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Abstract. In this paper we establish the concentration of the spectrum in an
unbounded interval for a class of eigenvalue problems involving variable growth

conditions and a sign-changing potential. We also study the optimization problem

for the particular eigenvalue given by the infimum of the associated Rayleigh quo-

tient when the variable potential lies in a bounded, closed and convex subset of a

certain variable exponent Lebesgue space.

1 Introduction and preliminary results

In this paper, we are concerned with the study of the eigenvalue problem

(1)















−div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u) + V(x)|u|m(x)−2u

= λ(|u|q1(x)−2 + |u|q2(x)−2)u, for x ∈ �,

u = 0, for x ∈ ∂� ,

where � ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary, λ is a

real number, V is an indefinite sign-changing weight, and p1, p2, q1, q2, m are

continuous functions on �. The interest in analyzing this kind of problem is

motivated by some recent advances in the study of eigenvalue problems involv-

ing variable exponent growth conditions. We refer especially to the results in

[13, 14, 18, 19, 20, 22, 24, 25, 26]. Problem (1) can be placed in the context of the

above results, since in the particular case when q1(x) = q2(x) = q(x) for any x ∈ �

and V ≡ 0 in �, it has been studied in [23]. More precisely, provided that p1, p2,

q : � → (1,∞) are continuous functions such that q has a subcritical growth with

respect to p2 and

1 < p2(x) < min
�

q ≤ max
�

q < p1(x), ∀ x ∈ �,
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then the particular case of problem (1) described above was discussed in [23] and

it has been shown that there exist two positive constants λ0 and λ1, with λ0 ≤ λ1,

such that any λ ∈ [λ1,∞) is an eigenvalue of the problem while any λ ∈ (0, λ0)

is not an eigenvalue. The form of problem (1) becomes a natural extension of the

problem studied in [23] with the presence of the potential V in the left-hand side

of the equation and by considering that in the right-hand side we have q1 6= q2 on

�.

The study of problems of type (1) has a strong motivation and important re-

search efforts have been made with the aim of understanding anisotropic phenom-

ena described by nonhomogeneous differential operators. We recall that equations

of this type can be regarded as models for phenomena arising in the study of elec-

trorheological fluids (see Halsey [15], Diening [6], Ružička [28]), elasticity (see

Zhikov [31]) or image processing and restoration (see Chen, Levine and Rao [5],

Esedoglu and Osher [12]). A survey of the history of this research field with a

comprehensive bibliography is provided by Diening, Hästö and Nekvinda [7].

In the present paper, we study problem (1) when p1, p2, q1, q2, m : � → (1,∞)

are continuous functions satisfying the following hypotheses:

(2)

max
�

p2 < min
�

q2 ≤ max
�

q2 ≤ min
�

m ≤ max
�

m ≤ min
�

q1 ≤ max
�

q1 < min
�

p1 ,

(3) max
�

q1 < p⋆
2(x) :=







Np2(x)

N−p2(x)
if p2(x) < N,

+∞ if p2(x) ≥ N.

We assume that the potential V : � → R satisfies

(4) V ∈ Lr(x)(�), with r ∈ C(�) and r(x) >
N

min� m
∀ x ∈ � .

Condition (2), which describes the competition between the growth rates involved

in equation (1), represents the key of the present study since it establishes a bal-

ance between all the variable exponents involved in the problem. Such a balance

is essential since our setting assumes a nonhomogeneous eigenvalue problem for

which a minimization technique based on the Lagrange multiplier theorem cannot

be applied in order to find (principal) eigenvalues (unlike the case offered by the

homogeneous operators). Thus, in the case of nonlinear nonhomogeneous eigen-

value problems, the classical theory used in the homogeneous case does not work

entirely, but some of its ideas can still be useful, and some particular results can

still be obtained in some aspects, while in other aspects entirely new phenomena

can occur. To focus on our case, condition (2) together with conditions (3) and (4)
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imply

lim
‖u‖p1(x)→0

∫

�
1

p1(x)
|∇u|p1(x) dx +

∫

�
1

p2(x)
|∇u|p2(x) dx +

∫

�
V(x)
m(x)

|u|m(x) dx
∫

�
1

q1(x)
|u|q1(x) dx +

∫

�
1

q2(x)
|u|q2(x) dx

= ∞

and

lim
‖u‖p1(x)→∞

∫

�
1

p1(x)
|∇u|p1(x) dx +

∫

�
1

p2(x)
|∇u|p2(x) dx +

∫

�
V(x)
m(x)

|u|m(x) dx
∫

�
1

q1(x)
|u|q1(x) dx +

∫

�
1

q2(x)
|u|q2(x) dx

= ∞ ,

where ‖ · ‖p1(x) stands for the norm in the variable exponent Sobolev space

W
1,p1(x)
0 (�). In other words, the absence of homogeneity is balanced by the be-

havior (actually, the blow-up) of the Rayleigh quotient associated to problem (1)

in the origin and at infinity. The consequence of the above remarks is that the

infimum of the Rayleigh quotient associated to problem (1) is a real number, i.e.,

(5) inf
u∈W

1,p1(x)

0
(�)\{0}

1
∫

�
1

q1(x)
|u|q1(x) dx +

∫

�
1

q2(x)
|u|q2(x) dx

×
(

∫

�

1

p1(x)
|∇u|p1(x) dx +

∫

�

1

p2(x)
|∇u|p2(x) dx +

∫

�

V(x)

m(x)
|u|m(x) dx

)

∈ R ,

and it is attained for a function u0 ∈ W
1,p1(x)
0 (�) \ {0}. Moreover, the value in

(5) represents an eigenvalue of problem (1) with the corresponding eigenfunction

u0. However, at this stage, we cannot say if the eigenvalue described above is

the lowest eigenvalue of problem (1) or not, even if we are able to show that any

small enough λ is not an eigenvalue of (1). At the moment this remains an open

question. On the other hand, we can prove that any λ larger than the value given by

relation (5) is also an eigenvalue of problem (1). Thus, we conclude that problem

(1) possesses a continuous family of eigenvalues.

