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A CONTINUOUS SPECTRUM FOR
NONHOMOGENEOUS DIFFERENTIAL

OPERATORS IN ORLICZ-SOBOLEV SPACES

MIHAI MIHĂILESCU and VICENŢIU RĂDULESCU

Abstract

We study the nonlinear eigenvalue problem − div(a(|∇u|)∇u) = λ|u|q(x)−2u in �, u = 0 on ∂�,
where � is a bounded open set in RN with smooth boundary, q is a continuous function, and a

is a nonhomogeneous potential. We establish sufficient conditions on a and q such that the above
nonhomogeneous quasilinear problem has continuous families of eigenvalues. The proofs rely on
elementary variational arguments. The abstract results of this paper are illustrated by the cases
a(t) = tp−2 log(1 + t r ) and a(t) = tp−2[log(1 + t)]−1.

1. Introduction and preliminary results

Let � be a bounded domain in RN (N ≥ 3) with smooth boundary ∂�. In this
paper we are concerned with the following eigenvalue problem:

(1)

{ − div(a(|∇u|)∇u) = λ|u|q(x)−2u, for x ∈ �

u = 0, for x ∈ ∂�.

We assume that the function a : (0, ∞) → R is such that the mapping φ :
R → R defined by

φ(t) =
{

a(|t |)t, for t �= 0

0, for t = 0,

is an odd, increasing homeomorphism from R onto R. We also suppose through-
out this paper that λ > 0 and q : � → (1, ∞) is a continuous function.

Since the operator in the divergence form is nonhomogeneous we introduce
an Orlicz-Sobolev space setting for problems of this type. On the other hand,
the term arising in the right hand side of equation (1) is also nonhomogeneous
and its particular form appeals to a suitable variable exponent Lebesgue space
setting.

We point out that eigenvalue problems involving quasilinear nonhomogen-
eous problems in Orlicz-Sobolev spaces were studied in [12] but in a different
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framework. In what concerns the case when a(|∇u|) = |∇u|q(x)−2, problem
(1) was studied by Fan et al. in [10], [11] who established the existence of
a sequence of eigenvalues, by means of the Ljusternik-Schnirelmann critical
point theory. Denoting by � the set of all nonnegative eigenvalues, Fan, Zhang
and Zhao showed that sup � = +∞ and they pointed out that only under ad-
ditional assumptions we have inf � > 0. We remark that in the homogeneous
case corresponding the p-Laplace operator (that is, if q(x) ≡ p) we always
have inf � > 0. A different approach of the eigenvalue problem (1) corres-
ponding to a(|∇u|) = |∇u|p(x)−2 and p(x) �= q(x) is given in Mihăilescu and
Rădulescu [19].

We first recall some basic facts about Orlicz spaces. Define

�(t) =
∫ t

0
φ(s) ds, ��(t) =

∫ t

0
φ−1(s) ds, for all t ∈ R.

We observe that � is a Young function, that is, �(0) = 0, � is convex, and
limx→∞ �(x) = +∞. Furthermore, since �(x) = 0 if and only if x = 0,
limx→0 �(x)/x = 0, and limx→∞ �(x)/x = +∞, then � is called an N -
function. The function �� is called the complementary function of � and it
satisfies

��(t) = sup{st − �(s); s ≥ 0}, for all t ≥ 0.

We observe that �� is also an N -function and the followingYoung’s inequality
holds true:

st ≤ �(s) + ��(t), for all s, t ≥ 0.

The Orlicz space L�(�) defined by the N -function � (see [2], [3], [4]) is
the space of measurable functions u : � → R such that

‖u‖L�
:= sup

{∫
�

uv dx;
∫

�

��(|v|) dx ≤ 1

}
< ∞.

Then (L�(�), ‖ · ‖L�
) is a Banach space whose norm is equivalent to the

Luxemburg norm

‖u‖� := inf

{
k > 0;

∫
�

�

(
u(x)

k

)
dx ≤ 1

}
.

