RESEARCH ARTICLE

Discrete boundary value problems involving oscillatory nonlinearities: small and large solutions

Alexandru Kristály ${ }^{\text {a }}$, Mihai Mihăilescu ${ }^{\text {b,c }}$ and Vicenţiu Rădulescu ${ }^{\text {c,d,* }}$
${ }^{\text {a }}$ Babeş-Bolyai University, Department of Economics, 400591 Cluj-Napoca, Romania;
${ }^{\mathrm{b}}$ Department of Mathematics, Central European University, 1051 Budapest, Hungary;
${ }^{\text {c }}$ Department of Mathematics, University of Craiova, 200585 Craiova, Romania;
${ }^{\mathrm{d}}$ Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

(Submitted: February 2009)

Abstract

We consider the discrete boundary value problem (P): $-\Delta(\Delta u(k-1))=f(u(k)), k \in[1, T]$, $u(0)=u(T+1)=0$, where the nonlinear term $f:[0, \infty) \rightarrow \mathbb{R}$ has an oscillatory behaviour near the origin or at infinity. By a direct variational method we show that (P) has a sequence of non-negative, distinct solutions which converges to 0 (resp. $+\infty$) in the sup-norm whenever f oscillates at the origin (resp. at infinity).

Keywords: difference equations; oscillatory nonlinearities; small solutions; large solutions
AMS Subject Classification: 46E39, 34K10, 35B38

1. Introduction and main results

In many cases a problem in a continuous framework can be handled by using a suitable method from discrete mathematics and conversely; a beautiful description of such phenomena can be found in Lovász [12]. The modeling/simulation of certain nonlinear problems from economics, biological neural networks, optimal control and others enforced in a natural manner the rapid development of the theory of difference equations. The reader may consult the comprehensive monographs of Agarwal [1], Kelley-Peterson [10], Lakshmikantham-Trigiante [11].

Within the theory of difference equations, a large class of problems is the nonlinear discrete boundary value problems. To be more precise, we consider the problem

$$
\left\{\begin{array}{l}
-\Delta(\Delta u(k-1))=f(u(k)), \quad k \in[1, T] \tag{P}\\
u(0)=u(T+1)=0
\end{array}\right.
$$

where $T \geq 2$ is an integer, $[1, T]$ is the discrete interval $\{1, \ldots, T\}, \Delta u(k)=$ $u(k+1)-u(k)$ is the forward difference operator, and f is a continuous nonlinearity. In order to establish existence/multiplicity of solutions for (P) under specific restrictions on f (sublinear or superlinear at infinity), the authors exploited various abstract methods as fixed point theorems, sub- and super-solution

[^0]arguments, Brouwer degree and critical point theory. We refer the reader to the recent papers of Agarwal-Perera-O'Regan [2, 3], Bereanu-Mawhin [4, 5], BereanuThompson [6], Bonanno-Candito [7], Cabada-Iannizzotto-Tersian [8], Cai-Yu [9], Mihăilescu-Rădulescu-Tersian [13], Yu-Guo [15], Tang-Luo-Li-Ma [14], Zhang-Liu [16], and references therein.

The main purpose of the present paper is to trait problem (P) when the nonlinear term $f:[0, \infty) \rightarrow \mathbf{R}$ has a suitable oscillatory behaviour. A direct variational argument provides two results (see Theorems 1.1 and 1.2), guaranteeing sequences of non-negative solutions with further asymptotic properties whenever f oscillates near the origin or at infinity. Before to state our results, we mention that solutions of (P) are going to be sought in the function space

$$
X=\{u:[0, T+1] \rightarrow \mathbb{R} ; u(0)=u(T+1)=0\}
$$

Clearly, X is a T-dimensional Hilbert space (see [2]) with the inner product

$$
\langle u, v\rangle=\sum_{k=1}^{T+1} \Delta u(k-1) \Delta v(k-1), \quad \forall u, v \in X
$$

The associated norm is defined by

$$
\|u\|=\left(\sum_{k=1}^{T+1}|\Delta u(k-1)|^{2}\right)^{1 / 2}
$$

The space X being finite-dimensional, the sup-norm $\|\cdot\|_{\infty}$ is equivalent to $\|\cdot\|$; here, we denote $\|u\|_{\infty}=\max _{k \in[1, T]}|u(k)|, u \in X$.

