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Abstract. We consider a nonlinear Dirichlet problem driven by the p-Laplacian and a reaction which exhibits the combined
effects of concave (that is, sublinear) terms and of convex (that is, superlinear) terms. The concave term is indefinite and the
convex term need not satisfy the usual in such cases Ambrosetti–Rabinowitz condition. We prove a bifurcation-type result
describing the set of positive solutions as the positive parameter λ varies.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω . In this paper, we study the following

nonlinear parametric elliptic problem

⎧⎪⎨
⎪⎩

−�pu(z) = ϑ(z)u(z)q−1 + f
(
z, u(z), λ

)
in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(Pλ)

where λ > 0 and 1 < q < p. Here �p denotes the p-Laplace differential operator defined by

�pu = div
(|Du|p−2Du

)
for all u ∈ W

1,p

0 (Ω), 1 < p < ∞.

The perturbation (z, x) �→ f (z, x, λ) is a Carathéodory function (that is, for all x ∈ R, z �→ f (z, x, λ) is
measurable and for a.a. z ∈ Ω , x �→ f (z, x, λ) is continuous), which exhibits (p−1)-superlinear growth
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near +∞, without satisfying the usual in such cases (unilateral) Ambrosetti–Rabinowitz condition (AR-
condition for short). So, in problem (Pλ) we have the combined effects of a concave (that is, of a (p−1)-
sublinear) nonlinearity which is expressed by the term ϑ(z)uq−1 (recall 1 < q < p) and of a convex
(that is, of a (p − 1)-superlinear) nonlinearity, expressed by the term f (z, u, λ). Hence, we are dealing
with a “concave–convex problem”. The interesting feature of our work here, is that the concave term
ϑ(z)uq−1 is indefinite, namely the weight function ϑ(·) may change sign.

Problems with combined nonlinearities, were first investigated by Ambrosetti, Brezis and Cerami [2],
where p = 2 (semilinear problem) and the parametric reaction has the form

λxq−1 + xr−1 for all x � 0, with 1 < q < 2 < r < 2∗ =
⎧⎨
⎩

2N

N − 2
if 2 < N,

+∞ if N = 1, 2.

They proved bifurcation type results describing the dependence of the set of positive solutions on the
parameter λ > 0. Their work was extended to nonlinear problems driven by the p-Laplacian, by Garcia
Azorero, Manfredi and Peral Alonso [8] and Guo and Zhang [10]. Problems with more general reactions,
were studied by Hu and Papageorgiou [11] and Marano and Papageorgiou [14]. Problems with indefinite
concave nonlinearities were investigated by de Paiva [6], Li, Wu and Zhou [12], and Papageorgiou and
Rădulescu [18] only in the context of semilinear equations (that is, p = 2) and with a particular reaction
of the form x �→ ϑ(z)xq−1 + λxr−1 for all x � 0, with ϑ ∈ L∞(Ω) and 1 < q < 2 < r < 2∗. We also
refer to the related papers by de Figueiredo, Gossez and Ubilla [5] and Narukawa and Takajo [16].

Using variational methods based on the critical point theory, combined with suitable truncation and
comparison techniques, we establish the existence, nonexistence and multiplicity of positive solutions
for problem (Pλ) as the parameter λ > 0 varies.

2. Mathematical background

Let X be a Banach space and X∗ be its topological dual. By 〈·, ·〉 we denote the duality brackets for
the pair (X∗, X). Given ϕ ∈ C1(X), we say that ϕ satisfies the “Cerami condition” (the “C-condition”
for short), if the following is true:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

(
1 + ‖un‖

)
ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.
This is a compactness type condition on the functional ϕ, which is needed since the ambient space

X need not be locally compact (since, in general X is infinite dimensional). The C-condition is the
main tool in proving a deformation theorem, from which one can derive the minimax theory for the
critical values of ϕ. One of the main results in this theory, is the so-called “mountain pass theorem”
due to Ambrosetti and Rabinowitz [3], stated here is a slightly more general form (see Gasinski and
Papageorgiou [9]).

Theorem 1. Assume that ϕ ∈ C1(X) satisfies the C-condition, u0, u1 ∈ X, ‖u1 − u0‖ > ρ > 0,

max
{
ϕ(u0), ϕ(u1)

}
< inf

[
ϕ(u) : ‖u − u0‖ = ρ

] = ηρ
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and

c = inf
γ∈Γ

max
0�t�1

ϕ
(
γ (t)

)
with Γ = {

γ ∈ C
([0, 1], X) : γ (0) = u0, γ (1) = u1

}
.

Then c � ηρ and c is a critical value of ϕ.

In the analysis of problem (Pλ), in addition to the Sobolev space W
1,p

0 (Ω) we will also use the Banach
space C1

0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}. This is an ordered Banach space with positive cone C+ =
{u ∈ C1

0(Ω) : u(z) � 0 for all z ∈ Ω}. This cone has a nonempty interior given by

int C+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω

< 0

}
.

Here by n(·) we denote the outward unit normal on ∂Ω .
Let f0 : Ω × R → R be a Carathéodory function with subcritical growth in x ∈ R, that is,

∣∣f0(z, x)
∣∣ � a0(z)

(
1 + |x|r−1

)
for a.a. z ∈ Ω, all x ∈ R,

with a0 ∈ L∞(Ω)+ and 1 < r < p∗ =
⎧⎨
⎩

Np

N − p
if p < N,

+∞ if N � p.

We set F0(z, x) = ∫ x

0 f0(z, s) ds and consider the C1-functional ϕ0 : W
1,p

0 (Ω) → R defined by

ϕ0(u) = 1

p
‖Du‖p

p −
∫

Ω

F0
(
z, u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

The next result can be found in Garcia Azero, Manfredi and Peral Alonso [8] and essentially is a
consequence of the nonlinear regularity theory of Lieberman [13].

Proposition 2. Assume that u0 ∈ W 1,p(Ω) is a local C1
0(Ω)-minimizer of ϕ0, that is, there exists ρ0 > 0

such that

ϕ0(u0) � ϕ(u0 + h) for all h ∈ C1
0(Ω) with ‖h‖C1

0 (Ω) � ρ0.