Related with the above ideas we also discuss the optimization of the eigen-

values described by relation (5) with respect to the potential V , provided that V

belongs to a bounded, closed and convex subset of Lr(x)(�) (where r(x) is given

by relation (4)). By optimization, we understand the existence of some potentials

V⋆ and V⋆ such that the eigenvalue described in relation (5) is minimal or maxi-

mal with respect to the set where V lies. The results that we obtain in the context

of optimization of eigenvalues are motivated by the above advances in this field

in the case of homogeneous (linear or nonlinear) eigenvalue problems. We refer

mainly to the studies in Asbaugh–Harrell [2], Egnell [11] and Bonder–Del Pezzo

[3], where different optimization problems of the principal eigenvalue of some

homogeneous operators were studied.
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We start with some preliminary basic results on the theory of Lebesgue–

Sobolev spaces with variable exponent. For more details we refer to the book by

Musielak [27] and the papers by Edmunds et al. [8, 9, 10], Kováčik and Rákosnı́k

[17], Mihăilescu and Rădulescu [21], and Samko and Vakulov [29].

Set

C+(�) = {h; h ∈ C(�), h(x) > 1 for all x ∈ �}.

For any h ∈ C+(�), we define

h+ = sup
x∈�

h(x) and h− = inf
x∈�

h(x).

For any p ∈ C+(�), we define the variable exponent Lebesgue space

Lp(x)(�) =

{

u; u is a measurable real-valued function such that

∫

�

|u(x)|p(x) dx < ∞

}

.

We define on this space the Luxemburg norm by

|u|p(x) = inf

{

µ > 0;

∫

�

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

.

Let Lp
′
(x)(�) denote the conjugate space of Lp(x)(�), where 1/p(x)+1/p

′

(x) = 1.

For any u ∈ Lp(x)(�) and v ∈ Lp
′
(x)(�), the Hölder type inequality

(6)

∣

∣

∣

∣

∫

�

uv dx

∣

∣

∣

∣

≤

(

1

p−
+

1

p
′−

)

|u|p(x)|v|p′
(x)

holds true.

An important role in manipulating the generalized Lebesgue–Sobolev

spaces is played by the modular of the Lp(x)(�) space, which is the mapping

ρp(x) : Lp(x)(�) → R defined by

ρp(x)(u) =

∫

�

|u|p(x) dx.

If (un), u ∈ Lp(x)(�), then the following relations hold:

(7) |u|p(x) > 1 ⇒ |u|
p−

p(x) ≤ ρp(x)(u) ≤ |u|
p+

p(x),

(8) |u|p(x) < 1 ⇒ |u|
p+

p(x) ≤ ρp(x)(u) ≤ |u|
p−

p(x),

(9) |un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0.
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Next, we define W
1,p(x)
0 (�) as the closure of C∞

0 (�) under the norm

‖u‖p(x) = |∇u|p(x).

The space W
1,p(x)
0 (�) is a separable and reflexive Banach space. We note that if s ∈

C+(�) and s(x) < p⋆(x) for all x ∈ �, then the embedding W
1,p(x)
0 (�) →֒ Ls(x)(�) is

compact and continuous, where p⋆(x) denotes the corresponding critical Sobolev

exponent, that is,

p⋆(x) :=
Np(x)

N − p(x)
if p(x) < N

or

p⋆(x) = +∞ if p(x) ≥ N.

For applications of Sobolev spaces with variable exponent, we refer to Acerbi

and Mingione [1], Chen, Levine and Rao [5], Diening [6], Halsey [15], Ružička

[28], Zhikov [31] and Harjulehto et al. [16].

2 The main results

Since p2(x) < p1(x) for any x ∈ �, it follows that W
1,p1(x)
0 (�) is continuously

embedded in W
1,p2(x)
0 (�). Thus, a solution for a problem of type (1) will be sought

in the variable exponent space W
1,p1(x)
0 (�).

We say that λ ∈ R is an eigenvalue of problem (1) if there exists

u ∈ W
1,p1(x)
0 (�) \ {0}

such that
∫

�

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx +

∫

�

V(x)|u|m(x)−2uv dx

− λ

∫

�

(|u|q1(x)−2 + |u|q2(x)−2)uv dx = 0 ,

for all v ∈ W
1,p1(x)
0 (�). We note that if λ is an eigenvalue of problem (1), then the

corresponding eigenfunction u ∈ W
1,p1(x)
0 (�) \ {0} is a weak solution of problem

(1).

