let {uk} ⊂ D1,2
a (Ω) be a sequence such that uk ⇀ u in D1,2

a (Ω)

but {Ψ(uk)} does not converges to Ψ(u) as n→∞. Further, note that since

r ∈
]
1,min

{
2(N − 2b)

N − 2(a+ 1)
, 2∗
}[
,
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then r and 2b verify relation (C). In other words

1 < r < 2∗ and 2b < (1 + a)r +N

(
1− r

2

)
,

see Remark 4.1 for details. Therefore, up to a subsequence, one can find a number

ε > 0 such that 0 < ε ≤ |Ψ(uk) − Ψ(u)|, for every k ∈ N and uk → u in

Lr(Ω; |x|−2b). Moreover, for every k ∈ N, we have ϑk ∈ ]0, 1[ such that

|Ψ(uk)−Ψ(u)| ≤
∫

Ω

|x|−2b|F (uk(x))− F (u(x))| dx

=

∫
Ω

|x|−2b|f(u(x) + ϑk(uk(x)− u(x)))||uk(x)− u(x)| dx.

Thus, from the above inequality and (h∞), it follows that

|Ψ(uk)−Ψ(u)| ≤ a1

∫
Ω

|x|−2b|uk(x)− u(x)| dx

+ a2

∫
Ω

|x|−2b|u(x) + ϑk(uk(x)− u(x))|r−1|uk(x)− u(x)| dx.

Next, we employ the Hölder inequality (with weight |x|−2b) and the following

elementary property: for every real number s > 0, then there exists a constant

cs > 0 such that

(α+ β)s ≤ cs(αs + βs) for all α, β ∈ (0,∞).

Hence (note that r > 1) we can write∫
Ω

|x|−2b|u(x) + ϑk(uk(x)− u(x))|r−1|uk(x)− u(x)| dx

≤
∫

Ω

|x|−2b(|u(x)|+ |uk(x)− u(x))|)r−1|uk(x)− u(x)| dx

= cr−1

(∫
Ω

|x|−2b|u(x)|r−1|uk(x)− u(x)| dx+

∫
Ω

|x|−2b|uk(x)− u(x)|r dx
)

≤ cr−1

(∫
Ω

|x|−2b|u(x)|r dx
)(r−1)/r(∫

Ω

|x|−2b|uk(x)− u(x)|r dx
)1/r

+ cr−1

∫
Ω

|x|−2b|uk(x)− u(x)|r dx

= cr−1(‖u‖r−1
r,2b + ‖uk − u‖r−1

r,2b )‖uk − u‖r,2b.

Then

0 <ε ≤ |Ψ(uk)−Ψ(u)|

≤ a1‖uk − u‖1,2b + cr−1a2(‖u‖r−1
r,2b + ‖un − u‖r−1

r,2b )‖uk − u‖r,2b.

Since {uk} strongly converges to u in Lr(Ω; |x|−2b) (so uk → u in L1(Ω; |x|−2b)),

the right-hand side tends to zero as k →∞, contradicting ε > 0. �
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Fix λ > 0. A function u : Ω → R is said to be a weak solution of (Da,b
λ ) if

u ∈ D1,2
a (Ω) and∫

Ω

|x|−2a∇u(x) · ∇v(x) dx = λ

∫
Ω

|x|−2bf(u(x))v(x) dx for all v ∈ D1,2
a (Ω).

Hence, from the above remarks, the critical points of Eλ are exactly the weak

solutions of (Da,b
λ ).

Our main tool to prove the existence of a nontrivial weak solution for problem

(Da,b
λ ) is the following critical point theorem due to Ricceri [28].

Theorem 2.2. Let X be a reflexive real Banach space and Φ,Ψ: X → R
be continuously Gâteaux differentiable functionals such that Φ is sequentially

weakly lower semicontinuous and coercive and Ψ is sequentially weakly upper

semicontinuous. For every ρ > inf
X

Φ, set

ϕ(ρ) := inf
u∈Φ−1(]−∞,ρ[)

sup
v∈Φ−1(]−∞,ρ[)

Ψ(v)−Ψ(u)

ρ− Φ(u)
.

Then, for every ρ > inf
u∈X

Φ(u) and every λ ∈ ]0, 1/ϕ(ρ)[, the restriction of the

functional Eλ := Φ − λΨ to Φ−1(]−∞, ρ[) admits a global minimum, which is

a critical point (local minimum) of Eλ in X.

See also [4, Theorem 2.1, part (a)].

