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COMBINED EFFECTS AND DEGENERATE PHENOMENA
IN NONLINEAR STATIONARY PROBLEMS

VICENŢIU D. RĂDULESCU

In this survey paper we are concerned with several nonlinear station-
ary problems involving nonhomogeneous differential operators. We re-
port on some recent qualitative results related with various nonlinear prob-
lems in Orlicz-Sobolev spaces. Our analysis combines spectral analysis
techniques with variational methods.

1. Basic properties of Orlicz-Sobolev spaces

Let Ω ⊂ RN be an open set with smooth boundary. In Orlicz [31], the stan-
dard Lebesgue spaces Lp(Ω) were replaced by more general function spaces
denoted LΦ(Ω) and which are now called Orlicz spaces. The spaces LΦ(Ω)
were thoroughly studied in the monograph by Kranosel’skii & Rutickii [18]
and also in the doctoral thesis of Luxemburg [23]. If the role played by Lp(Ω)
in the definition of the Sobolev spaces W m,p(Ω) is assigned instead to an Or-
licz space LΦ(Ω), the resulting space is denoted by W mLΦ(Ω) and called an
Orlicz-Sobolev space. Many properties of Sobolev spaces have been extended
to Orlicz-Sobolev spaces, mainly by Donaldson & Trudinger [12] and O’Neill
[30]. Orlicz-Sobolev spaces have been used in the last decades to model various
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phenomena, such as image restoration and electrorheological fluids [1, 9, 25,
38].

We recall in what follows the definition and the main properties of Orlicz-
Sobolev spaces. Consider the mapping φ : R→ R defined by φ(t) := log(1+
|t|q) · |t|p−2t. Set Φ(t) :=

∫ t
0 φ(s)ds A straightforward computation yields

Φ(t) =
1
p

log(1+ |t|q) · |t|p− q
p

∫ |t|
0

sp+q−1

1+ sq ds,

for all t ∈R. We observe that φ is an odd, increasing homeomorphism of R into
R, while Φ is convex and even on R and increasing from R+ to R+.

Set

Φ
?(t) :=

∫ t

0
φ
−1(s) ds, for all t ∈ R.

The functions Φ and Φ? are complementary N-functions (see Kranosel’skii &
Rutickii [18]).

Define the Orlicz class

KΦ(Ω) := {u : Ω→ R, measurable;
∫

Ω

Φ(|u(x)|) dx < ∞}

and the Orlicz space

LΦ(Ω) := the linear hull of KΦ(Ω).

The space LΦ(Ω) is a Banach space endowed with the Luxemburg norm

‖u‖Φ := inf
{

k > 0;
∫

Ω

Φ

(
u(x)

k

)
dx≤ 1

}
or the equivalent norm (the Orlicz norm)

‖u‖(Φ) := sup
{∣∣∣∣∫

Ω

uvdx
∣∣∣∣ ; v ∈ K

Φ
(Ω),

∫
Ω

Φ(|v|)dx≤ 1
}
,

where Φ denotes the conjugate Young function of Φ, that is,

Φ(t) = sup{ts−Φ(s); s ∈ R} .

By Lemma 2.4 and Example 2 in Clément, de Pagter, Sweers & de Thélin
[11, p. 243] we have

1 < liminf
t→∞

tφ(t)
Φ(t)

≤ sup
t>0

tφ(t)
Φ(t)

< ∞. (1)
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These inequalities imply that Φ satisfies the ∆2-condition. By Lemma C.4 in
[11] it follows that Φ? also satisfies the ∆2-condition. Then, according to Adams
[2, p. 234], it follows that LΦ(Ω) = KΦ(Ω). Moreover, by Theorem 8.19 in
Adams [2], LΦ(Ω) is reflexive.

We denote by W 1LΦ(Ω) the Orlicz-Sobolev space defined by

W 1LΦ(Ω) :=
{

u ∈ LΦ(Ω);
∂u
∂xi
∈ LΦ(Ω), i = 1, . . . ,N

}
.

Then W 1LΦ(Ω) is a Banach space with respect to the norm

‖u‖1,Φ := ‖u‖Φ +‖|∇u|‖Φ.

We also define the Orlicz-Sobolev space W 1
0 LΦ(Ω) as the closure of C∞

0 (Ω) in
W 1LΦ(Ω). By Lemma 5.7 in [16] we obtain that on W 1

0 LΦ(Ω) we may consider
an equivalent norm ‖u‖ := ‖|∇u|‖Φ. The space W 1

0 LΦ(Ω) is also a reflexive
Banach space.

We refer to Adams [2], Luxemburg [23], and Kranosel’skii & Rutickii [18]
for more details.

2. Crucial role of nonlinearities sign

Let 2∗ denote the critical Sobolev exponent, that is, 2∗ := 2N/(N−2) if N ≥ 3
and 2∗ :=+∞ if N ∈ {1,2}. If 2 < r < 2∗, consider the Dirichlet problems

−∆u =−λu+ur−1, in Ω

u = 0, on ∂Ω

u > 0, in Ω

(2)

and 
−∆u = λu−ur−1, in Ω

u = 0, on ∂Ω

u > 0, in Ω .
(3)

A direct application of the mountain pass theorem implies that problem (2) has
at least one solution for any λ > 0. By multiplication with the first eigenfunction
ϕ1 > 0 of the Laplace operator in (3) we obtain

λ1

∫
Ω

uϕ1dx = λ

∫
Ω

uϕ1dx−
∫

Ω

ur−1
ϕ1dx .