For each potential V ∈ Lr(x)(�), we define

E(V) := inf
u∈W

1,p1(x)

0
(�)\{0}

1
∫

�
1

q1(x)
|u|q1(x) dx +

∫

�
1

q2(x)
|u|q2(x) dx

×
(

∫

�

1

p1(x)
|∇u|p1(x) dx +

∫

�

1

p2(x)
|∇u|p2(x) dx +

∫

�

V(x)

m(x)
|u|m(x) dx

)
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and

F(V) := inf
u∈W

1,p1(x)

0
(�)\{0}

∫

�
|∇u|p1(x) dx +

∫

�
|∇u|p2(x) dx +

∫

�
V(x)|u|m(x) dx

∫

� |u|q1(x) dx +
∫

� |u|q2(x) dx
.

Thus, we can define a function E : Lr(x)(�) → R.

The first result of this paper is given by the following theorem.

Theorem 1. Assume that conditions (2), (3) and (4) are fulfilled. Then E(V)

is an eigenvalue of problem (1). Moreover, there exists an eigenfunction u ∈

W
1,p1(x)
0 (�) \ {0} corresponding to the eigenvalue E(V) such that

E(V) =

∫

�
1

p1(x)
|∇u|p1(x) dx +

∫

�
1

p2(x)
|∇u|p2(x) dx +

∫

�
V(x)
m(x)

|u|m(x) dx
∫

�
1

q1(x)
|u|q1(x) dx +

∫

�
1

q2(x)
|u|q2(x) dx

.

Furthermore, F(V) ≤ E(V), each λ ∈ (E(V),∞) is an eigenvalue of problem (1),

while each λ ∈ (−∞, F(V)) is not an eigenvalue of problem (1).

Next, we show that on each convex, bounded and closed subset of Lr(x)(�) the

function E defined above is bounded from below and attains its minimum. The

result is the following.

Theorem 2. Assume that conditions (2), (3) and (4) are fulfilled. Assume

that S is a convex, bounded and closed subset of Lr(x)(�). Then there exists V⋆ ∈ S

which minimizes E(V) on S, i.e.,

E(V⋆) = inf
V∈S

E(V) .

Finally, we focus our attention on the particular case when the set S from The-

orem 2 is a ball in Lr(x)(�). Thus, we denote each closed ball centered in the origin

of radius R from Lr(x)(�) by BR(0), i.e.,

BR(0) := {u ∈ Lr(x)(�); |u|r(x) ≤ R} .

By Theorem 2, we can define the function E⋆ : [0,∞) → R by

E⋆(R) = min
V∈BR(0)

E(V) .

Our result on the function E⋆ is given by the following theorem.

Theorem 3. (a) The function E⋆ is not constant and decreases monotoni-

cally.

(b) The function E⋆ is continuous.
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On the other hand, we point out that results similar to those of Theorems 2

and 3 can be obtained if we note that on each convex, bounded and closed sub-

set of Lr(x)(�), the function E defined in Theorem 1 is also bounded from above

and attains its maximum. It is also easy to see that we can define a function

E⋆ : [0,∞) → R by

E⋆(R) = max
V∈BR(0)

E(V) ,

which has properties similar to E⋆.

3 Proof of Theorem 1

Let X denote the generalized Sobolev space W
1,p1(x)
0 (�). We denote by ‖ · ‖ the

norm on W
1,p1(x)
0 (�) and by ‖ · ‖1 the norm on W

1,p2(x)
0 (�).

Define the functionals JV , I : X → R by

JV(u) =

∫

�

1

p1(x)
|∇u|p1(x) dx +

∫

�

1

p2(x)
|∇u|p2(x) dx +

∫

�

V(x)

m(x)
|u|m(x) dx ,

I(u) =

∫

�

1

q1(x)
|u|q1(x) dx +

∫

�

1

q2(x)
|u|q2(x) dx .

Note that for any V satisfying condition (4), we have

JV(u) = J0(u) +

∫

�

V(x)

m(x)
|u|m(x) dx, ∀ u ∈ X ,

where J0 is obtained in the case when V = 0 in �.

Standard arguments imply that JV, I ∈ C1(X, R) and for all u, v ∈ X,

〈J
′

V(u), v 〉 =

∫

�

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx +

∫

�

V(x)|u|m(x)−2uv dx ,

〈I
′

(u), v 〉 =

∫

�

|u|q1(x)−2uv dx +

∫

�

|u|q2(x)−2uv dx .

In order to prove Theorem 1, we first establish some auxiliary results.

Lemma 1. Assume conditions (2), (3) and (4) are fulfilled. Then for each

ǫ > 0 there exists Cǫ > 0 such that

∣

∣

∣

∣

∫

�

V(x)

m(x)
|u|m(x) dx

∣

∣

∣

∣

≤ǫ

∫

�

(

1

p1(x)
|∇u|p1(x) dx +

1

p2(x)
|∇u|p2(x)

)

dx

+ Cǫ|V|r(x)

∫

�

(|u|m
−

+ |u|m
+

) dx ,

for all u ∈ X.
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Proof. First, we point out that since r(x) > r− on �, it follows that Lr(x)(�) ⊂

Lr−

(�). On the other hand, since r(x) > N/m− for each x ∈ �, it follows that

r− > N/m−. Thus, we infer that V ∈ Lr−

(�) and r− > N/m−.

Now let ǫ > 0 be fixed. We claim that there exists Dǫ > 0 such that

(10)

∫

�

|V(x)| · |u|m
−

dx ≤ ǫ

∫

�

|∇u|m
−

dx + Dǫ|V|r−

∫

�

|u|m
−

dx,

∀ u ∈ W
1,m−

0 (�) .

