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Abstract

In this paper, using variational methods, we study multiplicity of multi-bump solutions for the following 
nonlinear magnetic Choquard equation⎧⎨⎩ − (∇ + iA(x))2u + (λV (x) + 1)u = (

1

|x|μ ∗ |u|p)|u|p−2u x ∈RN,

u ∈ H 1(RN,C),

where N ≥ 2, λ > 0 is a real parameter, 0 < μ < 2, i is the imaginary unit, p ∈ (2, 2∗(
2(N−μ)

2N
)), where 

2∗ = 2N
N−2 if N ≥ 3, 2∗ = +∞, if N = 2. The magnetic potential A ∈ L2

loc
(RN, RN) and V : RN → R

is a nonnegative continuous function. We show that if the zero set of V has several isolated connected 
components �1, · · · , �k such that the interior of �j is non-empty and ∂�j is smooth, then for λ > 0 large 
enough, the above equation has at least 2k − 1 multi-bump solutions.
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1. Introduction and main results

In this paper, we consider the existence and multiplicity of multi-bump solutions for the fol-
lowing nonlinear magnetic Choquard equation with deepening potential well⎧⎪⎨⎪⎩

− (∇ + iA(x))2u + (λV (x) + 1)u = (
1

|x|μ ∗ |u|p)|u|p−2u x ∈RN,

u ∈ H 1(RN,C),

(1.1)

where N ≥ 2, 0 < μ < 2, i is the imaginary unit, λ > 0 is a real parameter, the magnetic potential 
A ∈ L2

loc(R
N, RN) and V :RN → R is a nonnegative continuous function, p ∈ (2, 2∗( 2(N−μ)

2N
)), 

where 2∗ = 2N
N−2 if N ≥ 2, 2∗ = +∞, if N = 2.

The existence and multiplicity of solutions for the nonlinear Schrödinger with deepening po-
tential well and without magnetic field (that is, if A = 0)

−�u + (λV (x) + Z(x))u = f (u) in RN, (1.2)

has been intensively studied. Here, λ > 0, V (x) and Z(x) satisfies some assumptions. In [18], if 
f (t) = tp , p ∈ (1, N+2

N−2 ) if N ≥ 3 and p ∈ (1, ∞) if N = 1, 2, Ding and Tanaka showed problem 
(1.2) has at least 2k − 1 positive multi-bump solutions for λ large enough. After that, for the 
critical growth case, Alves et al. [2] studied the existence of positive multi-bump solutions for 
problem (1.2) and N ≥ 3. For the case N = 2, when f has exponential critical growth, Alves and 
Souto [10] obtained the same results. Moreover, these solutions found in [2] and [10] have the 
same asymptotic characteristics of those found in [18]. For the nonlocal problems with deepening 
potential well, Alves and Figueiredo [3] considered the following Kirchhoff problem⎧⎪⎪⎨⎪⎪⎩

M
(∫
R3

|∇u|2dx +
∫
R3

(λa(x) + 1)u2dx
)
(−�u + (λa(x) + 1)u) = f (u) in R3,

u ∈ H 1(R3).

Assuming that the nonnegative function a(x) has a potential well with int(a−1(0)) consisting of 
k disjoint components �1, �2, · · · , �k and the nonlinearity f (t) has a subcritical growth, they 
established the existence and multiplicity of positive multi-bump solutions by using variational 
methods. In [11], Alves and Yang studied the existence of positive multi-bump solutions for 
the Schrödinger-Poisson system in R3 with deepening potential well. Recently, Alves et al. [9]
studied the existence of multi-bump solutions for the Choquard equation as follows

−�u + (λV (x) + 1)u = (
1

|x|μ ∗ |u|p)|u|p−2u in R3,

where μ ∈ (0, 3), p ∈ (2, 6 − μ), the nonnegative continuous function V (x) has a potential well. 
In previous researches, by using penalization method developed by del Pino and Felmer [16], 
the researchers were able to overcome the loss of compactness. In [9], the authors avoided the 
penalization method in [16], because by using this method they are led to assume more restric-
tions on the constants μ and p. For this reason, by imposing one more condition (see condition 
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(V ) below) on the potential V (x), the authors followed the approach explored by Alves and 
Nobrega in [8] which showed the existence of multi-bump solution for problem (1.2) driven by 
the biharmonic operator. For further research about the nonlinear Schrödinger equations with the 
deepening potential well, we refer to [1], [6], [7], [12], [17], [23], [34] and the references therein.

This paper is motivated by several recent works that appeared in recent years concerning 
Schrödinger-type equations with magnetic field. For instance, in the local framework, this equa-
tion is

−(∇ + iA)2u + V (x)u = f (|u|2)u, (1.3)

where the magnetic Schrödinger operator is defined as

−(∇ + iA)2u = −�u − 2iA · ∇u − iudivA + |A|2u.

As stated in [39], up to correcting the operator by the factor (1 − s), it follows that (−�)sAu

converges to −(∇u − iA)2u in the limit s ↑ 1, where (−�)sA is the fractional magnetic operator 
whose definition can refer to [39]. Thus, up to normalization, we may think the nonlocal case 
as an approximation of the local case. If A ≡ 0, then (1.3) becomes the fractional Schrödinger 
equation, which was proposed by Laskin [30,31] as a result of expanding the Feynman path 
integral, from the Brownian-like to the Lévy-like quantum mechanical paths. If the interaction 
between the particles is considered, that is, if f (u) = (Kα ∗ |u|p)|u|p−2u, this kind of problems 
is usually named Choquard equations.

The nonlinear magnetic Schrödinger equations have been extensively investigated by many 
authors applying suitable variational and topological methods (see [4,13–15,19,20,24,28,29,37,
40] and references therein). It is well known that the first result involving the magnetic field was 
obtained by Esteban and Lions [20]. They used the concentration-compactness principle and 
minimization arguments to obtain solutions for a local equation for N = 2, 3 and ε > 0 small. In 
particular, due to our scope, we would like to mention [4] where the authors use the penalization 
method and Ljusternik-Schnirelmann category theory to prove the multiplicity and concentration 
results of solutions for the nonlinear Schrödinger equation with magnetic field⎧⎨⎩

(
ε
i
∇ − A(x)

)2
u + V (x)u = f (|u|2)u in RN,

u ∈ H 1(RN,C),

where f ∈ C1 has the subcritical growth. We point out that if f is only continuous, then the ar-
guments developed in [4] fail. In [25], Ji and Rădulescu used the method of the Nehari manifold, 
the penalization technique and Ljusternik-Schnirelmann category theory to study the multiplic-
ity and concentration results for the above nonlinear magnetic Schrödinger equation in which 
the subcritical nonlinearity f is only continuous. After that, Ji and Radulescu [26] continued 
to study multiplicity and concentration of the solutions for the magnetic Schrödinger equation 
with critical growth. Tang [37] considered multi-bump solutions of the following problem with 
critical frequency in which Z(x) ≡ 0 and f satisfies subcritical growth

−(∇ + iA(x))2u + (λV (x) + Z(x))u = f (|u|2)u in RN.
253
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Then, Liang and Shi [33] considered multi-bump solutions to the above problem with critical 
nonlinearity for the case N ≥ 3. Ji and Rădulescu [27] studied multi-bump solutions for the 
nonlinear magnetic Schrödinger equation with exponential critical growth in R2. Ma and Ji [35]
considered multi-bump solutions for the Magnetic Schrödinger-Poisson System in R3. Recently, 
Alves et al. [5] considered multiple solutions for a nonlinear magnetic Choquard equation by 
using the penalization method and Ljusternik-Schnirelmann category theory. It is quite natural to 
consider the multi-bump solutions for the nonlinear Choquard equation with magnetic field and 
deepening potential well. To the best of our knowledge, this problem has not been studied up to 
now.