Thus, a necessary condition that problem (3) has a solution is that λ is suffi-
ciently large.
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In this section, we describe the corresponding setting in the framework of
nonhomogeneous differential operators (see Mihăilescu & Rădulescu [26]).

We first consider the boundary value problem{
−div(log(1+ |∇u|q)|∇u|p−2∇u) =−λ |u|p−2u+ |u|r−2u, in Ω

u = 0, on ∂Ω.
(4)

We say that u ∈W 1
0 LΦ(Ω) is a weak solution of problem (4) if∫

Ω

log(1+ |∇u(x)|q)|∇u(x)|p−2
∇u∇v dx+λ

∫
Ω

|u(x)|p−2u(x)v(x) dx

−
∫

Ω

|u(x)|r−2u(x)v(x) dx = 0

for all v ∈W 1
0 LΦ(Ω).

The property corresponding to problem (2) is the following multiplicity re-
sult.

Theorem 2.1. Assume that p, q > 1 , p+ q < N, p+ q < r and r < (N p−
N + p)/(N− p). Then, for every λ > 0 problem (4), has infinitely many weak
solutions.

We remark that in the particular case q = 1, λ = 0, 1 < p < N − 1, and
p < r ≤ [N(p− 1)+ p]/(N − p), problem (4) has a nontrivial weak solution,
by means of Theorem 1.2 in Clément, Garcı́a-Huidobro, Manásevich & Schmitt
[10]. On the other hand, Theorem 1.2 in [10] also applies for solving equations
involving more general differential operators div(a(|∇u(x)|)∇u(x)).

Next, we consider the problem{
−div(log(1+ |∇u|q)|∇u|p−2∇u) = λ |u|p−2u−|u|r−2u, in Ω

u = 0, on ∂Ω.
(5)

We say that u ∈W 1
0 LΦ(Ω) is a weak solution of problem (5) if∫

Ω

log(1+ |∇u(x)|q)|∇u(x)|p−2
∇u∇v dx−λ

∫
Ω

|u(x)|p−2u(x)v(x) dx

+
∫

Ω

|u(x)|r−2u(x)v(x) dx = 0

for all v ∈W 1
0 LΦ(Ω).

The following result shows that problem (5) has a solution provided that λ

is large enough.

Theorem 2.2. Assume that the hypotheses of Theorem 2.1 are fulfilled. Then
there exists λ? > 0 such that for any λ ≥ λ?, problem (5) has a nontrivial weak
solution.
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We sketch in what follows the proof of Theorem 2.1. The key argument is
the following Z2-symmetric version (for even functionals) of the Mountain Pass
Lemma (see Theorem 9.12 in Rabinowitz [35]).

Mountain Pass Lemma. Let X be an infinite dimensional real Banach space
and let I ∈C1(X ,R) be even, satisfying the Palais-Smale condition (that is, any
sequence {xn} ⊂ X such that {I(xn)} is bounded and I

′
(xn)→ 0 in X? has a

convergent subsequence) and I(0) = 0. Suppose that

(I1) there exist two constants ρ , b > 0 such that I(x)≥ b if ‖x‖= ρ;

(I2) for each finite dimensional subspace X1 ⊂ X, the set {x ∈ X1; I(x)≥ 0} is
bounded.

Then I has an unbounded sequence of critical values.

Let E denote the Orlicz-Sobolev space W 1
0 LΦ(Ω). Let λ > 0 be arbitrary

but fixed.
The energy functional associated to problem (4) is Jλ : E→ R defined by

Jλ (u) :=
∫

Ω

Φ(|∇u(x)|) dx+
λ

p

∫
Ω

|u(x)|p dx− 1
r

∫
Ω

|u(x)|r dx.

We split the proof of Theorem 2.1 into several steps.

Step 1. There exist η > 0 and α > 0 such that Jλ (u)≥ α > 0 for any u ∈ E
with ‖u‖= η .

Step 2. Assume that E1 is a finite dimensional subspace of E. Then the set
S = {u ∈ E1; Jλ (u)≥ 0} is bounded.

Step 3. Assume that {un} ⊂ E is a sequence which satisfies the properties

|Jλ (un)|< M (6)

J
′

λ
(un)→ 0 as n→ ∞ , (7)

where M is a positive constant. Then {un} possesses a convergent subsequence.

Proof of Theorem 2.1 completed. The energy functional Jλ is even and ver-
ifies Jλ (0) = 0. Step 3 implies that Jλ satisfies the Palais-Smale condition. On
the other hand, Steps 1 and 2 show that conditions (I1) and (I2) are satisfied.
Thus, the mountain pass lemma can be applied to the functional Jλ . We con-
clude that equation (4) has infinitely many weak solutions in E. The proof of
Theorem 2.1 is complete.

We point out that the Orlicz-Sobolev space E cannot be replaced by a clas-
sical Sobolev space. Indeed, in such a case, condition (I1) in the mountain
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pass lemma cannot be satisfied (see the proof of Remark 4 in Clément, Garcı́a-
Huidobro, Manásevich & Schmitt [10, p. 56-57]).

Fix λ > 0 and consider the energy functional associated to problem (5), that
is,

Iλ (u) :=
∫

Ω

Φ(|∇u(x)|) dx− λ

p

∫
Ω

|u(x)|p dx+
1
r

∫
Ω

|u(x)|r dx for all u ∈ E.