3. Small energy solutions

With the previous notations, the main abstract result of this paper reads as

follows.

Theorem 3.1. Let f : R → R be a continuous function satisfying condi-

tion (h∞). Assume that

lim sup
ξ→0+

F (ξ)

ξ2
= +∞ and lim inf

ξ→0+

F (ξ)

ξ2
> −∞.

Then there exists a positive number λ? given by

λ? := r sup
γ>0

(
γ

ra1

√
2Ka

1,2b + a22r/2(Ka
r,2b)

rγr−1

)
,

such that for every λ ∈ ]0, λ?[, the following elliptic Dirichlet problem

(Da,b
λ )

−div(|x|−2a∇u) = λ|x|−2bf(u) in Ω,

u = 0 on ∂Ω,

admits at least one nontrivial weak solution uλ ∈ D1,2
a (Ω). Moreover,

lim
λ→0+

‖uλ‖a = 0.

and the function λ→ Eλ(uλ) is negative and strictly decreasing in ]0, λ?[.
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Proof. Fix λ ∈ ]0, λ?[. Our aim is to apply Theorem 2.2 with X := D1,2
a (Ω)

and where Φ and Ψ are the functionals introduced in Section 2. Note that X is

a Hilbert space whose inner product 〈 · , · 〉 : X ×X → R given by

〈u, v〉 :=

∫
Ω

|x|−2a∇u(x) · ∇v(x) dx for all u, v ∈ X

induces the norm ‖ · ‖a. Hence X is a reflexive space. Now, we prove that

problem (Pλ)admits a weak solution uλ ∈ Φ−1(]−∞, ρ[), for a suitable ρ > 0.

For our goal observe that Φ: X → R is a continuously Gâteaux differen-

tiable and sequentially weakly lower semicontinuous functional as well as the

map Ψ: X → R is continuously Gâteaux differentiable and sequentially weakly

upper semicontinuous by Lemma 2.1. Moreover, Φ is coercive and inf
u∈X

Φ(u) = 0.

Owing to (h∞), if follows that

(3.1) F (ξ) ≤ a1|ξ|+ a2
|ξ|r

r
for all ξ ∈ R.

Since 0 < λ < λ?, there exists γ > 0 such that

(3.2) λ <
rγ

ra1

√
2Ka

1,2b + a22r/2(Ka
r,2b)

r γr−1
=: λ?γ .

Now, set ρ ∈ ]0,+∞[ and consider the function

χ(ρ) :=

sup
v∈Φ−1(]−∞,ρ[)

Ψ(v)

ρ
.

Taking into account (3.1) it follows that

Ψ(v) :=

∫
Ω

|x|−2bF (v(x)) dx ≤ a1‖v‖1,2b +
a2

r
‖v‖rr,2b.

Then, for every v ∈ X such that Φ(v) < ρ, we get

(3.3) ‖v‖a <
√

2ρ, for every v ∈ X.

Now, from (2.1) and by using (3.3), for every v ∈ X such that Φ(v) < ρ, we

obtain

Ψ(v) < a1K
a
1,2b

√
2ρ+

a22r/2(Ka
r,2b)

r

r
ρr/2.

Hence

sup
v∈Φ−1(]−∞,ρ[)

Ψ(v) ≤ a1K
a
1,2b

√
2ρ+

a22r/2(Ka
r,2b)

r

r
ρr/2.

Then

(3.4) χ(ρ) ≤ a1K
a
1,2b

√
2

ρ
+
a22r/2(Ka

r,2b)
r

r
ρr/2−1,

for every ρ > 0. In particular, we deduce that

(3.5) χ(γ2) ≤
a1

√
2Ka

1,2b

γ
+
a22r/2(Ka

r,2b)
r

r
γr−2.
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At this point, observe that

ϕ(γ2) := inf
u∈Φ−1(]−∞,γ2[)

sup
v∈Φ−1(]−∞,γ2[)

Ψ(v)−Ψ(u)

γ2 − Φ(u)
≤ χ(γ2),

taking into account that 0X ∈ Φ−1(]−∞, γ2[) and Φ(0X) = Ψ(0X) = 0.

In conclusion, bearing in mind (3.2), the above inequality together with (3.5)

yield

ϕ(γ2) ≤ χ(γ2) ≤
a1

√
2Ka

1,2b

γ
+
a22r/2(Ka

r,2b)
r

r
γr−2 <

1

λ
.

In other words,

λ ∈
]
0,

rγ

ra1

√
2Ka

1,2b + a22r/2(Ka
r,2b)

rγr−1

[
⊆ ]0, 1/ϕ(γ2)[.