For Orlicz spaces the Hölder’s inequality reads as follows (see [21, Inequality 4,
p. 79]):∫

�

uv dx ≤ 2 ‖u‖L�
‖v‖L�� for all u ∈ L�(�) and v ∈ L��(�).
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We denote by W 1
0 L�(�) the corresponding Orlicz-Sobolev space for prob-

lem (1), equipped with the norm

‖u‖ = ‖|∇u|‖�

(see [3], [4], [13]). The space W 1
0 L�(�) is also a Banach space.

In this paper we assume that � and �� satisfy the 	2-condition (at infinity),
namely

1 < lim inf
t→∞

tφ(t)

�(t)
≤ lim sup

t>0

tφ(t)

�(t)
< ∞.

Then L�(�) and W 1
0 L�(�) are reflexive Banach spaces.

Now we introduce the Orlicz-Sobolev conjugate �� of �, defined as

�−1
� (t) =

∫ t

0

�−1(s)

s(N+1)/N
ds.

We assume that

(2) lim
t→0

∫ 1

t

�−1(s)

s(N+1)/N
ds < ∞, and lim

t→∞

∫ t

1

�−1(s)

s(N+1)/N
ds = ∞.

Finally, we define

p0 := inf
t>0

tφ(t)

�(t)
and p0 := sup

t>0

tφ(t)

�(t)
.

Next, we recall some background facts concerning the variable exponent
Lebesgue spaces. For more details we refer to the book by Musielak [20]
and the papers by Acerbi et al. [1], Edmunds et al. [6], [7], [8], Kovacik
and Rákosník [15], Mihăilescu and Rădulescu [16], Samko and Vakulov [22],
Zhikov [24].

Set
C+(�) = {h; h ∈ C(�), h(x) > 1 for all x ∈ �}.

For any h ∈ C+(�) we define

h+ = sup
x∈�

h(x) and h− = inf
x∈�

h(x).

For any q(x) ∈ C+(�) we define the variable exponent Lebesgue space
Lq(x)(�) (see [15]). On Lq(x)(�) we define the Luxemburg norm by the for-
mula

|u|q(x) = inf

{
μ > 0;

∫
�

∣∣∣∣u(x)

μ

∣∣∣∣
q(x)

dx ≤ 1

}
.
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We remember that the variable exponent Lebesgue spaces are separable and
reflexive Banach spaces. If 0 < |�| < ∞ and q1, q2 are variable exponents so
that q1(x) ≤ q2(x) almost everywhere in � then there exists the continuous
embedding Lq2(x)(�) ↪→ Lq1(x)(�).

If (un), u ∈ Lq(x)(�) then the following relations hold true

|u|q(x) > 1 ⇒ |u|q−
q(x) ≤

∫
�

|u|q(x) dx ≤ |u|q+
q(x)(3)

|u|q(x) < 1 ⇒ |u|q+
q(x) ≤

∫
�

|u|q(x) dx ≤ |u|q−
q(x)(4)

|un − u|q(x) → 0 ⇔
∫

�

|un − u|q(x) dx → 0.(5)

2. The main results

We say thatλ ∈ R is an eigenvalue of problem (1) if there existsu ∈ W 1
0 L�(�)\

{0} such that ∫
�

a(|∇u|)∇u∇v dx − λ

∫
�

|u|q(x)−2uv dx = 0,

for all v ∈ W 1
0 L�(�). We point out that if λ is an eigenvalue of problem (1)

then the corresponding u ∈ W 1
0 L�(�) \ {0} is a weak solution of (1), called

an eigenvector of equation (1) corresponding to the eigenvalue λ.
Our first main result shows that, in certain circumstances, any positive and

sufficiently small λ is an eigenvalue of (1).

Theorem 1. Assume that relation (2) is fulfilled and furthermore

(6) 1 < inf
x∈�

q(x) < p0 ,

and

(7) lim
t→∞

|t |q+

��(kt)
= 0, for all k > 0.

Then there exists λ� > 0 such that any λ ∈ (0, λ�) is an eigenvalue for problem
(1).