Then u0 ∈ C
1,α
0 (Ω) for some α ∈ (0, 1) and it is also a local W

1,p

0 (Ω)-minimizer of ϕ0, that is, there
exists ρ1 > 0 such that

ϕ0(u0) � ϕ(u0 + h) for all h ∈ W
1,p

0 (Ω) with ‖h‖ � ρ1.

Hereafter by ‖ · ‖ we denote the norm of W
1,p

0 (Ω). By virtue of the Poincaré inequality, we have

‖u‖ = ‖Du‖p for all u ∈ W
1,p

0 (Ω).
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Let A : W
1,p

0 (Ω) → W−1,p′
(Ω) = W

1,p

0 (Ω)∗ ( 1
p

+ 1
p′ = 1) be the nonlinear map defined by

〈
A(u), y

〉 =
∫

Ω

|Du|p−2(Du, Dy)RN dz for all u, y ∈ W
1,p

0 (Ω).

The next proposition summarizes the main properties of this map (see, for example, Papageorgiou and
Kyritsi [17, p. 314]).

Proposition 3. The map A : W
1,p

0 (Ω) → W−1,p′
(Ω) is bounded (that is, maps bounded sets to bounded

sets), demicontinuous, strictly monotone, hence maximal monotone too and of type (S)+ (that is, if
un

w→ u in W
1,p

0 (Ω) and

lim sup
n→∞

〈
A(un), un − u

〉
� 0,

then un → u in W
1,p

0 (Ω) as n → ∞).

We recall that the Dirichlet p-Laplacian (−�p, W
1,p

0 (Ω)) admits a smallest eigenvalue λ̂1 > 0. Some-
times we write λ̂1(Ω) > 0 to emphasize the domain Ω . This eigenvalue is isolated, simple with eigen-
functions of constant sign. The nonlinear regularity theory and the nonlinear maximum principle (see,
for example, Gasinski and Papageorgiou [9, pp. 737–738]), imply that every positive eigenfunction cor-
responding to λ̂1 > 0 belongs in int C+.

Finally let us fix our notation. So, for x ∈ R, we set x± = max{±x, 0}. Then given u ∈ W
1,p

0 (Ω), we
set u±(·) = u(·)±. We have

u± ∈ W
1,p

0 (Ω), u = u+ − u−, |u| = u+ + u−.

Given any measurable function h : Ω × R → R (for example, a Carathéodory function), we define

Nh(u)(·) = h
(·, u(·)) for all u ∈ W

1,p

0 (Ω)

(the Nemytski map corresponding to h). Evidently z �→ Nh(u)(z) is measurable on Ω . By | · |N we
denote the Lebesgue measure on R

N .

3. Positive solutions

The hypotheses on the data of problem (Pλ) are the following:

H1: ϑ ∈ L∞(Ω) and if D+ = {z ∈ Ω : ϑ(z) > 0}, then D+ �= ∅ and there exists an open set Ω+
such that Ω+ ⊆ D+, ∂Ω+ is C2 and ess infΩ+ ϑ = m+ > 0.

H2: f : Ω × R × (0, ∞) → R is a function such that for all λ > 0, (z, x) �→ f (z, x, λ) is
Carathéodory, f (z, 0, λ) = 0 for a.a. z ∈ Ω and

(i) f (z, x, λ) � a(z, λ)(1 + xr(λ)−1) for a.a. z ∈ Ω with

r(λ) ∈ (
p, p∗), a(·, λ) ∈ L∞(Ω)+,

∥∥a(·, λ)
∥∥∞ → 0 as λ → 0+;
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(ii) if F(z, x, λ) = ∫ x

0 f (z, s, λ) ds, then

lim
x→+∞

F(z, x, λ)

xp
= +∞ uniformly for a.a. z ∈ Ω

and there exist τ ∈ ((r(λ) − p) max{N
p
, 1}, p∗), τ > q and η0(λ) > 0 with λ �→ η0(λ)

nondecreasing such that

η0(λ) � lim inf
x→+∞

f (z, x, λ)x − pF(z, x, λ)

xτ
uniformly for a.a. z ∈ Ω;

(iii) for every ρ > 0, there exists mρ(λ) > 0 such that mρ(λ) → +∞ as λ → +∞,

inf
[
f (z, x, λ) : x � ρ

] = mρ(λ) > 0,

for a.a. z ∈ Ω , all x � 0, the map λ �→ f (z, x, λ) is nondecreasing and for every ξ > 0,
for a.a. z ∈ Ω , all x � ξ , all λ′ > λ > 0, we have f (z, x, λ) � mξ(λ) with mξ(·)
nondecreasing, mξ(λ) → +∞ as λ → ∞ and f (z, x, λ′) − f (z, x, λ) � ηξ > 0;

(iv) for every ρ > 0, there exists ξρ(λ) > 0 such that for a.a. z ∈ Ω , the function

x �→ f (z, x, λ) + ξρ(λ)xp−1

is nondecreasing on [0, ρ].

Remark 1. Since we are interested on positive solutions and all the above hypotheses concern the
positive semiaxis R+ = [0, +∞), without any loss of generality, we may assume that f (z, x, λ) = 0
for a.a. z ∈ Ω , all x � 0, all λ > 0. Hypothesis H2(ii) implies that for a.a. z ∈ Ω and all λ > 0,
the perturbation x �→ f (z, x, λ) is (p − 1)-superlinear near +∞. However, we do not employ the
usual in such cases AR-condition. We recall that the AR-condition (unilateral version, since we assume
that f (z, x, λ) = 0 for a.a. z ∈ Ω , all x � 0, all λ > 0), says that there exist μ = μ(λ) > p and
M = M(λ) > 0 such that

(a) 0 < μF(z, x, λ) � f (z, x, λ)x for a.a. z ∈ Ω , all x � M;
(b) ess infΩ F(·, M, λ) > 0

(see Ambrosetti and Rabinowitz [3] and Mugnai [15]). Integrating (a) and using (b), we obtain the
weaker condition

c1x
μ � F(z, x, λ) for a.a. z ∈ Ω, all x � M and some c1 = c1(λ) > 0.