In order to establish (10), we show first that for each s ∈ (1, Nm−

N−m− ), there exists

D
′

ǫ > 0 such that

(11) |v |s ≤ ǫ| |∇v | |m− + D
′

ǫ|v |m− , ∀ u ∈ W
1,m−

0 (�) .

Indeed, assume for a contradiction that relation (11) is not true for each ǫ > 0.

Then there exists ǫ0 > 0 and a sequence (vn) ⊂ W
1,m−

0 (�) such that |vn|s = 1 and

ǫ0| |∇vn| |m− + n|vn|m− < 1, ∀ n .

Then it is clear that (vn) is bounded in W
1,m−

0 (�) and |vn|m− → 0. Thus, we deduce

that, passing eventually to a subsequence, we can assume that vn converges weakly

to a function v in W
1,m−

0 (�) and actually v = 0. Since s ∈ (1, Nm−

N−m− ), it follows by

the Rellich–Kondrachov theorem that W
1,m−

0 (�) is compactly embedded in Ls(�)

and thus vn converges to 0 in Ls(�). On the other hand, since |vn|s = 1 for each n,

we deduce that |v |s = 1, which is a contradiction. Hence (11) is true.

Next, we note that since r− > N/m−, m− · r−′

< Nm−/(N − m−), where

r− ′

= r−/(r− − 1). Thus, by Hölder’s inequality, we have

∫

�

|V(x)| · |u|m
−

dx ≤ |V|r− · |u|m
−

m−·r−′ , ∀ u ∈ W
1,m−

0 (�) .

Combining the last inequality with relation (11), we infer that relation (10) is true.

Arguments similar to those used in the proof of relation (10), combined with

the fact that since r− > N/m− we also have r− > N/m+, imply that there exists D
′′

ǫ

satisfying

(12)

∫

�

|V(x)| · |u|m
+

dx ≤ ǫ

∫

�

|∇u|m
+

dx + D
′′

ǫ|V|r−

∫

�

|u|m
+

dx,

∀ u ∈ W
1,m+

0 (�) .

Using relation (2), we deduce that m− ≤ m+ < p1(x) for any x ∈ � and thus

W
1,p1(x)
0 (�) ⊂ W

1,m±

0 (�). In other words, relations (10) and (12) are true for any
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u ∈ X. Moreover, in the right-hand sides of inequalities (10) and (12) we can

take |V|r(x) instead of |V|r− since Lr(x)(�) is continuously embedded in Lr−

(�) via

inequality (6).

Finally, we point out that since by (2) we have p2(x) < m− ≤ m(x) ≤ m+ <

p1(x) for each x ∈ �, we deduce that

(13)

∣

∣

∣

∣

∫

�

V(x)

m(x)
|u|m(x) dx

∣

∣

∣

∣

≤
1

m−

∫

�

|V(x)| · (|u|m
−

+ |u|m
+

) dx, ∀ u ∈ X

and

(14)

∫

�

(|∇u|m
−

+ |∇u|m
+

) dx

≤ 2p+
1 ·

∫

�

(

1

p1(x)
|∇u|p1(x) dx +

1

p2(x)
|∇u|p2(x)

)

dx, ∀ u ∈ X .

Relations (10), (12), (13) and (14) lead to the result that Lemma 1 is true. �

Lemma 2. The following relations are hold:

(15) lim
‖u‖→∞

JV(u)

I(u)
= ∞

and

(16) lim
‖u‖→0

JV(u)

I(u)
= ∞.

Proof. First, we note that by (2), q1(x) < m± < q2(x) for any x ∈ �. Thus, it

is clear that

|u(x)|m
−

+ |u(x)|m
+

≤ 2(|u(x)|q1(x) + |u(x)|q2(x)), ∀ x ∈ � and ∀ u ∈ X .

Integrating the above inequality over �, we infer that

(17)

∫

�(|u|m
−

+ |u|m
+

) dx
∫

�
(|u|q1(x) + |u|q2(x)) dx

≤ 2, ∀ u ∈ X .

Using Lemma 1, we find that for ǫ ∈ (0, 1) there exists Cǫ > 0 such that

JV(u)

I(u)
≥

1−ǫ
p+

1

∫

�
(|∇u|p1(x) + |∇u|p2(x)) dx − Cǫ|V|r(x)

∫

�
(|u|m

−

+ |u|m
+

) dx

1
q−

2

∫

�(|u|q1(x) + |u|q2(x)) dx
,

for any u ∈ X.

By the above inequality and relation (17), we deduce that there exist some

positive constants β > 0 and γ > 0 such that

(18)
JV(u)

I(u)
≥

β
∫

�(|∇u|p1(x) + |∇u|p2(x)) dx
∫

�(|u|q1(x) + |u|q2(x)) dx
− γ|V|r(x), ∀ u ∈ X .
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For any u ∈ X with ‖u‖ > 1, relation (18) implies

JV(u)

I(u)
≥

β
∫

�
|∇u|p1(x) dx

|u|
q−

1
q−

1
+ |u|

q+
1

q+
1

+ |u|
q−

2
q−

2
+ |u|

q+
2

q+
2

− γ|V|r(x), ∀ u ∈ X with ‖u‖ > 1 .