Standard arguments show that Iλ is coercive and lower semi-continuous.
Thus, there exists a global minimizer uλ ∈ E of Iλ , hence a weak solution of
problem (5). We show that uλ is not trivial for λ large enough. Indeed, letting
t0 > 1 be a fixed real and Ω1 be an open subset of Ω with |Ω1| > 0 we deduce
that there exists u1 ∈ C∞

0 (Ω) ⊂ E such that u1(x) = t0 for any x ∈ Ω1 and 0 ≤
u1(x)≤ t0 in Ω\Ω1. We have

Iλ (u1) =
∫

Ω
Φ(|∇u1(x)|) dx− λ

p

∫
Ω
|u1(x)|p dx+ 1

r

∫
Ω
|u1(x)|r dx

≤ L− λ

p

∫
Ω1
|u1(x)|p dx

≤ L− λ

p · t
p
0 · |Ω1|

where L is a positive constant. Thus, there exists λ? > 0 such that Iλ (u1) < 0
for any λ ∈ [λ?,∞). It follows that Iλ (uλ ) < 0 for any λ ≥ λ? and thus uλ is
a nontrivial weak solution of problem (5) for λ large enough. The proof of
Theorem 2.2 is complete.

A careful analysis of the proofs shows that Theorems 2.1 and 2.2 still remain
valid for more general classes of differential operators. Indeed, we can replace
div(log(1+ |∇u(x)|q)|∇u(x)|p−2∇u(x)) by div(a(|∇u(x)|)∇u(x)), where a(t) is
so that the assumption (1) is fulfilled. Some potentials a(t) satisfying this hy-
pothesis are a(t) = |t|α−1 (α > 0) and a(t) = |t|α/ log(1+ |t|β ) (0 < β < α).

3. Eigenvalue problems in Orlicz-Sobolev spaces

In this section we are concerned with a related nonlinear eigenvalue problem
in a new framework, corresponding to Orlicz-Sobolev spaces. The main result
establishes a curious phenomenon, which does not hold in the standard setting
corresponding to the Laplace operator. More precisely, we prove that there exist
two constants 0 < λ0 ≤ λ1 such that any λ ∈ [λ1,∞) is an eigenvalue, while any
λ ∈ (0,λ0) is not an eigenvalue of our problem.

Consider the nonlinear eigenvalue problem{
−div((a1(|∇u|)+a2(|∇u|))∇u) = λ |u|q(x)−2u, in Ω

u = 0, on ∂Ω .
(8)
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We assume that for any i = 1,2, the functions ai : (0,∞)→ R are such that the
mappings φi : R→ R defined by

φi(t) =
{

ai(|t|)t, for t 6= 0
0, for t = 0 ,

are odd, increasing homeomorphisms from R onto R. We also suppose through-
out this section that λ > 0 and q : Ω→ (0,∞) is a continuous function.

We work with functions Φi and (Φi)
?, i = 1,2, satisfying the ∆2-condition

(at infinity), namely

1 < liminf
t→∞

tφi(t)
Φi(t)

≤ limsup
t>0

tφi(t)
Φi(t)

< ∞.

Then LΦi(Ω) and W 1
0 LΦi(Ω), i = 1,2, are reflexive Banach spaces.

Now we introduce the Orlicz-Sobolev conjugate (Φi)? of Φi, i = 1,2, de-
fined as

(Φi)
−1
? (t) =

∫ t

0

(Φi)
−1(s)

s(N+1)/N
ds.

We assume that

lim
t→0

∫ 1

t

(Φi)
−1(s)

s(N+1)/N
ds < ∞, and lim

t→∞

∫ t

1

(Φi)
−1(s)

s(N+1)/N
ds = ∞, i = 1,2 . (9)

Finally, we define

(pi)0 := inf
t>0

tφi(t)
Φi(t)

and (pi)
0 := sup

t>0

tφi(t)
Φi(t)

, i = 1,2 .

We study problem (8) under the following basic assumptions:

1 < (p2)0 ≤ (p2)
0 < q(x)< (p1)0 ≤ (p1)

0, ∀ x ∈Ω (10)

and

lim
t→∞

|t|q+

(Φ2)?(kt)
= 0, for all k > 0. . (11)

We say that λ ∈ R is an eigenvalue of problem (8) if there exists u ∈
W 1

0 LΦ1(Ω)\{0} such that∫
Ω

(a1(|∇u|)+a2(|∇u|))∇u∇v dx−λ

∫
Ω

|u|q(x)−2uv dx = 0 ,

for all v ∈W 1
0 LΦ1(Ω). We point out that if λ is an eigenvalue of problem (4)

then the corresponding u ∈W 1
0 LΦ1(Ω)\{0} is a weak solution of (8).
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Define

λ1 := inf
u∈W 1

0 LΦ1 (Ω)\{0}

∫
Ω

Φ1(|∇u|) dx+
∫

Ω

Φ2(|∇u|) dx∫
Ω

1
q(x)
|u|q(x) dx

.

The main result in this section is the following (see Mihăilescu & Rădulescu
[27]).

Theorem 3.1. Assume that conditions (9), (10) and (11) are fulfilled. Then
λ1 > 0. Moreover, any λ ∈ [λ1,∞) is an eigenvalue of problem (8). Furthermore,
there exists a positive constant λ0 such that λ0 ≤ λ1 and any λ ∈ (0,λ0) is not
an eigenvalue of problem (8).

Proof. Let E denote the generalized Sobolev space W 1
0 LΦ1(Ω). Denote by ‖·‖1

the norm on W 1
0 LΦ1(Ω) and by ‖ · ‖2 the norm on W 1

0 LΦ2(Ω).
Define the energy functionals J, I, J1, I1 : E→ R by

J(u) =
∫

Ω

Φ1(|∇u|) dx+
∫

Ω

Φ2(|∇u|) dx,

I(u) =
∫

Ω

1
q(x)
|u|q(x) dx,

J1(u) =
∫

Ω

a1(|∇u|)|∇u|2 dx+
∫

Ω

a2(|∇u|)|∇u|2 dx,

I1(u) =
∫

Ω

|u|q(x) dx.