The above result implies

inf
u∈W 1

0 L�(�)\{0}

∫
�

�(|∇u|) dx∫
�

|u|q(x) dx

= 0.
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The second main result of this paper asserts that in certain cases the set of
eigenvalues may coincide with the whole positive semi-axis.

Theorem 2. Assume that relations (2) and (7) are fulfilled and furthermore

(8) sup
x∈�

q(x) < p0.

Then every λ > 0 is an eigenvalue for problem (1). Moreover, for any λ > 0
there exists a sequence of eigenvectors {un} ⊂ E such that limn→∞ un = 0 in
W 1

0 L�(�).

Remark 3. Relations (2) and (7) enable us to apply Theorem 2.2 in [12]
(see also Theorem 8.33 in [3]) in order to obtain that W 1

0 L�(�) is compactly
embedded in Lq+

(�). This fact combined with the continuous embedding
of Lq+

(�) in Lq(x)(�) ensures that W 1
0 L�(�) is compactly embedded in

Lq(x)(�).

Remark 4. The conclusion of Theorems 1 and 2 still remains valid if we
replace the hypothesis (7) in Theorems 1 and 2 by the following relation

(9) N < p0 < lim inf
t→∞

log(�(t))

log(t)
.

Indeed, using Lemma D.2 in [5], it follows that W 1
0 L�(�) is continuously

embedded in W
1,p0
0 (�). On the other hand, since we assume p0 > N , we

deduce that W
1,p0
0 (�) is compactly embedded in C(�). Thus, we obtain that

W 1
0 L�(�) is compactly embedded in C(�). Since � is bounded it follows

that W 1
0 L�(�) is continuously embedded in Lq(x)(�).

3. Proof of Theorem 1

Let E denote the Orlicz-Sobolev space W 1
0 L�(�).

For any λ > 0 the energy functional Jλ : E → R corresponding to problem
(1) is defined by

Jλ(u) =
∫

�

�(|∇u|) dx − λ

∫
�

1

q(x)
|u|q(x) dx.

Standard arguments imply that Jλ ∈ C1(E, R) and

〈J ′
λ(u), v〉 =

∫
�

a(|∇u|)∇u∇v dx − λ

∫
�

|u|q(x)−2uv dx,
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for all u, v ∈ E. Thus the weak solutions of (1) coincide with the critical points
of Jλ. If such a weak solution exists and is nontrivial then the corresponding
λ is an eigenvalue of problem (1).

Lemma 5. There is some λ� > 0 such that for any λ ∈ (0, λ�) there exist
ρ, α > 0 such that Jλ(u) ≥ α > 0 for any u ∈ E with ‖u‖ = ρ.

Proof. By the definition of p0 and since d
dτ

(τp0�(t/τ)) ≥ 0 we obtain

�(t) ≥ τp0
�(t/τ), ∀ t > 0 and τ ∈ (0, 1],

(see page 44 in [4]). Combining this fact with Proposition 6 in [21, page 77]
we find that

(10)

∫
�

�(|∇u(x)|) dx ≥ ‖u‖p0
, ∀ u ∈ E with ‖u‖ < 1.

On the other hand, since E is continuously embedded in Lq(x)(�), there
exists a positive constant c1 such that

(11) |u|q(x) ≤ c1‖u‖, ∀ u ∈ E.

We fix ρ ∈ (0, 1) such that ρ < 1/c1. Then relation (11) implies

(12) |u|q(x) < 1, ∀ u ∈ E, with ‖u‖ = ρ.

Furthermore, relation (4) yields

(13)

∫
�

|u|q(x) dx ≤ |u|q−
q(x), ∀ u ∈ E, with ‖u‖ = ρ.

Relations (11) and (13) imply

(14)

∫
�

|u|q(x) dx ≤ c
q−
1 ‖u‖q−

, ∀ u ∈ E, with ‖u‖ = ρ.

Taking into account relations (10), (4) and (14) we deduce that for any u ∈ E

with ‖u‖ = ρ the following inequalities hold true

Jλ(u) ≥ ‖u‖p0 − λ

q−

∫
�

|u|q(x) dx = ρq−
(

ρp0−q− − λ

q− c
q−
1

)
.