Thanks to Theorem 2.2, there exists a function uλ ∈ Φ−1(]−∞, γ2[) such that

E′λ(uλ) = Φ′(uλ) − λΨ′(uλ) = 0, and, in particular, uλ is a global minimum of

the restriction of Eλ to Φ−1(]−∞, γ2[).

Next, we prove that the function uλ cannot be trivial (uλ 6= 0X). To this

end, let us prove that

(3.6) lim sup
‖u‖→0

Ψ(u)

Φ(u)
= lim sup
‖u‖→0

∫
Ω

|x|−2bF (u(x)) dx

‖u‖2a/2
= +∞.

Thanks to our assumptions at zero, we can fix a sequence {ξk} ⊂ R+ converging

to zero and two constant σ, and κ (with σ > 0) such that, for every ξ ∈ [0, σ],

lim
k→∞

∫ ξk

0

f(t) dt

ξ2
k

= +∞ and

∫ ξ

0

f(t) dt ≥ κξ2.

Now, let us consider a closed ball B(x0, τ) ⊂ Ω (not containing zero) for

some x0 ∈ Ω and τ > 0 sufficiently small. Further, let v ∈ C∞0 (Ω) ⊂ X such

that

(a) v(x) ∈ [0, 1], for every x ∈ Ω;

(b) v(x) = 1, for every x ∈ B(x0, τ/2);

(c) v(x) = 0, for every x ∈ Ω \B(x0, τ).

Finally, fix ε > 0 and consider a real positive number µ with

ε < 2

µ

∫
B(x0,τ/2)

|x|−2bdx+ κ

∫
C

|x|−2bv(x)2dx

‖v‖2a
,

where we set C := B(x0, τ) \ B(x0, τ/2). Note that the right-hand side of the

above inequality is finite. Indeed since 0 /∈ B(x0, τ/2), then∫
B(x0,τ/2)

|x|−2b dx < +∞.
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Moreover, since the injection j : X ↪→ L2(Ω; |x|−2b) is continuous, taking into

account that 1 < 2 < 2∗ and 2b < 2(a+1), we deduce that there exists a constant

Ka
2,2b > 0 (according to our notations) such that∫
C

|x|−2bv(x)2 dx <

∫
Ω

|x|−2bv(x)2 dx ≤ (Ka
2,2b)

2

(∫
Ω

|x|−2a|∇u(x)|2 dx
)
< +∞.

Then, there is ν ∈ N such that ξk < δ and∫ ξk

0

f(t) dt ≥ µξ2
k, for every k > ν.

At this point, for every k > ν, and bearing in mind the properties of the func-

tion v, we obtain

Ψ(ξkv)

Φ(ξkv)
= 2

∫
B(x0,τ/2)

|x|−2b

(∫ ξk

0

f(t) dt

)
dx+

∫
C

|x|−2bF (ξkv(x)) dx

‖ξkv‖2a

≥ 2

µ

∫
B(x0,τ/2)

|x|−2b dx+ κ

∫
C

|x|−2bv(x)2 dx

‖v‖2a
> ε.

Since ε can be chosen arbitrarily large, it follows that

lim
k→∞

Ψ(ξkv)

Φ(ξkv)
= +∞,

from which (3.6) clearly follows.

Hence, there exists a sequence {wk} ⊂ X strongly converging to zero, such

that for every k sufficiently large, wk ∈ Φ−1(]−∞, γ2[), and

E(wk) := Φ(wk)− λΨ(wk) < 0.

Since uλ is a global minimum of the restriction of Eλ to Φ−1(]−∞, γ2[), we

conclude that

Φ(uλ)− λΨ(uλ) < 0 = Eλ(0X),

hence uλ is not trivial.

Now, we prove that lim
λ→0+

‖uλ‖a = 0. Bearing in mind that Φ is a coercive

functional and that uλ ∈ Φ−1(]−∞, γ2[), for every λ ∈ ]0, λ?γ [, we obtain

‖uλ‖a <
√

2γ.

Therefore, from (h∞), taking into account (2.1) and the above inequality, it

follows that there exists Mγ > 0 such that

(3.7)

∣∣∣∣ ∫
Ω

|x|−2bf(uλ(x))uλ(x) dx

∣∣∣∣ ≤Mγ ,

for every λ ∈ ]0, λ?γ [.
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Now, E′λ(uλ) = 0, for every λ ∈ ]0, λ?γ [ and in particular E′λ(uλ)(uλ) = 0,

that is,

‖uλ‖2a = λ

∫
Ω

|x|−2bf(uλ(x))uλ(x) dx,

for every λ ∈ ]0, λ?γ [. Then, from (3.7), it follows that

lim
λ→0+

‖uλ‖2a = lim
λ→0+

λΨ′(uλ)(uλ) = 0.

