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Abstract. — In this paper we are concerned with a new class of quasilinear elliptic equations with

a power-like reaction term and a di¤erential operator that involves partial derivatives with di¤erent
powers. The functional-analytic framework relies on anisotropic Sobolev spaces. By means of com-

bined variational arguments, we obtain the existence of weak solutions and, in case of symmetric
settings, the existence of large or small energy solutions. In particular, we establish some results

that extend the classical theory of combined e¤ects of concave and convex nonlinearities.
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1. Historical perspectives

Schrödinger gave the classical derivation of his equation, based upon the analogy
between mechanics and optics, and closer to Louis de Broglie’s ideas. He also de-
veloped a perturbation method, inspired by the work of Lord Rayleigh in acous-
tics, proved the equivalence between his wave mechanics and Heisenberg’s ma-
trix, and introduced the time dependent Schrödinger’s equation. It is striking to
point out that talking about his celebrating equation, Erwin Schrödinger said: ‘‘I
don’t like it, and I’m sorry I ever had anything to do with it’’.

The Schrödinger equation is central in quantum mechanics and it plays the
role of Newton’s laws and conservation of energy in classical mechanics, that is,
it predicts the future behaviour of a dynamic system. The linear form of this
equation provides a thorough description of a particle in a non-relativistic setting.
The structure of the nonlinear Schrödinger equation is much more complicated.
This equation is a prototypical dispersive nonlinear partial di¤erential equation
that has been central for almost four decades now to a variety of areas in mathe-
matical physics. The relevant fields of application vary from Bose-Einstein con-
densates and nonlinear optics, propagation of the electric field in optical fibers
to the self-focusing and collapse of Langmuir waves in plasma physics and the
behaviour of deep water waves and freak waves (the so-called rogue waves) in
the ocean. The nonlinear Schrödinger equation also describes various phenomena
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arising in the theory of Heisenberg ferromagnets and magnons, self-channelling
of a high-power ultra-short laser in matter, condensed matter theory, dissipative
quantum mechanics, electromagnetic fields, plasma physics (e.g., the Kurihara
superfluid film equation). We refer to Ablowitz, Prinari and Trubatch [1], Sulem
[21] for a modern overview, including applications.

Our purpose in the present paper is to establish some multiplicity results
for a Schrödinger-type equation in the framework of Sobolev spaces with vari-
able exponents. The study is motivated by the fact that in the last few years
these function spaces have described several important topics of nonlinear par-
tial di¤erential equations. More precisely, problems involving the pð�Þ-Laplace
operator

DpðxÞu ¼ divðj‘uj pðxÞ�2‘uÞ

have been intensively studied. Lebesgue and Sobolev spaces with variable ex-
ponent have been used in the last decades to model various phenomena. Chen,
Levine and Rao [5] proposed a framework for image restoration based on a
variable exponent Laplacian. Another application that uses nonhomogeneous
Laplace operators is related to the modeling of electrorheological fluids. The first
major discovery in electrorheological fluids is due to Willis Winslow in 1949.
These fluids have the interesting property that their viscosity depends on the elec-
tric field in the fluid. They can raise the viscosity by as much as five orders of
magnitude. This phenomenon is known as the Winslow e¤ect. Electrorheological
fluids have been used in robotics and space technology. The experimental re-
search has been done mainly in the USA, for instance in NASA laboratories.
For more information on properties, modelling and the application of variable
exponent space to the fluids, we refer to Diening [7], Rajagopal and Ruzicka
[18] and Ruzicka [19]. For an excellent overview of the most significant mathe-
matical methods employed in this paper we refer to Ciarlet [6].

2. Statement of the problem

In a celebrated paper, Rabinowitz [16] proved that the nonlinear Schrödinger
equation has a ground-state solution (mountain-pass solution) for small positive
perturbations and in the case of positive potentials. After making a standing wave
ansatz, Rabinowitz reduces the problem to that of studying the semilinear elliptic
equation

�Duþ aðxÞu ¼ f ðx; uÞ in RN ;

under suitable conditions on a and assuming that f is smooth, superlinear and
has a subcritical growth. Motivated by the paper [16], the goal of this work is to
study the existence and multiplicity of weak solutions of problem (2.1). A central
role in our arguments will be played by the fountain theorem, which is due to
Bartsch [3]. This result is nicely presented in Willem [22] by using the quantitative
deformation lemma. We also point out that the dual version of the fountain the-

92 g. a. afrouzi, m. mirzapour and v. d. rădulescu



orem is due to Bartsch and Willem, see [22]. Both the fountain theorem and its
dual form are e¤ective tools for studying the existence of infinitely many large
or small energy solutions. It should be noted that the Palais-Smale condition
plays an important role for these theorems and their applications.

The purpose of this paper is to analyze the existence and multiplicity of weak
solutions of the anisotropic quasilinear elliptic problem

�
PN

i¼1 qxiðjqxiuj
piðxÞ�2

qxiuÞ þ bðxÞjujP
þ
þu ¼ f ðx; uÞ in W;

u ¼ 0 on qW;

(
ð2:1Þ

where WHRN ðNb 3Þ is a bounded domain with smooth boundary, pi, i a
f1; . . . ;Ng are continuous functions on W such that piðxÞ > 1 and f : W� R !
R satisfies the Carathéodory conditions.