We point out that by relation (6) and the definition of p0 we have q− < l ≤ p0.
By the above inequality we remark that if we define

(15) λ� = ρp0−q−

2
· q−

c
q−
1
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then for any λ ∈ (0, λ�) and any u ∈ E with ‖u‖ = ρ there exists α = ρp0

2 > 0
such that

Jλ(u) ≥ α > 0.

The proof of Lemma 5 is complete.

Lemma 6. There exists φ ∈ E such that φ ≥ 0, ϕ �= 0 and Jλ(tφ) < 0, for
t > 0 small enough.

Proof. Assumption (6) implies that q− < p0. Let ε0 > 0 be such that
q− + ε0 < p0. On the other hand, since q ∈ C(�) it follows that there exists
an open set �0 ⊂ � such that |q(x) − q−| < ε0 for all x ∈ �0. Thus, we
conclude that q(x) ≤ q− + ε0 < p0 for all x ∈ �0.

Let φ ∈ C∞
0 (�) be such that supp(φ) ⊃ �0, φ(x) = 1 for all x ∈ �0 and

0 ≤ φ ≤ 1 in �.
We also point out that there exists t0 ∈ (0, 1) such that for any t ∈ (0, t0)

we have
‖t |∇φ|‖� = t‖φ‖ < 1.

Taking into account all the above information and using Lemma C.9 in [5] we
have

Jλ(tφ) =
∫

�

�(t |∇φ(x)|) dx − λ

∫
�

tq(x)

q(x)
|φ|q(x) dx

≤
∫

�

�(t |∇φ(x)|) dx − λ

q+

∫
�

tq(x)|φ|q(x) dx

≤
∫

�

�(t |∇φ(x)|) dx − λ

q+

∫
�0

tq(x)|φ|q(x) dx

≤ tp0‖φ‖p0 − λ · tq
−+ε0

q+ |�0|,

for any t ∈ (0, 1), where |�0| denotes the Lebesgue measure of �0. Therefore

Jλ(tφ) < 0

for t < δ1/(p0−q−−ε0), where

0 < δ < min

{
t0,

λ
q+ |�0|
‖φ‖p0

}
.

The proof of Lemma 6 is complete.
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Proof of Theorem 1. Let λ� > 0 be defined as in (15) and λ ∈ (0, λ�).
By Lemma 5 it follows that on the boundary of the ball centered at the origin
and of radius ρ in E, denoted by Bρ(0), we have

(16) inf
∂Bρ(0)

Jλ > 0.

On the other hand, by Lemma 6, there exists φ ∈ E such that Jλ(tφ) < 0 for
all t > 0 small enough. Moreover, relations (10), (14) and (4) imply that for
any u ∈ Bρ(0) we have

Jλ(u) ≥ ‖u‖p0 − λ

q− c
q−
1 ‖u‖q−

.

It follows that
−∞ < c := inf

Bρ(0)

Jλ < 0.

We let now 0 < ε < inf∂Bρ(0) Jλ − infBρ(0) Jλ. Applying Ekeland’s variational
principle [9] to the functional Jλ : Bρ(0) → R, we find uε ∈ Bρ(0) such that

Jλ(uε) < inf
Bρ(0)

Jλ + ε

Jλ(uε) < Jλ(u) + ε · ‖u − uε‖, u �= uε.

Since
Jλ(uε) ≤ inf

Bρ(0)

Jλ + ε ≤ inf
Bρ(0)

Jλ + ε < inf
∂Bρ(0)

Jλ ,

we deduce that uε ∈ Bρ(0). Now, we define Iλ : Bρ(0) → R by Iλ(u) =
Jλ(u) + ε · ‖u − uε‖. It is clear that uε is a minimum point of Iλ and thus

Iλ(uε + t · v) − Iλ(uε)

t
≥ 0

for small t > 0 and any v ∈ B1(0). The above relation yields

Jλ(uε + t · v) − Jλ(uε)

t
+ ε · ‖v‖ ≥ 0.