Motivated by [9,18], in the present paper our goal is to prove the existence and multiplicity of 
multi-bump solutions for problem (1.1). Compared with [9], on one hand, we do not assume the 
potential V (x) satisfied the following condition:

(V ) there exists M0 > 0 such that

|{x ∈ R3 : a(x) ≤ M0}| < +∞,

which is very important for overcoming the lack of compactness. We shall improve the idea 
explored by del Pino and Felmer [16] (see also Ding and Tanaka [18]). Since our problem is 
nonlocal, some estimates are more difficult and complicated. Although our problem has more 
restrictions on μ and p, we can obtain results completely similar to [18] without the assumption 
(V ), which is better than the results obtained in [9]. On the other hand, as we will see later, due 
to the appearance of magnetic potential A(x), problem (1.1) cannot be changed into a pure real-
valued problem, hence we shall deal with a complex-valued directly, which causes more new 
difficulties in employing the methods for our problem.

Now we present the general assumptions on the potential V .

(V 1) V ∈ C(RN, R) and V (x) ≥ 0;
(V 2) The potential well � = intV −1(0) is a non-empty bounded open set with smooth boundary 

∂� and � can be decomposed in k connected components �1, · · · , �k with dist(�i, �j) >
0, i �= j , � = V −1(0).

The main result in this paper is stated below.

Theorem 1.1. Assume that (V 1) and (V 2) hold. Then, for any non-empty subset 	 of 
{1, 2, · · · , k}, there exists λ∗ > 0 such that for all λ ≥ λ∗, problem (1.1) has a nontrivial solution 
uλ. Moreover, the family {uλ}λ≥λ∗ has the following properties: for any sequence λn → ∞, we 
can extract a subsequence λni

such that uλni
converges strongly in H 1

A(RN, C) to a function 

u which satisfies u(x) = 0 for x /∈ �	 and the restriction u|�	 ∈ H
0,1
A (�	) is a least energy 

solution of

−(∇ + iA(x))2u + u =
(∫
�	

|u|p
|x − y|μ dy

)
|u|p−2u, in �	, (P )∞,	

where �	 = ⋃
�j .
j∈	
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Corollary 1.2. Retain the setting of Theorem 1.1, there exists λ∗ > 0 such that for all λ ≥ λ∗, 
problem (1.1) has at least 2k − 1 nontrivial solutions.

The paper is organized as follows. In Section 2 we introduce the functional setting and we 
give some preliminary results. In Section 3, we study the existence of least energy solution for 
a nonlocal problem on the bounded domain. In Section 4, we consider an auxiliary problem. 
The behavior of (PS)∞ sequence is studied in Section 5. In Sections 6 and 7, we shall build a 
special minimax value for the energy functional associated to the auxiliary problem and prove 
Theorem 1.1.

Notation.

• C, C1, C2, . . . denote positive constants whose exact values are inessential and can change 
from line to line;

• For any A ⊂RN , Ac denotes the complement of A in RN ;
• ‖ · ‖, | · |q , and ‖ · ‖L∞(
) denote the usual norms of the spaces H 1(RN, R), Lq(RN, R), and 

L∞(
, R), respectively, where 
 ⊂RN ;
• on(1) denotes a real sequence with on(1) → 0 as n → +∞.

2. Abstract setting and preliminary results

In this section, we outline the variational framework for problem (1.1) and give some prelim-
inary lemmas.

For u :RN → C, let us denote by

∇Au := (∇ + iA)u,

and

H 1
A(RN,C) := {u ∈ L2(RN,C) : |∇Au| ∈ L2(RN,R)}.

The space H 1
A(RN, C) is a Hilbert space endowed with the scalar product

〈u,v〉 := Re
∫
RN

(
∇Au∇Av + uv

)
dx, for any u,v ∈ H 1

A(RN,C),

where Re and the bar denote the real part of a complex number and the complex conjugation, 
respectively. Moreover, we denote by ‖u‖A the norm induced by this inner product.

Since A ∈ L2
loc(R

N, RN), on H 1
A(RN, C) we have the following diamagnetic inequality (see 

e.g. [32, Theorem 7.21]):

|∇Au(x)| ≥ |∇|u(x)||. (2.1)
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Let

Eλ :=

⎧⎪⎨⎪⎩u ∈ H 1
A(RN,C) :

∫
RN

λV (x)|u|2dx < ∞

⎫⎪⎬⎪⎭ ,

with the norm

‖u‖2
λ =

∫
RN

(|∇Au|2 + (λV (x) + 1)|u|2)dx.

For any λ > 0, it is easy to see that (Eλ, ‖ · ‖λ) is a Hilbert space and Eλ ⊂ H 1
A(RN, C).

Let K ⊂ RN be an open set, we define

H 1
A(K) := {u ∈ L2(K,C) : |∇Au| ∈ L2(K,R)},

‖u‖H 1
A(K) =

(∫
K

(|∇Au|2 + |u|2)dx
) 1

2
,

Eλ(K,C) :=
{
u ∈ H 1

A(K,C) :
∫
K

λV (x)|u|2dx < ∞
}
,

‖u‖2
λ,K =

∫
K

(|∇Au|2 + (λV (x) + 1)|u|2)dx.

Let H 0,1
A (K, C) be the Hilbert space defined by the closure of C∞

0 (K, C) under the norm 
‖u‖H 1

A(K).

The diamagnetic inequality (2.1) implies that if u ∈ H 1
A(RN, C), then |u| ∈ H 1(RN, R). 

Therefore, the embedding Eλ ↪→ Lr(RN, C) is continuous for 2 ≤ r ≤ 2∗ and the embedding 
Eλ ↪→ Lr

loc(R
N, C) is compact for 1 ≤ r < 2∗.

In order to use the variational methods to study our problem, the following Hardy-Littlewood-
Sobolev inequality is very important.

Lemma 2.1. (Hardy-Littlewood-Sobolev inequality [32]) Let s, r > 1 and 0 < μ < N with 
1/s + μ/N + 1/r = 2. If f ∈ Ls(RN, R) and h ∈ Lr(RN, R), then there exists a sharp con-
stant C(s, N, μ, r), independent of f, h, such that∫

RN

∫
RN

f (x)h(y)

|x − y|μ dxdy ≤ C(s,N,μ, r)|f |s |h|r .

The above inequality guarantees that the following holds

∣∣∣ ∫
N

( 1

|x|μ ∗ |u|p
)
|u|pdx

∣∣∣ < +∞, ∀u ∈ Eλ. (2.2)
R
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.