Then J, I ∈C1(E,R) and for all u, v ∈ E,

〈J ′(u),v〉=
∫

Ω

(a1(|∇u|)+a2(|∇u|))∇u∇v dx,

〈I ′(u),v〉=
∫

Ω

|u|q(x)−2uv dx.

We split the proof of Theorem 3.1 into four steps.
Step 1. We have λ1 > 0.

A straightforward computation combined with relation (10) implies

2 · c · (Φ1(|∇u(x)|)+Φ2(|∇u(x)|))≥ 2 · (|∇u(x)|(p1)0 + |∇u(x)|(p2)
0
)

≥ |∇u(x)|q+ + |∇u(x)|q−

and
|u(x)|q+ + |u(x)|q− ≥ |u(x)|q(x).
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Integrating these inequalities we find

2c ·
∫

Ω

(Φ1(|∇u(x)|)+Φ2(|∇u(x)|)) dx≥
∫

Ω

(|∇u|q+ + |∇u|q−) dx, ∀ u ∈ E

(12)
and ∫

Ω

(|u|q+ + |u|q−) dx≥
∫

Ω

|u|q(x) dx ∀ u ∈ E. (13)

On the other hand, there exist two positive constants λq+ and λq− such that∫
Ω

|∇u|q+ dx≥ λq+

∫
Ω

|u|q+ dx, ∀ u ∈W 1,q+
0 (Ω) (14)

and ∫
Ω

|∇u|q− dx≥ λq−

∫
Ω

|u|q− dx, ∀ u ∈W 1,q−
0 (Ω). (15)

Using again the fact that q− ≤ q+ < (p1)0, we deduce that E is continuously
embedded both in W 1,q+

0 (Ω) and in W 1,q−
0 (Ω). Thus, inequalities (14) and (15)

hold true for any u ∈ E.
Using inequalities (14), (15) and (13) we obtain a positive constant µ such

that ∫
Ω

(|∇u|q+ + |∇u|q−) dx≥ µ

∫
Ω

|u|q(x) dx ∀ u ∈ E. (16)

Next, inequalities (16) and (12) yield∫
Ω

(Φ1(|∇u(x)|)+Φ2(|∇u(x)|)) dx≥ µ

2c

∫
Ω

|u|q(x) dx ∀ u ∈ E. (17)

The above inequality implies

J(u)≥ µ ·q−

2c
I(u) ∀ u ∈ E. (18)

The last inequality assures that λ1 > 0 and thus, step 1 is verified.

We point out that by the definitions of (pi)0, i = 1,2, we have

ai(t) · t2 = φi(t) · t ≥ (pi)0Φi(t), ∀ t > 0 .

The above inequality and relation (17) imply

λ0 = inf
v∈E\{0}

J1(v)
I1(v)

> 0 . (19)

Step 2. We show that λ1 is an eigenvalue of problem (8).
We start with some auxiliary results.
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Lemma 3.2. The following relations hold true:

lim
‖u‖→∞

J(u)
I(u)

= ∞ (20)

and

lim
‖u‖→0

J(u)
I(u)

= ∞. (21)

Proof of lemma. Since E is continuously embedded in Lq±(Ω) it follows
that there exist two positive constants c1 and c2 such that

‖u‖1 ≥ c1 · |u|q+ , ∀ u ∈ E (22)

and
‖u‖1 ≥ c2 · |u|q− , ∀ u ∈ E. (23)

For any u ∈ E with ‖u‖1 > 1, relations (13), (22), (23) imply that

J(u)
I(u)

≥
‖u‖(p1)0

1

|u|q
+

q+ + |u|
q−

q−

q−

≥

‖u‖p−1
1

p+1
c−q+

1 ‖u‖q+
1 + c−q−

2 ‖u‖q−
1

q−

.

Since (p1)0 > q+ ≥ q−, passing to the limit as ‖u‖1→∞ in the above inequality
we deduce that relation (20) holds true.

Next, the space W 1
0 LΦ1(Ω) is continuously embedded in W 1

0 LΦ2(Ω). Thus,
‖u‖1 < 1 is small enough, then ‖u‖2 < 1. On the other hand, since (11) holds
true we deduce that W 1

0 LΦ2(Ω) is continuously embedded in Lq±(Ω). It follows
that there exist two positive constants d1 and d2 such that

‖u‖2 ≥ d1 · |u|q+ , ∀ u ∈W 1
0 LΦ2(Ω) (24)

and
‖u‖2 ≥ d2 · |u|q− , ∀ u ∈W 1

0 LΦ2(Ω). (25)

Thus, for any u∈ E with ‖u‖1 < 1 small enough, relations (13), (24), (25) imply

J(u)
I(u)

≥
∫

Ω
Φ2(|∇u|) dx

|u|q
+

q+ + |u|
q−

q−

q−

≥
‖u‖(p2)

0

2

d−q+
1 ‖u‖q+

2 +d−q−
2 ‖u‖q−

2
q−

.

Since (p2)
0 < q− ≤ q+, passing to the limit as ‖u‖1→ 0 (and thus, ‖u‖2→ 0)

in the above inequality we deduce that relation (21) holds true. The proof of
Lemma 3.2 is complete.
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Lemma 3.3. There exists u ∈ E \{0} such that J(u)
I(u) = λ1.