In this paper, the operator involved in equation (2.1) is more general than
the pð�Þ-Laplace operator. Thus, the variable exponent Sobolev space W 1;pð�ÞðWÞ
is not adequate to study nonlinear problems of this type. This lead us to seek
weak solutions for problem (2.1) in a more general variable exponent Sobolev
space which was introduced for the first time in [12].

In [4, 14] (see also [11, 15, 17]) the authors studied the anisotropic quasilinear
elliptic problem

�
PN

i¼1 qxiðjqxiuj
piðxÞ�2

qxiuÞ ¼ f ðx; uÞ in W;

u ¼ 0 on qW;

�

where WHRN ðNb 3Þ is a bounded domain with smooth boundary. They have
established both existence and multiplicity results. in [4] it is applied the sym-
metric fountain pass theorem of Ambrosetti and Rabinowitz [2], while in [14]
the authors combine the minimum principle, the mountain pass theorem and the
Ekeland variational principle, where f ðx; uÞ ¼ ljujqðxÞ�2

u is assumed.
Our paper is organized as follows. We first introduce the theory of generalized

Lebesgue–Sobolev spaces and the generalized anisotropic Sobolev spaces, in
which we seek the solutions of (2.1). Next, we state and prove the main results.
The final part of the paper is concerned with combined e¤ects of concave and
convex nonlinearities.

3. Functional setting

In this section, we recall some definitions and basic properties of the variable ex-
ponent Lebesgue space Lpð�ÞðWÞ and W

1;pð�Þ
0 ðWÞ, where W is a bounded domain in

RN . Roughly speaking, anisotropic Lebesgue and Sobolev spaces are functional
spaces of Lebesgue’s and Sobolev’s type in which di¤erent space directions have
di¤erent roles.

Let W be a bounded domain of RN . Denote

CþðWÞ ¼ fhðxÞ; hðxÞ a CðWÞ; hðxÞ > 1; Ex a Wg:
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For any h a CþðWÞ, we define

hþ ¼ maxfhðxÞ; x a Wg; h� ¼ minfhðxÞ; x a Wg:

For any p a CþðWÞ, we define the variable exponent Lebesgue space

L pð�ÞðWÞ ¼ u : W ! R; u is measurable and

Z
W

juðxÞj pðxÞ dx < l

� �
;

endowed with the Luxemburg norm

jujL pð�ÞðWÞ ¼ jujpð�Þ ¼ inf m > 0;

Z
W

uðxÞ
m

����
����
pðxÞ

dxa 1

( )
:

Then ðLpð�ÞðWÞ; j:jpð�ÞÞ is a Banach space, cf. [13].

Proposition 3.1 (See [8]). (i) The space ðLpð�ÞðWÞ; j:jpð�ÞÞ is a separable, uni-

formly convex Banach space and its dual space is Lqð�ÞðWÞ, where 1
pð�Þ þ

1
qð�Þ ¼ 1: For

any u a Lpð�ÞðWÞ and v a Lqð�ÞðWÞ, we have
Z
W

uv dx

����
����a� 1

p�
þ 1

q�

�
jujpð�Þjvjqð�Þ a 2jujpð�Þjvjqð�Þ:

(ii) If p1ð�Þ; p2ð�Þ a CþðWÞ, p1ð�Þa p2ð�Þ, Ex a W, then L p2ð�ÞðWÞ ,! Lp1ð�ÞðWÞ
and the embedding is continuous.

An important role in manipulating the generalized Lebesgue space is played
by the pð�Þ-modular of the Lpð�ÞðWÞ space, which is the mapping rpð�Þ : L

pð�ÞðWÞ
! R defined by

rpð�ÞðuÞ ¼
Z
W

juj pðxÞ dx:

Proposition 3.2 (See [9]). For u a Lpð�ÞðWÞ and un HLpð�ÞðWÞ, we have

(1) jujpð�Þ < 1 (respectively ¼ 1;> 1) , rpð�ÞðuÞ < 1 (respectively ¼ 1;> 1);
(2) for uA 0, jujpð�Þ ¼ l , rpð�Þ

�
u
l

�
¼ 1;

(3) if jujpð�Þ > 1, then juj p
�

pð�Þ a rpð�ÞðuÞa juj p
þ

pð�Þ;

(4) if jujpð�Þ < 1, then juj p
þ

pð�Þ a rpð�ÞðuÞa juj p
�

pð�Þ;
(5) jun � ujpð�Þ ! 0 (respectively ! l) , rpð�Þðun � uÞ ! 0 (respectively ! l),

since pþ < l.

The space W
1;pð�Þ
0 ðWÞ is the closure of Cl

0 ðWÞ under the norm

kuk ¼ j‘uðxÞjpðxÞ:
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The norm kuk ¼
PN

i¼1 jqxiujpðxÞ is an equivalent norm in W
1;pð�Þ
0 ðWÞ (see [14]).