Hence, as claimed, lim
λ→0+

‖uλ‖a = 0.

Next, we observe that

Eλ(u) = λ

(
Φ(u)

λ
−Ψ(u)

)
,

for every u ∈ X. Fix 0 < λ1 < λ2 (with λ2 < λ?γ). Set

mλ1
:=

(
Φ(uλ1

)

λ1
−Ψ(uλ1

)

)
= inf
u∈Φ−1(]0,γ2[)

(
Φ(u)

λ1
−Ψ(u)

)
,

and

mλ2 :=

(
Φ(uλ2

)

λ2
−Ψ(uλ2)

)
= inf
u∈Φ−1(]0,γ2[)

(
Φ(u)

λ2
−Ψ(u)

)
.

Clearly, as claimed before, mλi < 0 (for i = 1, 2), and mλ2 ≤ mλ1 thanks to

λ1 < λ2. Then the mapping λ 7→ Eλ(uλ) is strictly decreasing in ]0, λ?[ owing to

Eλ2
(uλ2

) = λ2mλ2
≤ λ2mλ1

< λ1mλ1
= Eλ1

(uλ1
).

This concludes the proof. �

4. Additional properties and examples

In this section we provide several related results and examples.

Remark 4.1. By simple direct computations, since

0 ≤ a < N − 2

2
and a ≤ b < a+ 1,

it follows that

2 <
2(N − 2b)

N − 2(a+ 1)
.

Further, we observe that if, instead of 0 ≤ a < (N − 2)/2, we require the more

restrictive condition 0 ≤ a < b(N − 2)/N , one has

2(N − 2b)

N − 2(a+ 1)
∈ ]2, 2∗[.

Thus, in this special case, the above relation yields

r? =
2(N − 2b)

N − 2(a+ 1)
.
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On the other hand if a = b, since

N − 2a

N − 2(a+ 1)
≥ N

N − 2
,

it follows that r? = 2∗. Finally, we point out that the parameter λ? in Theo-

rem 3.1 has the following expression

λ? =


+∞ if 1 < r < 2,

1

a2(Ka
2,2b)

2
if r = 2,

rγ̃max

ra1

√
2Ka

1,2b + a22r/2(Ka
r,2b)

rγ̃r−1
max

if r ∈ ]2, r?[,

where

γ̃max :=
1√
2

(
a1rK

a
1,2b

a2(Ka
r,2b)

r(r − 2)

)1/(r−1)

.

Remark 4.2. From the above expressions, it follows that if f is sublinear at

infinity, Theorem 3.1 ensures that for all λ > 0, the problem (Da,b
λ ) admits at

least one nontrivial weak solution. We explicitly observe that in this case, also

the classical direct methods theorem (Tonelli’s result) ensures the existence of

at least one weak solution that anyway can be trivial.

Remark 4.3. We observe that if f(0) = 0, Theorem 3.1 is a bifurcation

result. Indeed, in this setting, it follows that the trivial solution solves problem

(Da,b
λ ) for every parameter λ. Hence, λ = 0 is a bifurcation point for problem

(Da,b
λ ), in the sense that the point (0, 0) belongs to the closure of the set

F := {(u, λ) ∈ D1,2
a (Ω)× ]0,+∞[ : u is a weak solution of (Da,b

λ ), u 6= 0}

in the space D1,2
a (Ω)× R. Otherwise, if f(0) 6= 0 evidently one has

(h′0) lim
ξ→0+

F (ξ)

ξ2
= +∞.

Hence, all the assumptions of Theorem 3.1 are automatically verified and the

conclusions follow.

Remark 4.4. Theorem 1.1 in Introduction easily follows from Theorem 3.1

taking into account that the following s-sublinear assumption at infinity

lim
|t|→∞

f(t)

|t|s
= 0,

in which s ∈ [0, s?), where

s? := min

{
N + 2(a− 2b+ 1)

N − 2(a+ 1)
,
N + 2

N − 2

}
,

implies the growth condition (h∞). In addition, if

lim
t→0+

f(t)

t
= +∞,
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also condition (h′0) holds true. Finally, bearing in mind Remark 4.1, the param-

eter λ? has the form

λ? =



+∞ if 0 ≤ s < 1,
1

a2(Ka
2,2b)

2
if s = 1,

s− 1

2Ka
1,2bs

(
a1(s+ 1)Ka

1,2b

a2(Ka
s+1,2b)

s+1(s− 1)

)1/s

if s ∈ ]1, s?[,

for suitable nonnegative real constants a1, a2.