In the sequel, we state our results. Let $F(s)=\int_{0}^{s} f(t) d t, s \in[0, \infty)$.
Our first result concerns the case when f has a certain type of oscillation near the origin. To be more precise, we assume
$\left(H^{0}\right) \quad \lim \inf _{s \rightarrow 0^{+}} \frac{f(s)}{s}<0 ; \lim \sup _{s \rightarrow 0^{+}} \frac{F(s)}{s^{2}}>\frac{1}{T}$.
ThEOREM 1.1. Let $f \in C^{0}([0, \infty) ; \mathbf{R})$ verifying $\left(H^{0}\right)$. Then there exists a sequence $\left\{u_{n}^{0}\right\}_{n} \subset X$ of non-negative, distinct solutions of (P) such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}^{0}\right\|_{\infty}=\lim _{n \rightarrow \infty}\left\|u_{n}^{0}\right\|=0 \tag{1}
\end{equation*}
$$

A perfect counterpart of Theorem 1.1 can be stated when the nonlinear term oscillates at infinity. Instead of $\left(H^{0}\right)$, we assume

$$
\left(H^{\infty}\right) \quad \liminf _{s \rightarrow \infty} \frac{f(s)}{s}<0 ; \lim \sup _{s \rightarrow \infty} \frac{F(s)}{s^{2}}>\frac{1}{T}
$$

Theorem 1.2. Let $f \in C^{0}([0, \infty) ; \mathbf{R})$ verifying $\left(H^{\infty}\right)$ and $f(0)=0$. Then there exists a sequence $\left\{u_{n}^{\infty}\right\}_{n} \subset X$ of non-negative, distinct solutions of (P) such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}^{\infty}\right\|_{\infty}=\lim _{n \rightarrow \infty}\left\|u_{n}^{\infty}\right\|=\infty \tag{2}
\end{equation*}
$$

Example 1.3 (a) Let $\alpha, \beta, \gamma \in \mathbf{R}$ such that $0<\alpha<1<\alpha+\beta$, and $\gamma \in(0,1)$. Then, the function $f:[0, \infty) \rightarrow \mathbf{R}$ defined by $f(0)=0$ and $f(s)=s^{\alpha}\left(\gamma+\sin s^{-\beta}\right)$, $s>0$, verifies hypothesis $\left(H^{0}\right)$.
(b) Let $\alpha, \beta, \gamma \in \mathbf{R}$ such that $1<\alpha,|\alpha-\beta|<1$, and $\gamma \in(0,1)$. Then, the function $f:[0, \infty) \rightarrow \mathbf{R}$ defined by $f(s)=s^{\alpha}\left(\gamma+\sin s^{\beta}\right)$ verifies $\left(H^{\infty}\right)$.

The paper is divided as follows. In the next section we consider a related difference equation to (P); the existence of a non-negative solution is proved under some generic assumptions. This result is used in Sections 3 and 4, where Theorems 1.1 and 1.2 are proved by a careful analysis of certain energy levels associated to (P).

2. A key result

For a fixed $c>0$, we consider the problem

$$
\left\{\begin{array}{l}
-\Delta(\Delta u(k-1))+c u(k)=g(u(k)), \quad k \in[1, T] \tag{c}\\
u(0)=u(T+1)=0
\end{array}\right.
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Moreover, let $E_{c}: X \rightarrow \mathbb{R}$ be the energy functional associated to problem $\left(\mathrm{P}_{c}\right)$ defined by

$$
E_{c}(u)=\frac{1}{2}\|u\|^{2}+\frac{c}{2} \sum_{k=1}^{T}(u(k))^{2}-\mathcal{G}(u), \quad u \in X
$$

where

$$
\mathcal{G}(u)=\sum_{k=1}^{T} G(u(k)), \quad \text { and } \quad G(s)=\int_{0}^{s} g(t) d t, \quad s \in \mathbb{R}
$$