Evidently this unilateral growth estimate implies the much weaker condition

lim
x→+∞

F(z, x, λ)

xp
= +∞ uniformly for a.a. z ∈ Ω.
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264 N.S. Papageorgiou and V.D. Rădulescu / Combined effects in some elliptic problems

Note that our hypothesis H2(ii) is weaker than the AR-condition. Indeed, suppose that the AR-condition
holds (see (a) and (b) above). We may assume that μ > (r(λ) − p) max{N

p
, 1}. We have

f (z, x, λ)x − pF(z, x, λ)

xμ
= f (z, x, λ)x − μF(z, x, λ)

xμ
+ (μ − p)

F(z, x, λ)

xμ

� (μ − p)
F(z, x, λ)

xμ
for a.a. z ∈ Ω, all x � M

(
see (a)

)
� (μ − p)c1 for a.a. z ∈ Ω, all x � M

=⇒ lim inf
x→+∞

f (z, x, λ)x − pF(z, x, λ)

xμ
� (μ − p)c1(λ) = η0(λ) uniformly for a.a. z ∈ Ω.

So, hypothesis H2(ii) holds. See the examples that follow for functions which satisfy our hypothesis
H2(ii) but not the AR-condition.

Example 1. The following functions satisfy hypotheses H2. For the sake of simplicity we drop the
z-dependence:

f1(x, λ) = λxr−1 for all x � 0 with p < r < p∗,

f2(x, λ) = ξ(λ)xp−1

(
ln(1 + x) + x

p(x + 1)

)
for all x � 0

with λ �→ ξ(λ) strictly increasing on (0, +∞), limλ→∞ ξ(λ) = +∞, limλ→0+ ξ(λ) = 0.
Note that f2(·, λ) does not satisfy the AR-condition.

Let

L = {
λ > 0 : problem (Pλ) admits a positive solution

}
,

S(λ) = set of positive solutions of problem (Pλ).

First we establish the nonemptiness and a structural property of the set L of admissible parameters.

Proposition 4. If hypotheses H1 and H2 hold, then L �= ∅, for every u ∈ S(λ) we have u(z) > 0 for all
z ∈ Ω and λ ∈ L implies (0, λ] ⊆ L.

Proof. We consider the following auxiliary Dirichlet problem

− �pe(z) = 1 in Ω, e|∂Ω = 0. (1)

Recalling that A is maximal monotone, strictly monotone and coercive (by virtue of the Poincaré in-
equality), we see that problem (1) has a unique solution e ∈ W

1,p

0 (Ω) \ {0} (see, for example, Gasinski
and Papageorgiou [9, p. 319]). Acting on (1) with −e− ∈ W

1,p

0 (Ω), we obtain

∥∥De−∥∥p

p
= −

∫
Ω

e− dz � 0

=⇒ e � 0, e �= 0.
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From the nonlinear regularity theory and the nonlinear maximum principle (see, for example, Gasinski
and Papageorgiou [9, pp. 737–738]), we have e ∈ int C+.

Claim 1. There exists λ > 0 such that for all λ ∈ (0, λ), we can find ξ = ξ(λ) > 0 for which we have

ξq−1‖ϑ‖∞‖e‖q−1
∞ + ∥∥a(·, λ)

∥∥∞
(
1 + ξ r−1‖e‖r−1

∞
)

< ξp−1.

Arguing by contradiction, suppose that we can find λn ↓ 0 such that

ξp−1 � ξq−1‖ϑ‖∞‖e‖q−1
∞ + ∥∥a(·, λn)

∥∥∞
(
1 + ξ r−1‖e‖r−1

∞
)

for all ξ > 0, all n � 1.
Passing to the limit as n → ∞ and using hypothesis H2(i), we obtain

ξp−q � ‖ϑ‖∞‖e‖q−1
∞ for all ξ > 0,

a contradiction. This proves the claim.
Let u = ξe ∈ int C+. Then we have

−�pu(z) = ξp−1 > ϑ(z)u(z)q−1 + f
(
z, u(z), λ

)
for a.a. z ∈ Ω (2)

(see Claim 1 and hypothesis H2(i)).
Fix λ ∈ (0, λ) and consider the following Carathéodory function

gλ(z, x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

ϑ(z)xq−1 + f (z, x, λ) if 0 � x � u(z),

ϑ(z)u(z)q−1 + f
(
z, u(z), λ

)
if u(z) < x.

(3)

We set Gλ(z, x) = ∫ x

0 gλ(z, s) ds and consider the C1-functional ψλ : W
1,p

0 (Ω) → R defined by

ψλ(u) = 1

p
‖Du‖p

p −
∫

Ω

Gλ

(
z, u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

From (3) it is clear that ψλ is coercive. Also, using the Sobolev embedding theorem, we can see that ψλ is
sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find uλ ∈ W

1,p

0 (Ω)

such that

ψλ(uλ) = inf
[
ψλ(u) : u ∈ W

1,p

0 (Ω)
]
. (4)

Let u ∈ C+ \ {0} with supp u ⊆ Ω+. Recall that u ∈ int C+. Hence, we have that u|Ω+ > 0 (see
hypothesis H1). Therefore, we can find t ∈ (0, 1) small such that tu � u. So, using hypothesis H2(iii)
and (3), we have

ψλ(tu) � tp

p
‖Du‖p

p − tq

q

∫
Ω

ϑ(z)uq dz.
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Since supp u ⊆ Ω+ and q < p, choosing t ∈ (0, 1) even smaller if necessary, we infer that

ψλ(tu) < 0

=⇒ ψλ(uλ) < 0 = ψλ(0)
(
see (4)

)
, hence uλ �= 0.

From (4), we have

ψ ′
λ(uλ) = 0

=⇒ A(uλ) = Ngλ
(uλ). (5)

On (5) first we act with −u−
λ ∈ W

1,p

0 (Ω) and obtain

∥∥Du−
λ

∥∥p

p
= 0

(
see (3)

)
=⇒ uλ � 0, uλ �= 0.