Hence W
1;pð�Þ
0 ðWÞ is a separable and reflexive Banach space. Note that when

s a CþðWÞ and sðxÞ < p�ðxÞ for all x a W, where p�ðxÞ ¼ NpðxÞ
N�pðxÞ if pðxÞ < N

and p�ðxÞ ¼ l if pðxÞbN, then the embedding W
1;pð�Þ
0 ðWÞ ,! Lsð�ÞðWÞ is com-

pact.
Finally, we introduce a natural generalization of the Sobolev function

space W
1;pð�Þ
0 ðWÞ, which will enable us to study with su‰cient accuracy problem

(2.1). For this purpose, let us denote by ~pp : W ! RN the vectorial function
~ppð�Þ ¼ ðp1ð�Þ; p2ð�Þ; . . . ; pNð�ÞÞ with pið�Þ a CþðWÞ, i a f1; . . . ;Ng. We define

X ¼ W
1;~ppðxÞ
0 ðWÞ, the anisotropic variable exponent space, as the closure of

Cl
0 ðWÞ, with respect to the norm

kuk ¼
XN
i¼1

jqxiujpiðxÞ:

As it was pointed out in [14], W
1;~ppðxÞ
0 ðWÞ is a reflexive Banach space. In order to

facilitate the manipulation of the space W
1;~ppðxÞ
0 ðWÞ we introduce ~PPþ; ~PP� a RN

and Pþ
þ ;P

þ
� ;P

�
þ ;P

�
� a Rþ as

~PPþ ¼ ðpþ1 ; pþ2 ; . . . ; pþNÞ; ~PP� ¼ ðp�1 ; p�2 ; . . . ; p�NÞ;
Pþ
þ ¼ maxfpþ1 ; pþ2 ; . . . ; pþNg; Pþ

� ¼ maxfp�1 ; p�2 ; . . . ; p�Ng;
P�
þ ¼ minfpþ1 ; pþ2 ; . . . ; pþNg; P�

� ¼ minfp�1 ; p�2 ; . . . ; p�Ng:

Throughout this paper, we assume that

XN
i¼1

1

p�i
> 1:ð3:1Þ

This condition ensures that the anisotropic space W
1;~ppðxÞ
0 ðWÞ is embedded into

some Lebesgue space LrðWÞ. If hypothesis (3.1) is no longer fulfilled, then one
has embeddings into Orlicz or Hölder spaces.

Define P�
� a Rþ and P�;l a Rþ by

P�
� ¼ NPN

i¼1
1
p�
i
� 1

; P�;l ¼ maxfPþ
� ;P

�
�g:

In addition, for the Carathéodory function f : W� R ! R, we consider the anti-
derivative F : W� R ! R,

F ðx; sÞ ¼
Z s

0

f ðx; tÞ dt:

With the previous notations, we introduce the following conditions:
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ðBÞ b a LlðWÞ and there exists b0 > 0 such that bðxÞb b0 for all x a W.
ðf0Þ There exist two constants C1 b 0, C2 b 0 and aðxÞ a CþðWÞ and Pþ

þ < a� <
aðxÞ < P�

�ðxÞ such that

j f ðx; tÞjaC1 þ C2jtjaðxÞ�1; for all ðx; tÞ a W� R:ð3:2Þ

ðf1Þ There exist constants M > 0, y > Pþ
þ such that for all x a W and all t a R

with jtjbM,

0 < yFðx; tÞa tf ðx; tÞ:

ðf2Þ f ðx; tÞ ¼ oðjtjP
þ
þ�1Þ as t ! 0 uniformly with respect to x a W.

ðf3Þ f ðx;�tÞ ¼ �f ðx; tÞ, for all x a W and t a R.

Proposition 3.3 (See [14]). Let WHRN ðNb 3Þ be a bounded domain with
smooth boundary. Assume relation (3.1) is satisfied and q a CþðWÞ verifies

1 < qðxÞ < P�;l; for all x a W:

Then the embedding

W
1;~ppð�Þ
0 ðWÞ ,! Lqð�ÞðWÞ

is compact.

It should be noticed that from the condition ðf0Þ, we have P�;l ¼
maxfPþ

� ;P
�
�g ¼ P�

�.

Definition 3.4. By a weak solution to problem (2.1), we mean a function
u a X such that

Z
W

XN
i¼1

jqxiuj
piðxÞ�2

qxiuqxivþ bðxÞjujP
þ
þ�2

uv� f ðx; uÞv
( )

dx ¼ 0

for all v a X :

We associate to problem (2.1) the energy functional J : X ! R defined by

JðuÞ ¼
Z
W

XN
i¼1

jqxiuj
piðxÞ

piðxÞ
þ bðxÞ

Pþ
þ

jujP
þ
þ � Fðx; uÞ

( )
dx:

Remark 3.5. Under the condition ðf0Þ, the functional J is of class C1.

Remark 3.6. For simplicity, we use c, c 0, c, C, C 0, M, M 0, to denote the gen-
eral nonnegative or positive constant (the exact value may change from line to
line).
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4. Existence of solutions

In this section we establish the existence of weak solutions to problem (2.1).

