Asymmetric, Noncoercive, Superlinear ($p, 2$)-Equations

Nikolaos S. Papageorgiou
National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece; and: King Saud University, Department of Mathematics, P.O. Box 2454, Riyadh 11451, Kingdom of Saudi Arabia npapg@math.ntua.gr

Vicenţiu D. Rădulescu*

Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia; and: Institute of Mathematics"Simion Stoilow" of the Romanian Academy of Sciences, P.O. Box 1-764, 014700 Bucharest, Romania vicentiu.radulescu@imar.ro

Received: September 4, 2015
Revised manuscript received: February 7, 2016
Accepted: February 10, 2016

We examine a nonlinear nonhomogeneous Dirichlet problem driven by the sum of a p Laplacian $(p \geqslant 2)$ and a Laplacian (a $(p, 2)$-equation). The reaction term is asymmetric and it is superlinear in the positive direction and sublinear in the negative direction. The superlinearity is not expressed using the Ambrosetti-Rabinowitz condition, while the asymptotic behavior as $x \rightarrow-\infty$ permits resonance with respect to any nonprincipal eigenvalue of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$. Using variational methods based on the critical point theory and Morse theory (critical groups), we prove a multiplicity theorem producing three nontrivial solutions.

Keywords: ($p, 2$)-equation, asymmetric reaction, superlinear growth, multiple solutions, nonlinear regularity, critical groups

2010 Mathematics Subject Classification: 35J20, 35J60, 58E05

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$. In this paper, we study the following nonlinear Dirichlet problem driven by the sum of a p-Laplacian ($p \geqslant 2$) and a Laplacian (a $(p, 2)$-equation):

$$
\begin{equation*}
-\Delta_{p} u(z)-\Delta u(z)=f(z, u(z)) \text { in } \Omega,\left.u\right|_{\partial \Omega}=0,2 \leqslant p . \tag{1}
\end{equation*}
$$

*V. D. Rădulescu was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0130.

By Δ_{p} we denote the p-Laplace differential operator defined by

$$
\Delta_{p} u=\operatorname{div}\left(|D u|^{p-2} D u\right) \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

In this problem the reaction term $f(z, x)$ is a measurable function which is C^{1} in the $x \in \mathbb{R}$ variable and exhibits an asymmetric behavior as $x \rightarrow \pm \infty$. More precisely, $x \longmapsto f(z, x)$ is $(p-1)$-superlinear near $+\infty$, but it is $(p-1)$-sublinear near $-\infty$. The superlinearity in the positive direction is not expressed using the Ambrosetti-Rabinowitz condition (the AR-condition for short). Instead we employ a weaker condition which incorporates in our framework superlinear nonlinearities with slower growth near $+\infty$ which fail to satisfy the AR-condition. In the negative direction where $f(z, \cdot)$ is sublinear, our hypothesis permits resonance with respect to any nonprincipal eigenvalue of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$. So, problem (1) is asymmetric, superlinear and at resonance.

Recently such problems were studied by Recova and Rumbos [26], [27] for semilinear Dirichlet problems driven by the Laplacian and with more restrictive conditions on the reaction term (see Theorem 1.1 of [26] and Theorem 1.2 of [27]). We also mention the semilinear works of de Paiva and Presoto [20] (they study a parametric equation driven by the Laplacian) and Motreanu, Motreanu and Papageorgiou [15] (they study an equation driven by the Laplacian, no resonance is allowed as $x \rightarrow-\infty$ and they produce only two nontrivial solutions). For equations driven by the p-Laplacian, we mention the work of Motreanu, Motreanu and Papageorgiou [16], who deal with a parametric problem involving concave nonlinearities.
We mention that ($p, 2$)-equations arise in many physical applications. We refer to the works of Benci, D'Avenia, Fortunato and Pisani [3] (quantum physics) and Cherfils and Ilyasov [4] (diffusion problems). Recently there have been some existence and multiplicity results for such equations under different settings. We mention the works of Cingolani and Degiovanni [5], Mugnai and Papageorgiou [18], Papageorgiou and Rădulescu [21], Papageorgiou and Smyrlis [23] and Papageorgiou and Winkert [24].
Our approach combines variational methods based on the critical point theory with Morse theory (critical groups).

2. Mathematical Background

Let X be a Banach space and X^{*} be its topological dual. By $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the pair $\left(X^{*}, X\right)$. Let $\varphi \in C^{1}(X, \mathbb{R})$. We say that φ satisfies the "Cerami condition" (the " C-condition" for short), if the following property holds:
"Every sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq X$ such that $\left\{\varphi\left(u_{n}\right)\right\}_{n \geqslant 1} \subseteq \mathbb{R}$ is bounded and

$$
\left(1+\left\|u_{n}\right\|\right) \varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } X^{*},
$$

admits a strongly convergent subsequence."

This is a compactness-type condition on the functional φ and it is more general than the more common Palais-Smale condition. The C-condition leads to a deformation theorem from which one can derive the min-max theory for the critical values of φ. Prominent in this theory is the so-called "mountain pass theorem" due to Ambrosetti and Rabinowitz [2], which we state here in a slightly more general form (see, for example, Gasinski and Papageorgiou [9, p. 648]).
Theorem 2.1. Let X be a Banach space and assume that $\varphi \in C^{1}(X, \mathbb{R})$ satisfies the C-condition, $u_{0}, u_{1} \in X,\left\|u_{1}-u_{0}\right\|>\rho>0$,

$$
\max \left\{\varphi\left(u_{0}\right), \varphi\left(u_{1}\right)\right\}<\inf \left[\varphi(u):\left\|u-u_{0}\right\|=\rho\right]=m_{\rho}
$$

and $c=\inf _{\gamma \in \Gamma} \max _{0 \leqslant t \leqslant 1} \varphi(\gamma(t))$ with $\Gamma=\left\{\gamma \in C([0,1], X): \gamma(0)=u_{0}, \gamma(1)=\right.$ $\left.u_{1}\right\}$. Then $c \geqslant m_{\rho}$ and c is a critical value of φ.