It is immediate to show that E_{c} is well-defined, it belongs to $C^{1}(X ; \mathbb{R})$ and

$$
E_{c}^{\prime}(u)(v)=\langle u, v\rangle+c \sum_{k=1}^{T} u(k) v(k)-\sum_{k=1}^{T} g(u(k)) v(k), \quad \forall u, v \in X
$$

Since we have

$$
\langle u, v\rangle=-\sum_{k=1}^{T+1} \Delta(\Delta u(k-1)) v(k)
$$

an element $u \in X$ is a solution for $\left(\mathrm{P}_{c}\right)$ if $E_{c}^{\prime}(u)(v)=0$ for every $v \in X$, i.e., u is a critical point of E_{c}.

Let $d<0<a<b$ some fixed numbers. We introduce the set

$$
\begin{equation*}
N^{b}=\{u \in X: d \leq u(k) \leq b \text { for every } k \in[1, T]\} \tag{3}
\end{equation*}
$$

We assume on $g: \mathbf{R} \rightarrow \mathbf{R}$ that

$$
\left(H_{g}\right) \quad g(s)=0 \text { for } s \leq 0, \text { and } g(s) \leq 0 \text { for every } s \in[a, b] .
$$

The main result of this section is as follows.
Proposition 2.1. Assume that $g: \mathbf{R} \rightarrow \mathbf{R}$ verifies $\left(H_{g}\right)$. Then
(a) E_{c} is bounded from below on N^{b} attaining its infimum at $\tilde{u} \in N^{b}$;
(b) $\tilde{u}(k) \in[0, a]$ for every $k \in[1, T]$;
(c) \tilde{u} is a solution of $\left(\mathrm{P}_{c}\right)$.

Proof. (a) Since the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|$ are equivalent in the finite-dimensional space X, the set N^{b} is compact in X. Combining this fact with the continuity of E_{c}, we infer that $\left.E_{c}\right|_{N^{b}}$ attains its infimum at $\tilde{u} \in N^{b}$.
(b) Let $K=\{k \in[1, T]: \tilde{u}(k) \notin[0, a]\}$ and suppose that $K \neq \emptyset$. Define the truncation function $\gamma: \mathbf{R} \rightarrow \mathbf{R}$ by $\gamma(s)=\min \left(s_{+}, a\right)$, where $s_{+}=\max (s, 0)$. Now, set $w=\gamma \circ \tilde{u}$. Since $\gamma(0)=0$ we have that $w(0)=w(T+1)=0$, so $w \in X$. Moreover, $w(k) \in[0, a]$ for every $k \in[1, T]$; thus $w \in N^{a} \subset N^{b}$.

We introduce the sets

$$
K_{-}=\{k \in K: \tilde{u}(k)<0\} \quad \text { and } \quad K_{+}=\{k \in K: \tilde{u}(k)>a\} .
$$

Thus, $K=K_{-} \cup K_{+}$, and we have that $w(k)=\tilde{u}(k)$ for all $k \in[1, T] \backslash K, w(k)=0$ for all $k \in K_{-}$, and $w(k)=a$ for all $k \in K_{+}$. Moreover, we have

$$
\begin{align*}
E_{c}(w)-E_{c}(\tilde{u}) & =\frac{1}{2}\left(\|w\|^{2}-\|\tilde{u}\|^{2}\right)+\frac{c}{2} \sum_{k=1}^{T}\left[(w(k))^{2}-(\tilde{u}(k))^{2}\right]-[\mathcal{G}(w)-\mathcal{G}(\tilde{u})] \\
& =: \frac{1}{2} I_{1}+\frac{c}{2} I_{2}-I_{3} \tag{4}
\end{align*}
$$