Theorem 4.1. Assume that hypothesis (3.2) holds with aðxÞ < P�;l, aþ < P�
� .

Then problem (2.1) has a weak solution.

Proof. From the assumption on f , using the Hölder’s inequality and the
Sobolev type embeddings, we deduce that the functional J is weakly lower semi-
continuous in X . We will show that J is coercive.

Condition (3.2) implies

F ðx; tÞaCð1þ jtjaðxÞÞ; for all ðx; tÞ a W� R:

Without loss of generality, assume kuk > 1. Then

JðuÞ ¼
Z
W

XN
i¼1

jqxiuj
piðxÞ

piðxÞ
þ bðxÞ

Pþ
þ

jujP
þ
þ � Fðx; uÞ

( )
dx

b
1

Pþ
þ

XN
i¼1

Z
W

jqxiuj
piðxÞ dxþ b0

Pþ
þ

Z
W

jujP
þ
þ dx�

Z
W

Cð1þ jujaðxÞÞ dx

b
1

Pþ
þ

XN
i¼1

Z
W

jqxiuj
piðxÞ dxþ b0

Pþ
þ
jujP

þ
þ

Pþ
þ
� Ckukaþ

�M:

Using ðBÞ, we have

1

Pþ
þ

Z
W

bðxÞjujP
þ
þ dxb

b0

Pþ
þ
jujP

þ
þ

L
Pþ
þ ðWÞ

b 0:ð4:1Þ

For each i a f1; 2; . . . ;Ng we define

ai ¼
Pþ
þ if jqxiujpiðxÞ < 1;

P�
� if jqxiujpiðxÞ > 1:

(

Using Proposition 3.2, and Jensen’s inequality (applied to the convex function
g : Rþ ! Rþ, gðtÞ ¼ tP

�
� , P�

� > 1), we have

XN
i¼1

Z
W

jqxiuj
piðxÞ dxb

XN
i¼1

jqxiuj
ai
piðxÞð4:2Þ

b
XN
i¼1

jqxiuj
P�
�

piðxÞ �
X

fi;ai¼Pþ
þg
ðjqxiuj

P�
�

piðxÞ � jqxiuj
Pþ
þ

piðxÞÞ
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bN
�PN

i¼1 jqxiuj
piðxÞ

N

�P�
� �N

¼ kukP�
�

NP�
��1

�N:

Thus, we obtain

JðuÞb kukP�
�

Pþ
þN

P�
��1

� Ckukaþ �M 0 ! l; as kuk ! l;

so J is coercive, since aþ < P�
� : Thus, J has a minimum point u a X and u is a

weak solution (which may be trivial) of problem (2.1). r

Theorem 4.2. Assume that conditions ðf0Þ, ðf1Þ and ðf2Þ are fulfilled. Then prob-
lem (2.1) has a nontrivial weak solution.

To prove Theorem 4.2, we apply the mountain pass theorem, see [2]. We need
to verify the following auxiliary results.

Lemma 4.3. Let ðunÞ be a Palais-Smale sequence for the Euler-Lagrange func-
tional J. If the condition ðf1Þ is satisfied, then ðunÞ is bounded.

Proof. Let ðunÞ be a Palais-Smale sequence for the functional J. Thus, there
exists c > 0 such that

jIðunÞj < c and I 0ðunÞ ! 0 as n ! l:ð4:3Þ

By conditions ðBÞ and ðf1Þ, for all n we can write

cþ 1b JðunÞ �
1

y
3J 0ðunÞ; un4þ 1

y
3J 0ðunÞ; un4

¼
Z
W

XN
i¼1

jqxiunj
piðxÞ

piðxÞ
þ bðxÞ

Pþ
þ

junjP
þ
þ � Fðx; unÞ

( )
dx

� 1

y

Z
W

XN
i¼1

jqxiunj
piðxÞ þ bðxÞjunjP

þ
þ � f ðx; unÞun

( )
dx

" #
þ 1

y
3J 0ðunÞ; un4

b

� 1

Pþ
þ
� 1

y

� kunkP�
�

NP�
��1

þ
� 1

Pþ
þ
� 1

y

�Z
W

bðxÞjunjP
þ
þ dx� 1

y
kJ 0ðunÞkX �kunk � c

b

� 1

Pþ
þ
� 1

y

� kunkP�
�

NP�
��1

� 1

y
kJ 0ðunÞkX � � c:

We have supposed, for convenience, that kunk > 1. From the inequality above,
we know that ðunÞ is bounded in X since y > Pþ

þ : The proof is complete. r
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In the following lemma, we establish that every bounded Palais-Smale se-
quence for the functional J contains a convergent subsequence.

Lemma 4.4. Let ðunÞ be a Palais-Smale sequence for the Euler-Lagrange func-
tional J. If the conditions ðf0Þ and ðf1Þ are satisfied then ðunÞ contains a convergent
subsequence.