In the analysis of problem (1), we will use the Sobolev spaces $W_{0}^{1, p}(\Omega)$ and $H_{0}^{1}(\Omega)$. Since $p \geqslant 2$, we have $W_{0}^{1, p}(\Omega) \subseteq H_{0}^{1}(\Omega)$. We will also use the Banach space $C_{0}^{1}(\bar{\Omega})=\left\{u \in C^{1}(\bar{\Omega}):\left.u\right|_{\partial \Omega}=0\right\}$. This is an ordered Banach space with positive cone

$$
C_{+}=\left\{u \in C_{0}^{1}(\bar{\Omega}): u(z) \geqslant 0 \text { for all } z \in \bar{\Omega}\right\}
$$

This cone has a nonempty interior given by

$$
\operatorname{int} C_{+}=\left\{u \in C_{+}: u(z)>0 \text { for all } z \in \Omega, \frac{\partial u}{\partial n}(z)<0 \text { for all } z \in \partial \Omega\right\}
$$

Here $\frac{\partial u}{\partial n}=(D u, n)_{\mathbb{R}^{N}}$ with $n(z)$ being the outward unit normal at $z \in \partial \Omega$.
We will also need some facts about the spectrum of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$. So, we consider the following nonlinear eigenvalue problem:

$$
\begin{equation*}
-\Delta_{p} u(z)=\hat{\lambda}|u(z)|^{p-2} u(z) \text { in } \Omega,\left.u\right|_{\partial \Omega}=0,1<p<\infty \tag{2}
\end{equation*}
$$

We say that $\hat{\lambda} \in \mathbb{R}$ is an eigenvalue of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$, if problem (2) admits a nontrivial solution $\hat{u} \in W_{0}^{1, p}(\Omega)$ which is an eigenfunction corresponding to the eigenvalue $\hat{\lambda}$. There exists a smallest eigenvalue $\hat{\lambda}_{1}(p)>0$ which has the following properties:

- $\hat{\lambda}_{1}(p)$ is isolated (that is, there exists $\epsilon>0$ such that the open interval $\left(\hat{\lambda}_{1}(p), \hat{\lambda}_{1}(p)+\epsilon\right)$ contains no eigenvalues of $\left.\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)\right)$.
- $\hat{\lambda}_{1}(p)$ is simple (that is, if $\hat{u}, \hat{v} \in W_{0}^{1, p}(\Omega)$ are eigenfunctions corresponding to the eigenvalue $\hat{\lambda}_{1}(p)$, then $\hat{u}=\xi \hat{v}$ for some $\left.\xi \in \mathbb{R} \backslash\{0\}\right)$.
- $\hat{\lambda}_{1}(p)=\inf \left[\frac{\|D u\|_{p}^{p}}{\|u\|_{p}^{p}}: u \in W_{0}^{1, p}(\Omega), u \neq 0\right]$.

The infimum in (3) is realized at the corresponding one-dimensional eigenspace. From (3) it is clear that the elements of this eigenspace do not change sign. Let $\hat{u}_{1}(p)$ be the L^{p}-normalized (that is, $\left\|\hat{u}_{1}(p)\right\|_{p}=1$) positive eigenfunction corresponding to $\hat{\lambda}_{1}(p)$. The nonlinear regularity theory (see Lieberman [12]) and the nonlinear maximum principle (see Pucci and Serrin [25]), imply that $\hat{u}_{1}(p) \in \operatorname{int} C_{+}$.

The Ljusternik-Schnirelmann minimax scheme gives a whole strictly increasing sequence $\left\{\hat{\lambda}_{k}(p)\right\}_{k \geqslant 1}$ of distinct eigenvalues such that $\hat{\lambda}_{k}(p) \rightarrow+\infty$. However, we do not know if this sequence exhausts the spectrum of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$. This is the case if $p=2$ (linear eigenvalue problem) or if $N=1$ (ordinary differential equations).

The following lemma can be found in Motreanu, Motreanu and Papageorgiou [17, p. 305].
Lemma 2.2. Assume that $\vartheta \in L^{\infty}(\Omega)$ satisfies $\vartheta(z) \leqslant \hat{\lambda}_{1}(p)(1<p<\infty)$ for almost all $z \in \Omega$, with strict inequality on a set of positive measure. Then there exists $\hat{c}>0$ such that

$$
\|D u\|_{p}^{p}-\int_{\Omega} \vartheta(z)|u|^{p} d z \geqslant \hat{c}\|D u\|_{p}^{p} \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

The same results are also true for the following weighted version of problem (2):

$$
-\Delta_{p} u(z)=\tilde{\lambda} m(z)|u(z)|^{p-2} u(z) \text { in } \Omega,\left.u\right|_{\partial \Omega}=0
$$

with $m \in L^{\infty}(\Omega), m \geqslant 0, m \not \equiv 0$. In this case

$$
\tilde{\lambda}_{1}(p, m)=\inf \left[\frac{\|D u\|_{p}^{p}}{\int_{\Omega} m(z)|u|^{p} d z}: u \in W_{0}^{1, p}(\Omega), u \neq 0\right] .
$$

We have the following monotonicity property for the map $m \rightarrow \tilde{\lambda}_{1}(p, m)$.
Proposition 2.3. Assume that $m, m^{\prime} \in L^{\infty}(\Omega), 0 \leqslant m(z) \leqslant m^{\prime}(z)$ for almost all $z \in \Omega$ and $m \not \equiv m^{\prime}$. Then $\tilde{\lambda}_{1}\left(p, m^{\prime}\right)<\tilde{\lambda}_{1}(p, m)$.

We mention that only the first eigenvalue has eigenfunctions of constant sign. All the other eigenvalues have nodal (that is, sign-changing) eigenfunctions. For further details on these and related issues, we refer to Gasinski and Papageorgiou [9].
For $1<p<\infty$, let $A_{p}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)=W_{0}^{1, p}(\Omega)^{*}\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$ be the map defined by

$$
\left\langle A_{p}(u), h\right\rangle=\int_{\Omega}|D u|^{p-2}(D u, D h)_{\mathbb{R}^{N}} d z \text { for all } u, h \in W_{0}^{1, p}(\Omega) .
$$

When $p=2$, we write $A_{2}=A$ and we have $A \in \mathcal{L}\left(H_{0}^{1}(\Omega), H^{-1}(\Omega)\right)$. For $p \neq 2, A_{p}$ is nonlinear and ($p-1$)-homogeneous. Also we have (see Gasinski and Papageorgiou [9, p. 746]).