Proof of lemma. Let {un} ⊂ E \{0} be a minimizing sequence for λ1, that
is,

lim
n→∞

J(un)

I(un)
= λ1 > 0. (26)

By relation (20) we deduce that {un} is bounded in E. Since E is reflexive it
follows that there exists u ∈ E such that un converges weakly to u in E. On the
other hand, the functional J is weakly lower semi-continuous. Therefore

liminf
n→∞

J(un)≥ J(u). (27)

By Remark 1 it follows that E is compactly embedded in Lq(x)(Ω). Thus, un

converges strongly in Lq(x)(Ω), hence

lim
n→∞

I(un) = I(u). (28)

Relations (27) and (28) imply that if u 6≡ 0 then

J(u)
I(u)

= λ1.

Thus, in order to conclude that the lemma holds true it is enough to show that
u can not be trivial. Assume by contradiction the contrary. Then un converges
weakly to 0 in E and strongly in Lq(x)(Ω). In other words, we have

lim
n→∞

I(un) = 0. (29)

Letting ε ∈ (0,λ1) be fixed by relation (26) we deduce that for n large enough
we have

|J(un)−λ1I(un)|< εI(un),

or
(λ1− ε)I(un)< J(un)< (λ1 + ε)I(un).

Passing to the limit in the above inequalities and taking into account that re-
lation (29) holds true we find limn→∞ J(un) = 0. That implies that actually un

converges strongly to 0 in E, that is, limn→∞ ‖un‖1 = 0. So, by (21),

lim
n→∞

J(un)

I(un)
= ∞,

and this is a contradiction. Thus, u 6≡ 0. The proof of Lemma 3.3 is complete.
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By Lemma 3.3 we conclude that there exists u ∈ E \{0} such that

J(u)
I(u)

= λ1 = inf
w∈E\{0}

J(w)
I(w)

. (30)

Then, for any v ∈ E we have

d
dε

J(u+ εv)
I(u+ εv)

|ε=0 = 0 .

A simple computation yields∫
Ω

(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx · I(u)− J(u) ·
∫

Ω

|u|q(x)−2uv dx = 0,

∀ v ∈ E.
(31)

Relation (31) combined with the fact that J(u) = λ1I(u) and I(u) 6= 0 implies
the fact that λ1 is an eigenvalue of problem (8). Thus, step 2 is verified.

Step 3. Any λ ∈ (λ1,∞) is an eigenvalue of problem (8).
Fix λ ∈ (λ1,∞). Define Tλ : E→ R by

Tλ (u) = J(u)−λ I(u).

Thus, λ is an eigenvalue of problem (8) if and only if there exists uλ ∈ E \{0}
a critical point of Tλ .

With similar arguments as in the proof of relation (20) we deduce that Tλ is
coercive, that is, lim‖u‖→∞ Tλ (u) = ∞. On the other hand, Tλ is weakly lower
semi-continuous. Thus, there exists uλ ∈ E a global minimum point of Tλ and
hence, a critical point of Tλ . It remains to show that uλ is not trivial. Indeed,
since λ1 = infu∈E\{0}

J(u)
I(u) and λ > λ1 it follows that there exists vλ ∈ E such

that J(vλ ) < λ I(vλ ), or, equivalently, Tλ (vλ ) < 0. Thus, infE Tλ < 0 and we
conclude that uλ is a nontrivial critical point of Tλ , that is, λ is an eigenvalue of
problem (8). Thus, step 3 is verified.

Step 4. Any λ ∈ (0,λ0), where λ0 is given by relation (19), is not an eigenvalue
of problem (8).

Indeed, assuming by contradiction that there exists λ ∈ (0,λ0) an eigenvalue
of problem (8) it follows that there exists uλ ∈ E \{0} such that

〈J ′(uλ ),v〉= λ 〈I ′(uλ ),v〉, ∀ v ∈ E.

Thus, for v = uλ we find

〈J ′(uλ ),uλ 〉= λ 〈I ′(uλ ),uλ 〉,
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or
J1(uλ ) = λ I1(uλ ).

The fact that uλ ∈ E \ {0} assures that I1(uλ ) > 0. Since λ < λ0, the above
information implies

J1(uλ )≥ λ0I1(uλ )> λ I1(uλ ) = J1(uλ ).

Clearly, the above inequalities lead to a contradiction. Thus, step 4 is verified.
By steps 2, 3 and 4 we deduce that λ0 ≤ λ1. The proof of Theorem 3.1 is

now complete.

4. Neumann problems in Orlicz-Sobolev spaces

In this section we study the nonhomogeneous Neumann problem −div(a(x, |∇u(x)|)∇u(x))+a(x, |u(x)|)u(x) = λ g(x,u(x)), for x ∈Ω

∂u
∂ν

(x) = 0, for x ∈ ∂Ω ,

(32)
where Ω is a bounded domain in RN with smooth boundary ∂Ω and ν is the
outward unit normal to ∂Ω. We assume that the function a(x, t) : Ω×R→ R is
such that ϕ(x, t) : Ω×R→ R,

ϕ(x, t) =
{

a(x, |t|)t, for t 6= 0
0, for t = 0 ,

and satisfies
(ϕ) for all x ∈Ω, ϕ(x, ·) : R→R is an odd, increasing homeomorphism from R
onto R;
and Φ(x, t) : Ω×R→ R,

Φ(x, t) =
∫ t

0
ϕ(x,s) ds, ∀ x ∈Ω, t ≥ 0 ,

belongs to class Φ, that is, Φ satisfies the following conditions
(Φ1) for all x ∈ Ω, Φ(x, ·) : [0,∞)→ R is a nondecreasing continuous function,
with Φ(x,0) = 0 and Φ(x, t)> 0 whenever t > 0; limt→∞ Φ(x, t) = ∞;
(Φ2) for every t ≥ 0, Φ(·, t) : Ω→ R is a measurable function.