Proof. Let ðunÞ be a Palais-Smale sequence for the Euler-Lagrange functional
J. By Lemma 4.3, ðunÞ is bounded. Then there exists a subsequence, still denote
by ðunÞ, which converges weakly to a function u0 in X . By relation (4.3) we
deduce

lim
n!l

3I 0ðunÞ; un � u04 ¼ 0:

Therefore

lim
n!l

�XN
i¼1

Z
W

jqxiunj
piðxÞ�2qxiunðqxiun � qxiu0Þ dxð4:4Þ

þ
Z
W

bðxÞjunjP
þ
þ ðun � u0Þ dx�

Z
W

f ðx; unÞðun � u0Þ dx
�
¼ 0:

Since Pþ
þ < aðxÞ < P�

� ¼ P�;l, the embeddings X ,! Lað�ÞðWÞ and X ,! LPþ
þ ðWÞ

are compact, hence ðunÞ converges strongly to u0 in Lað�ÞðWÞ and also in LPþ
þ ðWÞ.

From ðBÞ, ðf0Þ, Propositions 3.1 and 3.3, we obtain

Z
W

f ðx; unÞðun � u0Þ dx
����

����a 2cj junjaðxÞ�1j að�Þ
að�Þ�1

jun � u0jað�Þ ! 0;

and

Z
W

bðxÞjunjP
þ
þ�2

unðun � u0Þ dx
����

����a 2kbkLlðWÞj junj
Pþ
þ�1j Pþ

þ
Pþ
þ�1

jun � u0jPþ
þ
! 0:

Taking into account the two above inequalities, relation (4.4) reduces to

lim
n!l

XN
i¼1

Z
W

jqxiunj
piðxÞ�2qxiunðqxiun � qxiu0Þ dx ¼ 0:

We conclude that

lim
n!l

XN
i¼1

Z
W

ðjqxiunj
piðxÞ�2

qxiun � jqxiu0j
piðxÞ�2

qxiu0Þðqxiun � qxiu0Þ dx ¼ 0:ð4:5Þ
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Next, we apply the following inequality (see [20])

ðjxjr�2x� jhjr�2hÞ:ðx� hÞb 2�rjx� hjr; Ex; h a RN ;ð4:6Þ

valid for all rb 2. Relations (4.5) and (4.6) show that actually ðunÞ converges
strongly to u0 in X . r

Lemma 4.5. Assume that conditions ðf0Þ and ðf2Þ are fulfilled. Then there exist
r > 0 and d > 0 such that JðuÞb d > 0 for any u a X with kuk ¼ r:

Proof. From ðf0Þ, we have X ,! LPþ
þ ðWÞ. So there exist a constant C > 0 such

that

juj
L

Pþ
þ ðWÞ

aCkuk;

for all u a X . By ðf0Þ and ðf2Þ, there exist a constant 0 < e < 1 and a positive con-
stant CðeÞ such that

jFðx; tÞja ejtjP
þ
þ þ CðeÞjtjaðxÞ; for all ðx; tÞ a W� R:ð4:7Þ

Next, we focus our attention on the case when u a X and kuk < 1. For such
an element u, we have jqxiujpiðxÞ < 1, i a f1; . . . ;Ng and by Proposition 3.2, we
obtain

XN
i¼1

Z
W

jqxiuj
piðxÞ dxb

XN
i¼1

jqxiuj
pþ
i

piðxÞ b
XN
i¼1

jqxiuj
Pþ
þ

piðxÞð4:8Þ

bN
�PN

i¼1 jqxiujpiðxÞ
N

�Pþ
þ ¼ kukPþ

þ

NPþ
þ�1

:

Relations (4.7), (4.8) and (4.1) yield

JðuÞb kukPþ
þ

Pþ
þN

Pþ
þ�1

�
Z
W

ðejujP
þ
þ þ CðeÞjujaðxÞÞ dx

b
kukPþ

þ

Pþ
þN

Pþ
þ�1

� 2eCkukPþ
þ � CðeÞkuka� :

Choose e > 0 so small that 0 < 2eC < 1

2Pþ
þN

Pþ
þ�1

. We obtain

JðuÞb kukPþ
þ

2Pþ
þN

Pþ
þ�1

� CðeÞkuka� :

Since a� > Pþ
þ , there exist r > 0 small enough and d > 0 such that JðuÞb d > 0 if

kuk ¼ r. r
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Lemma 4.6. Assume that condition ðf1Þ is fulfilled. Then there exists e a X with
kek > r (where r is given in Lemma 4.5) such that JðeÞ < 0.

Proof. From ðf1Þ, we have

F ðx; tÞbCjtjy � 1; for all ðx; tÞ a W� R:ð4:9Þ

Using (4.9), for o a Xnf0g and t > 1, we have

JðtoÞ ¼
Z
W

XN
i¼1

jqxi toj
piðxÞ

piðxÞ
þ bðxÞ

Pþ
þ

jtojP
þ
þ � Fðx; toÞ

( )
dx

a
tP

þ
þ

P�
�

XN
i¼1

Z
W

jqxioj
piðxÞ dxþ tP

þ
þ

Pþ
þ
bðxÞjojP

þ
þ dx� Cty

Z
W

jojy dxþ C 0:

Since y > Pþ
þ , we deduce that for su‰ciently large t > 1, we have JðtoÞ < 0. r

Proof of Theorem 4.2 completed. Since Jð0Þ ¼ 0, considering Lemmas
4.3–4.6, we apply the mountain pass theorem [2] to obtain that problem (2.1)
has a nontrivial weak solution. r

5. Infinitely many solutions

The following result establishes the existence of infinitely many solutions of prob-
lem (2.1), provided that the right-hand side is odd.