Now, taking into account the continuous embedding of X in Lq±
i (�) for i = 1, 2 we

deduce the existence of a positive constant δ > 0 such that

JV(u)

I(u)
≥

δ‖u‖p−
1

‖u‖q−
1 + ‖u‖q+

1 + ‖u‖q−
2 + ‖u‖q+

2

− γ|V|r(x), ∀ u ∈ X with ‖u‖ > 1 .

Since p−
1 > q+

1 ≥ q−
1 ≥ q+

2 ≥ q−
2 , passing to the limit as ‖u‖ → ∞ in the above

inequality we deduce that relation (15) is true.

Next, we remark that since p1(x) > p2(x) for any x ∈ �, the space W
1,p1(x)
0 (�)

is continuously embedded in W
1,p2(x)
0 (�). Thus, if ‖u‖ → 0, then ‖u‖1 → 0.

The above remarks enable us to affirm that for any u ∈ X with ‖u‖ < 1 small

enough we have ‖u‖1 < 1.

On the other hand, since (3) is true, we deduce that W
1,p2(x)
0 (�) is continuously

embedded in Lq±
i (�) with i = 1, 2. It follows that there exist four positive constants

di1 and di2 with i = 1, 2 such that

(19) ‖u‖1 ≥ di1 · |u|q+
i
, ∀ u ∈ W

1,p2(x)
0 (�) and i = 1, 2

and

(20) ‖u‖1 ≥ di2 · |u|q−
i
, ∀ u ∈ W

1,p2(x)
0 (�) and i = 1, 2 .

Thus, for any u ∈ X with ‖u‖ < 1 small enough, relation (18) implies

JV(u)

I(u)
≥

β
∫

� |∇u|p2(x) dx

|u|
q−

1
q−

1
+ |u|

q+
1

q+
1

+ |u|
q−

2
q−

2
+ |u|

q+
2

q+
2

− γ|V|r(x) .

Next, relations (8), (19) and (20) yield that there exists a constant ξ > 0 such that

JV(u)

I(u)
≥

ξ‖u‖
p+

2

1

‖u‖
q−

1

1 + ‖u‖
q+

1

1 + ‖u‖
q−

2

1 + ‖u‖
q+

2

1

− γ|V|r(x) ,

for any u ∈ X with ‖u‖ < 1 small enough. Since p+
2 < q−

2 ≤ q+
2 ≤ q−

1 ≤ q+
1 ,

passing to the limit as ‖u‖ → 0 (and thus ‖u‖1 → 0) in the above inequality, we

deduce that relation (16) is true. The proof of Lemma 2 is complete. �

Remark 1. We point out that by relation (18) and using similar arguments as

in the proof of Theorem 1 (Step 1) in [23], we find that for V given and satisfying

(4) the quotient JV(u)/I(u) is bounded from below for u ∈ X \ {0}, i.e., E(V) is a

real number.
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Lemma 3. There exists u ∈ X \ {0} such that JV(u)/I(u) = E(V).

Proof. Let (un) ⊂ X \ {0} be a minimizing sequence for E(V), that is,

(21) lim
n→∞

JV(un)

I(un)
= E(V) .

By relation (15), it is clear that {un} is bounded in X. Since X is reflexive, it follows

that there exists u ∈ X such that, up to a subsequence, (un) converges weakly to u

in X. On the other hand, arguments similar to those used in the proof of Lemma

3.4 in [21] show that the functional J0 (obtained for V = 0 on �) is weakly lower

semi-continuous. Thus,

(22) lim inf
n→∞

J0(un) ≥ J0(u) .

By the compact embedding theorem for spaces with variable exponent and as-

sumption (2), it follows that X is compactly embedded in Lσ(x)(�) (where σ(x) =

m(x) · r(x)/(r(x) − 1)) and Lqi(x)(�) with i = 1, 2. Thus, (un) converges strongly in

Lσ(x)(�) and Lqi(x)(�) with i = 1, 2. Then, by relations (6) and (9), it follows that

(23) lim
n→∞

I(un) = I(u)

and

(24) lim
n→∞

∫

�

V(x)|un|
m(x) dx =

∫

�

V(x)|u|m(x) dx .

Relations (22), (23) and (24) imply that if u 6≡ 0, then

JV(u)

I(u)
= E(V) .

Thus, in order to conclude that the lemma is true it suffices to show that u is not

trivial. Assume the contrary. Then un converges weakly to 0 in X and strongly in

Ls(x)(�) for any s(x) ∈ C(�) with 1 < s(x) < Np1(x)/(N − p1(x)) on �. In other

words,

(25) lim
n→∞

(I(un)) = 0

and

(26) lim
n→∞

∫

�

V(x)|un|
m(x) dx = 0 .

If ǫ ∈ (0, |E(V)|) is fixed by relation (21), we deduce that for n large enough we

have

|JV(un) − E(V)I(un)| < ǫI(un) ,
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or

(|E(V)| − ǫ)I(un) < JV(un) < (|E(V)| + ǫ)I(un) .

Passing to the limit in the above inequalities and taking into account that relation

(25) is true, we find

lim
n→∞

JV(un) = 0 .

Next, by relation (26), we get

lim
n→∞

J0(un) = 0 .