Letting t → 0 it follows that 〈J ′
λ(uε), v〉 + ε · ‖v‖ > 0 and we infer that

‖J ′
λ(uε)‖ ≤ ε.
We deduce that there exists a sequence {wn} ⊂ Bρ(0) such that

(17) Jλ(wn) → c and J
′
λ(wn) → 0.
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It is clear that {wn} is bounded in E. Thus, there exists w ∈ E such that, up to a
subsequence, {wn} converges weakly to w in E. By Remark 4 we deduce that
E is compactly embeddded in Lq(x)(�), hence {wn} converges strongly to w

in Lq(x)(�). So, by relations (5) and Hölder’s inequality for variable exponent
spaces (see e.g. [15]),

lim
n→∞

∫
�

|wn|q(x) dx =
∫

�

|w|q(x) dx

and
lim

n→∞

∫
�

|wn|q(x)−2wnv dx =
∫

�

|w|q(x)−2wv dx

for any v ∈ E.
We conclude that w is a nontrivial weak solution for problem (1) and thus

any λ ∈ (0, λ�) is an eigenvalue of problem (1). Similar arguments as those
used on page 50 in [4] imply that {wn} converges strongly to w in E. So, by
(17),

(18) Jλ(w) = c < 0 and J
′
λ(w) = 0.

The proof of Theorem 1 is complete.

4. Proof of Theorem 2

We still denote by E the Orlicz-Sobolev space W 1
0 L�(�). For any λ > 0 let

Jλ be defined as in the above section of the paper.
In order to prove Theorem 2 we apply to the functional Jλ a symmetric

version of the mountain pass lemma, recently developed by Kajikia in [14].
Before presenting the result in [14] we remember the following definition.

Definition 7. Let X be a real Banach space. We say that a subset A of X

is symmetric if u ∈ A implies −u ∈ A. For a closed symmetric set A which
does not contain the origin, we define the genus γ (A) of A as the smallest
integer k such that there exists an odd continuous mapping from A to Rk \ {0}.
If there does not exist such an integer k, we define γ (A) = +∞. Moreover,
we set γ (∅) = 0. Finally, we denote by �k the family

�k = {A ⊂ X; 0 �∈ A and γ (A) ≥ k}.

We state now the symmetric mountain pass lemma of Kajikia (seeTheorem 1
in [14]).

Theorem 8. Assume X is an infinite dimensional Banach space and � ∈
C1(X, R) satisfies conditions (A1) and (A2) below.
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(A1) �(u) is even, bounded from below, �(0) = 0 and �(u) satisfies the
Palais-Smale condition (i.e., any sequence {un} in X such that {�(un)}
is bounded and �

′
(un) → 0 in X� as n → ∞ has a convergent sub-

sequence);

(A2) For each k ∈ N, there exists an Ak ∈ �k such that supu∈Ak
�(u) < 0.

Under the above assumptions, either (i) or (ii) below holds true.

(i) There exists a sequence {un} such that �
′
(un) = 0, �(un) < 0 and {un}

converges to zero;

(ii) There exist two sequences {un} and {vn} such that �
′
(un) = 0, �(un) =

0, un �= 0, limn→∞ un = 0, �
′
(vn) = 0, �(vn) = 0, and vn converges

to a non-zero limit.

In order to apply Theorem 8 to the functional Jλ we prove two auxiliary
results.

Lemma 9. The functional Jλ satisfies condition (A1) from Theorem 8.

Proof. Clearly, Jλ(u) = Jλ(−u) for any u ∈ E, i.e. Jλ is even, and
Jλ(0) = 0. On the other hand, since by relation (10) we have∫

�

�(|∇u(x)|) dx ≥ ‖u‖p0
, ∀ u ∈ E with ‖u‖ < 1,

while by Lemma C.9 in [5] we have∫
�

�(|∇u(x)|) dx ≥ ‖u‖p0 , ∀ u ∈ E with ‖u‖ > 1,

we deduce that

(19)

∫
�

�(|∇u(x)|) dx ≥ α(‖u‖), ∀ u ∈ E,

where α : [0, ∞) → R, α(t) = tp
0

if t ≤ 1 and α(t) = tp0 if t > 1.
By Remark 3, the space E is continuously embedded in Lq±

(�). Thus,
there exist two positive constants d1 and d2 such that

(20)

∫
�

|u|q+
dx ≤ d1‖u‖q+

,

∫
�

|u|q−
dx ≤ d2‖u‖q−

, ∀ u ∈ E.