Since γ is a Lipschitz function with Lipschitz-constant 1 , and $w=\gamma \circ \tilde{u}$, we have

$$
\begin{align*}
I_{1} & =\|w\|^{2}-\|\tilde{u}\|^{2}=\sum_{k=1}^{T+1}\left[|\Delta w(k-1)|^{2}-|\Delta \tilde{u}(k-1)|^{2}\right] \\
& =\sum_{k=1}^{T+1}\left[|w(k)-w(k-1)|^{2}-|\tilde{u}(k)-\tilde{u}(k-1)|^{2}\right] \\
& \leq 0 \tag{5}
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
I_{2} & =\sum_{k=1}^{T}\left[(w(k))^{2}-(\tilde{u}(k))^{2}\right]=\sum_{k \in K}\left[(w(k))^{2}-(\tilde{u}(k))^{2}\right] \\
& =\sum_{k \in K_{-}}-(\tilde{u}(k))^{2}+\sum_{k \in K_{+}}\left[a^{2}-(\tilde{u}(k))^{2}\right] \\
& \leq 0 \tag{6}
\end{align*}
$$

Next, we estimate I_{3}. First, let us point out that $G(s)=0$ for $s \leq 0$; thus, $\sum_{k \in K_{-}}[G(w(k))-G(\tilde{u}(k))]=0$. By the mean value theorem, for every $k \in K_{+}$, there exists $n_{k} \in[a, \tilde{u}(k)] \subset[a, b]$ such that $G(w(k))-G(\tilde{u}(k))=G(a)-$ $G(\tilde{u}(k))=g\left(n_{k}\right)(a-\tilde{u}(k))$. Taking into account hypothesis $\left(H_{g}\right)$, we have that $G(w(k))-G(\tilde{u}(k)) \geq 0$ for every $k \in K_{+}$. Consequently,

$$
\begin{align*}
I_{3} & =\mathcal{G}(w)-\mathcal{G}(\tilde{u})=\sum_{k \in K}[G(w(k))-G(\tilde{u}(k))]=\sum_{k \in K_{+}}[G(w(k))-G(\tilde{u}(k))] \\
& \geq 0 . \tag{7}
\end{align*}
$$

Combining relations (5)-(7) with (4), we have that

$$
E_{c}(w)-E_{c}(\tilde{u}) \leq 0
$$

On the other hand, since $w \in N^{b}$, then $E_{c}(w) \geq E_{c}(\tilde{u})=\inf _{N^{b}} E_{c}$. So, every term in $E_{c}(w)-E_{c}(\tilde{u})$ should be zero. In particular, from I_{2}, we have

$$
\sum_{k \in K_{-}}(\tilde{u}(k))^{2}=\sum_{k \in K_{+}}\left[a^{2}-(\tilde{u}(k))^{2}\right]=0
$$

which imply that $\tilde{u}(k)=0$ for every $k \in K_{-}$and $\tilde{u}(k)=a$ for every $k \in K_{+}$. By definition of the sets K_{-}and K_{+}, we must have $K_{-}=K_{+}=\emptyset$, which contradicts $K_{-} \cup K_{+}=K \neq \emptyset$.
(c) Let us fix $v \in X$ arbitrarily. Due to (b), it is clear that $\tilde{u}+\varepsilon v \in N^{b}$ for $|\varepsilon|$ small enough. Consequently, due to (a), the function $j(\varepsilon)=E_{c}(\tilde{u}+\varepsilon v)$ has its minimum at 0 ; being differentiable at 0 , we have that $j^{\prime}(0)=0$, i.e., $E_{c}^{\prime}(\tilde{u})(v)=0$, which means that \tilde{u} is a solution of $\left(\mathrm{P}_{c}\right)$. This completes the proof.

3. Proof of Theorem 1.1

We assume hypothesis $\left(H^{0}\right)$ holds. In particular, we have $f(0)=0$. One may fix $c_{0}>0$ such that $\liminf _{s \rightarrow 0^{+}} \frac{f(s)}{s}<-c_{0}<0$. Consequently, there is a sequence $\left\{\bar{s}_{n}\right\}_{n} \subset(0,1)$ converging (decreasingly) to 0 , such that

$$
\begin{equation*}
f\left(\bar{s}_{n}\right)<-c_{0} \bar{s}_{n} . \tag{8}
\end{equation*}
$$