We also assume that there exist two positive constants ϕ0 and ϕ0 such that

1 < ϕ0 ≤
tϕ(x, t)
Φ(x, t)

≤ ϕ
0 < ∞, ∀ x ∈Ω, t ≥ 0 . (33)
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Furthermore, we assume that Φ satisfies the following condition:

for each x ∈Ω, the function [0,∞) 3 t→Φ(x,
√

t) is convex . (34)

Relation (16) assures that LΦ(Ω) is an uniformly convex space and thus, a re-
flexive space.

We study problem (32) in the particular case when Φ satisfies

M · |t|p(x) ≤Φ(x, t), ∀ x ∈Ω, t ≥ 0 , (35)

where p(x) ∈C(Ω) with p(x)> 1 for all x ∈Ω and M > 0 is a constant.
On the other hand, we assume that the function g from problem (32) satisfies

the hypotheses
|g(x, t)| ≤C0 · |t|q(x)−1, ∀ x ∈Ω, t ∈ R (36)

and

C1 · |t|q(x) ≤ G(x, t) :=
∫ t

0
g(x,s) ds≤C2 · |t|q(x), ∀ x ∈Ω, t ∈ R , (37)

where C0, C1 and C2 are positive constants and q(x) ∈C(Ω) satisfies 1 < q(x)<
N p−

N−p− for all x ∈Ω.

We say that u ∈W 1,Φ(Ω) is a weak solution of problem (32) if∫
Ω

a(x, |∇u|)∇u∇v dx+
∫

Ω

a(x, |u|)uv dx−λ

∫
Ω

g(x,u)v dx = 0,

for all v ∈W 1,Φ(Ω).
The main results of this section are the following (see Mihăilescu & Rădu-

lescu [28]).

Theorem 4.1. Assume ϕ and Φ verify conditions (ϕ), (Φ1), (Φ2), (33), (34) and
(35) and the functions g and G satisfy conditions (36) and (37). Furthermore,
we assume that q− < ϕ0. Then there exists λ? > 0 such that for any λ ∈ (0,λ?)
problem (32) has a nontrivial weak solution.

Theorem 4.2. Assume ϕ and Φ verify conditions (ϕ), (Φ1), (Φ2), (33), (34) and
(35) and the functions g and G satisfy conditions (36) and (37). Furthermore,
we assume that q+ < ϕ0. Then there exists λ? > 0 and λ ? > 0 such that for any
λ ∈ (0,λ?)∪ (λ ?,∞) problem (32) has a nontrivial weak solution.

Let E denote the generalized Orlicz-Sobolev space W 1,Φ(Ω).
For each λ > 0 we define the energy functional Jλ : E→ R by

Jλ (u) =
∫

Ω

[Φ(x, |∇u|)+Φ(x, |u|)] dx−λ

∫
Ω

G(x,u) dx.
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Then Jλ is well-defined on E, Jλ ∈C1(E,R), and

〈J ′
λ
(u),v〉=

∫
Ω

a(x, |∇u|)∇u ·∇v dx+
∫

Ω

a(x, |u|)uv dx−λ

∫
Ω

g(x,u)v dx ,

for all u, v ∈ E. Standard arguments show that Jλ is weakly lower semi-conti-
nuous.

We also define the functional Λ : E→ R by

Λ(u) =
∫

Ω

[Φ(x, |∇u|)+Φ(x, |u|)] dx.

Then Λ is well defined on E, Λ ∈ C1(E,R) is weakly lower semi-continuous,
and for all u, v ∈ E,

〈Λ′(u),v〉=
∫

Ω

a(x, |∇u|)∇u ·∇v dx+
∫

Ω

a(x, |u|)uv dx .

Proof of Theorem 4.1. We split the proof into several steps.
Step 1. There exists λ? > 0 such that for all λ ∈ (0,λ?), there are ρ , α > 0

such that Jλ (u)≥ α > 0, for any u ∈ E with ‖u‖= ρ . The value of λ? is given
by

λ? =
ρϕ0−q−

2 ·C2 · cq−
1

. (38)

Step 2. There exists θ ∈ E such that θ ≥ 0, θ 6= 0 and Jλ (tθ)< 0, for t > 0
small enough.

Step 3. Conclusion.
Fix λ ∈ (0,λ?). Then, by Step 1, it follows that on the boundary of the

ball centered in the origin and of radius ρ in E, denoted by Bρ(0), we have
inf

∂Bρ (0)
Jλ > 0. On the other hand, by Step 2, there exists θ ∈ E such that Jλ (t ·

θ)< 0 for all t > 0 small enough. Moreover, our hypotheses imply that for any
u ∈ Bρ(0) we have

Jλ (u)≥ ‖u‖ϕ0−λ ·C2 · cq−
1 ‖u‖

q− .

It follows that
−∞ < c := inf

Bρ (0)
Jλ < 0 .