This fact combined with relation (9) implies that un actually converges strongly to

0 in X, i.e., limn→∞ ‖un‖ = 0. This information and relation (16) yield

lim
n→∞

JV(un)

I(un)
= ∞,

which is a contradiction. Thus, u 6≡ 0. The proof of Lemma 3 is complete. �

By Lemma 3, we conclude that there exists u ∈ X \ {0} such that

(27)
JV(u)

I(u)
= E(V) = inf

w∈X\{0}

JV(w)

I(w)
.

Then, for any w ∈ X, we have

d

dǫ

JV(u + ǫw)

I(u + ǫw)
|ǫ=0 = 0.

A simple computation yields

(28) 〈J
′

V(u), w〉I(u) − JV(u)〈I
′

(u), w〉 = 0 ,

for all w ∈ X. Relation (28) combined with the fact that JV(u) = E(V) · I(u) and

I(u) 6= 0 implies that E(V) is an eigenvalue of problem (1).

Next, we show that any λ ∈ (E(V),∞) is an eigenvalue of problem (1).

Let λ ∈ (E(V),∞) be arbitrary but fixed. Define TV,λ : X → R by

TV,λ(u) = JV(u) − λI(u) .

Clearly, TV,λ ∈ C1(X, R) with

〈T
′

V,λ(u), v 〉 = 〈J
′

V(u), v 〉 − λ〈I
′

(u), v 〉, ∀ u ∈ X.

Thus, λ is an eigenvalue of problem (1) if and only if there exists uλ ∈ X \ {0}, a

critical point of TV,λ.
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With similar arguments to the proof of relation (15), we can show that TV,λ

is coercive, i.e., lim‖u‖→∞ TV,λ(u) = ∞. On the other hand, as we have already

remarked, arguments similar to those used in the proof of Lemma 3.4 in [21] show

that the functional TV,λ is weakly lower semi-continuous. These two facts enable

us to apply Theorem 1.2 in [30] in order to prove that there exists uλ ∈ X, a global

minimum point of TV,λ, and thus a critical point of TV,λ. It is enough to show that

uλ is not trivial. Indeed, since

E(V) = inf
u∈X\{0}

JV(u)

I(u)
and λ > E(V),

it follows that there exists vλ ∈ X such that

JV(vλ) < λI(vλ) ,

or

TV,λ(vλ) < 0 .

Thus

inf
X

TV,λ < 0,

and we conclude that uλ is a nontrivial critical point of TV,λ, or λ is an eigenvalue

of problem (1).

Finally, we prove that each λ < F(V) is not an eigenvalue of problem (1). With

that end in view, we assume for a contradiction that there exists an eigenvalue

λ < F(V) of problem (1). It follows that there exists uλ ∈ X \ {0} such that

〈J
′

V(uλ), uλ〉 = λ〈I
′

(uλ), uλ〉 .

Since uλ 6= 0, we have 〈I
′

(uλ), uλ〉 > 0. Using this fact and the definition of F(V),

we see that

〈J
′

V(uλ), uλ〉 = λ〈I
′

(uλ), uλ〉 < F(V)〈I
′

(uλ), uλ〉 ≤ 〈J
′

V(uλ), uλ〉 .

Obviously, this is a contradiction. We deduce that each λ ∈ (−∞, F(V)) is not an

eigenvalue of problem (1). Furthermore, it is clear that E(V) ≥ F(V).

The proof of Theorem 1 is complete. �

Remark 2. We note that in the case when V = 0 in �, the same arguments as

in the proof of Theorem 1 (Step 1) in [23] assure that E(0) > 0.
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4 Proof of Theorem 2

Let S be a convex, bounded and closed subset of Lr(x)(�) and

E⋆ := inf
V∈S

E(V) .

Clearly, relation (18) shows that E⋆ is finite.

On the other hand, let (Vn) ⊂ S be a minimizing sequence for E⋆, i.e.,

E(Vn) → E⋆, as n → ∞ .

Obviously, (Vn) is a bounded sequence; and thus there exists V⋆ ∈ Lr(x)(�) such

that Vn converges weakly to V⋆ in Lr(x)(�). Moreover, since S is convex and closed,

it is also weakly closed (see, e.g., Theorem III.7 in Brezis [4]); consequently V⋆ ∈

S.

Next, we show that E(V⋆) = E⋆.

Indeed, by Theorem 1, we deduce that for each positive integer n, there exists

un ∈ X \ {0} such that

(29)
JVn

(un)

I(un)
= E(Vn) .

Since (E(Vn)) is a bounded sequence, and by (18) we have

JVn
(un)

I(un)
≥ β

J0(un)

I(un)
− C for any n ,

where C is a positive constant, we infer that (un) is bounded in X and cannot

contain a subsequence converging to 0 (otherwise, we obtain a contradiction by

applying Lemma 2). Thus, there exists u0 ∈ X \ {0} such that (un) converges

weakly to u0 in X. Using the Rellich–Kondrachov theorem, we deduce that (un)

converges strongly to u0 in Ls(x)(�) for any s(x) ∈ C(�) satisfying 1 < s(x) <

Np1(x)/(N − p1(x)) for any x ∈ �. In particular, using conditions (2), (3) and

(4), we deduce that (un) converges to u0 in Lm(x)(�) and in Lm(x)·r
′
(x)(�), where

r
′

(x) = r(x)/(r(x) − 1). Using this information, inequality (6) and the fact that

V⋆ ∈ Lr(x)(�) and (Vn) is bounded in Lr(x)(�), we find that

(30) lim
n→∞

∫

�

V⋆(x)

m(x)
|un|

m(x) dx =

∫

�

V⋆(x)

m(x)
|u0|

m(x) dx

and

(31) lim
n→∞

∫

�

(

Vn(x)

m(x)
|un|

m(x) −
Vn(x)

m(x)
|u0|

m(x)

)

dx = 0 .
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On the other hand, since (Vn) converges weakly to V⋆ in Lr(x)(�) and u0 ∈

Lm(x)·r
′
(x)(�), where r

′

(x) = r(x)/(r(x) − 1), we deduce

(32) lim
n→∞

∫

�

Vn(x)

m(x)
|u0|

m(x) dx =

∫

�

V⋆(x)

m(x)
|u0|

m(x) dx .