Proposition 2.4. The map $A_{p}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)(1<p<\infty)$ is continuous, strictly monotone (hence maximal monotone too) and of type $(S)_{+}$, that is

$$
\begin{gathered}
" u_{n} \xrightarrow{w} u \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left\langle A_{p}\left(u_{n}\right), u_{n}-u\right\rangle \leqslant 0 \\
\Rightarrow u_{n} \rightarrow u \quad \text { in } W_{0}^{1, p}(\Omega) . "
\end{gathered}
$$

Next we recall some basic facts about critical groups (Morse theory). For further details we refer to the book of Motreanu, Motreanu and Papageorgiou [17] (see also Cingolani, Degiovanni and Vannella [6] and Cingolani and Vannella [7].
So, let X be a Banach space and $\varphi \in C^{1}(X, \mathbb{R}), c \in \mathbb{R}$. We define the following sets:

$$
\begin{gathered}
\varphi^{c}=\{u \in X: \varphi(u) \leqslant c\}, \quad K_{\varphi}=\left\{u \in X: \varphi^{\prime}(u)=0\right\}, \\
K_{\varphi}^{c}=\left\{u \in K_{\varphi}: \varphi(u)=c\right\} .
\end{gathered}
$$

Let $\left(Y_{1}, Y_{2}\right)$ be a topological pair such that $Y_{2} \subseteq Y_{1} \subseteq X$ and $k \in \mathbb{N}_{0}$. By $H_{k}\left(Y_{1}, Y_{2}\right)$ we denote the k th relative singular homology group for the topological pair $\left(Y_{1}, Y_{2}\right)$ with integer coefficients. The critical groups of φ at an isolated $u \in K_{\varphi}^{c}$ are defined by

$$
C_{k}(\varphi, u)=H_{k}\left(\varphi^{c} \cap U, \varphi^{c} \cap U \backslash\{0\}\right) \text { for all } k \in \mathbb{N}_{0},
$$

with U being a neighborhood of u such that $K_{\varphi} \cap \varphi^{c} \cap U=\{u\}$. The excision property of singular homology implies that the above definition of critical groups is independent of the choice of the neighborhood U of u.
Suppose that φ satisfies the C-condition and $-\infty<\inf \varphi\left(K_{\varphi}\right)$. Let $c<$ $\inf \varphi\left(K_{\varphi}\right)$. The critical groups of φ at infinity are defined by

$$
C_{k}(\varphi, \infty)=H_{k}\left(X, \varphi^{c}\right) \text { for all } k \in \mathbb{N}_{0}
$$

The second deformation theorem (see, for example, Gasinski and Papageorgiou [9, p. 628]), implies that the above definition is independent of the level $c<$ $\inf \varphi\left(K_{\varphi}\right)$.

Suppose that $\varphi \in C^{1}(X, \mathbb{R})$, satisfies the C-condition and K_{φ} is finite. We define

$$
\begin{gathered}
M(t, u)=\sum_{k \geqslant 0} \operatorname{rank} C_{k}(\varphi, u) t^{k} \text { for all } t \in \mathbb{R}, \text { all } u \in K_{\varphi}, \\
P(t, \infty)=\sum_{k \geqslant 0} \operatorname{rank} C_{k}(\varphi, \infty) t^{k} \text { for all } t \in \mathbb{R} .
\end{gathered}
$$

774 N. S. Papageorgiou, V. D. Rădulescu / Asymmetric, Noncoercive, ...
The Morse relation says that

$$
\begin{equation*}
\sum_{u \in K_{\varphi}} M(t, u)=P(t, \infty)+(1+t) Q(t) \text { for all } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

where $Q(t)=\sum_{k \geqslant 0} \beta_{k} t^{k}$ is a formal series in $t \in \mathbb{R}$ with nonnegative integer coefficients.
Finally we fix our notation. By $\|\cdot\|$ we denote the norm of $W_{0}^{1, p}(\Omega)$. From the Poincaré inequality (see, for example, Gasinski and Papageorgiou [9, p. 216]), we have

$$
\|u\|=\|D u\|_{p} \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Let $x \in \mathbb{R}$. We define $x^{ \pm}=\max \{ \pm x, 0\}$. Then for $u \in W_{0}^{1, p}(\Omega)$ we set

$$
u^{ \pm}(\cdot)=u(\cdot)^{ \pm}
$$

We know that $u^{ \pm} \in W_{0}^{1, p}(\Omega), u=u^{+}-u^{-},|u|=u^{+}+u^{-}$. Given a measurable function $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$, we set

$$
N_{g}(u)(\cdot)=g(\cdot, u(\cdot)) \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

Then $z \longmapsto N_{g}(u)(z)=g(z, u(z))$ is measurable. By $|\cdot|_{N}$ we denote the Lebesgue measure on \mathbb{R}^{N} and by $p^{*}=\left\{\begin{array}{ll}\frac{N p}{N-p} & \text { if } p<N \\ +\infty & \text { if } N \leqslant p\end{array}\right.$ the critical Sobolev exponent.

3. Multiplicity Theorem

In this section we prove a multiplicity theorem for problem (1) producing three nontrivial solutions. Our hypotheses on the reaction term $f(z, x)$ are the following:
$H: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function such that for almost all $z \in \Omega$, $f(z, 0)=0, f(z, \cdot) \in C^{1}(\mathbb{R})$ and
(i) $\left|f_{x}^{\prime}(z, x)\right| \leqslant a(z)\left(1+|x|^{r-2}\right)$ for almost all $z \in \Omega$, all $x \in \mathbb{R}$, with $a \in$ $L^{\infty}(\Omega)_{+}, p<r<p^{*} ;$
(ii) if $F(z, x)=\int_{0}^{x} f(z, s) d s$, then

$$
\lim _{x \rightarrow+\infty} \frac{F(z, x)}{x^{p}}=+\infty \text { uniformly for almost all } z \in \Omega
$$

(iii) if $\xi(z, x)=f(z, x) x-p F(z, x)$, then there exists $\gamma_{0} \in L^{1}(\Omega)$ such that

$$
\xi(z, x) \leqslant \xi(z, y)+\gamma_{0}(z) \text { for almost all } z \in \Omega, \text { all } 0 \leqslant x \leqslant y
$$