Combining relations (19) and (20) we get

Jλ(u) ≥ α(‖u‖) − d1λ

q− ‖u‖q+ − d2λ

q− ‖u‖q−
, ∀ u ∈ E.
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Since by relation (8) we have q+ < p0 the above relation shows that Jλ is
bounded from below.

Next, we show that Jλ satisfies the Palais-Smale condition. Let {un} be
a sequence in E such that {Jλ(un)} is bounded and J

′
(un) → 0 in E�, as

n → ∞. We show that {un} is bounded in E. Assume by contradiction the
contrary. Then, passing eventually to a subsequence, still denoted by {un}, we
may assume that ‖un‖ → ∞ as n → ∞. Thus we may consider that ‖un‖ > 1
for any integer n.

By our assumptions, there is a positive constant M such that for all n large
enough we have

M + 1 + ‖un‖ ≥ Jλ(un) − 1

q− 〈J ′
(un), un〉

=
∫

�

�(|∇un|) dx − λ

∫
�

1

q(x)
|un|q(x) dx

− 1

q− ·
∫

�

φ(|∇un(x)|)|∇un(x)| dx + λ

q−

∫
�

|un|q(x) dx

≥
∫

�

�(|∇un|) dx − 1

q− ·
∫

�

φ(|∇un(x)|)|∇un(x)| dx

≥
(

1 − p0

q−

) ∫
�

�(|∇un|) dx ≥
(

1 − p0

q−

)
‖un‖p0 .

Since p0 > 1, letting n → ∞ we obtain a contradiction. It follows that {un}
is bounded in E. Similar arguments as those used in the end of the proof of
Theorem 1 imply that, up to a subsequence, {un} converges strongly in E.

The proof of Lemma 9 is complete.

Lemma 10. The functional Jλ satisfies condition (A2) from Theorem 8.

Proof. We construct a sequence of subsets Ak ∈ �k such that supu∈Ak
Jλ(u)

< 0, for each k ∈ N.
Let x1 ∈ � and r1 > 0 be such that Br1(x1) ⊂ � and |Br1(x1)| < |�|/2.

Consider θ1 ∈ C∞
0 (�) be a function with supp(θ1) = Br1(x1).

Define �1 = � \ Br1(x1).
Next, let x2 ∈ � and r2 > 0 be such that Br2(x2) ⊂ �1 and |Br2(x2)| <

|�1|/2. Consider θ2 ∈ C∞
0 (�) be a function with supp(θ2) = Br2(x2).

Continuing the process described above we can construct by recurrence a
sequence of functions θ1, θ2, . . . , θk ∈ C∞

0 (�) such that supp(θi) �= supp(θj )

if i �= j and |supp(θi)| > 0 for any i, j ∈ {1, . . . , k}.
We define the finite dimensional subspace of E,

F = span{θ1, θ2, . . . , θk}.
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Clearly, dim F = k and
∫
�

|θ |q(x) dx > 0, for any θ ∈ F \ {0}. We denote
by S1 the unit sphere in E, i.e. S1 = {u ∈ E; ‖u‖ = 1}. For any number
t ∈ (0, 1) we define the set

Ak(t) = t · (S1 ∩ F).

Since for any bounded symmetric neighborhood ω of the origin in Rk there
holds γ (∂ω) = k (see Proposition 5.2 in [23]) we deduce that γ (Ak(t)) = k

for any t ∈ (0, 1).
Finally, we show that for each integer k there exists tk ∈ (0, 1) such that

sup
u∈Ak(tk)

Jλ(u) < 0.