Let us define the functions $g_{0}, G_{0}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
g_{0}(s)=f\left(s_{+}\right)+c_{0} s_{+} \quad \text { and } \quad G_{0}(s)=\int_{0}^{s} g_{0}(t) d t, \quad s \in \mathbb{R} \tag{9}
\end{equation*}
$$

where $s_{+}=\max (s, 0)$. Due to (8), $g_{0}\left(\bar{s}_{n}\right)<0$; so, there are two sequences $\left\{a_{n}\right\}_{n}$, $\left\{b_{n}\right\}_{n} \subset(0,1)$, both converging to 0 , such that $b_{n+1}<a_{n}<\bar{s}_{n}<b_{n}$ for every $n \in \mathbb{N}$ and

$$
g_{0}(s) \leq 0 \text { for all } s \in\left[a_{n}, b_{n}\right]
$$

In this way, hypothesis $\left(H_{g}\right)$ is verified for g_{0} on every interval $\left[a_{n}, b_{n}\right], n \in \mathbb{N}$. Applying Proposition 2.1 to every interval $\left[a_{n}, b_{n}\right], n \in \mathbb{N}$, the problem

$$
\left\{\begin{array}{l}
-\Delta(\Delta u(k-1))+c_{0} u(k)=g_{0}(u(k)), \quad k \in[1, T] \tag{0}\\
u(0)=u(T+1)=0
\end{array}\right.
$$

has a sequence of non-negative solutions $\left\{u_{n}^{0}\right\}_{n} \subset X$, where u_{n}^{0} is a relative minimum of the functional $E_{c_{0}}$ associated to $\left(\mathrm{P}_{c_{0}}\right)$ on the set $N^{b_{n}}, n \in \mathbb{N}$. Furthermore, since $g_{0}(s)=f(s)+c_{0} s$ on the interval $(0,1)$, the elements u_{n}^{0} are also solutions of problem (P). Moreover, due to Proposition 2.1 (b), we also have

$$
\begin{equation*}
0 \leq u_{n}^{0}(k) \leq a_{n} \text { for every } k \in[1, T], n \in \mathbb{N} \tag{10}
\end{equation*}
$$

In the sequel, carrying out an energy-level analysis, we prove that there are infinitely many distinct elements in the sequence $\left\{u_{n}^{0}\right\}_{n} \subset X$. Due to $\left(H^{0}\right)$ and (9), we have that $\limsup _{s \rightarrow 0^{+}} \frac{G_{0}(s)}{s^{2}}>\frac{1}{T}+\frac{c_{0}}{2}$. In particular, there exists a sequence $\left\{s_{n}\right\}_{n}$ with $0<s_{n} \leq a_{n}, n \in \mathbb{N}$, and

$$
G_{0}\left(s_{n}\right)>\left(\frac{1}{T}+\frac{c_{0}}{2}\right) s_{n}^{2} .
$$

Define the function $w_{n} \in X$ by $w_{n}(k)=s_{n}$ for every $k \in[1, T]$. Then, we have

$$
\begin{aligned}
E_{c_{0}}\left(w_{n}\right) & =\frac{1}{2} \sum_{k=1}^{T+1}\left|\Delta w_{n}(k-1)\right|^{2}+\frac{c_{0}}{2} \sum_{k=1}^{T}\left(w_{n}(k)\right)^{2}-\sum_{k=1}^{T} G_{0}\left(w_{n}(k)\right) \\
& =s_{n}^{2}+\frac{c_{0} T}{2} s_{n}^{2}-T G_{0}\left(s_{n}\right) \\
& <s_{n}^{2}+\frac{c_{0} T}{2} s_{n}^{2}-T\left(\frac{1}{T}+\frac{c_{0}}{2}\right) s_{n}^{2} \\
& =0 .
\end{aligned}
$$

The above estimation and $w_{n} \in N^{s_{n}} \subset N^{b_{n}}$ show that

$$
\begin{equation*}
E_{c_{0}}\left(u_{n}^{0}\right)=\min _{N^{b_{n}}} E_{c_{0}} \leq E_{c_{0}}\left(w_{n}\right)<0 \text { for all } n \in \mathbb{N} . \tag{11}
\end{equation*}
$$