(iv) there exist functions $\eta, \hat{\eta} \in L^{\infty}(\Omega)$ and $c_{0}>0$ such that $\eta(z) \geqslant \hat{\lambda}_{1}(p)$ for almost all $z \in \Omega$, strictly on a set of positive measure,

$$
\begin{aligned}
\eta(z) & \leqslant \liminf _{x \rightarrow+\infty} \frac{f(z, x)}{|x|^{p-2} x} \\
& \leqslant \limsup _{x \rightarrow+\infty} \frac{f(z, x)}{|x|^{p-2} x} \leqslant \hat{\eta}(z) \text { uniformly for almost all } z \in \Omega ; \\
-c_{0} & \leqslant f(z, x) x-p F(z, x) \text { for almost all } z \in \Omega, \text { all } x \leqslant 0 ;
\end{aligned}
$$

(v) $f_{x}^{\prime}(z, 0)=\lim _{x \rightarrow 0} \frac{f(z, x)}{x}$ uniformly for almost all $z \in \Omega, f_{x}^{\prime}(z, 0) \leqslant \hat{\lambda}_{1}(2)$ for almost all $z \in \Omega$ and the inequality is strict on a set of positive measure;
(vi) for every $\rho>0$, there exists $\hat{\xi}_{\rho}>0$ such that $f(z, x)+\hat{\xi}_{\rho} x^{p-1} \geqslant 0$ for almost all $z \in \Omega$, all $0 \leqslant x \leqslant \rho$.

Remark 3.1. Hypothesis H (ii) implies that for almost all $z \in \Omega$, the primitive $F(z, \cdot)$ is p-superlinear near $+\infty$. This fact and hypothesis H (iii), imply that for almost all $z \in \Omega, f(z, \cdot)$ is $(p-1)$-superlinear near $+\infty$ (see Li and Yang [13, Lemma 2.4]). Hypothesis H (iii) replaces the AR-condition which says that there exist $q>p$ and $M>0$ such that

$$
\begin{gather*}
0<q F(z, x) \leqslant f(z, x) x \text { for almost all } z \in \Omega, \text { all } x \geqslant M \tag{5a}\\
0<\operatorname{ess}_{\Omega}^{\operatorname{enf}} F(\cdot, M) \tag{5b}
\end{gather*}
$$

An easy integration of (5a) and the use of (5b), imply the weaker condition

$$
\begin{equation*}
c_{1} x^{q} \leqslant F(z, x) \text { for almost all } z \in \Omega \text {, all } x \geqslant M \text { with } c_{1}>0 . \tag{6}
\end{equation*}
$$

So, the AR-condition restricts $F(z, \cdot)$ to have at least q-polynomial growth near $+\infty$. With H (iii) we avoid this (see the examples which follow). Condition $H($ iii) also extends earlier ones used by Li and Yang [13] and Miyagaki and Souto [14]. Hypothesis H (iv) implies that for almost all $z \in \Omega, f(z, \cdot)$ is ($p-1$)sublinear near $-\infty$. Note that this hypothesis does not exclude resonance with respect to a nonprincipal eigenvalue.

Example 3.2. The following functions satisfy hypotheses H. For the sake of simplicity we drop the z-dependence:

$$
\begin{gathered}
f_{1}(x)= \begin{cases}\eta|x|^{p-2} x+(\eta-\vartheta) & \text { if } x<-1 \\
\vartheta x & \text { if }-1 \leqslant x \leqslant 1 \\
x^{r-1}+(\vartheta-1) & \text { if } 1 \leqslant x,\end{cases} \\
f_{2}(x)= \begin{cases}\eta|x|^{p-2} x+(\eta-\vartheta) & \text { if } x<-1 \\
\vartheta x & \text { if }-1 \leqslant x \leqslant 1 \\
x^{p-1}\left(\ln x+\frac{1}{p}\right)+\left(\vartheta-\frac{1}{p}\right) & \text { if } 1 \leqslant x,\end{cases}
\end{gathered}
$$

with $\vartheta<\hat{\lambda}_{1}(2)$. Note that f_{2} does not satisfy the AR-condition (see (6)).

776 N. S. Papageorgiou, V. D. Rădulescu / Asymmetric, Noncoercive, ...
Let $\varphi: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be the energy functional for problem (1) defined by

$$
\varphi(u)=\frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} F(z, u) d z \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

We have $\varphi \in C^{2}\left(W_{0}^{1, p}(\Omega)\right)$.
Proposition 3.3. If hypotheses H hold, then the functional φ satisfies the C condition.

Proof. Let $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega)$ be a sequence such that

$$
\begin{gather*}
\left|\varphi\left(u_{n}\right)\right| \leqslant M_{1} \text { for some } M_{1}>0, \text { all } n \geqslant 1 \tag{7}\\
\left(1+\left\|u_{n}\right\|\right) \varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W^{-1, p^{\prime}}(\Omega) \text { as } n \rightarrow \infty . \tag{8}
\end{gather*}
$$

From (8) we have

$$
\begin{aligned}
& \left|\left\langle A_{p}\left(u_{n}\right), h\right\rangle+\left\langle A\left(u_{n}\right), h\right\rangle-\int_{\Omega} f\left(z, u_{n}\right) h d z\right| \leqslant \frac{\epsilon_{n}\|h\|}{1+\left\|u_{n}\right\|} \\
& \quad \text { for all } h \in W_{0}^{1, p}(\Omega) \text { with } \epsilon_{n} \rightarrow 0^{+}
\end{aligned}
$$