Also, on (5) we act with (uλ − u)+ ∈ W
1,p

0 (Ω) and obtain

〈
A(uλ), (uλ − u)+〉 =

∫
Ω

gλ(z, uλ)(uλ − u)+ dz

=
∫

Ω

[
ϑ(z)uq−1 + f (z, u, λ)

]
(uλ − u)+ dz

(
see (3)

)
�

∫
Ω

ξp−1(uλ − u)+ dz (see Claim 1)

= 〈
A(u), (uλ − u)+〉 (

see (1)
)

=⇒
∫

{uλ>u}

(|Duλ|p−2Duλ − |Du|p−2Du,Duλ − Du
)
RN dz � 0

=⇒ ∣∣{uλ > u}∣∣
N

= 0, hence uλ � u.

So, we have proved that

uλ ∈ [0, u] = {
u ∈ W

1,p

0 (Ω) : 0 � u(z) � u(z) for a.a. z ∈ Ω
}
.

This fact and (3) imply that uλ ∈ S(λ). The nonlinear regularity theory (see Lieberman [13]), implies
that uλ ∈ C+ \ {0}. Invoking Harnack’s inequality (see Pucci and Serrin [19, p. 163]), we infer that
uλ(z) > 0 for all z ∈ Ω .

Now let λ ∈ L and let μ ∈ (0, λ), uλ ∈ S(λ). We have

− �puλ(z) = ϑ(z)uλ(z)
q−1 + f

(
z, uλ(z), λ

)
� ϑ(z)uλ(z)

q−1 + f
(
z, uλ(z), μ

)
for μ a.a. z ∈ Ω (6)(

see hypothesis H2(iii)
)
.
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N.S. Papageorgiou and V.D. Rădulescu / Combined effects in some elliptic problems 267

We introduce the Carathéodory function γμ(z, x) defined by

γμ(z, x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

ϑ(z)xq−1 + f (z, x, μ) if 0 � x � uλ(z),

ϑ(z)uλ(z) + f
(
z, uλ(z), μ

)
if uλ(z) < x.

(7)

We set Γμ(z, x) = ∫ x

0 γμ(z, s) ds and consider the C1-functional τμ : W
1,p

0 (Ω) → R defined by

τμ(u) = 1

p
‖Du‖p

p −
∫

Ω

Γμ

(
z, u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

From (7) it is clear that τμ is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can
find uμ ∈ W

1,p

0 (Ω) such that

τμ(uμ) = inf
[
τμ(u) : u ∈ W

1,p

0 (Ω)
]
.

As before, we can show that

τμ(uμ) < 0 = τμ(0), hence uμ �= 0.

Also, we have

τ ′
μ(uμ) = 0

=⇒ A(uμ) = Nγμ
(uμ).

Acting with −u−
μ ∈ W

1,p

0 (Ω) and with (uμ − uλ)
+ ∈ W

1,p

0 (Ω), as before, we show that

uμ ∈ [0, uλ] = {
u ∈ W

1,p

0 (Ω) : 0 � u(z) � uλ(z) for a.a. z ∈ Ω
}

=⇒ uμ ∈ S(μ)
(
see (7)

)
=⇒ μ ∈ L and so (0, λ] ⊆ L.

This completes the proof. �

Let λ∗ = supL.

Proposition 5. If hypotheses H1 and H2 hold, then λ∗ < ∞.

Proof. Let λ̂+
1 = λ̂1(Ω+) (see Section 2) and take β > λ̂+

1 .

Claim 2. There exists λ0 > 0 big such that

ϑ(z)xq−1 + f (z, x, λ) � βxp−1 for a.a. z ∈ Ω+, all x � 0, all λ � λ0.
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Since q < p, we can find δ > 0 small such that

ϑ(z)xq−1 � βxp−1 for a.a. z ∈ Ω+, all 0 � x � δ (see hypothesis H1). (8)

Note that hypothesis H2(ii) implies that for all λ > 0, we have

lim
x→+∞

f (z, x, λ)

xp−1
= +∞ uniformly for a.a. z ∈ Ω.

So, we can find M = M(λ) > 0 such that

f (z, x, λ) � βxp−1 for a.a. z ∈ Ω all x � M. (9)

Let δ > 0 be as in (8) and λ > 0. By virtue of hypothesis H2(iii), we have

inf
[
f (z, x, λ) : x � δ

] = mδ(λ) > 0,

with λ �→ mδ(λ) nondecreasing and mδ(λ) → +∞ as λ → +∞. So, we can choose λ0 � 1 big such
that

mδ(λ) � βMp−1 for all λ � λ0

=⇒ f (z, x, λ) � βxp−1 for a.a. z ∈ Ω, all δ � x � M, all λ � λ0. (10)

Combining (8), (9), (10), we conclude that Claim 2 holds.
Take λ > λ0 and assume that λ ∈ L. Then we can find uλ ∈ S(λ) such that

−�puλ(z) = ϑ(z)uλ(z)
q−1 + f

(
z, uλ(z), λ

)
� βuλ(z)

q−1 for a.a. z ∈ Ω+

(see Claim 2).
Let û+ ∈ int C+(Ω+) be the principal, Lp-normalized (that is, ‖û+‖Lp(Ω+) = 1) positive eigenfunction

for (−�p, W
1,p

0 (Ω+)). From Proposition 4, we know that

uλ|Ω+ > 0.

So, we can find t ∈ (0, 1) small such that

t û+(z) � uλ(z) for all z ∈ Ω+. (11)

We have

−�p(tû+)(z) = λ̂+
1 (tû+)(z)p−1 < β(tû+)(z)p−1 for a.a. z ∈ Ω+ (12)(

recall that λ̂+
1 < β

)
.
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We consider the following Carathéodory function

kβ(z, x) =

⎧⎪⎨
⎪⎩

β(tû+)(z)p−1 if x < tû+(z),

βxp−1 if t û+(z) � x � uλ(z), (z, x) ∈ Ω+ × R,

βuλ(z)
p−1 if uλ(z) < x

(13)

(see (11)).
We set Kβ(z, x) = ∫ x

0 kβ(z, s) ds and consider the C1-functional χβ : W
1,p

0 (Ω+) → R defined by

χβ(u) = 1

p
‖Du‖Lp(Ω+,RN) −

∫
Ω+

Kβ

(
z, u(z)

)
dz for all u ∈ W

1,p

0 (Ω+).