Combining the equality

∫

�

V⋆(x)

m(x)
|un|

m(x) dx −

∫

�

Vn(x)

m(x)
|un|

m(x) dx

=

∫

�

V⋆(x)

m(x)
|un|

m(x) dx −

∫

�

V⋆(x)

m(x)
|u0|

m(x) dx

+

∫

�

V⋆(x)

m(x)
|u0|

m(x) dx −

∫

�

Vn(x)

m(x)
|u0|

m(x) dx

+

∫

�

Vn(x)

m(x)
|u0|

m(x) dx −

∫

�

Vn(x)

m(x)
|un|

m(x) dx

with relations (30), (31) and (32), we obtain

(33) lim
n→∞

∫

�

(

V⋆(x)

m(x)
|un|

m(x) −
Vn(x)

m(x)
|un|

m(x)

)

dx = 0 .

Since

E(V⋆) = inf
u∈X\{0}

JV⋆
(u)

I(u)
,

it follows that

E(V⋆) ≤
JV⋆

(un)

I(un)
.

Combining the above inequality and equality (29) gives

E(V⋆) ≤
JV⋆

(un) − JVn
(un)

I(un)
+ E(Vn) .

Taking into account the result of relation (33), the fact that I(un) is bounded and

does not converge to 0 and (E(Vn)) converges to E⋆, then passing to the limit as

n → ∞ in the last inequality, we infer that

E(V⋆) ≤ E⋆ .

But using the definition of E⋆ and the fact that V⋆ ∈ S, we conclude that actually

E(V⋆) = E⋆ .

The proof of Theorem 2 is complete. �
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5 Proof of Theorem 3

(a) First, we show that function E⋆ is not constant. Indeed, by Remark 2, we point

out that E⋆(0) = E(0) > 0. On the other hand, by Theorem 1 in [23], it follows that

λm := inf
u∈X\{0}

∫

�
1

p1(x)
|∇u|p1(x) dx +

∫

�
1

p2(x)
|∇u|p2(x) dx

∫

�
1

m(x)
|u|m(x) dx

> 0 .

Moreover, Lemma 2 in [23] implies that there exists um ∈ X \ {0} such that

λm =

∫

�
1

p1(x)
|∇um|p1(x) dx +

∫

�
1

p2(x)
|∇um|p2(x) dx

∫

�
1

m(x)
|um|m(x) dx

.

Thus, taking Vm(x) = −λm for all x ∈ �, we see that Vm ∈ L∞(�) ⊂ Lr(x)(�) and

JVm
(um)

I(um)
= 0 .

It follows that

E(Vm) ≤ 0 ,

and we find

E⋆(λm) ≤ 0 .

We conclude that E⋆ is not constant. Furthermore, we point out that a similar

proof to that presented above shows that function E⋆ also takes negative values.

To support that idea simply note that by Theorem 1 in [23], for each λ > λm there

exists uλ ∈ X \ {0} such that, taking Vλ = −λ for all x ∈ �, we have

JVλ
(uλ)

I(uλ)
< 0 .

Next, we note that E⋆ decreases monotonically. Indeed, if we consider

0 ≤ R1 < R2, it is clear that BR1
(0) ⊂ BR2

(0). Then the definition of function

E⋆ implies E⋆(R1) ≥ E⋆(R2).

(b) Finally, we show that the function E⋆ is continuous. Let R > 0 and t ∈

(0, R) be fixed. We verify that limtց0 E⋆(R + t) = limtց0 E⋆(R − t) = E⋆(R).

First, we prove that limtց0 E⋆(R + t) = E⋆(R). By Theorem 3(a), we have

E⋆(R) ≥ E⋆(R + t) .

Moreover, by Theorem 2, it follows that there exists VR+t∈BR+t(0) (i.e., |VR+t|r(x) ≤

R + t) such that

E(VR+t) = E⋆(R + t) .
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Taking now VR,t := R
R+t

VR+t, we have

|VR,t|r(x) =
R

R + t
|VR+t|r(x) ≤ R ,

or VR,t ∈ BR(0). Therefore, clearly E(VR,t) ≥ E⋆(R).

On the other hand, by Theorem 1, there exists ut ∈ X \ {0} such that

E(VR+t) =
JVR+t

(u0)

I(u0)
.

Combining the above pieces of information, we find

E⋆(R + t) = E(VR+t) =
JVR+t

(ut)

I(ut)

=
J R+t

R
·VR,t

(ut)

I(ut)

=
R + t

R
·

JVR,t
(ut)

I(ut)
−

t

R
·

J0(ut)

I(ut)

≥
R + t

R
· E⋆(R) −

t

R
·

J0(ut)

I(ut)
.