Recall that $u_{n}=u_{n}^{+}-u_{n}^{-}$for all $n \geqslant 1$. So, we have

$$
\begin{aligned}
& \frac{1}{p}\left\|D u_{n}^{+}\right\|_{p}^{p}+\frac{1}{2}\left\|D u_{n}^{+}\right\|_{2}^{2} \\
= & \frac{1}{p}\left\|D u_{n}\right\|_{p}^{p}+\frac{1}{2}\left\|D u_{n}\right\|_{2}^{2}-\frac{1}{p}\left\|D u_{n}^{-}\right\|_{p}^{p}-\frac{1}{2}\left\|D u_{n}^{-}\right\|_{2}^{2} \\
& \quad+\int_{\Omega} F\left(z, u_{n}\right) d z-\int_{\Omega} F\left(z, u_{n}\right) d z \\
= & \varphi\left(u_{n}\right)-\frac{1}{p}\left\|D u_{n}^{-}\right\|_{p}^{p}-\frac{1}{2}\left\|D u_{n}^{-}\right\|_{2}^{2}+\int_{\Omega} F\left(z, u_{n}\right) d z \\
\leqslant & M_{1}+\frac{1}{p}\left[\int_{\Omega} p F\left(z, u_{n}\right) d z-\left\|D u_{n}^{-}\right\|_{p}^{p}-\left\|D u_{n}^{-}\right\|_{2}^{2}\right] \text { for all } n \geqslant 1 \\
& \quad(\operatorname{see}(7) \text { and recall } p \geqslant 2) .
\end{aligned}
$$

In (9) we choose $h=-u_{n}^{-} \in W_{0}^{1, p}(\Omega)$ and obtain

$$
\begin{align*}
& \left|\left\|D u_{n}^{-}\right\|_{p}^{p}+\left\|D u_{n}^{-}\right\|_{2}^{2}-\int_{\Omega} f\left(z,-u_{n}^{-}\right)\left(-u_{n}^{-}\right) d z\right| \leqslant \epsilon_{n} \text { for all } n \geqslant 1 \\
\Rightarrow \quad & -\left\|D u_{n}^{-}\right\|_{p}^{p}-\left\|D u_{n}^{-}\right\|_{2}^{2} \leqslant \epsilon_{n}-\int_{\Omega} f\left(z,-u_{n}^{-}\right)\left(-u_{n}^{-}\right) d z \text { for all } n \geqslant 1 \tag{11}
\end{align*}
$$

We return to (10) and use (11). Then

$$
\begin{align*}
& \frac{1}{p}\left\|D u_{n}^{+}\right\|_{p}^{p}+\frac{1}{2}\left\|D u_{n}^{+}\right\|_{2}^{2} \leqslant M_{2}+\frac{1}{p} \int_{\Omega}\left[p F\left(z, u_{n}\right)-f\left(z,-u_{n}^{-}\right)\left(-u_{n}^{-}\right)\right] d z \tag{12}\\
& \quad \text { for some } M_{2}>0, \text { all } n \geqslant 1
\end{align*}
$$

We have

$$
\begin{equation*}
p F\left(z, u_{n}\right)=p F\left(z, u_{n}^{+}\right)+p F\left(z,-u_{n}^{-}\right) \text {for all } n \geqslant 1 \tag{13}
\end{equation*}
$$

and from hypothesis H (iv), we have

$$
\begin{equation*}
p F\left(z,-u_{n}^{-}\right)-f\left(z,-u_{n}^{-}\right)\left(-u_{n}^{-}\right) \leqslant c_{0} \text { for almost all } z \in \Omega, \text { all } n \geqslant 1 . \tag{14}
\end{equation*}
$$

Returning to (12) and using (13) and (14) we obtain

$$
\begin{align*}
& \quad \frac{1}{p}\left\|D u_{n}^{+}\right\|_{p}^{p}+\frac{1}{2}\left\|D u_{n}^{+}\right\|_{2}^{2} \leqslant M_{3}+\int_{\Omega} F\left(z, u_{n}^{+}\right) d z \\
& \quad \text { with } M_{3}=M_{2}+c_{0}|\Omega|_{N}>0, \text { for all } n \geqslant 1, \\
& \Rightarrow \varphi\left(u_{n}^{+}\right) \leqslant M_{3} \text { for all } n \geqslant 1 \tag{15}
\end{align*}
$$

In (9) we choose $h=u_{n}^{+} \in W_{0}^{1, p}(\Omega)$ and have

$$
\begin{equation*}
-\left\|D u_{n}^{+}\right\|_{p}^{p}-\left\|D u_{n}^{+}\right\|_{2}^{2}+\int_{\Omega} f\left(z, u_{n}^{+}\right) u_{n}^{+} d z \leqslant \epsilon_{n} \text { for all } n \geqslant 1 \tag{16}
\end{equation*}
$$

From (15) and since $p \geqslant 2$, we have

$$
\begin{equation*}
\left\|D u_{n}^{+}\right\|_{p}^{p}+\left\|D u_{n}^{+}\right\|_{2}^{2}-\int_{\Omega} p F\left(z, u_{n}^{+}\right) d z \leqslant p M_{3} \text { for all } n \geqslant 1 \tag{17}
\end{equation*}
$$

Adding (16) and (17), we obtain

$$
\begin{align*}
& \int_{\Omega}\left[f\left(z, u_{n}^{+}\right) u_{n}^{+}-p F\left(z, u_{n}^{+}\right)\right] d z \leqslant M_{4} \text { for some } M_{4}>0, \text { all } n \geqslant 1 \\
\Rightarrow & \int_{\Omega} \xi\left(z, u_{n}^{+}\right) d z \leqslant M_{4} \text { for all } n \geqslant 1 \tag{18}
\end{align*}
$$

Claim 3.4. $\left\{u_{n}^{+}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega)$ is bounded.
We argue indirectly. So, suppose that $\left\{u_{n}^{+}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega)$ is not bounded. Then we may assume that $\left\|u_{n}^{+}\right\| \rightarrow \infty$ as $n \rightarrow \infty$. We set $y_{n}=\frac{u_{n}^{+}}{\left\|u_{n}^{u}\right\|} n \geqslant 1$. We have

$$
\left\|y_{n}\right\|=1 \quad \text { and } \quad y_{n} \geqslant 0 \text { for all } n \geqslant 1 .
$$

Hence we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad y_{n} \rightarrow y \text { in } L^{r}(\Omega) \text { as } n \rightarrow \infty, y \geqslant 0 . \tag{19}
\end{equation*}
$$