From (13) it is clear that χβ is coercive and also it is sequentially weakly lower semicontinuous. So, by
the Weierstrass theorem, we can find ũβ ∈ W

1,p

0 (Ω+) such that

χβ(ũβ) = inf
[
χβ(u) : u ∈ W

1,p

0 (Ω+)
]

=⇒ χ ′
β(ũβ) = 0

=⇒ Â(ũβ) = Nkβ
(ũβ) (with Â = A|

W
1,p
0 (Ω+)

). (14)

On (14), first we act with (tû+ − ũβ)+ ∈ W
1,p

0 (Ω+). Then

〈
A(ũβ), (t û+ − ũβ)+〉 =

∫
Ω+

kβ(z, ũβ)(t û+ − ũβ)+ dz

=
∫

Ω+
β(tû+)p−1(tû+ − ũβ)+ dz

�
∫

Ω+
λ̂+

1 (tû+)p−1(tû+ − ũβ)+ dz
(
see (12)

)
= 〈

Â(t û+), (tû+ − ũβ)+〉
=⇒ 〈

Â(tû+) − Â(ũβ), (t û+ − ũβ)+〉
� 0

=⇒ ∣∣{t û+ > ũβ}Ω+
∣∣
N

= 0, hence t û+ � ũβ in Ω+.

Next, on (14) we act with (ũβ − ũλ)
+ ∈ W

1,p

0 (Ω+) where ũλ = uλ|Ω+ (recall that uλ|Ω+ > 0). We have

〈
Â(ũβ), (ũβ − ũλ)

+〉
=

∫
Ω+

kβ(z, ũβ)(ũβ − ũλ)
+ dz

=
∫

Ω+
βũ

p−1
λ (ũβ − ũλ)

+ dz
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270 N.S. Papageorgiou and V.D. Rădulescu / Combined effects in some elliptic problems

�
∫

Ω+

[
ϑ(z)ũ

q−1
λ + f (z, ũλ, λ)

]
(ũβ − ũλ)

+ dz (see Claim 2)

= 〈
Â(ũβ) − Â(ũλ), (ũβ − ũλ)

+〉 (
since uλ ∈ S(λ)

)
=⇒ ∣∣{ũβ > ũλ}Ω+

∣∣
N

= 0, hence ũβ � ũλ in Ω+.

So, finally we have

t û+(z) � ũβ(z) � uλ(z) for all z ∈ Ω+.

From (13) and (14) it follows that

−�pũβ(z) = βũβ(z)p−1 for a.a. z ∈ Ω+, ũβ |Ω+ = 0, ũβ � 0,

a contradiction since β > λ̂+
1 (recall that every nonprincipal eigenvalue of (−�p, W

1,p

0 (Ω+))), has nodal
(that is, sign changing) eigenfunctions, see [9].

This means that λ∗ � λ0 < ∞. �

In what follows, for every λ > 0, by ϕλ : W
1,p

0 (Ω) → R we denote the energy functional for problem
(Pλ) defined by

ϕλ(u) = 1

p
‖Du‖p

p − 1

q

∫
Ω

ϑ(z)u+(z)q dz −
∫

Ω

F
(
z, u(z), λ

)
dz

for all u ∈ W
1,p

0 (Ω).
Evidently ϕλ ∈ C1(W

1,p

0 (Ω)).

Proposition 6. If hypotheses H1 and H2 hold, then λ∗ ∈ L.

Proof. Let {λn}n�1 ⊆ L such that λn → (λ∗)− as n → ∞ and for every n � 1, let un ∈ S(λn). We may
assume that

ϕλn
(un) < 0 for all n � 1. (15)

Indeed, if λ < λ̃ < λ∗ and ũ ∈ S(λ̃), then by virtue of hypothesis H2(iii), we have

− �pũ(z) = ϑ(z)ũ(z)q−1 + f
(
z, ũ(z), λ̃

)
� ϑ(z)ũ(z)q−1 + f

(
z, ũ(z), λ

)
for a.a. z ∈ Ω (16)

(see hypothesis H2(iii)).
Then reasoning as in the proof of Proposition 4, we introduce the following truncation of the reaction

of problem (Pλ):

wλ(z, x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

ϑ(z)xq−1 + f (z, x, λ) if 0 � x � ũ(z),

ϑ(z)ũ(z)q−1 + f
(
z, ũ(z), λ

)
if ũ(z) < x.

(17)
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N.S. Papageorgiou and V.D. Rădulescu / Combined effects in some elliptic problems 271

This is a Carathéodory function. We set Wλ(z, x) = ∫ x

0 wλ(z, s) ds and consider the C1-functional

ψ̂λ : W
1,p

0 (Ω) → R defined by

ψ̂λ(u) = 1

p
‖Du‖p

p −
∫

Ω

Wλ

(
z, u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

Again, ψ̂λ is coercive (see (17)) and sequentially weakly lower semicontinuous. So, we can find uλ ∈
W

1,p

0 (Ω) such that

ψ̂λ(uλ) = inf
[
ψ̂λ(u) : u ∈ W

1,p

0 (Ω)
]
. (18)

As in the proof of Proposition 4, we show that

ψ̂λ(uλ) < 0 = ψ̂λ(0), hence uλ �= 0.

From (18), we have

ψ̂ ′
λ(uλ) = 0

=⇒ A(uλ) = Nwλ
(uλ). (19)

On (19) first we act with −u−
λ ∈ W

1,p

0 (Ω) and obtain uλ � 0, uλ �= 0 (see (17)). Then we act with
(uλ − ũ)+ ∈ W

1,p

0 (Ω). We obtain〈
A(uλ), (uλ − ũ)+〉

=
∫

Ω+
wλ(z, uλ)(uλ − ũ)+ dz

=
∫

Ω+

[
ϑ(z)ũq−1 + f (z, ũ, λ)

]
(uλ − ũ)+ dz

(
see (17)

)
�

〈
A(ũ), (uλ − ũ)+〉 (

see (16)
)

=⇒ 〈
A(uλ) − A(ũ), (uλ − ũ)+〉

� 0

=⇒ ∣∣{uλ > ũ}∣∣
N

= 0, hence uλ � ũ.