Theorem 5.1. Assume that the conditions ðf0Þ, ðf1Þ and ðf3Þ hold. Then problem
(2.1) has a sequence of solutions ðeukÞ such that JðeukÞ ! þl as k ! þl:

The proof of Theorem 5.1 relies on the fountain theorem, see Willem [22].
Since X is a reflexive and separable Banach space, then X � is too. Thus, by

[23], there exist fejgHX and fe�j gHX � such that

X ¼ spanfej : j ¼ 1; 2; . . .g; X � ¼ spanfe�j : j ¼ 1; 2; . . .g;

and

3ei; e
�
j 4 ¼ 1 if i ¼ j,

0 if iA j;

�

where 3� ; �4 denotes the duality product between X and X �. We define

Xj ¼ spanfejg; Yk ¼ 0
k

j¼1

Xj; Zk ¼ 0
l

j¼k

Xj:

Then we have the following auxiliary result.
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Lemma 5.2 (See [10]). Assume that a; b a CþðWÞ, aðxÞ; bðxÞ < P�;l, for all
x a W. Denote

ak ¼ supfjujL aðxÞðWÞ; kuk ¼ 1; u a Zkg
bk ¼ supfjujLbðxÞðWÞ; kuk ¼ 1; u a Zkg:

Then limk!l ak ¼ 0 and limk!l bk ¼ 0.

Lemma 5.3 (Fountain Theorem, see [22]). Let J a C1ðX ;RÞ be an even func-
tional, where ðX ; k:kÞ is a separable and reflexive Banach space. Suppose that for
every k a N, there exist rk > rk > 0 such that

ðA1Þ inffJðuÞ : u a Zk; kuk ¼ rkg ! þl as k ! þl.
ðA2Þ maxfJðuÞ : u a Yk; kuk ¼ rkga 0.
ðA3Þ J satisfies the Palais-Smale condition for every c > 0:

Then J has a sequence of critical values tending to þl.

5.1. Proof of Theorem 5.1. According to ðf3Þ, Lemmas 4.3 and 4.4, J is an even
functional and satisfies the Palais-Smale condition. We prove that if k is large
enough, then there exist rk > rk > 0 such that ðA1Þ and ðA2Þ hold.

ðA1Þ For any u a Zk, kuk ¼ rk > 1 (rk will be specified below), using (4.1) and
ðf0Þ we have

JðuÞ ¼
Z
W

XN
i¼1

jqxiuj
piðxÞ

piðxÞ
þ bðxÞ

Pþ
þ

jujP
þ
þ � F ðx; uÞ

( )
dx

b
1

Pþ
þ

XN
i¼1

Z
W

jqxiuj
piðxÞ dx� C

Z
W

ð1þ jujaðxÞÞ dx

b
kukP�

�

Pþ
þN

P�
��1

� Cmaxfjuja
þ

LaðxÞðWÞ; juj
a�

LaðxÞðWÞg �M:

If maxfjuja
þ

LaðxÞðWÞ; juj
a�

LaðxÞðWÞg ¼ juja
þ

LaðxÞðWÞ, we have

JðuÞb kukP�
�

Pþ
þ

� Caaþ

k kukaþ �M:

At this stage, we fix rk as follows:

rk ¼ ðCaþaaþ

k Þ
1

P���aþ ! þl as k ! þl:

Consequently, if kuk ¼ rk then

JðuÞb
� 1

Pþ
þ
� 1

aþ

�
r
P�
�

k �M ! þl as k ! þl;

due to aþ > a� > Pþ
þ and ak ! 0 as k ! þl.
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ðA2Þ Using relation (4.6) for any u a Yknf0g with kuk ¼ 1 and 1 < rk ¼ tk with
tk ! þl, we have

JðtkuÞ ¼
Z
W

XN
i¼1

jqxi tkuj
piðxÞ

piðxÞ
þ bðxÞ

Pþ
þ

jtkujP
þ
þ �

Z
W

F ðx; tkuÞ
( )

dx

a
t
Pþ
þ

k

P�
�

XN
i¼1

Z
W

jqxiuj
piðxÞ dxþ t

Pþ
þ

k

Pþ
þ

Z
W

bðxÞjujP
þ
þ dx�Ctyk

Z
W

jujy dxþM:

Since y > Pþ
þ and dimYk < l, we observe that JðtkuÞ ! �l as k ! þl

for u a YK . This implies that

maxfJðuÞ : kuk ¼ rk; u a Ykga 0;

for every rk large enough. Applying the fountain theorem, we complete the
proof.

6. The case of concave-convex nonlinearity

In this section, similarly to the result named ‘‘concave and convex nonlinearities’’
for the Laplace operator in [22], we establish the following qualitative property.