Suppose that $y \neq 0$. Then $|\{y>0\}|_{N}=0$ (recall that $y \geqslant 0$, see (14)) and we have

$$
u_{n}^{+}(z) \rightarrow+\infty \text { for almost all } z \in\{y>0\} .
$$

Hypothesis H (ii) implies that

$$
\frac{F\left(z, u_{n}^{+}(z)\right)}{\left\|u_{n}^{+}\right\|^{p}}=\frac{F\left(z, u_{n}^{+}(z)\right)}{u_{n}^{+}(z)^{p}} y_{n}(z)^{p} \rightarrow+\infty \text { for almost all } z \in\{y>0\}
$$

This fact and Fatou's lemma (see hypothesis $H($ ii)), imply that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \frac{F\left(z, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p}} d z=+\infty \tag{20}
\end{equation*}
$$

Since $\xi(z, 0)=0$ for almost all $z \in \Omega$, from hypothesis H (iii) we have

$$
\begin{align*}
& p F\left(z, u_{n}^{+}\right) \leqslant f\left(z, u_{n}^{+}\right) u_{n}^{+}+\gamma_{0}(z) \text { for almost all } z \in \Omega \\
& \Rightarrow \int_{\Omega} p F\left(z, u_{n}^{+}\right) d z \leqslant \int_{\Omega} f\left(z, u_{n}^{+}\right) u_{n}^{+} d z+\left\|\gamma_{0}\right\|_{1} \\
& \leqslant M_{5}+\left\|D u_{n}^{+}\right\|_{p}^{p}+\left\|D u_{n}^{+}\right\|_{2}^{2} \\
& \text { for some } M_{5}>0, \text { all } n \geqslant 1 \text { (see (16)) } \\
& \leqslant M_{5}+\left\|D u_{n}^{+}\right\|_{p}^{p}+\frac{p}{2}\left\|D u_{n}^{+}\right\|_{2}^{2} \text { since } p \geqslant 2 \\
& \Rightarrow \quad \int_{\Omega} \frac{F\left(z, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p}} d z \leqslant \frac{M_{5}}{p\left\|u_{n}^{+}\right\|^{p}}+\frac{1}{p}\left\|D y_{n}\right\|_{p}^{p}+\frac{1}{2\left\|u_{n}^{+}\right\|^{p-2}}\left\|D y_{n}\right\|_{2}^{2} \\
& \leqslant M_{6} \text { for some } M_{6}>0, \text { all } n \geqslant 1 . \tag{21}
\end{align*}
$$

Comparing (20) and (21) we reach a contradiction.
So, suppose that $y=0$. For $k \geqslant 1$, we set

$$
v_{n}=(p k)^{1 / p} y_{n} \in W_{0}^{1, p}(\Omega)
$$

We have

$$
v_{n} \rightarrow 0 \text { in } L^{r}(\Omega) \text { (see (19) and recall that } y=0 \text {). }
$$

Hypothesis $H(\mathrm{i})$ implies that

$$
|F(z, x)| \leqslant c_{1}\left(1+|x|^{r}\right) \text { for almost all } z \in \Omega, \text { all } x \in \mathbb{R} \text { with } c_{1}>0 .
$$

Using the Krasnoselskii theorem (see, for example, Gasinski and Papageorgiou [9, p. 407]), we have

$$
\begin{equation*}
\int_{\Omega} F\left(z, v_{n}\right) d z \rightarrow 0 \text { as } n \rightarrow \infty \tag{22}
\end{equation*}
$$

Since $\left\|u_{n}^{+}\right\| \rightarrow \infty$, we can find $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
0<(p k)^{1 / p} \frac{1}{\left\|u_{n}^{+}\right\|} \leqslant 1 \text { for all } n \geqslant n_{0} \tag{23}
\end{equation*}
$$

Let $\hat{\varphi}(u)=\frac{1}{p}\|D u\|_{p}^{p}-\int_{\Omega} F(z, u) d z$ for all $u \in W_{0}^{1, p}(\Omega)$. Let $t_{n} \in[0,1]$ be such that

$$
\begin{equation*}
\hat{\varphi}\left(t_{n} u_{n}^{+}\right)=\max \left[\hat{\varphi}\left(t u_{n}^{+}\right): 0 \leqslant t \leqslant 1\right] . \tag{24}
\end{equation*}
$$

From (23) and (24) we see that

$$
\begin{aligned}
\hat{\varphi}\left(t_{n} u_{n}^{+}\right) & \geqslant \hat{\varphi}\left(v_{n}\right) \\
& =k\left\|D y_{n}\right\|_{p}^{p}-\int_{\Omega} F\left(z, v_{n}\right) d z \\
& =k-\int_{\Omega} F\left(z, v_{n}\right) d z \text { for all } n \geqslant n_{0} \\
\Rightarrow \hat{\varphi}\left(t_{n}, u_{n}^{+}\right) & \geqslant \frac{k}{2} \text { for all } n \geqslant n_{1} \geqslant n_{0}(\text { see }(22)) .
\end{aligned}
$$

But $k>0$ is arbitrary. So, we infer that

$$
\begin{equation*}
\hat{\varphi}\left(t_{n} u_{n}^{+}\right) \rightarrow+\infty \text { as } n \rightarrow \infty \tag{25}
\end{equation*}
$$

We have

$$
\hat{\varphi}(0)=0 \text { and } \hat{\varphi}\left(u_{n}^{+}\right) \leqslant M_{3} \text { for all } n \geqslant 1(\text { see }(15) \text { and note that } \hat{\varphi} \leqslant \varphi) .
$$

Because of (25), we see that we can find $n_{2} \in \mathbb{N}$ such that

$$
t_{n} \in(0,1) \text { for all } n \geqslant n_{2}
$$

Then from (24) it follows that

$$
\begin{align*}
& \left.\frac{d}{d t} \hat{\varphi}\left(t u_{n}^{+}\right)\right|_{t=t_{n}}=0 \text { for all } n \geqslant n_{2}, \\
\Rightarrow & \left\langle\hat{\varphi}^{\prime}\left(t_{n} u_{n}^{+}\right), u_{n}^{+}\right\rangle=0 \text { for all } n \geqslant n_{2} \text { (by the chain rule), } \\
\Rightarrow & \left\langle\hat{\varphi}^{\prime}\left(t_{n} u_{n}^{+}\right), t_{n} u_{n}^{+}\right\rangle=0 \text { for all } n \geqslant n_{2}, \\
\Rightarrow & \|\left. D\left(t_{n} u_{n}^{+}\right)\right|_{p} ^{p}-\int_{\Omega} f\left(z, t_{n} u_{n}^{+}\right)\left(t_{n} u_{n}^{+}\right) d z \text { for all } n \geqslant n_{2} \tag{26}
\end{align*}
$$