On the other hand, by relation (18), we have that for each t ∈ (0, R),

E⋆(R) ≥ E⋆(R + t) = E(VR+t) =
JVR+t

(ut)

I(ut)

≥β1 ·
J0(ut)

I(ut)
− γ · |VR+t|r(x)

=β1 ·
J0(ut)

I(ut)
− γ · 2R ,

where β1 > 0 and γ > 0 are real constants.

Combining the last two inequalities, we deduce

E⋆(R) ≥ E⋆(R + t) ≥
R + t

R
· E⋆(R) −

t

R
·

E⋆(R) + γ · 2R

β1

,

for each t ∈ (0, R).

We conclude that

lim
tց0

E⋆(R + t) = E⋆(R) .

In the following, we argue that limtց0 E⋆(R − t) = E⋆(R).

Obviously,

E⋆(R) ≤ E⋆(R − t), ∀ t ∈ (0, R) .

By Theorem 2, there exists VR ∈ BR(0) such that

E⋆(R) = E(VR) .
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Moreover, by Theorem 1, there exists u0 ∈ X \ {0} such that

E(VR) =
JVR

(u0)

I(u0)
.

Define now

Vt :=
R − t

R
VR, ∀ t ∈ (0, R) .

Clearly, Vt ∈ BR−t(0). Thus, it is clear that

JVt
(u0)

I(u0)
≥ E⋆(R − t), ∀ t ∈ (0, R) .

Taking into account the above information, we find

E⋆(R) = E(VR) =
JVR

(u0)

I(u0)
=

J R
R−t

Vt
(u0)

I(u0)

=
JVt

(u0)

I(u0)
+

t

R − t
·

∫

�
Vt(x)
m(x)

|u0|
m(x) dx

I(u0)

≥E⋆(R − t) +
t

R
·

∫

�
VR(x)
m(x)

|u0|
m(x) dx

I(u0)
, ∀ t ∈ (0, R) .

We infer

lim
tց0

E⋆(R − t) = E⋆(R) .

It follows that function E⋆ is continuous. The proof of Theorem 3 is complete. �

Remark 3. By Theorem 3(a), we obtain that E⋆ decreases monotonically.

We note that in the particular case when q1(x) = m(x) = q2(x) = q for each x ∈ �,

where q > 1 is a real number for which conditions (2), (3) and (4) are fulfilled, the

above-quoted result can be improved, in the sense that we can show that, actually,

function E⋆ is strictly decreasing on [0,∞). Indeed, letting 0 ≤ R1 < R2 be given,

we deduce by Theorem 2 that there exists V1 ∈ BR1
(0) such that

E(V1) = E⋆(R1) .

Then for each real number t ∈ (0, R2 − R1), we have V1 − t ∈ BR2
(0), since

|V1 − t|r(x) ≤ |V1|r(x) + t ≤ R2. Next, by Theorem 1, there exists u1 ∈ X \ {0} such

that

E(V1) =
JV1

(u1)

I(u1)
.

Taking into account all the above remarks, we infer

E⋆(R1) −
t

2
= E(V1) −

t

2
=

JV1
(u1)

I(u1)
−

t

2
=

JV1−t(u1)

I(u1)
≥ E(V1 − t) ≥ E⋆(R2) ,
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or

E⋆(R1) > E⋆(R2) .

To conclude this remark, we think it is important to highlight the idea that the

above proof supports the fact that in the case when we manipulate homogeneous

quantities, we obtain better results than in the case when we deal with nonhomo-

geneous quantities.

Remark 4. We point out that by Theorem 3(b), we deduce that

E⋆(R) = inf
s≤R

E⋆(s) and E⋆(R) = sup
s≥R

E⋆(s) .

Remark 5. We further note that function E⋆ can be used in order to define a

continuous set function on a subset of Lr(x)(�). We still denote each closed ball

centered in the origin of radius R from Lr(x)(�) by BR(0), i.e.,

BR(0) := {u ∈ Lr(x)(�); |u|r(x) ≤ R} .

By Theorem 3(b), we deduce that E⋆ is a continuous function. By the proof of

Theorem 3(a), we have E⋆(0) > 0 and there exists R1 > 0 such that E⋆(R1) < 0.

Thus, we infer that there exists R0 > 0 such that E⋆(R0) = 0.

We define

Ŵ = {BR(0) \ BR0
(0); R ≥ R0} ⊂ Lr(x)(�)

and µ : Ŵ → [0,∞) by

µ(BR(0) \ BR0
(0)) = −E⋆(R), ∀ R ≥ R0 .

By Theorem 3(a), we find that function µ has the following properties:

(1) µ(∅) = 0.

(2) For each S1, S2 ∈ Ŵ such that S1 ⊂ S2, we have µ(S1) ≤ µ(S2).

Thus, µ is a set function on Ŵ. By Theorem 3(b) and Remark 4, we have that

for each S ⊂ Ŵ,

µ(S) = sup
T⊆S

µ(T) and µ(S) = inf
T⊇S

µ(T) .

We conclude that µ is a continuous set function on Ŵ.
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[23] M. Mihăilescu and V. Rădulescu, Continuous spectrum for a class of nonhomogeneous differen-
tial operators, Manuscripta Math. 125 (2008), 157–167.



CONCENTRATION PHENOMENA 287
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