By the Hardy-Littlewood-Sobolev inequality, the integral

∫
RN

( 1

|x|μ ∗ |u|p
)
|u|pdx

is finite if |u|p ∈ Lt(RN, R) for t > 1 and

2

t
+ μ

N
= 2,

that is, t = 2N/2N − μ. Moreover, once p ∈ (2, 2∗( 2N−μ
2N

)) and μ ∈ (0, 2), the Sobolev embed-
ding implies that

∫
RN

|u|ptdx < ∞, ∀u ∈ Eλ

which showing (2.2) holds.
From the above commentaries, the energy functional Jλ : Eλ → R associated with problem 

(1.1) given by

Jλ(u) = 1

2

∫
RN

(|∇Au|2 + (λV (x) + 1)|u|2)dx − 1

2p

∫
RN

( 1

|x|μ ∗ |u|p
)
|u|pdx

is well defined. Furthermore, it is standard to prove that Jλ ∈ C1(Eλ, R) with

J ′
λ(u)φ = Re

( ∫
RN

(∇Au∇Aφ+(λV (x)+1)uφ)dx−
∫
RN

( 1

|x|μ ∗|u|p
)
|u|p−2uφdx

)
, ∀u,φ ∈ Eλ

Hence, the weak solutions of problem (1.1) are the critical points of Jλ.
In view of (V 1), for any open set K ⊂ RN , it is easy to see that

‖u‖2
2,K ≤

∫
K

(
|∇Au|2 + (λV (x) + 1)|u|2

)
dx for allu ∈ Eλ(K,C) and λ > 0

where ‖u‖2
2,K = ∫

K
|u|2dx. The following property is an immediate consequence of the above 

consideration.

Lemma 2.2. There exist δ0, ν0 > 0 with δ0 ∼ 1 and ν0 ∼ 0 such that for any open set K ⊂ RN

δ0‖u‖2 ≤ ‖u‖2 − ν0‖u‖2 , for all u ∈ Eλ(K,C)and λ > 0.
λ,K λ,K 2,K
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C. Ji and V.D. Rădulescu Journal of Differential Equations 306 (2022) 251–279
3. The problem (P )∞,�

To prove Theorem 1.1, we need to study the existence of least energy solution for problem 
(P )∞,	. The main idea is to prove that the energy functional associated with nonlocal problem 
(P )∞,	 given by

I	(u) = 1

2

∫
�	

(|∇Au|2 + |u|2)dx − 1

2p

∫
�	

(∫
�	

|u|p
|x − y|μ dy

)
|u|pdx,

assumes a minimum value on the set

M	 = {u ∈ N	 : I ′
	(u)[uj ] = 0 and uj �= 0, ∀j ∈ 	}

where uj = u|�j
and N	 is the corresponding Nehari manifold defined by

N	 = {u ∈ H
0,1
A (�	)\{0} : I ′

	(u)[u] = 0}.

More precisely, we will prove that there is ω ∈ M	 such that

I	(ω) = inf
u∈M	

I	(u).

Then, we use a deformation lemma to prove that ω is a critical point of I	, and so, ω is a least 
energy solution for (P )∞,	.

In what follows, in order to show the details of the existence of least energy solution for 
problem (P )∞,	, we will only consider 	 = {1, 2} for simplicity. Thus,

�	 = �1

⋃
�2,

N	 = {u ∈ H
0,1
A (�	)\{0} : I ′

	(u)[u] = 0},

and

M	 = {u ∈ N	 : I ′
	(u)[uj ] = 0 and u1, u2 �= 0}

where uj = u|�j
, j = 1, 2.

In order to show that the set M	 is not empty, we need the following lemma, whose proof is 
similar to that of Lemma 2.1 in [9].

Lemma 3.1. Let u ∈ H
0,1
A (�	) with uj �= 0 for j = 1, 2, then there exists (s, t) ∈ (0, +∞)2 such 

that su1 + tu2 ∈ M	 which means M	 �= ∅ and c	 = infu∈M	
I	(u) > 0.

Now we give a useful lemma below.

Lemma 3.2. Let {ωn} be a bounded sequence in M	 with ωn ⇀ ω in H 0,1
A (�	). If 

∫
�j

(|∇Aωn,j |2
+ |ωn,j |2)dx � 0, then ωj �= 0, where ωn,j = ωn|� and ωj = ω|� for j = 1, 2.
j j
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The proof of this lemma is similar to that of Lemma 2.2 in [9], here we also omit it.

Now, our main goal is to present the following result, for its proof, we may refer to Theo-
rem 1.1 in [9].

Theorem 3.1. (P )∞,	 possesses a least energy solution u which is nonzero on each component 
�j of �	, j ∈ 	.

4. An auxiliary problem

In this section, we shall work with an auxiliary problem adapting the idea explored by del 
Pino and Felmer in [16] (see also [18]).

For t ≥ 0, if we set f (t) = t (p−2)/2, then problem (1.1) may be rewritten as

−(∇ + iA(x))2u + (λV (x) + 1)u = p

2
(

1

|x|μ ∗ F(|u|2))f (|u|2)u x ∈ RN,

where F(t) = ∫ t

0 f (s)ds = 2
p
tp/2. Let ν0 > 0 be a constant given in Lemma 2.2, and a > 0

verifying a(p−2)/2 = ν0. Moreover, we set f̃ , F̃ :R+ → R given by

f̃ (t) =
{

t (p−2)/2, 0 ≤ t ≤ a,

ν0, t ≥ a,

and

F̃ (t) =
t∫

0

f̃ (s)ds.

Note that

f̃ (t) ≤ t (p−2)/2, t ≥ 0.

From now on, fix a non-empty subset 	 ⊂ {1, · · · , k} and for each j ∈ 	, we fix a bounded 
open subset �′

j with smooth boundary such that

�j ⊂ �′
j , �′

i ∩ �′
j = ∅ for all i �= j,

�	 =
⋃
j∈	

�j , �′
	 =

⋃
j∈	

�′
j ,

χ	(x) :=
{

1 for x ∈ �′
	,

0 for x /∈ �′
	,

the function
259
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g(x, t) = χ	(x)t(p−2)/2 + (1 − χ	(x))f̃ (t) (4.1)

G(x, t) =
t∫

0

g(x, s)ds = χ	(x)
2

p
tp/2 + (1 − χ	(x))F̃ (t), (4.2)

where χ	 is the characteristic function on 	 and F̃ (t) = ∫ t

0 f̃ (s)dx.
From (4.1) and (4.2), it is easy to prove that g is a Carathéodory function satisfying the 

following properties:

(g1) g(x, t) = 0 for each t ≤ 0;
(g2) lim

t→0+g(x, t) = 0 uniformly in x ∈RN ;

(g3) g(x, t) ≤ t (p−2)/2 for all t ≥ 0;
(g4) 0 ≤ G(x, t) ≤ g(x, t)t , for each x ∈ �′

	, t > 0;
(g5) 0 ≤ G(x, t) ≤ g(x, t)t ≤ ν0t , for each x ∈ (�′

	)c , t > 0;
(g6) for each x ∈ �′

	, the function t �→ g(x, t) is strictly increasing in t ∈ (0, +∞) and for each 
x ∈ (�′

	)c , the function t �→ g(x, t) is strictly increasing in (0, a).