Hypothesis H (iii) implies that

$$
\begin{align*}
& \int_{\Omega} \xi\left(z, t_{n} u_{n}^{+}\right) d z \leqslant \int_{\Omega} \xi\left(z, u_{n}^{+}\right) d z+\left\|\gamma_{0}\right\|_{1} \leqslant M_{7} \tag{27}\\
& \left.\quad \text { for some } M_{7}>0, \text { all } n \geqslant n_{2} \text { (see (18) and recall } t_{n} \in(0,1)\right)
\end{align*}
$$

780 N. S. Papageorgiou, V. D. Rădulescu / Asymmetric, Noncoercive, ...
We return to (26) and use (27). Then

$$
\begin{align*}
& \left\|D\left(t_{n} u_{n}^{+}\right)\right\|_{p}^{p} \leqslant M_{7}+\int_{\Omega} p F\left(z, t_{n} u_{n}^{+}\right) d z \text { for all } n \geqslant n_{2} \\
\Rightarrow & \hat{\varphi}\left(t_{n} u_{n}^{+}\right) \leqslant \frac{M_{7}}{p} \text { for all } n \geqslant n_{2} . \tag{28}
\end{align*}
$$

Comparing (25) and (28) we reach a contradiction.
This proves the Claim.
From (9) and using the Claim, we have that

$$
\begin{align*}
& \left|\left\langle A_{p}\left(-u_{n}^{-}\right), h\right\rangle+\left\langle A\left(-u_{n}^{-}\right), h\right\rangle-\int_{\Omega} f\left(z,-u_{n}^{-}\right) h d z\right| \leqslant M_{8}\|h\| \tag{29}\\
& \quad \text { for some } M_{8}>0, \text { all } n \geqslant 1 .
\end{align*}
$$

Suppose that $\left\|u_{n}^{-}\right\| \rightarrow \infty$ and set $w_{n}=\frac{u_{n}^{-}}{\left\|u_{n}\right\|} n \geqslant 1$. Then

$$
\left\|w_{n}\right\|=1 \quad \text { and } \quad w_{n} \geqslant 0 \text { for all } n \geqslant 1
$$

So, we may assume that

$$
\begin{equation*}
w_{n} \xrightarrow{w} w \text { in } W_{0}^{1, p}(\Omega) \text { and } w_{n} \rightarrow w \text { in } L^{p}(\Omega), w \geqslant 0 . \tag{30}
\end{equation*}
$$

From (29) we have

$$
\begin{equation*}
\left|\left\langle A_{p}\left(-w_{n}\right), h\right\rangle+\frac{1}{\left\|w_{n}\right\|^{p-2}}\left\langle A\left(-w_{n}\right), h\right\rangle-\int_{\Omega} \frac{N_{f}\left(-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|^{p-1}} h d z\right| \leqslant \frac{M_{8}\|h\|}{\left\|u_{n}^{-}\right\|^{p-1}} \tag{31}
\end{equation*}
$$

for all $n \geqslant 1$
Hypotheses $H(\mathrm{i})$,(iv) imply that

$$
|f(z, x)| \leqslant c_{2}\left(1+|x|^{p-1}\right) \text { for almost all } z \in \Omega, \text { all } x \leqslant 0 \text { and some } c_{2}>0
$$

$$
\Rightarrow\left\{\frac{N_{f}\left(-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|^{p-1}}\right\}_{n \geqslant 1} \subseteq L^{p^{\prime}}(\Omega) \text { is bounded }\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)
$$

Using this fact and hypothesis H (iv) we have, at least for a subsequence, that $\frac{N_{f}\left(-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|^{p-1}} \xrightarrow{w}-\vartheta w^{p-1}$ in $L^{p^{\prime}}(\Omega)$ with $\eta(z) \leqslant \vartheta(z) \leqslant \hat{\eta}(z)$ for almost all $z \in \Omega$
(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 16). In (31) we use $h=w_{n}-w \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (30) and (32). We obtain

$$
\begin{align*}
& \left.\lim _{n \rightarrow \infty}\left\langle A_{p}\left(w_{n}\right), w_{n}-w\right\rangle=0 \quad \text { (recall } p \geqslant 2\right) \\
\Rightarrow & w_{n} \rightarrow w \text { in } W_{0}^{1, p}(\Omega) \text { (see Proposition 2.4), hence }\|w\|=1, w \geqslant 0 . \tag{33}
\end{align*}
$$

Therefore, if in (31) we pass to the limit as $n \rightarrow \infty$ and use (32) and (33), then

$$
\begin{align*}
\left\langle A_{p}(w), h\right\rangle & =\int_{\Omega} \vartheta(z) w^{p-1} h d z \text { for all } h \in W_{0}^{1, p}(\Omega), \\
\Rightarrow-\Delta_{p} w(z) & =\vartheta(z) w(z)^{p-1} \text { for almost all } z \in \Omega,\left.w\right|_{\partial \Omega}=0 . \tag{34}
\end{align*}
$$

Recall that

$$
\hat{\lambda}_{1}(p) \leqslant \eta(z) \leqslant \vartheta(z) \text { for almost all } z \in \Omega
$$

and the first inequality is strict on a set of positive measure. So, using Proposition 2.3, we have

$$
\tilde{\lambda}_{1}(p, \vartheta)<\tilde{\lambda}_{1}\left(p, \hat{\lambda}_{1}\right)=1 .
$$

Then returning to (34) we infer that $w(\cdot)$ must be nodal or zero, a contradiction (see (33)). Therefore

$$
\begin{aligned}
& \left\{u_{n}^{-}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded, } \\
\Rightarrow & \left\{u_{n}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded (see the Claim). }
\end{aligned}
$$

So, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } W_{0}^{1, p}(\Omega) \text { and } u_{n} \rightarrow u \text { in } L^{r}(\Omega) . \tag{35}
\end{equation*}
$$