We let now 0 < ε < inf∂Bρ (0) Jλ − infBρ (0) Jλ . Applying Ekeland’s variational
principle we find uε ∈ Bρ(0) such that

Jλ (uε)< inf
Bρ (0)

Jλ + ε

Jλ (uε)< Jλ (u)+ ε · ‖u−uε‖, u 6= uε .
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Since
Jλ (uε)≤ inf

Bρ (0)
Jλ + ε ≤ inf

Bρ (0)
Jλ + ε < inf

∂Bρ (0)
Jλ ,

we deduce that uε ∈ Bρ(0). Now, we define Iλ : Bρ(0)→R by Iλ (u) = Jλ (u)+
ε · ‖u−uε‖. Then uε is a minimum point of Iλ and thus

Iλ (uε + t · v)− Iλ (uε)

t
≥ 0

for small t > 0 and any v ∈ B1(0). Therefore

Jλ (uε + t · v)− Jλ (uε)

t
+ ε · ‖v‖ ≥ 0.

Letting t→ 0 it follows that 〈J ′
λ
(uε),v〉+ ε · ‖v‖> 0 and we infer that

‖J ′
λ
(uε)‖ ≤ ε .
We deduce that there exists a sequence {wn} ⊂ Bρ(0) such that

Jλ (wn)→ c and J
′

λ
(wn)→ 0. (39)

It is clear that {wn} is bounded in E. Thus, there exists w ∈ E such that, up
to a subsequence, {wn} converges weakly to w in E. Since E is compactly
embedded in Lq(x)(Ω), it follows that {wn} converges strongly to w in Lq(x)(Ω).
Thus, by (36) and Hölder’s inequality,∣∣∣∣∫

Ω

g(x,wn) · (wn−w) dx
∣∣∣∣ ≤C0 ·

∫
Ω

|wn|q(x)−1|wn−w| dx

≤C0 · | |wn|q(x)−1 | q(x)
q(x)−1
· |wn−w|q(x)→ 0,

as n→ ∞ .

(40)

On the other hand, by (39) we have

lim
n→∞
〈J ′

λ
(wn),wn−w〉= 0 . (41)

Relations (40) and (41) imply limn→∞〈Λ
′
(wn),wn−w〉 = 0 . Thus, {wn} con-

verges strongly to w in E. So, by (39), Jλ (w) = c < 0 and J
′

λ
(w) = 0. We con-

clude that w is a nontrivial weak solution for problem (32) for any λ ∈ (0,λ?).
The proof of Theorem 4.1 is complete.

Proof of Theorem 4.2. Since q+ < ϕ0 it follows that q− < ϕ0. Thus, by
Theorem 4.1, there exists λ? > 0 such that for any λ ∈ (0,λ?) problem (32) has
a nontrivial weak solution.
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Next, we observe that Jλ is coercive and weakly lower semi-continuous in
E, for all λ > 0. Thus, there exists uλ ∈ E a global minimizer of Iλ , hence a
weak solution of problem (32).

We show that uλ is not trivial for λ large enough. Indeed, letting t0 > 1 be a
fixed real and u0(x) = t0, for all x ∈Ω we have u0 ∈ E and

Jλ (u0) = Λ(u0)−λ
∫

Ω
G(x,u0) dx ≤

∫
Ω

Φ(x, t0) dx−λ ·C1 ·
∫

Ω
|t0|q(x) dx

≤ L−λ ·C1 · tq+
0 · |Ω1| ,

where L is a positive constant. Thus, there exists λ ? > 0 such that Jλ (u0) < 0
for any λ ∈ [λ ?,∞). It follows that Jλ (uλ ) < 0 for any λ ≥ λ ? and thus uλ is
a nontrivial weak solution of problem (32) for λ large enough. The proof of
Theorem 4.2 is complete.

We conclude this section with several examples of functions ϕ and Φ for
which the results in this section do apply.

Example 4.3. Define

ϕ(x, t) = p(x)|t|p(x)−2t and Φ(x, t) = |t|p(x) ,

with p(x) ∈C(Ω) satisfying 2≤ p(x)< N, for all x ∈Ω.

Example 4.4. Define

ϕ(x, t) = p(x)
|t|p(x)−2t

log(1+ |t|)

and

Φ(x, t) =
|t|p(x)

log(1+ |t|)
+
∫ |t|

0

sp(x)

(1+ s)(log(1+ s))2 ds ,

with p(x) ∈C(Ω) satisfying 3≤ p(x)< N, for all x ∈Ω.

Example 4.5. Define

ϕ(x, t) = p(x) · log(1+α + |t|) · |t|p(x)−1t ,

and

Φ(x, t) = log(1+α + |t|) · |t|p(x)−
∫ |t|

0

sp(x)

1+α + s
dx ,

where α > 0 is a constant and p(x) ∈ C(Ω) satisfying 2 ≤ p(x) < N, for all
x ∈Ω.
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5. Variational analysis versus nonlinear eigenvalue problems

Consider the eigenvalue problem −div(α(|∇u|)∇u)+α(|u|)u = λ f (x,u) in Ω,
∂u
∂ν

= 0 on ∂Ω.
(N f

α,λ )

We assume that f : Ω×R→R is continuous and α : (0,∞)→R is such that the
mapping φ : R→ R defined by

φ(t) =
{

α(|t|)t, for t 6= 0
0, for t = 0 ,

is an odd, strictly increasing homeomorphism from R onto R.
The main result in this section (see Bonanno, Molica Bisci & Rădulescu

[7]) establishes that if p > N + 1 and λ > 0 is arbitrary, then there exists a
sequence of pairwise distinct solutions of problem (N f

α,λ ) that converges to zero
in W 1LΦ(Ω). We also refer to Bonanno & Molica Bisci [6] for a related property
for the p–Laplace operator.