Now we consider the auxiliary problem

−(∇ + iA(x))2u + (λV (x) + 1)u = p

2
(

1

|x|μ ∗ G(x, |u|2))g(x, |u|2)u x ∈RN. (4.3)

Note that, if u is a solution of problem (4.3) with

|u(x)|2 ≤ a for all x ∈ (�′
	)c,

then u is a solution of (1.1).
The functional associated to problem (4.3) is

�λ(u) = 1

2

∫
RN

(|∇Au|2 + (λV (x) + 1)|u|2)dx − p

8

∫
RN

( 1

|x|μ ∗ G(x, |u|2)
)
G(x, |u|2)dx

defined in Eλ. It is standard to prove that �λ ∈ C1(Eλ, R) and its critical points are the weak 
solutions of the auxiliary problem (4.3).

Lemma 4.1. For all u ∈ Eλ\{0}, there holds∫
RN

( 1

|x|μ ∗ G(x, |u|2)
)
g(x, |u|2)|u|2dx −

∫
RN

( 1

|x|μ ∗ G(x, |u|2)
)
G(x, |u|2)dx ≥ 0.

Proof. From (g4) and (g5), we may obtain the conclusion of the lemma directly. �
Now we show that the functional �λ satisfies the Mountain Pass Geometry [38].
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Lemma 4.2. For any fixed λ > 0, the functional �λ satisfies the following properties:
(i) there exist β, r > 0 such that �λ(u) ≥ β if ‖u‖λ = r;
(ii) there exists e ∈ Eλ with ‖e‖λ > r such that �λ(e) < 0.

Proof. Let us prove (i).
By (g1) − (g3) and the Hardy-Littlewood-Sobolev inequality, we have that

�λ(u) ≥ 1

2
‖u‖2

λ − C‖u‖2p
λ .

Thus, there exist β, r > 0 such that �λ(u) ≥ β if ‖u‖λ = r .
To prove (ii), let us fix ϕ ∈ C∞

c (RN, C) \ {0} with supp(ϕ) ⊂ �	. Observe that

G(x, |ϕ|2) = F(|ϕ|2) = 2

p
|ϕ|p.

Let

g(t) = F(
tϕ

‖ϕ‖λ

) > 0, for t > 0,

where

F(u) = p

8

∫
RN

( 1

|x|μ ∗ F(|u|2)
)
F(|u|2)dx.

By a direct computation, one has then

g′(t)
g(t)

≥ 2p

t
for all t > 0.

Integrating this over [1, s‖ϕ‖λ] with s > 1
‖ϕ‖λ

we find

F(sϕ) ≥ F(
ϕ

‖ϕ‖λ

)‖ϕ‖2p
λ s2p.

Therefore,

�λ(sϕ) ≤ C1s
2 − C2s

2p for s >
1

‖ϕ‖λ

,

and (ii) holds for e = sϕ for s > 0 large enough. �
Since supp(ϕ) ⊂ �	, it is easy to obtain the existence of constant d > 0, independent of λ and 

a such that maxs>0 �λ(sϕ) < d .

Lemma 4.3. If (un) is a (PS)c sequence to �λ with c ∈ [0, d], then (un) is bounded and there 
exists n0 ∈ N such that ‖un‖2 ≤ 4(d + 1) for all n ≥ n0.
λ
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Proof. Since �λ(un) → c and �′
λ(un) → 0, from Lemma 4.1, we have

c + on(1)‖un‖λ ≥ �λ(un) − 1

4
�′

λ(un)[un]

≥ (
1

2
− 1

4
)‖un‖2

λ.

From this, we know that (un) is bounded in Eλ. Moreover, from c ∈ [0, d], there exists n0 ∈ N

such that ‖un‖2
λ ≤ 4(d + 1) for all n ≥ n0. �

Before proving the next lemma, we give some notations. In what follows,

B =
{
u ∈ Eλ : ‖u‖2

λ ≤ 4(d + 1)
}

and

K(u)(x) = 1

|x|μ ∗ G(x, |u|2).

Using the above notations, we can show the following estimates.

Lemma 4.4. There exists k0 > 0 large such that

supu∈B |K(u)(x)|L∞(RN)

k0
<

1

2
.

Proof. Notice that

|G(x, t)| ≤ |F(t)| = 2

p
tp/2, ∀s ∈ R+,

thus,

|K(u)(x)| ≤ 2

p

∣∣∣ ∫
RN

|u|p
|x − y|μ dy

∣∣∣ = 2

p

∣∣∣ ∫
|x−y|≤1

|u|p
|x − y|μ dy

∣∣∣ + 2

p

∣∣∣ ∫
|x−y|>1

|u|p
|x − y|μ dy

∣∣∣.
From the Sobolev’s embedding, there exists C1 > 0 such that

|K(u)(x)| ≤ 2

p

∣∣∣ ∫
|x−y|≤1

|u|p
|x − y|μ dy

∣∣∣ + C1.

Since μ ∈ (0, 2) and p ∈ (2, 2(N−μ)
), we fix s ∈ ( N , 2N ). Then, by the Hölder inequality,
N−2 N−μ (N−2)p
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∫
|x−y|≤1

|u|p
|x − y|μ dy ≤

( ∫
|x−y|≤1

|u|spdy
)1/s( ∫

|x−y|≤1

1

|x − y| sμ
s−1

dy
)(s−1)/s

≤C2

( ∫
|r|≤1

|r|N−1− sμ
s−1 dy

)(s−1)/s

.

As N − 1 − sμ
s−1 > −1, there exists C3 > 0 such that

∫
|x−y|≤1

|u|p
|x − y|μ dy ≤ C3, x ∈ RN.

Thus, there exists a constant k0 > 0 such that

supu∈B |K(u)(x)|L∞(RN)

k0
<

1

2
. �

Lemma 4.5. Let (un) be a (PS)c sequence to �λ with c ∈ [0, d]. Then, for any ξ > 0, there 
exists R(ξ) > 0, if R > R(ξ) there holds

lim sup
n

∫
(BR(0))c

(|∇Aun|2 + (λV (x) + 1)|un|2)dx ≤ ξ.

Proof. From Lemma 4.3, we have

‖un‖2
λ ≤ 4(d + 1), for n large.

Thus, we can assume that there exists u ∈ Eλ such that un ⇀ u in Eλ and un → u in Lr
loc(R

N, C)

for all 1 ≤ r < 2∗ as n → +∞.
Now, we take R > 0 such that �′

	 ⊂ BR
2
(0). Let φR ∈ C∞(RN, R) be a cut-off function such 

that

φR = 0 x ∈ BR
2
(0), φR = 1 x ∈ Bc

R(0), 0 ≤ φR ≤ 1, and |∇φR| ≤ C/R,

where C > 0 is a constant independent of R. Once the sequence (φRun) is bounded in Eλ, one 
has

�′
λ(un)[unφR] = on(1),

and

∇A(unφR) = un∇φR + φR∇Aun.

Therefore,
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on(1) = �′
λ(un)[unφR] =

∫
RN

(|∇Aun|2φR + (λV (x) + 1)|un|2φR)dx

+ Re

⎛⎜⎝∫
RN

un∇Aun∇φRdx

⎞⎟⎠ − p

2

∫
RN

( 1

|x|μ ∗ G(x, |un|2)
)
g(x, |un|2)|un|2φRdx.