So, we have

uλ ∈ [0, ũ] = {
u ∈ W

1,p

0 (Ω) : 0 � u(z) � ũ(z) for a.a. z ∈ Ω
}

=⇒ uλ ∈ S(λ)
(
see (17)

)
and ϕλ(uλ) < 0 (since ϕλ|[0,ũ] = ψ̂λ|[0,ũ]).

This proves that we can always assume that (15) holds.
From (15) we have

‖Dun‖p
p − p

q

∫
Ω

ϑ(z)uq
n dz −

∫
Ω

pF(z, un, λn) dz < 0 for all n � 1. (20)
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Also, since un ∈ S(λn) for all n � 1, we have

A(un) = ϑ(z)uq−1
n + Nfλn

(un), n � 1, (21)

where fλn
(z, x) = f (z, x, λn). On (21) we act with un ∈ W

1,p

0 (Ω) and obtain

− ‖Dun‖p
p +

∫
Ω

ϑ(z)uq
n dz +

∫
Ω

f (z, un, λn)un dz = 0 for all n � 1. (22)

Adding (20) and (22), we obtain

∫
Ω

[
f (z, un, λn)un − pF(z, un, λn)

]
dz �

(
p

q
− 1

) ∫
Ω

ϑ(z)uq
n dz for all n � 1. (23)

It is clear that in hypothesis H2(i) without any loss of generality, we may assume that λ → r(λ) and
λ → ‖a(·, λ)‖∞ are both nondecreasing in (0, +∞). Then hypotheses H2(i)(ii), imply that we find
c2, c3 > 0 such that

c3x
τ − c4 � f (z, x, λn)x − pF(z, x, λn) for a.a. z ∈ Ω, all x � 0, all n � 1. (24)

Using (24) in (23) and recalling that τ > q (see hypothesis H2(ii)), we infer that

{un}n�1 ⊆ Lτ(Ω) is bounded. (25)

It is clear from hypothesis H2(iii) that without any loss of generality, we may assume that τ < r1 =
r(λ1) � r(λn) for all n � 1 (see hypothesis H1(i)). Suppose N �= p. Then we can find t ∈ (0, 1) such
that

1

r1
= 1 − t

τ
+ t

p∗ . (26)

Invoking the interpolation inequality (see, for example, Gasinski and Papageorgiou [9, p. 905]), we have

‖un‖r � ‖un‖1−t
τ ‖un‖t

p∗ for all n � 1

=⇒ ‖un‖r
r � M1‖un‖tr for some M1 > 0, all n � 1 (27)

(see (25) and use the Sobolev embedding theorem).
From hypothesis H2(i), we have

f (z, x, λn)x � c4
(
1 + xr

)
for a.a. z ∈ Ω, all x � 0, some c4 > 0.

From (22), (25) and since τ > q (see H2(ii)) and ϑ ∈ L∞(Ω) (see H1)

‖Dun‖p
p � c5

(
1 + ‖un‖r

r

)
for some c5 > 0, all n � 1

� c6
(
1 + ‖un‖tr

)
for some c6 > 0, all n � 1

(
see (27)

)
. (28)
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From (26) and our hypothesis on τ (see H2(iii)), it follows that tr < p. Hence from (28) we infer that

{un}n�1 ⊆ W
1,p

0 (Ω) is bounded.

If N = p, then since p∗ = +∞ and W
1,p

0 (Ω) is compactly embedded into Lq(Ω) for all q ∈ [1, ∞),
then the above argument works, if we replace p∗ by η > r > p big. Then again we reach the same
conclusion.

So, we may assume that

un
w→ u in W

1,p

0 (Ω) and un → u in Lr∗(Ω)
(
r∗ = r

(
λ∗)) as n → ∞. (29)

On (21) we act with un − u ∈ W
1,p

0 (Ω), pass to the limit as n → ∞ and use (29). Then

lim
n→∞

〈
A(un), un − u

〉 = 0

=⇒ un → u in W
1,p

0 (Ω) as n → ∞ (30)

(see Proposition 3).
Passing to the limit as n → ∞ in (21) and using (30), we obtain

A(u) = ϑ(z)uq−1 + Nfλ∗ (u). (31)

We need to show that u �= 0, because then u ∈ S(λ∗), that is λ∗ ∈ L. To this end, we consider the
following auxiliary Dirichlet problem

− �pu(z) = ϑ(z)u(z)q−1 in Ω+, u|∂Ω+ = 0, u > 0. (32)

Since q < p, a straightforward application of the direct method (as before), establishes that problem
(32) admits a nontrivial solution u ∈ W

1,p

0 (Ω), u � 0. The nonlinear regularity theory and the nonlinear
maximum principle (see, for example, Gasinski and Papageorgiou [9, pp. 737–738]), imply that u ∈
int C+. Moreover, Theorem 2 of Diaz and Saa [7], implies that u ∈ int C+ is the unique positive solution
of (32).

Now, let λ ∈ L and uλ ∈ S(λ). We introduce the following Carathéodory function

j (z, x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

ϑ(z)xq−1 if 0 � x � uλ(z), (z, x) ∈ Ω+ × R,

ϑ(z)uλ(z)
q−1 if uλ(z) < x.

(33)

Let J (z, x) = ∫ x

0 j (z, s) ds and consider the C1-functional J : W
1,p

0 (Ω+) → R defined by

J (u) = 1

p
‖Du‖p

Lp(Ω+,RN )
−

∫
Ω+

J
(
z, u(z)

)
dz for all u ∈ W

1,p

0 (Ω+).