For any t ∈ (0, 1) we have

sup
u∈Ak(t)

Jλ(u) ≤ sup
θ∈S1∩F

Jλ(tθ)

= sup
θ∈S1∩F

{∫
�

�(t |∇θ |) dx − λ

∫
�

1

q(x)
tq(x)|θ |q(x) dx

}

≤ sup
θ∈S1∩F

{
tp0

∫
�

�(|∇θ |) dx − λtq
+

q+

∫
�

|θ |q(x) dx

}

= sup
θ∈S1∩F

{
tp0

(
1 − λ

q+ · 1

tp0−q+ ·
∫

�

|θ |q(x) dx

)}

Since S1∩F is compact we have m = minθ∈S1∩F

∫
�

|θ |q(x) dx > 0. Combining
that fact with the information given by relation (8), that is p0 > q+, we deduce
that we can choose tk ∈ (0, 1) small enough such that

1 − λ

q+ · 1

tp0−q+ · m < 0.

The above relations yield

sup
u∈Ak(tk)

Jλ(u) < 0.

The proof of Lemma 10 is complete.

Proof of Theorem 2. Using Lemmas 9 and 10 we deduce that we can
apply Theorem 8 to the functional Jλ. So, there exists a sequence {un} ⊂ E

such that J
′
(un) = 0, for each n, Jλ(un) ≤ 0 and {un} converges to zero in E.

The proof of Theorem 2 is complete.
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5. Examples

In this section we point out two concrete examples of problems to which we
can apply the main results of this paper.

Example 1. We consider the problem

(21)

{ − div(log(1 + |∇u|r )|∇u|p−2∇u) = λ|u|q(x)−2u, for x ∈ �

u = 0, for x ∈ ∂�,

where p and r are real numbers such that 1 < p, r , N > p + r and q(x) is a
continuous function on � such that 1 < q(x) for all x ∈ � and furthermore

inf
�

q(x) < p and sup
�

q(x) <
Np

N − p
.

In this case we have

φ(t) = log(1 + |t |r ) · |t |p−2t, for all t ∈ R

and
�(t) =

∫ t

0
φ(s), for all t ∈ R.

Clearly, φ is an odd, increasing homeomorphism of R into R, while � is convex
and even on R and increasing from R+ to R+.

By Example 2 on p. 243 in [5] we know that

p0 = p and p0 = p + r

and thus relation (6) in Theorem 1 is satisfied. On the other hand, by Proposition
1 in [18] (see also [17]) we deduce that relations (2) and (7) are fulfilled. Thus,
we verified that we can apply Theorem 1 in order to find out that there exists
λ� > 0 such that any λ ∈ (0, λ�) is an eigenvalue for problem (21).

Example 2. We consider the problem

(22)

⎧⎨
⎩ − div

( |∇u|p−2∇u

log(1 + |∇u|)
)

= λ|u|q(x)−2u, for x ∈ �

u = 0, for x ∈ ∂�,

where p is a real number such that p > N + 1 and q ∈ C(�) satisfies
1 < q(x) < p − 1 for any x ∈ �. In this case we have

φ(t) = |t |p−2

log(1 + |t |) t
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and
�(t) =

∫ t

0
φ(s) ds,

is an increasing continuous function from R+ to R+, with �(0) = 0 and such
that the function �(

√
t) is convex. By Example 3 on p. 243 in [5] we have

p0 = p − 1 < p0 = p = lim inf
t→∞

log(�(t))

log(t)
.

Thus, conditions (2), (8) and (9) from Theorem 2 and Remark 4 are verified. We
deduce that every λ > 0 is an eigenvalue for problem (22). Moreover, for each
λ > 0 there exists a sequence of eigenvectors {un} such that limn→∞ un = 0
in W 1

0 L�(�).

Acknowledgements. The authors have been supported by Grant CNCSIS
PNII-79/2007 “Procese Neliniare Degenerate şi Singulare”. V. Rădulescu has
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15. Kováčik, O., and Rákosník, J., On spaces Lp(x) and W 1, p(x), Czechoslovak Math. J. 41
(1991), 592–618.
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