If ν0 > 0 small enough, the above inequalities, (g5) and Lemma 4.4 imply that∫
RN

(
|∇Aun|2φR + (λV (x) + 1)|un|2φR

)
dx =p

2

∫
RN

( 1

|x|μ ∗ G(x, |un|2)
)
g(x, |un|2)|un|2φRdx

− Re

⎛⎜⎝∫
RN

un∇Aun∇φRdx

⎞⎟⎠ + on(1)

≤p

2

∫
RN

sup
u∈B

|K(u)(x)|L∞(RN)ν0|un|2φRdx

+ C

R
‖un‖2

λ + on(1)

≤k0ν0p

4

∫
RN

|un|2φRdx + C

R
‖un‖2

λ + on(1)

≤1

2

∫
RN

(λV (x) + 1)|un|2φRdx + C1

R
+ on(1).

So, for any ξ > 0, we can choose R > 0 large enough such that �′
	 ⊂ BR

2
(0) and

lim sup
n

∫
(BR(0))c

(|∇Aun|2 + (λV (x) + 1)|un|2)dx ≤ ξ.

This completes the proof. �
Lemma 4.6. The functional �λ satisfies the (PS)c condition for any c ∈ [0, d].

Proof. Let (un) ⊂ Eλ be a (PS)c sequence for �λ at the level c ∈ [0, d]. From Lemma 4.3, 
we have that there exists n0 ∈ N such that ‖un‖2

λ ≤ 4(d + 1) for all n ≥ n0. Thus, up to a 
subsequence, un ⇀ u in Eλ, un → u in Lr

loc(R
N, C), for all 1 ≤ r < 2∗, |un| → |u| for a.e. 

x ∈RN . Moreover, it is easy to show that �′
λ(u) = 0.

From Lemma 4.4, we know that there exists C > 0 such that

|K(un)|L∞(RN) ≤ C, ∀n ∈ N.
264
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Thus, for any fixed R > 0, the Sobolev’s compact embedding, the subcritical growth of g and a 
variant of the Lebesgue Dominated Convergence Theorem imply that

lim
n→∞

∫
BR

K(un)g(x, |un|2)|un|2dx →
∫
BR

K(u)g(x, |u|2)|u|2dx. (4.4)

Moreover, from Lemma 4.5, we know that for any ξ > 0, there exists Rξ > 0 such that for all 
R > Rξ

lim sup
n

∫
(BR(0))c

(|∇Aun|2 + (λV (x) + 1)|un|2)dx ≤ ξ.

Consequently, by the Sobolev’s embedding and the subcritical growth of g, we obtain

lim sup
n

∣∣∣ ∫
(BR(0))c

K(un)g(x, |un|2)|un|2dx

∣∣∣ ≤ C2ξ. (4.5)

Since

∣∣∣ ∫
RN

K(u)g(x, |u|2)|u|2dx

∣∣∣ ≤ C,

we have

∣∣∣ ∫
(BR(0))c

K(u)g(x, |u|2)|u|2dx

∣∣∣ ≤ ξ, (4.6)

for R > 0 large enough.
From (4.4), (4.5) and (4.6), one has

lim
n→∞

∫
RN

K(un)g(x, |un|2)|un|2dx →
∫
RN

K(u)g(x, |u|2)|u|2dx.

Finally, since �′
λ(u) = 0, we have

on(1) = �′
λ(un)[un] = ‖un‖2

λ − p

2

∫
RN

K(un)g(x, |un|2)|un|2dx = ‖un‖2
λ − ‖u‖2

λ + on(1).

Thus, the sequence (un) strongly converges to u in Eλ. �
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5. The (PS)∞ condition

Now we study the behavior of a (PS)∞,c sequence, that is, a sequence (un) ⊂ H 1
A(RN, C)

satisfying

un ∈ Eλn and λn → ∞,

�λn(un) → c,

‖�′
λn

(un)‖E∗
λn

→ 0, as n → ∞.

Proposition 5.1. Let (un) be a (PS)∞,c sequence with c ∈ [0, d]. Then, for some subsequence, 
still denoted by (un), there exists u ∈ H 1

A(RN, C) such that

un ⇀ u in H 1
A(RN,C).

Moreover,

(i) ‖un − u‖λn → 0, and so ‖un − u‖A → 0;
(ii) u ≡ 0 in RN\�	 and u|�	 is a solution of

⎧⎪⎪⎨⎪⎪⎩
− (∇ + iA(x))2u + u =

(∫
�	

|u|p
|x − y|μ dy

)
|u|p−2u, in �	,

u ∈ H
0,1
A (�	);

(iii) un also satisfies

λn

∫
RN

V (x)|un|2dx → 0,

‖un‖2
λn,RN\�′

	
→ 0,

�λn(un) → 1

2

∫
�	

(|∇Au|2 + (λV (x) + 1)|u|2)dx − 1

2p

∫
�	

(∫
�	

|u|p
|x − y|μ dy

)
|u|pdx.

The proof of this proposition is similar to that of Proposition 4.1 in [9], here we omit it.

Proposition 5.2. Let (uλ) be a family of nontrivial solutions of problem (4.3) with 0 ≤ �λ(uλ) ≤
d Then, there exists λ∗ > 0 such that

‖|uλ|‖2
L∞(RN\�′

	)
≤ a, ∀λ ≥ λ∗.

In particular, uλ solves the original problem (1.1) for any λ ≥ λ∗.
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Proof. We use the notation Br(x) = {y ∈ RN : |x − y| < r}. Since uλ ∈ Eλ is a critical point of 
�λ(u), that is, uλ satisfies the following equation

−(∇ + iA(x))2uλ + (λV (x) + 1)uλ = p

2
(

1

|x|μ ∗ G(x, |uλ|2))g(x, |uλ|2)uλ, x ∈ RN.

By Kato’s inequality

�|uλ| ≥ Re
( uλ

|uλ| (∇ + iA(x))2uλ(x)
)
,

there holds

�|uλ(x)| − (λV (x) + 1)|uλ(x)| + p

2
(

1

|x|μ ∗ G(x, |uλ|2))g(x, |uλ|2)|uλ(x)| ≥ 0, x ∈ RN.

From 0 ≤ �λ(uλ) ≤ d and Lemma 4.4, we know that there exists C > 0 such that

|K(uλ)|L∞(RN) ≤ C, ∀λ ∈ λ∗.

We also have that there exists C1 > 0 such that

g(x, t) ≤ t
p−2

2 , ∀(x, t) ∈ RN ×R+.

Since |uλ| ≥ 0 and (λV (x) + 1) ≥ 1, from the above inequalities, we have

�|uλ(x)| − |uλ(x)| + C|uλ(x)|p−2|uλ(x)| ≥ 0, x ∈RN.

Using the subsolution estimate (see [22] Theorem 8.17), there exists a constant C(r) > 0 such 
that for 1 < q < 2

sup
y∈Br (x)

|uλ(y)| ≤ C(r)
( ∫
B2r (x)

|uλ|qdy
)1/2

.

By Proposition 5.1, for any sequence λn → ∞, we can extract a subsequence λni
such that

uλni
→ u ∈ H

0,1
A (�	,C) in H 1

A(RN,C).

In particular,

uλni
→ 0 in L2(RN\�	,C).

Since λn → ∞ is arbitrary, we have

uλ → 0 in L2(RN\�	,C) as λ → ∞.

Thus, choosing r ∈ (0, dist(�	, RN\�′ )), we have uniformly in x ∈ RN\�′ that
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|uλ(y)| ≤ C(r)‖uλ‖Lq(B2r (x))

≤ C(r)|B2r (x)| 2−q
2q ‖uλ‖L2(RN\�	)

→ 0.