AUTHOR  C
OPY
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As before, (33) implies that J (·) is coercive. Also, it is sequentially weakly lower semicontinuous. So,
we can find ũ ∈ W 1,p(Ω+) such that

J (ũ) = inf
[
J (u) : u ∈ W

1,p

0 (Ω+)
]
. (34)

Since q < p and uλ|Ω+ > 0 (recall uλ ∈ int C+), as in previous similar cases, we have

J (ũ) < 0 = J (0), hence ũ �= 0.

From (34), we have

J ′(ũ) = 0,

=⇒ A(ũ) = Nj(ũ). (35)

On (35) we act with −ũ− ∈ W
1,p

0 (Ω+) and with (ũ − uλ)
+ ∈ W

1,p

0 (Ω+) (here we use the fact that
uλ|Ω+ > 0) and we obtain

0 < ũ(z) � uλ(z) for all z ∈ Ω+, ũ �= 0

=⇒ ũ is a positive solution of (32)

=⇒ ũ = u
(
recall that u is the unique positive solution of (32)

)
=⇒ u � uλ in Ω+.

So, we have

u(z) � un(z) for all z ∈ Ω+, all n � 1

=⇒ u(z) � u(z) for all z ∈ Ω+
(
see (30)

)
=⇒ u �= 0.

Therefore, u ∈ S(λ∗) and so λ∗ ∈ L. �

Next, we look for additional positive solutions for problem (Pλ). To this end, we consider the following
auxiliary Dirichlet problem:⎧⎪⎨

⎪⎩
−�pu(z) = ϑ+(z)u(z)q−1 + f

(
z, u(z), λ

)
in Ω,

u = 0 on ∂Ω,

u > 0 in Ω.

(Auλ)

Reasoning as in the proofs of Propositions 4, 5 and 6 (with Ω+ replaced by Ω) we obtain the following
proposition.

Proposition 7. If hypotheses H1 and H2 hold, then there exists λ∗
0 ∈ (0, λ∗] such that for all λ ∈ (0, λ∗

0]
problem (Auλ) has at least one positive solution ũλ ∈ int C+.
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Remark 2. Note that in this case, the solution ũλ ∈ C+ \ {0} satisfies

−�pũλ(z) = ϑ+(z)ũλ(z)
q−1 + f

(
z, ũλ(z), λ

)
� 0 for a.a. z ∈ Ω

(
see hypotheses H2(iii)

)
=⇒ ũλ ∈ int C+ (see Gasinski and Papageorgiou [9, p. 738]).

We can use Proposition 7, to produce a multiplicity result for the positive solutions of problem (Pλ)
with λ ∈ (0, λ∗

0].

Proposition 8. If hypotheses H1 and H2 hold and λ ∈ (0, λ∗
0], then problem (Pλ) has at least two positive

solutions

uλ, ûλ ∈ C+ \ {0}, uλ �= ûλ,

0 < uλ(z) � ûλ(z) for all z ∈ Ω.

Proof. Let μ ∈ (λ, λ∗
0). From Proposition 4, we know that λ, μ ∈ L and we can find uλ ∈ S(λ) ⊆ C+

and ûλ ∈ int C+ solution of (Auμ). We claim that we can have

uλ � ũμ. (36)

Indeed note that

− �pũμ(z) = ϑ+(z)ũμ(z)q−1 + f
(
z, ũμ(z), μ

)
� ϑ(z)ũμ(z)q−1 + f

(
z, ũμ(z), λ

)
for a.a. z ∈ Ω (37)

(see hypothesis H2(iii)).
We consider the following truncation of the reaction of problem (Pλ).

ĝλ(z, x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

ϑ(z)xq−1 + f (z, x, λ) if 0 � x � ũμ(z),

ϑ(z)ũμ(z)q−1 + f
(
z, ũμ(z), λ

)
if ũμ(z) < x.

(38)

This is a Carathéodory function.
We set Ĝλ(z, x) = ∫ x

0 ĝλ(z, s) ds and introduce the C1-functional ψ̂λ : W
1,p

0 (Ω) → R defined by

ψ̂λ(u) = 1

p
‖Du‖p

p −
∫

Ω

Ĝλ

(
z, u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

Evidently ψ̂λ is coercive (see (38)) and sequentially weakly lower semicontinuous. So, we can find
uλ ∈ W

1,p

0 (Ω) such that

ψ̂λ(uλ) = inf
[
ψ̂λ(u) : u ∈ W

1,p

0 (Ω)
]
. (39)
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Since q < p, as before (see, for example, the proof of Proposition 4), we have

ψ̂λ(uλ) < 0 = ψ̂λ(0), hence uλ �= 0.

From (39) we have

ψ̂ ′
λ(uλ) = 0

=⇒ A(uλ) = Nĝλ
(uλ). (40)

On (40) we act with −u−
λ ∈ W

1,p

0 (Ω) and with (uλ − ũμ)+ ∈ W
1,p

0 (Ω). As in the proof of Proposition 4,
using this time (37), we show that

uλ ∈ [0, ũμ] = {
u ∈ W

1,p

0 (Ω) : 0 � u(z) � ũμ(z) for a.a. z ∈ Ω
}
.

Hence uλ ∈ S(λ) ⊆ C+ (see (38)) and uλ(z) > 0 for all z ∈ Ω (by Harnack’s inequality, see Pucci and
Serrin [19, p. 163]). Therefore (36) holds.

We introduce the following truncation of the reaction of problem (Pλ):

kλ(z, x) =
{

ϑ(z)uλ(z)
q−1 + f

(
z, uλ(z), λ

)
if x � uλ(z),

ϑ(z)xq−1 + f (z, x, λ) if uλ(z) < x.
(41)

This is a Carathéodory function.
We set Kλ(z, x) = ∫ x

0 kλ(z, s) ds and consider the C1-functional τλ : W
1,p

0 (Ω) → R defined by

τλ(u) = 1

p
‖Du‖p

p −
∫

Ω

Kλ

(
z, u(z)

)
dz for all u ∈ W

1,p

0 (Ω).