Once we prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{c_{0}}\left(u_{n}^{0}\right)=0, \tag{12}
\end{equation*}
$$

our claim holds. Indeed, (11) and (12) imply that there are infinitely many distinct elements in the sequence $\left\{u_{n}^{0}\right\}_{n} \subset X$. We clearly have

$$
\begin{aligned}
E_{c_{0}}\left(u_{n}^{0}\right) & =\frac{1}{2} \sum_{k=1}^{T+1}\left|\Delta u_{n}^{0}(k-1)\right|^{2}+\frac{c_{0}}{2} \sum_{k=1}^{T}\left(u_{n}^{0}(k)\right)^{2}-\sum_{k=1}^{T} G_{0}\left(u_{n}^{0}(k)\right) \\
& \geq-\sum_{k=1}^{T} G_{0}\left(u_{n}^{0}(k)\right) \geq-\sum_{k=1}^{T} u_{n}^{0}(k) \max _{s \in\left[0, u_{n}^{0}(k)\right]}\left|g_{0}(s)\right| \\
& \geq-\max _{s \in\left[0, a_{n}\right]}\left|g_{0}(s)\right| \sum_{k=1}^{T} u_{n}^{0}(k) \\
& \geq-a_{n} T \max _{s \in[0,1]}\left|g_{0}(s)\right| .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} a_{n}=0$, the above estimate and (11) yield (12).
Relation (1) is an immediate consequence of (10), $\lim _{n \rightarrow \infty} a_{n}=0$, and to the fact that the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|$ are equivalent. The proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

The proof is similar to that of Theorem 1.1. We assume hypothesis $\left(H^{\infty}\right)$ holds. We choose $c_{\infty}>0$ such that $\liminf _{s \rightarrow \infty} \frac{f(s)}{s}<-c_{\infty}<0$. Consequently, we may fix a sequence $\left\{\bar{s}_{n}\right\}_{n} \subset(0, \infty)$ such that $\lim _{n \rightarrow \infty} \bar{s}_{n}=\infty$ and

$$
\begin{equation*}
f\left(\bar{s}_{n}\right)<-c_{\infty} \bar{s}_{n} . \tag{13}
\end{equation*}
$$

We define the functions $g_{\infty}, G_{\infty}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
g_{\infty}(s)=f\left(s_{+}\right)+c_{\infty} s_{+} \quad \text { and } \quad G_{\infty}(s)=\int_{0}^{s} g_{\infty}(t) d t, \quad s \in \mathbb{R} \tag{14}
\end{equation*}
$$

Due to the right hand side inequality of $\left(H^{\infty}\right)$ and (14), we have that $\limsup _{s \rightarrow \infty} \frac{G_{\infty}(s)}{s^{2}}>\frac{1}{T}+\frac{c_{\infty}}{2}$. In particular, for a small $\varepsilon_{\infty}>0$, there exists a sequence $\left\{s_{n}\right\}_{n}$ tending to ∞ such that

$$
\begin{equation*}
G_{\infty}\left(s_{n}\right)>\left(\frac{1}{T}+\frac{c_{\infty}}{2}+\varepsilon_{\infty}\right) s_{n}^{2} \tag{15}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} \bar{s}_{n}=\infty$, one can fix a subsequence $\left\{\bar{s}_{m_{n}}\right\}_{n}$ of $\left\{\bar{s}_{n}\right\}_{n}$ such that $s_{n} \leq$ $\bar{s}_{m_{n}}$ for every $n \in \mathbf{N}$. On account of (13), $g_{\infty}\left(\bar{s}_{m_{n}}\right)<0$; thus, we may fix two sequences $\left\{a_{n}\right\}_{n},\left\{b_{n}\right\}_{n} \subset(0, \infty)$ such that $a_{n}<\bar{s}_{m_{n}}<b_{n}<a_{n+1}$ for every $n \in \mathbb{N}$, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\infty$, and

$$
g_{\infty}(s) \leq 0 \text { for all } s \in\left[a_{n}, b_{n}\right]
$$

Consequently, the function g_{∞} fulfills $\left(H_{g}\right)$ on every interval $\left[a_{n}, b_{n}\right], n \in \mathbb{N}$. We apply Proposition 2.1 to every interval $\left[a_{n}, b_{n}\right], n \in \mathbb{N}$, obtaining that the problem