This finishes the proof. �
6. A special minimax value for �λ

In this section, without loss generality, we consider 	 = {1, · · · , l} with l ≤ k. Now, we intro-
duce the functional in H 1

A(�′
	, C)

�λ,	(u) = 1

2

∫
�′

	

(|∇Au|2 + (λV (x) + 1)|u|2)dx − 1

2p

∫
�′

	

(∫
�′

	

|u|p
|x − y|μ dy

)
|u|pdx.

We denote by cλ,	 given by

cλ,	 = inf
u∈M′

	

�λ,	(u)

where

M′
	 = {u ∈N ′

	 : �′
λ,	(u)[uj ] = 0 and uj �= 0, j ∈ 	}

where uj = u|�′
j

and

N ′
	 = {u ∈ H 1

A(�′
	)\{0} : �′

λ,	(u)[u] = 0}.

Using the same arguments in Section 3, we know that there exists wλ,	 ∈ H 1
A(�′

	, C) verifying

�λ,	(wλ,	) = cλ,	 and �′
λ,	(wλ,	) = 0.

Moreover, we have the following assertions.

Lemma 6.1. The following assertions hold:

(i) 0 < cλ,	 ≤ c	, for any λ > 0;
(ii) cλ,	 → c	 as λ → ∞.

For the proof of this lemma, we refer to that of Lemma 5.1 in [9].
In what follows, we denote by ω ∈ H

0,1
A (�	) the least energy solution obtained in Section 3, 

that is

ω ∈M	, I	(w) = c	 and I ′
	(w) = 0.

Considering the function
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G(s1, s2, · · · , sl) = I	(s
1
p

1 ω1 + s
1
p

2 ω2 + · · · + s
1
p

l ωl). (6.1)

It is obvious that

I	(s
1
p

1 ω1 + s
1
p

2 ω2 + · · · + s
1
p

l ωl) =
l∑

j=1

s
2
p

j

2

∫
�j

(|∇Aωj |2 + |ωj |2)dx

− 1

2p

∫
�	

(∫
�	

∑l
j=1 sj |ωj |p
|x − y|μ dy

)( l∑
j=1

sj |ωj |p
)
dx.

Arguing as in [21], one has

∫
�	

(∫
�	

∑l
j=1 sj |ωj |p
|x − y|μ dy

)( l∑
j=1

sj |ωj |p
)
dx =

∫
�	

[ 1

|x|μ/2 ∗
( l∑

j=1

sj |ωj |p
)]2

dx.

As s �→ s2/p is concave and s �→ s2 is strictly convex, we conclude the function (6.1) is 
strictly concave with ∇G(1, 1, · · · , 1) = (0, 0, · · · , 0). Hence, (1, 1, · · · , 1) is the unique global 
maximum point of G on [0, +∞)l with G(1, 1, · · · , 1) = c	. In the sequel, we denote by 
ω ∈ H

0,1
A (�	) the least energy solution for (P )∞,	, that is

ω ∈ M	, I	(w	) = c	 and I ′
	(w	) = 0.

Since p > 2, there are r > 0 small enough and R > 0 large enough such that

I ′
	(

l∑
j=1,j �=i

tjωj + Rωi)[Rωi] < 0, for i ∈ 	, ∀tj ∈ [r,R] and j �= i, (6.2)

I ′
	(

l∑
j=1,j �=i

tjωj + rωi)[rωi] > 0, for i ∈ 	, ∀tj ∈ [r,R] and j �= i, (6.3)

and

I	(

l∑
j=1

tjωj ) < c	, ∀(t1, t2, · · · , tl) ∈ ∂([r,R]l ),

where ωj = ω|�j
, j ∈ 	. Using the above inequalities, we can define the maps

γ0(t1, t2, · · · , tl)(x) =
l∑

j=1

tjωj (x) ∈ H
0,1
A (�	) ∀(t1, t2, · · · , tl) ∈ [r,R]l , (6.4)


∗ =
{
γ ∈ C

(
[r,R]l ,Eλ\{0}

)
: γ = γ0 on ∂([r,R]l )

}
,
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and

bλ,	 = inf
γ∈
∗

max
(t1,··· ,tl )∈[r,R]l

�λ(γ (t1, · · · , tl)),

where R > 1 > r > 0 are the positive constants obtained in (6.2) and (6.3). We remark that 
γ0 ∈ 
∗, so 
∗ �= ∅ and bλ,	 is well defined.

Lemma 6.2. For any γ ∈ 
∗, there exists (t1, t2, · · · , tl) ∈ [r,R]l such that

�′
λ,	(γ (t1, t2, · · · , tl))[γj (t1, t2, · · · , tl)] = 0,

where γj (t1, t2, · · · , tl) = γ (t1, t2, · · · , tl)|�′
j
, j ∈ 	.

Proof. Since p > 2 and γ = γ0 on ∂([r,R]l ), using (6.2), (6.3) and Miranda’s Theorem [36], we 
obtain the conclusion of the lemma. �
Proposition 6.1. The following facts hold

(i) 0 < cλ,	 ≤ bλ,	 ≤ c	 for all λ > 0;
(ii) �λ(γ (t1, t2, · · · , tl)) < c	 for all λ > 0, γ ∈ 
∗ and (t1, t2, · · · , tl) ∈ ∂([r, R]l ).

Proof. Since γ0 defined in (6.4) belongs to 
∗, we have

bλ,	 ≤ max
(s1,s2,··· ,sl )∈[r,R]l

�λ(γ0(s1, s2, · · · , sl))

= max
(s1,s2,··· ,sl )∈[r,R]l

I	(

l∑
j=1

tjωj ) = c	.

Fixing (t1, t2, · · · , tl) ∈ [r, R]l given in Lemma 6.2 and recalling that

cλ,	 = inf
u∈M′

	

�λ,	(u)

where

M′
	 = {u ∈N ′

	 : �′
λ,	(u)[uj ] = 0 and uj �= 0, j ∈ 	}.

It follows that

�λ,	(γ (t1, t2, · · · , tl)) ≥ cλ,	.

On the other hand, let d ≥ c	 and ν0 small, using Lemma 4.3 and Lemma 4.4, we have that

�λ,RN\�′ (u) ≥ 0 for all u ∈ H 1(RN\�′ )

	 A 	
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which leads to

�λ(γ (t1, t2, · · · , tl)) ≥ �λ,	(γ (t1, t2, · · · , tl)), ∀(t1, t2, · · · , tl) ∈ [r,R]l .

Thus

max
(s1,s2,··· ,sl )∈[r,R]l

�λ(γ (s1, s2, · · · , sl)) ≥ �λ,	(γ (t1, t2, · · · , tl)) ≥ cλ,	.

From the definition of bλ,	, we can obtain

bλ,	 ≥ cλ,	.

This completes the proof of (i).
Since γ (t1, t2, · · · , tl) = γ0(t1, t2, · · · , tl) on ∂([r, R]l ), we have

�λ(γ0(t1, t2, · · · , tl)) = I	(

l∑
j=1

tjωj ).

From (6.2) and (6.3), we derive

�λ(γ0(t1, t2, · · · , tl)) ≤ c	 − ε,

for some ε > 0. This completes the proof of (ii). �
Corollary 6.1. The following claims hold:

(i) bλ,	 → c	 as λ → ∞;
(ii) bλ,	 is a critical value of �λ for large λ.