Theorem 6.1. Let gðxÞ; bðxÞ a CþðWÞ, gðxÞ; bðxÞ < P�
�ðxÞ for any x a W with

g� > Pþ
þ , b

þ < P�
� and f ðx; tÞ ¼ ljtjgðxÞ�2

tþ mjtjbðxÞ�2
t. Then the following prop-

erties hold:

(i) For every l > 0, m a R, problem (2.1) has a sequence of weak solutions ðeukÞ
such that JðeukÞ ! þl as k ! þl.

(ii) For every m > 0, l a R, problem (2.1) has a sequence of weak solutions ðevkÞ
such that JðevkÞ ! 0 as k ! þl.

We will use Lemma 5.3 to prove Theorem 6.1 ðiÞ and the following dual foun-
tain theorem to prove Theorem 6.1 ðiiÞ, respectively.

Lemma 6.2 (Dual Fountain Theorem, see [22]). Assume ðA1Þ is satisfied and
there is k0 > 0 so that, for each kb k0, there exist rk > rk > 0 such that

ðB1Þ ak ¼ inffJðuÞ : u a Zk; kuk ¼ rkgb 0.
ðB2Þ bk ¼ maxfJðuÞ : u a Yk; kuk ¼ rkg < 0.
ðB3Þ dk ¼ inffJðuÞ : u a Zk; kuka rkg ! 0 as k ! þl.
ðB4Þ J satisfies the ðPSÞ�c condition for every c a ½dk0 ; 0Þ:

Then J has a sequence of negative critical values converging to 0.

Definition 6.3. We say that J satisfies the ðPSÞ�c condition (with respect
to ðYnÞ), if any sequence ðunjÞHX such that nj ! þl, unj a Ynj , JðunjÞ ! c
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and ðJjYnj
Þ0ðunj Þ ! 0, contain a subsequence converging to a critical point

of J.

6.1. Proof of Theorem 6.1. ðiÞ The proof is similar to that of Theorem 5.1 if we
use the fountain theorem, so we only verify the Palais-Smale condition. Accord-
ing to Lemma 4.3 it is su‰cient to verify that the Palais-Smale sequence ðunÞ is
bounded in X . We assume there exists a constant c > 0 such that

jIðunÞj < c and I 0ðunÞ ! 0 as n ! l:

Assume kunk > 1. We have for n large enough

cþ 1b JðunÞ �
1

g�
3J 0ðunÞ; un4þ 1

g�
3J 0ðunÞ; un4

¼
Z
W

XN
i¼1

jqxiunj
piðxÞ

piðxÞ
þ bðxÞ

Pþ
þ

junjP
þ
þ � l

gðxÞ junj
gðxÞ � m

bðxÞ junj
bðxÞ

( )
dx

� 1

g�

Z
W

XN
i¼1

jqxiunj
piðxÞ þ bðxÞjunjP

þ
þ � ljunjgðxÞ � mjunjbðxÞ

( )
dx

" #

þ 1

g�
3J 0ðunÞ; un4

b

� 1

Pþ
þ
� 1

g�

� kunkP�
�

NP�
��1

þ
� 1

Pþ
þ
� 1

g�

�Z
W

bðxÞjunjP
þ
þ dx

þ m

Z
W

� 1

g�
� 1

bðxÞ

�
junjbðxÞ dx� 1

g�
kJ 0ðunÞkX �kunk

b

� 1

Pþ
þ
� 1

g�

� kunkP�
�

NP�
��1

� Ckunkbþ
� 1

g�
kunk:

Since P�
� > bþ and g� > Pþ

þ , we deduce that ðunÞ is bounded in X .
ðiiÞ We know that J satisfies ðA1Þ, the assertion of conclusion can be obtained

from the dual fountain theorem. Now, it remains to prove that J satisfies the
ðPSÞ�c condition and there exist rk > rk > 0 such that if k is large enough ðB1Þ,
ðB2Þ and ðB3Þ are satisfied.

ðB1Þ Let u a Zk, then

JðuÞb kukPþ
þ

Pþ
þN

Pþ
þ�1

� jlj
g�

Z
W

jujgðxÞ dx� m

b�

Z
W

jujbðxÞ dx

b
kukPþ

þ

Pþ
þN

Pþ
þ�1

� Cjlj
g�

kukg� � m

b� maxfjujb
þ

LbðxÞðWÞ; juj
b�

LbðxÞðWÞg:
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There exists 0 < r1 < 1 small enough such that
Cjlj
g� kukg�

a 1

2Pþ
þN

Pþ
þ�1

kukPþ
þ as

0 < r ¼ kuka r1. Then we have

¼ JðuÞb kukPþ
þ

2Pþ
þN

Pþ
þ�1

� m

b� maxfjujb
þ

LbðxÞðWÞ; juj
b�

L bðxÞðWÞg:

If maxfjujb
þ

LbðxÞðWÞ; juj
b�

LbðxÞðWÞg ¼ jujb
þ

L bðxÞðWÞ, then

JðuÞb 1

2Pþ
þN

Pþ
þ�1

kukPþ
þ � m

b� b
bþ

k kukbþ
:

Choose rk ¼
�2Pþ

þN
Pþ
þ�1

mb
bþ
k

b�
� 1

Pþ
þ�bþ , then

JðuÞb 1

2Pþ
þN

Pþ
þ�1

ðrkÞ
Pþ
þ � 1

2Pþ
þN

Pþ
þ�1

ðrkÞ
Pþ
þ ¼ 0:

Since P�
� > bþ, bk ! 0, we know that rk ! 0 as k ! þl.