$$
\left\{\begin{array}{l}
-\Delta(\Delta u(k-1))+c_{\infty} u(k)=g_{\infty}(u(k)), \quad k \in[1, T], \\
u(0)=u(T+1)=0,
\end{array}\right.
$$

has a sequence of non-negative solutions $\left\{u_{n}^{\infty}\right\}_{n} \subset X$, where u_{n}^{∞} is a relative minimum of the functional $E_{c_{\infty}}$ associated to $\left(\mathrm{P}_{c_{\infty}}\right)$ on the set $N^{b_{n}}, n \in \mathbb{N}$. Since $g_{\infty}(s)=f(s)+c_{\infty} s$ on $[0, \infty)$, the elements u_{n}^{∞} are solutions not only for $\left(\mathrm{P}_{c_{\infty}}\right)$ but also for (P).

Now, we are going to prove that there are infinitely many distinct elements in the sequence $\left\{u_{n}^{\infty}\right\}_{n} \subset X$. To do this, it is enough to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{c_{\infty}}\left(u_{n}^{\infty}\right)=-\infty \tag{16}
\end{equation*}
$$

Define the function $w_{n} \in X$ by $w_{n}(k)=s_{n}$ for every $k \in[1, T]$. Then, by using
(15), we have

$$
\begin{aligned}
E_{c_{\infty}}\left(w_{n}\right) & =\frac{1}{2} \sum_{k=1}^{T+1}\left|\Delta w_{n}(k-1)\right|^{2}+\frac{c_{\infty}}{2} \sum_{k=1}^{T}\left(w_{n}(k)\right)^{2}-\sum_{k=1}^{T} G_{\infty}\left(w_{n}(k)\right) \\
& =s_{n}^{2}+\frac{c_{\infty} T}{2} s_{n}^{2}-T G_{\infty}\left(s_{n}\right) \\
& <s_{n}^{2}+\frac{c_{\infty} T}{2} s_{n}^{2}-T\left(\frac{1}{T}+\frac{c_{\infty}}{2}+\varepsilon_{\infty}\right) s_{n}^{2} \\
& =-T \varepsilon_{\infty} s_{n}^{2}
\end{aligned}
$$

By construction, we know that $w_{n} \in N^{s_{n}} \subset N^{b_{n}}$, thus

$$
\begin{equation*}
E_{c_{\infty}}\left(u_{n}^{\infty}\right)=\min _{N^{b_{n}}} E_{c_{\infty}} \leq E_{c_{\infty}}\left(w_{n}\right)<-T \varepsilon_{\infty} s_{n}^{2} \text { for all } n \in \mathbb{N} \tag{17}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} s_{n}=\infty$, relation (17) implies (16).
It remains to prove (2). Since the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|$ are equivalent, it is enough to prove the former limit, i.e., $\lim _{n \rightarrow \infty}\left\|u_{n}^{\infty}\right\|_{\infty}=\infty$. By contradiction, we assume that for a subsequence of $\left\{u_{n}^{\infty}\right\}_{n}$, still denoted by $\left\{u_{n}^{\infty}\right\}_{n}$, one can find a constant $C>0$ such that $\left\|u_{n}^{\infty}\right\|_{\infty} \leq C$ for every $n \in \mathbb{N}$. Therefore, we have

$$
E_{c_{\infty}}\left(u_{n}^{\infty}\right) \geq-\sum_{k=1}^{T} G_{\infty}\left(u_{n}^{\infty}(k)\right) \geq-T \max _{s \in[0, C]}\left|G_{\infty}(s)\right| \text { for every } n \in \mathbb{N}
$$

This inequality contradicts relation (16) which completes the proof of Theorem 1.2.