Proof. (i) For all λ > 0, cλ,	 ≤ bλ,	 ≤ c	. From Lemma 6.1, cλ,	 → c	 as λ → ∞, thus, bλ,	 →
c	 as λ → ∞.

(ii) By choosing d > c	, for λ > 0 large enough bλ,	 ∈ [0, d], using the fact that �λ verifies 
that (PS)c condition with c ∈ [0, d], we can use well known arguments involving deformation 
lemma [38] to conclude that bλ,	 is a critical level to �λ for large λ. �
7. Proof of the main theorem

To prove Theorem 1.1, we need to find nontrivial solutions uλ for λ > 0 large enough, which 
converges to a least energy solution of (P )∞,	 as λ → ∞. To this end, we will show two propo-
sitions which together with Propositions 5.1 and 5.2 will imply that Theorem 1.1 holds.

Hereafter, we denote by

� =
{
u ∈ Eλ : ‖u‖λ,�′

j
>

rτ

2
, ∀j ∈ 	

}
,

where r was fixed in (6.2) and τ is the positive constant such that
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C. Ji and V.D. Rădulescu Journal of Differential Equations 306 (2022) 251–279
∫
�j

(|∇Auj |2 + |uj |2)dx > τ, ∀u ∈ ϒ	 = {u ∈M	 : I	(u) = c	} and ∀j ∈ 	.

Furthermore, we denote the set

�
c	

λ = {u ∈ Eλ : �λ(u) ≤ c	}.
Fixing κ = rτ

8 , and for small ζ > 0, we define

Aλ
ζ = {u ∈ �2κ : ‖u‖2

λ,RN\�′
	

≤ ζ, |�λ(u) − c	| ≤ ζ }.

Notice that w ∈ Aλ
ζ ∩ �

c	

λ which shows that Aλ
ζ ∩ �

c	

λ �= ∅. We have the following uniform 
estimate of ‖�′

λ(u)‖ in the set (Aλ
2ζ \Aλ

ζ ) ∩ �
c	

λ .

Proposition 7.1. For each ζ > 0, there exist λ∗ > 0 large enough and σ0 > 0 independent of λ
such that

‖�′
λ(u)‖ ≥ σ0 for λ ≥ λ∗ and u ∈ (Aλ

2ζ \Aλ
ζ ) ∩ �

c	

λ .

Proof. Arguing by contradiction, we assume that there exist λn → ∞ and un ∈ (A
λn

2ζ \Aλn

ζ ) ∩�
c	

λn

such that

‖�′
λn

(un)‖ → 0.

Since un ∈ A
λn

2ζ , we know that (‖un‖λn) and (�λn(un)) are both bounded. Then, passing to a sub-
sequence if necessary, we can assume that (�λn(un)) converges. Thus, choosing appropriately 
d > 0 large, from Proposition 5.1, there exists u ∈ H

0,1
A (�	) such that u is a solution for

−(∇ + iA(x))2u + u =
(∫
�	

|u|p
|x − y|μ dy

)
|u|p−2u, in �	,

and

un → u in H 1
A(RN,C), ‖un‖2

λn,RN\�′
	

→ 0, �λn(un) → I	(u).

Since (un) ⊂ �2κ , we derive that∫
�′

j

(|∇Aun|2 + (λnV (x) + 1)|un|2)dx >
rτ

4
, ∀j ∈ 	.

Let n → +∞, we have the inequality∫
�

(|∇Au|2 + |u|2)dx ≥ rτ

4
> 0, ∀j ∈ 	,
j
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which yields u|�j
�= 0, j = 1, · · · , l and I ′

	(u) = 0. Consequently, I	(u) ≥ c	. However, from 
the fact that �λn(un) ≤ c	 and �λn(un) → I	(u) as n → +∞, we derive that I	(u) = c	, and 
so, u ∈ ϒ	 Thus, for n large enough∫

�j

(|∇Aun|2 + |un|2)dx >
rτ

2
, |�λn(un) − c	| ≤ ζ, for any j ∈ 	.

So, un ∈ A
λn

ζ for large n, which is a contradiction to un ∈ (A
λn

2ζ \Aλn

ζ ). Thus, we complete the 
proof. �

In the sequel, ζ1, ζ ∗ denote the following numbers

min
(t1,··· ,tl )∈∂([r,R]l )

|I	(γ0(t1, · · · , tl)) − c	| = ζ1 > 0

and

ζ ∗ = min{ζ1/2, κ, ρ/2},
where κ = rτ

8 was given before and

ρ = 4R2c	,

where R > 0 was fixed in (6.2). Moreover, for each s > 0, Bλ
s denotes the set

Bλ
s = {u ∈ Eλ : ‖u‖λ ≤ s}, for s > 0.

Proposition 7.2. Let ζ ∈ (0, ζ ∗) and λ∗ > 0 large enough given in the previous proposition. 
Then, for λ ≥ λ∗, there is a solution uλ of problem (4.3) satisfying uλ ∈ Aλ

ζ ∩ �
c	

λ ∩ Bλ
2ρ+1.

Proof. For λ ≥ λ∗, assume that there are no critical points in Aλ
ζ ∩ �

c	

λ ∩ Bλ
2ρ+1. Since �λ

verifies the (PS)c condition with 0 ≤ c ≤ d , there exists a constant dλ > 0 such that

‖�′
λ(u)‖ ≥ dλ for all u ∈ Aλ

ζ ∩ �
c	

λ ∩ Bλ
2ρ+1.

By Proposition 7.1, we have

‖�′
λ(u)‖ ≥ σ0 for all u ∈ (Aλ

2ζ \Aλ
ζ ) ∩ �

c	

λ ,

where σ0 > 0 is independent of λ. In what follows, � : Eλ → R be a continuous functional 
verifying

�(u) = 1 for u ∈ Aλ
3ζ/2 ∩ ϒκ ∩ Bλ

2ρ,

�(u) = 0 for u /∈ Aλ
2ζ ∩ ϒ2κ ∩ Bλ

2ρ+1,

0 ≤ �(u) ≤ 1 for ∀u ∈ Eλ,
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and H : �c	

λ → Eλ verifies

H(u) :=
{

−�(u)
Y(u)

‖Y(u)‖ , u ∈ Aλ
2ζ ∩ Bλ

2ρ+1,

0, u /∈ Aλ
2ζ ∩ Bλ

2ρ+1,

where Y is a pseudo-gradient vector field for �λ on K = {u ∈ Eλ : �′
λ(u) �= 0}. Observe that H

is well defined, since �′
λ(u) �= 0, for u ∈ Aλ

2ζ ∩ �
c	

λ . The following inequality

‖H(u)‖ ≤ 1, ∀λ ≥ λ∗ and u ∈ �
c	

λ ,

guarantees the deformation flow η : [0, ∞) × �
c	

λ → �
c	

λ defined by

dη

dt
= H(η) and η(0, u) = u ∈ �

c	

λ ,

verifies

d

dt
�λ(η(t, u)) ≤ −�(η(t, u))‖�′

λ(η(t, u))‖ ≤ 0, (7.1)

‖dη

dt
‖λ = ‖H(η)‖λ ≤ 1,

η(t, u) = u for all t ≥ 0 and u ∈ �
c	

λ \(Aλ
2μ ∩ Bλ

2ρ+1). (7.2)

We now study two paths, which are relevant for what follows:
(1) The path (t1, · · · , tl) → η(t, γ0(t1, · · · , tl)), where (t1, · · · , tl) ∈ [r, R]l .
Since ζ ∈ (0, ζ ∗), we have that

γ0(t1, · · · , tl) /∈ Aλ
2ζ , ∀ (t1, · · · , tl) ∈ ∂([r,R]l ),

and

�λ(γ0(t1, · · · , tl)) < c	 ∀ (t1, · · · , tl) ∈ ∂([r,R]l ).
From (7.2), it follows that

η(t, γ0(t)) = γ0(t1, · · · , tl) ∀ (t1, · · · , tl) ∈ ∂([r,R]l ).
So, η(t, γ0(t1, · · · , tl) ∈ 	∗ for all t ≥ 0.