If maxfjujb
þ

L bðxÞðWÞ; juj
b�

LbðxÞðWÞg ¼ jujb
�

LbðxÞðWÞ, we can do the same work as the case

above. So ðB1Þ is satisfied.
ðB2Þ For v a Yk with kvk ¼ 1 and 0 < t < rk < 1, we have

JðtvÞ ¼
Z
W

XN
i¼1

jqxi tvj
piðxÞ

piðxÞ
þ bðxÞ

Pþ
þ

jtvjP
þ
þ � l

gðxÞ jtvj
gðxÞ � m

bðxÞ jtvj
bðxÞ

( )
dx

a
XN
i¼1

Z
W

t piðxÞ

piðxÞ
jqxivj

piðxÞ þ tP
þ
þ

Pþ
þ

Z
W

bðxÞjvjP
þ
þ dxþ jlj

g�

Z
W

tgðxÞjvjgðxÞ dx

� m

bþ

Z
W

tbðxÞjvjbðxÞ dx

a
tP

�
�

P�
�

XN
i¼1

Z
W

jqxi vj
piðxÞ þ tP

þ
þ

Pþ
þ

Z
W

bðxÞjvj p
þ
þ dxþ jljtg�

g�

Z
W

jvjgðxÞ dx

� mtb
þ

bþ

Z
W

jvjbðxÞ dx:

Since dimYk ¼ k, conditions bþ < P�
� and Pþ

þ < g� imply that there exists a
rk a ð0; rkÞ such that JðuÞ < 0 when kuk ¼ rk. Hence bk ¼ maxfJðuÞ : u a Yk;
kuk ¼ rkg < 0, so ðB2Þ is satisfied.

ðB3Þ Because Yk BZk A j and rk < rk, we have

dk ¼ inffJðuÞ : u a Zk; kuka rkga bk ¼ maxfJðuÞ : u a Yk; kuk ¼ rkg < 0:
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In view of the proof of ðB1Þ, we have

JðuÞb� m

b� b
bþ

k kukbþ
or � m

b� b
b�

k kukb�

Since bk ! 0 and rk ! 0 as k ! þl, ðB3Þ is satisfied.
Finally, we verify the ðPSÞ�c condition. Suppose ðunjÞHX such that

nj ! þl, unj a Ynj and ðJjYnj
Þ0ðunjÞ ! 0. Assume kunjk > 1 for convenience. If

lb 0, for n large enough, we have

cþ 1b JðunjÞ �
1

g�
3J 0ðunjÞ; unj4þ 1

g�
3J 0ðunj Þ; unj4

b

� 1

Pþ
þ
� 1

g�

� kunjk
P�
�

NP�
��1

� Ckunjk
bþ

� 1

g�
kunjk:

Since P�
� > bþ and g� > Pþ

þ , we deduce that ðunjÞ is bounded in X .
If l < 0, for n large enough, we can consider the inequality below to get the

boundedness of ðunj Þ.

cþ 1b JðunjÞ �
1

gþ
3J 0ðunjÞ; unj4þ 1

gþ
3J 0ðunj Þ; unj4:

Going if necessary to a subsequence, we can assume unj * u in X . As
X ¼

S
nj
Ynj , we can choose vnj a Ynj such that vnj ! u. Hence

lim
nj!þl

3J 0ðunjÞ; unj � u4 ¼ lim
nj!þl

3J 0ðunjÞ; unj � vnj4þ lim
nj!þl

3J 0ðunj Þ; vnj � u4

¼ lim
nj!þl

3ðJjYnj
Þ0ðunjÞ; unj � vnj4

¼ 0:

Similar to the process of verifying the Palais-Smale condition in the proof of
Lemma 4.3, we conclude unj ! u, furthermore we have J 0ðunjÞ ! J 0ðuÞ. Let us
prove J 0ðuÞ ¼ 0 below. Taking ok a Yk, notice that when nj b k we have

3J 0ðuÞ;ok4 ¼ 3J 0ðuÞ � J 0ðunj Þ;ok4þ 3J 0ðunjÞ;ok4

¼ 3J 0ðuÞ � J 0ðunj Þ;ok4þ 3ðJjYnj
Þ0ðunjÞ;ok4:

Going to the limit on the right side of the above equation reaches

3J 0ðuÞ;ok4 ¼ 0; Eok a Yk;

so J 0ðuÞ ¼ 0, this show that J satisfies the ðPSÞ�c condition for every c a R. The
conclusion of Theorem 6.1 ðiiÞ is reached by the dual fountain theorem. r
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[12] I. Fragalà - F. Gazzola - B. Kawohl, Existence and nonexistence results for ani-

sotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré, Analyse Non Linéaire 21
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