Remark 1. When $T=2$, the conclusions of Theorems 1.1 and 1.2 may be obtained in a very simple way. In this case, it is enough to solve the system

$$
\left\{\begin{array}{l}
2 a-b=f(a) \\
2 b-a=f(b) \\
a, b>0
\end{array}\right.
$$

Indeed, a solution of (P) is any function $u:[0,3] \rightarrow \mathbb{R}$ defined by $u(0)=u(3)=0$, $u(1)=a, u(2)=b$. As one can observe, if there is a sequence of distinct fixed points for f, say $\left\{c_{n}\right\}_{n} \subset(0, \infty)$, we have infinitely many solutions for problem (P^{\prime}) of the form $(a, b)=\left(c_{n}, c_{n}\right)$. Let us assume the contrary, i.e., there is at most finite number of distinct fixed points for f. Combining this assumption with the left hand side of $\left(H^{0}\right)$, there exists a $\delta>0$ such that $f(s)<s$ for every $s \in(0, \delta)$. After an integration we obtain that

$$
\limsup _{s \rightarrow 0^{+}} \frac{F(s)}{s^{2}} \leq \frac{1}{2}=\frac{1}{T}
$$

which contradicts the right hand side of $\left(H^{0}\right)$. In a similar manner, when $\left(H^{\infty}\right)$ holds, we can fix a compact set $L \subset[0, \infty)$ such that $f(s)<s$ for every $s \in$ $(0, \infty) \backslash L$, which contradicts the right hand side of $\left(H^{\infty}\right)$.

The above arguments also suggest that the constant $\frac{1}{T}$ in $\left(H^{0}\right)$ and $\left(H^{\infty}\right)$ is optimal.

Acknowledgments. A. Kristály is supported by Grant CNCSIS, IDEI 527/2007. M. Mihăilescu and V. Rădulescu are supported by Grant CNCSIS, IDEI 79/2007.

References

[1] R. P. Agarwal, Difference equations and inequalities, Marcel Dekker Inc., 2000.
[2] R. P. Agarwal, K. Perera and D. O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Analysis 58 (2004), 69-73.
[3] R. P. Agarwal, K. Perera and D. O'Regan, Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Advances in Difference Equations 2 (2005) 93-99.
[4] C. Bereanu and J. Mawhin, Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ. Journal of Difference Equations and Applications 14 (2008), no. 10-11, 1099-1118.
[5] C. Bereanu and J. Mawhin, Existence and multiplicity results for periodic solutions of nonlinear difference equations. Journal of Difference Equations and Applications 12 (2006), no. 7, 677-695.
[6] C. Bereanu and H. B. Thompson, Periodic solutions of second order nonlinear difference equations with discrete ϕ-Laplacian. J. Math. Anal. Appl. 330 (2007), no. 2, 1002-1015.
[7] G. Bonanno and P. Candito, Nonlinear difference equations investigated via critical point methods, Nonlinear Analysis 70 (2009), 3180-3186.
[8] A. Cabada, A. Iannizzotto and S. Tersian, Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl. 356 (2009), 418-428.
[9] X. Cai and J. Yu, Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), 649-661.
[10] W. G. Kelley and A. C. Peterson, Difference Equations. An Introduction with Applications, Second edition. Harcourt/Academic Press, San Diego, CA, 2001.
[11] V. Lakshmikantham and D. Trigiante, Theory of difference equations. Numerical methods and applications. Mathematics in Science and Engineering, 181. Academic Press, Inc., Boston, MA, 1988.
[12] L. Lovász, Discrete and continuous: two sides of the same? GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. 2000, Special Volume, Part I, 359-382.
[13] M. Mihăilescu, V. Rădulescu and S. Tersian, Eigenvalue Problems for Anisotropic Discrete Boundary Value Problems, Journal of Difference Equations and Applications 15 (2009), 557-567.
[14] H. Tang, W. Luo, X. Li and M. Ma, Nontrivial solutions of discrete elliptic boundary value problems. Comput. Math. Appl. 55 (2008), no. 8, 1854-1860.
[15] J. Yu and Z. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, J. Math. Anal. Appl. 231 (2006), 18-31.
[16] G. Zhang and S. Liu, On a class of semipositone discrete boundary value problem, J. Math. Anal. Appl. 325 (2007), 175-182.

[^0]: *Corresponding author. Email: vicentiu.radulescu@math.cnrs.fr