(2) The path (t1, · · · , tl) → γ0(t1, · · · , tl), where (t1, · · · , tl) ∈ [r, R]l .
Since supp(γ0(t1, · · · , tl)) ⊂ �	 for all (t1, · · · , tl) ∈ [r, R]l , then �λ(γ0(t1, · · · , tl)) does not 

depend on λ ≥ 0. On the other hand,

�λ(γ0(t1, · · · , tl))) ≤ c	 ∀ (t1, · · · , tl) ∈ [r,R]l ,
and

�λ(γ0(t1, · · · , tl)) = c	 if and only if tj = 1, ∀j ∈ 	.
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Thus, we have that

m0 := sup{�λ(u) : u ∈ γ0([r,R]l )\Aλ
ζ }

is independent of λ ≥ 0 and m0 < c	. Now, observing that there exists K∗ > 0 such that

|�λ(u) − �λ(v)| ≤ K∗‖u − v‖λ, ∀ u,v ∈ Bλ
2ρ,

we claim that if T > 0 is large enough, the estimate below holds

max
(t1,··· ,tl )∈[r,R]l

�λ(η(T , γ0(t1, · · · , tl))) < max{m0, c	 − 1

2K∗
σ0μ}. (7.3)

In fact, writing u = γ0(t1, · · · , tl), (t1, · · · , tl) ∈ [r, R]l , if u /∈ Aλ
μ, then by (7.1), we have

�λ(η(t, u)) ≤ �λ(η(0, u)) = �λ(u) ≤ m0, ∀t ≥ 0.

On the other hand, if u ∈ Aλ
ζ , by setting η̃(t) = η(t, u), d̃λ := min{dλ, σ0} and T = σ0μ

2K∗d̃λ
> 0. 

Now we distinguish two cases:
(1) η̃(t) ∈ Aλ

3ζ/2 ∩ �κ ∩ Bλ
2ρ for ∀ t ∈ [0, T ].

(2) η̃(t0) /∈ Aλ
3ζ/2 ∩ �κ ∩ Bλ

2ρ for some t0 ∈ [0, T ].
If case (1) holds, we have �(η̃(t)) ≡ 1 and ‖�′

λ(η̃(t))‖ ≥ d̃λ for all t ∈ [0, T ]. Thus, by (7.1), 
we have

�λ(η̃(T )) =�λ(u) +
T∫

0

d

ds
�λ(η̃(s))ds

≤c	 −
T∫

0

d̃λds

=c	 − d̃λT

≤c	 − σ0μ

2K∗
.

If the case (2) holds. In this case we have the following situations:
(i) There exists t2 ∈ [0, T ] such that η̃(t2) /∈ �κ , and thus, for t1 = 0 it yields that

‖η̃(t2) − η̃(t1)‖λ ≥ κ > ζ,

because η̃(t1) = u ∈ �.
(ii) There exists t2 ∈ [0, T ] such that η̃(t2) /∈ Bλ

2ρ , so that for t1 = 0, we obtain

‖η̃(t2) − η̃(t1)‖λ ≥ ρ > ζ,

because η̃(t1) = u ∈ Bλ.
ρ
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C. Ji and V.D. Rădulescu Journal of Differential Equations 306 (2022) 251–279
(iii) η̃(t) ∈ �κ ∩ Bλ
2ρ , and there are 0 ≤ t1 < t2 ≤ T such that η̃(t) ∈ Aλ

3ζ/2\Aλ
ζ for all t ∈

[t1, t2] with

|�λ(η̃(t1)) − c	| = ζ and |�λ(η̃(t2)) − c	| = 3ζ

2
.

From the definition of K∗, we have

‖η̃(t2) − η̃(t)‖λ ≥ 1

K∗

∣∣∣�λ(η̃(t2)) − �λ(η̃(t1))

∣∣∣
≥ 1

2K∗
ζ.

By the mean value theorem and t2 − t1 ≥ 1
2K∗ ζ , we have

�λ(η̃(T )) =�λ(u) +
T∫

0

d

ds
�λ(η̃(s))ds

≤�λ(u) −
T∫

0

�(η̃(s))‖�′
λ(η̃(s))‖ds

≤c	 −
t2∫

t1

σ0ds

=c	 − σ0(t2 − t1)

≤c	 − σ0ζ

2K∗
,

and so (7.3) is proved.
Fixing ̂η(t1, · · · , tl) = η(T , γ0(t1, · · · , tl)), we have that ̂η(t1, · · · , tl) ∈ �2κ , and so ̂η(t1, · · · ,

tl)|�′
j
�= 0 for all j ∈ 	. Thus, ̂η ∈ 	∗ and

bλ,	 ≤ max
(t1,··· ,tl )∈[r,R]l

�λ(̂η(t1, · · · , tl) ≤ c	 − σ0ζ

2K∗
, ∀λ ≥ λ∗,

which contradicts Corollary 6.1(i) bλ,	 → c	 as λ → ∞.
Thus, we can conclude that �λ has a critical point uλ ∈ Aλ

ζ for λ large enough. �
Proof of Theorem 1.1. By choosing d > 0 appropriately, from Proposition 7.2, there exists a 
family of nontrivial solutions (uλ) to problem (4.3) verifying the following properties:

�′
λn

(uλn) = 0 ∀n ∈ N,

‖uλn‖λn,RN\�′
	

→ 0,

�λn(uλn) → b ≤ c	 ≤ d.
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Thus, from Proposition 5.1, we have

uλn → u in H 1
A(RN) with u ∈ H

0,1
A (�	),

and u|�j
�= 0, ∀j ∈ 	.

From Proposition 5.2, uλ is a solution for problem (1.1) and λ > 0 large. Moreover, by Propo-
sition 5.1, we know that u = 0 on (�	)c and u|�	 ∈ H

0,1
A (�	) is a nontrivial solution of

−(∇ + iA(x))2u + u =
(∫
�	

|u|p
|x − y|μ dy

)
|u|p−2u, in �	,

where �	 = ⋃
j∈	

�j . Thus, I	(u) ≥ c	.

On the other hand, we also know that

�λn(uλn) → I	(u)

implying that

I	(u) = b and b ≥ c	.

Since b ≤ c	, we deduce that

I	(u) = c	

which showing that u is a least energy solution of (P )∞,	. We complete the proof of Theo-
rem 1.1. �
Remark 7.1. Since � = ⋃k

j=1 �j , where k is a finite positive integer, we may choose d > 0
large appropriately in Lemma 4.3, so that the conclusion of Corollary 1.2 holds.
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