From the proof of Proposition 6, we know that

τλ satisfies the C-condition. (42)

We truncate kλ(z, ·) as follows:

k̂λ(z, x) =
{

kλ(z, x) if x � ũμ(z),

kλ

(
z, ũμ(z)

)
if ũμ(z) < x.

(43)

This too is a Carathéodory function. We set K̂λ(z, x) = ∫ x

0 k̂λ(z, s) ds and consider the C1-functional

τ̂λ : W
1,p

0 (Ω) → R defined by

τ̂λ(u) = 1

p
‖Du‖p

p −
∫

Ω

K̂λ

(
z, u(z)

)
dz for all u ∈ W

1,p

0 (Ω).
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From (43) it is clear that τ̂λ is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can
find uλ ∈ W

1,p

0 (Ω) such that

τ̂λ(uλ) = inf
[
τ̂λ(u) : u ∈ W

1,p

0 (Ω)
]

=⇒ τ̂ ′
λ(uλ) = 0

=⇒ A(uλ) = Nk̂λ
(uλ). (44)

On (44) we act, first with (uλ − uλ) ∈ W
1,p

0 (Ω) and then with (uλ − ũμ)+ ∈ W
1,p

0 (Ω). As in the proof
of Proposition 5, we show that

uλ ∈ [uλ, ũμ] = {
u ∈ W

1,p

0 (Ω) : uλ(z) � u(z) � ũμ(z) for a.a. z ∈ Ω
}
.

If uλ �= uλ, then this is the desired second positive solution of problem (Pλ) and uλ � uλ = ûλ.
So, we may assume that uλ = uλ. Let ρ = ‖ũμ‖∞ (recall that ũ ∈ int C+, see Proposition 7) and let

ξρ = ξρ(μ) > 0 be as postulated by hypothesis H2(iv) for the perturbation f (z, ·, μ). We have

−�puλ(z) + ξρuλ(z)
p−1

= ϑ(z)uλ(z)
q−1 + f

(
z, uλ(z), λ

) + ξρuλ(z)
p−1

= ϑ(z)uλ(z)
q−1 + f

(
z, uλ(z), μ

) + ξρuλ(z)
p−1 + [

f
(
z, uλ(z), λ

) − f
(
z, uλ(z), μ

)]
� ϑ+(z)uλ(z)

q−1 + f
(
z, uλ(z), μ

) + ξρuλ(z)
p−1 − δ(λ′,λ)(z)

with δ(λ′,λ)(z) = f
(
z, uλ(z), μ

) − f
(
z, uλ(z), λ

)
� ϑ+(z)ũμ(z) + f

(
z, ũμ(z), μ

) + ξρũμ(z)p−1
(
see hypothesis H2(iv)

)
= −�pũμ(z) + ξρũμ(z)p−1 for a.a. z ∈ Ω. (45)

For every K ⊆ Ω compact, we have uλ|K � ξ > 0 (recall uλ(z) > 0 for all z ∈ Ω , see Proposition 4).
So, by hypothesis H2(iii) we have

δλ,μ|K � mξ > 0.

Then from (45) and Proposition 2.6 of Arcoya and Ruiz [4] (recall that ũμ ∈ int C+), we infer that

ũμ − uλ ∈ int C+. (46)

We claim that uλ is a local C1
0(Ω)-minimizer of the functional τλ. Indeed, if this is not the case, we can

find {un}n�1 ⊆ C1
0(Ω) such that

un → uλ in C1
0(Ω) and τλ(un) < τλ(uλ) for all n � 1. (47)

From (46) and (47) it follows that we can find n0 ∈ N such that

un � ũμ for all n � n0

=⇒ u+
n � ũμ for all n � n0 (recall ũμ ∈ int C+).
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Also, we have

τ̂λ

(
u+

n

) = τλ

(
u+

n

)
� τλ(un) < τλ(uλ) for all n � n0

which contradicts the fact that uλ = uλ is a global minimizer of τ̂λ.
Since uλ is a local C1

0(Ω)-minimizer of τλ. We may assume that uλ is an isolated critical point of τλ,
or otherwise we already have a sequence of distinct positive solutions, since the critical set of τλ is in
[uλ) = {u ∈ W

1,p

0 (Ω) : uλ(z) � u(z) for a.a. z ∈ Ω} (see (41)). Therefore, we can find ρ ∈ (0, 1) small
such that

τλ(uλ) < inf
[
τλ(u) : ‖u − uλ‖ = ρ

] = mλ (48)

(see Aizicovici, Papageorgiou and Staicu [1, Proof of Proposition 29]).
Moreover, by virtue of hypothesis H2(ii), if u ∈ int C+, then

τλ(tu) → −∞ as t → +∞. (49)

Because of (42), (48) and (49), we can apply Theorem 1 (the mountain pass theorem) and find ûλ ∈
W

1,p

0 (Ω) such that

τ ′
λ(ûλ) = 0 and mλ � τ(ûλ). (50)

From (49), (50) and since the critical set of τλ is in [uλ), it follows that

ûλ ∈ S(λ) ⊆ C+ and ûλ �= uλ, uλ � ûλ.

Finally from Proposition 4, we have

0 < uλ(z) � ûλ(z) for all z ∈ Ω.

The proof is now complete. �

So, summarizing the situation for problem (Pλ), we can state the following result describing the set of
positive solutions as the parameter λ > 0 varies.

Theorem 9. If hypotheses H1 and H2 hold, then

(a) there exists λ∗ > 0 such that for all λ ∈ (0, λ∗] problem (Pλ) has at least one positive solution
uλ ∈ C+ with uλ(z) > 0 for all z ∈ Ω and for λ > λ∗ there are no positive solutions;

(b) there exists λ∗
0 ∈ (0, λ∗] such that for all λ ∈ (0, λ∗

0) problem (Pλ) has at least two positive
solutions

uλ, ûλ ∈ C+, uλ � ûλ, uλ �= ûλ, uλ(z) > 0 for all z ∈ Ω.

Remark 3. It will be interesting to know if λ∗
0 = λ∗. Also, it is not clear to us if this result can be

extended to Neumann problems. A careful inspection of the proofs reveals that they fail in the Neumann
case.
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