Throughout this section we assume that Φ satisfies the following hypothe-
ses:

(Φ0) 1 < liminf
t→∞

tφ(t)
Φ(t)

≤ p0 := sup
t>0

tφ(t)
Φ(t)

< ∞;

(Φ1) N < p0 := inf
t>0

tφ(t)
Φ(t)

< liminf
t→∞

log(Φ(t))
log(t)

.

Let

A := liminf
ξ→0+

∫
Ω

max
|t|≤ξ

F(x, t) dx

ξ p0 , B := limsup
ξ→0+

∫
Ω

F(x,ξ ) dx

ξ p0
.

The following multiplicity result has been established in [7].

Theorem 5.1. Let f : Ω×R → R be a continuous function, Φ be a Young
function satisfying the structural hypotheses (Φ0)–(Φ1) and let ρ be a positive
constant such that

(Φρ) lim
t→0+

Φ(t)
t p0

< ρ.
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Further, assume that

(h0) liminf
ξ→0+

∫
Ω

max
|t|≤ξ

F(x, t) dx

ξ p0 <
1

(2c)p0
ρ |Ω|

limsup
ξ→0+

∫
Ω

F(x,ξ ) dx

ξ p0
.

Then, for every λ belonging to]
ρ |Ω|

B
,

1
(2c)p0A

[
,

the problem (N f
α,λ ) admits a sequence of pairwise distinct weak solutions which

strongly converges to zero in W 1LΦ(Ω).

The key ingredient in the proof of Theorem 5.1 is the following result of
Bonanno & Molica Bisci [5, Theorem 2.1], which is a refinement of Ricceri’s
variational principle [37]. Ricceri’s result goes back to an elementary property
established by Pucci and Serrin [33, 34], which asserts that if a functional of
class C1 defined on a real Banach space has two local minima, then it has a third
critical point. At our best knowledge, the first three critical point property was
found by Krasnoselskii [17]. He showed that if f is a coercive C1 functional
defined on a finite dimensional space having a nondegenerate critical point x0
(that is, the topological index ind f ′(x0)(0) is different from zero) which is not
a global minimum, then f admits a third critical point. This result was extended
to infinite dimensional Banach spaces by Amann [3]. We refer to Bonanno &
Marano [4], Livrea & Marano [22], and Marano & Motreanu [24] for related
results and applications of Ricceri’s variational principle. The recent book by
Kristály, Rădulescu & Varga [20] contains several applications of Ricceri’s vari-
ational principle.

Theorem 5.2. (Bonanno & Molica Bisci [5, Theorem 2.1]). Let X be a reflexive
real Banach space, let J, I : X → R be two Gâteaux differentiable functionals
such that J is strongly continuous, sequentially weakly lower semicontinuous
and coercive and I is sequentially weakly upper semicontinuous. For every
r > infX J, put

ϕ(r) := inf
u∈J−1(]−∞,r[)

(
supv∈J−1(]−∞,r[) I(v)

)
− J(u)

r− J(u)
,

and δ := liminf
r→(infX J)+

ϕ(r).

Then, if δ <+∞, for each λ ∈
]
0, 1

δ

[
, the following alternative holds:
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either
(c1) there is a global minimum of J which is a local minimum of gλ := J−λ I,
or
(c2) there is a sequence {un} of pairwise distinct critical points (local minima)
of gλ which weakly converges to a global minimum of J, with limn→+∞ J(un) =
infX J.

Define

φ(t) =
|t|p−2

log(1+ |t|)
t for t 6= 0, and φ(0) = 0.

A straightforward computation shows that the assumptions (Φ0), (Φ1), and
(Φρ) are fulfilled. A direct application of Theorem 5.1 implies the following
multiplicity property.

Corollary 5.3. Let p > N + 1 and g : R→ R be a continuous non-negative

function with potential G(ξ ) :=
∫

ξ

0
g(t) dt. Assume that

liminf
ξ→0+

G(ξ )

ξ p = 0 , and limsup
ξ→0+

G(ξ )

ξ p−1 =+∞.

Let h : Ω→ R be a continuous and positive function.
Then, for each λ > 0, the Neumann problem
−div

( |∇u|p−2

log(1+ |∇u|)
∇u
)
+

|u|p−2

log(1+ |u|)
u = λh(x)g(u) in Ω,

∂u
∂ν

= 0 on ∂Ω,

admits a sequence of pairwise distinct weak solutions which strongly converges
to zero in W 1LΦ(Ω).

The reader interested in nonlinear PDE’s in Orlicz-Sobolev spaces may con-
sult the following very related references: Byun, Yao & Zhou [8], Fukagai, Ito
& Narukawa [13], Le [21], Kristály, Mihăilescu & Rădulescu [19], Mihăilescu,
Rădulescu & Repovš [29], Pucci & Rădulescu [32], and Xing & Ding [39]. For
many examples and related properties we also refer to the books by Ghergu &
Rădulescu [14, 15].
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type solutions for quasilinear elliptic equations, Calc. Var. 11 (2000), 33–62.

[11] Ph. Clément - B. de Pagter - G. Sweers - F. de Thélin, Existence of solutions to
a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math. 1
(2004), 241–267.

[12] T. K. Donaldson - N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theo-
rems, J. Functional Analysis 8 (1971), 52–75.

[13] N. Fukagai - M. Ito - K. Narukawa, Quasilinear elliptic equations with slowly
growing principal part and critical Orlicz-Sobolev nonlinear term, Proc. Roy.
Soc. Edinburgh Sect. A 139 (2009), 73–106.
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