The next result is an immediate consequence of Remark 4.1.

Corollary 4.5. Let f : R → R be a continuous function satisfying the fol-

lowing subcritical growth condition

(h′∞) |f(t)| ≤ a1 + a2|t|r−1 for all t ∈ R,

where a1, a2 are nonnegative constants and r ∈ ]2, r?[. Further, assume that

condition (h′0) holds. Then, for every

λ ∈
]
0,

r − 2

2Ka
1,2b(r − 1)

(
a1rK

a
1,2b

a2(Ka
r,2b)

r(r − 2)

)1/(r−1)[
,

problem (Da,b
λ ) admits at least one nontrivial weak solution uλ ∈ D1,2

a (Ω). More-

over,

lim
λ→0+

‖uλ‖a = 0.

and the function λ→ Eλ(uλ) is negative and strictly decreasing in ]0, λ?[.

The next example deals with a nonlinearity f that vanishes at zero. The

existence of one nontrivial solution for the Dirichlet problem involving the map

f is achieved by using Corollary 4.5.

Example 4.6. Let Ω be a bounded open subset of RN (containing the origin)

with N ≥ 3, and consider the following problem

(D̃a,b
λ )

−div(|x|−2a∇u) = λ|x|−2bf(u) in Ω,

u = 0 on ∂Ω,

where f(u) := |u|h−2u+ |u|s−2u, 1 < h < 2 and 2 < s < r?. Then, for every

λ ∈
]
0,

s− 2

2Ka
1,2b(s− 1)

(
sKa

1,2b

(Ka
s,2b)

s(s− 2)

)1/(s−1)[
,

problem (D̃a,b
λ ) admits at least one nontrivial weak solution uλ ∈ D1,2

a (Ω) such

that

lim
λ→0+

‖uλ‖a = 0.
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To prove this, we can apply Corollary 3.1 with

f(t) := |t|h−2t+ |t|s−2t,

for every t ∈ R. In fact, f(0) = 0 and it is easy to verify that

|f(t)| ≤ 2(1 + |t|s−1) for all t ∈ R.

Then, condition (h′∞) holds. Next, a direct computation shows that

lim
ξ→0+

F (ξ)

ξ2
≥ 1

h

(
lim
ξ→0+

1

ξ2−h

)
= +∞.

Hence, assumption (h′0) is verified and the conclusion follows.

Remark 4.7. We point out that the energy functional Eλ associated to

problem (D̃a,b
λ ) is unbounded from below. Hence, since the functional Eλ is not

coercive, the classical direct method result cannot be applied to the case treated

in Example 4.6.

Remark 4.8. In conclusion, we also note that a related bifurcation result

(in respect to Theorem 3.1) for perturbed nonsingular elliptic Dirichlet problems

and involving the classical Laplace operator ∆u := div(∇u) was successfully

studied by Ricceri; see [29, Theorem 1] for completeness. On the contrary of the

cited contribution, in Theorem 3.1 we find a concrete expression of the parameter

λ? also in the laplacian case without singularities (a = b = 0). More precisely, if f

is subcritical (hence (h∞) holds), under our assumptions at zero, problem (D0,0
λ )

admits at least one nontrivial weak solution u0,λ ∈ H1
0 (Ω) for every λ ∈ ]0, λ?[,

in which

λ? :=


+∞ if 1 < r < 2,

1

a2c22
if r = 2,

r − 2

2c1(r − 1)

(
ra1c1

a2crr(r − 2)

)1/(r−1)

if r ∈ ]2, 2∗[,

where the numbers cr (r ∈ [2, 2∗[) are the best Sobolev constants of the contin-

uous inclusion H1
0 (Ω) ↪→ Lr(Ω). Moreover, also in this case, we have∫

Ω

|∇u0,λ(x)|2 dx→ 0,

as λ→ 0+ and the mapping

λ 7→ 1

2

(∫
Ω

|∇u0,λ(x)|2 dx
)
− λ

∫
Ω

(∫ u0,λ(x)

0

f(t) dt

)
dx,

is negative and strictly decreasing in ]0, λ?[.
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