In (9) we choose $h=u_{n}-u \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (35). Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[\left\langle A_{p}\left(u_{n}\right), u_{n}-u\right\rangle+\left\langle A\left(u_{n}\right), u_{n}-u\right\rangle\right]=0, \\
\Rightarrow \quad & \limsup _{n \rightarrow \infty}\left[\left\langle A_{p}\left(u_{n}\right), u_{n}-u\right\rangle+\left\langle A(u), u_{n}-u\right\rangle\right] \leqslant 0 \quad \text { (since } A \text { is monotone) }, \\
\Rightarrow \quad & \limsup _{n \rightarrow \infty}\left\langle A_{p}\left(u_{n}\right), u_{n}-u\right\rangle \leqslant 0 \\
\Rightarrow \quad & u_{n} \rightarrow u \text { in } W_{0}^{1, p}(\Omega) \quad \text { (see Proposition 2.4). }
\end{aligned}
$$

This proves that φ satisfies the C-condition.
Having established that φ satisfies the C-condition, we can compute the critical groups of φ at infinity.
Proposition 3.5. If hypotheses H hold and $\varphi\left(K_{\varphi}\right)$ is bounded below, then $C_{k}(\varphi, \infty)=0$ for all $k \in \mathbb{N}_{0}$.

Proof. Let $\varphi_{c}=\left.\varphi\right|_{C_{0}^{1}(\bar{\Omega})}$. From the nonlinear regularity theory (see Lieberman [12]), we have that $K_{\varphi_{c}}=K_{\varphi}=K$. Moreover, since $C_{0}^{1}(\bar{\Omega})$ is dense in $W_{0}^{1, p}(\Omega)$, from Palais [19, Theorem 16], we have

$$
\begin{equation*}
H_{k}\left(W_{0}^{1, p}(\Omega), \dot{\varphi}^{a}\right)=H_{k}\left(C_{0}^{1}(\bar{\Omega}), \dot{\varphi}_{c}^{a}\right) \text { for all } a \in \mathbb{R}, \text { all } k \in \mathbb{N}, \tag{36}
\end{equation*}
$$

with $\dot{\varphi}^{a}=\left\{u \in W_{0}^{1, p}(\Omega): \varphi(u)<a\right\}, \dot{\varphi}_{c}^{a}=\left\{u \in C_{0}^{1}(\bar{\Omega}): \varphi_{c}(u)<a\right\}$.
Choosing $a<\inf \varphi(K)=\inf \varphi_{c}(K)$ (this is possible by hypothesis), we have

$$
\begin{array}{r}
H_{k}\left(W_{0}^{1, p}(\Omega), \dot{\varphi}^{a}\right)=H_{k}\left(W_{0}^{1, p}(\Omega), \varphi^{a}\right)=C_{k}(\varphi, \infty) \text { for all } k \in \mathbb{N}_{0} \\
H_{k}\left(C_{0}^{1}(\bar{\Omega}), \dot{\varphi}_{c}^{a}\right)=H_{k}\left(C_{0}^{1}(\bar{\Omega}), \varphi^{a}\right)=C_{k}\left(\varphi_{c}, \infty\right) \text { for all } k \in \mathbb{N}_{0} \tag{38}
\end{array}
$$

(see Granas and Dugundji [10, p. 407]). From (36), (37), (38) we see that in order to prove the proposition, we need to show that

$$
H_{k}\left(C_{0}^{1}(\bar{\Omega}), \varphi_{c}^{a}\right)=0 \text { for all } k \in \mathbb{N}_{0}
$$

To this end, let $C \subseteq \varphi_{c}^{a}$ be a compact set.
Claim 3.6. For $a<0$ with $|a|>0$ big, the set C is contractible in φ_{c}^{a}.
In what follows by $\langle\cdot, \cdot\rangle_{0}$ we denote the duality brackets for the pair $\left(C_{0}^{1}(\bar{\Omega})^{*}, C_{0}^{1}(\bar{\Omega})\right)$. Also, let $i: C_{0}^{1}(\bar{\Omega}) \rightarrow W_{0}^{1, p}(\Omega)$ be the continuous embedding map. We have

$$
\begin{align*}
& \varphi_{c}=\varphi \circ i \\
\Rightarrow & \varphi_{c}^{\prime}(u)=i^{*} \varphi^{\prime}(u) \text { for all } u \in C_{0}^{1}(\bar{\Omega}) . \tag{39}
\end{align*}
$$

Let $u \in \varphi_{c}^{a}$. Then for $t>0$ we have

$$
\begin{aligned}
& \frac{d}{d t} \varphi_{c}(t u) \\
& =\left\langle\varphi_{c}^{\prime}(t u), u\right\rangle_{0} \quad \text { (by the chain rule) } \\
& =\left\langle\varphi^{\prime}(t u), u\right\rangle \quad \text { (see (39)) } \\
& =\frac{1}{t}\left\langle\varphi^{\prime}(t u), t u\right\rangle \\
& =\frac{1}{t}\left[t^{p}\|D u\|_{p}^{p}+t^{2}\|D u\|_{2}^{2}-\int_{\Omega} f\left(z, t u^{+}\right)\left(t u^{+}\right) d z-\int_{\Omega} f\left(z,-t u^{-}\right)\left(-t u^{-}\right) d z\right] \\
& \leqslant \frac{1}{t}\left[t^{p}\|D u\|_{p}^{p}+t^{2}\|D u\|_{2}^{2}-\int_{\Omega} p F\left(z, t u^{+}\right) d z-\int_{\Omega} p F\left(z,-t u^{-}\right) d z+c_{3}\right] \\
& \text { with } c_{3}=\left\|\gamma_{0}\right\|_{1}+c_{0}|\Omega|_{N}>0 \text { (see hypotheses } H \text { (iii),(iv)) } \\
& \leqslant \frac{1}{t}\left[t^{p}\|D u\|_{p}^{p}+\frac{p}{2} t^{2}\|D u\|_{2}^{2}-\int_{\Omega} p F(z, t u) d z+c_{3}\right] \quad(\text { since } p \geqslant 2) \\
& =\frac{1}{2}\left[p \varphi_{c}(t u)+c_{3}\right], \\
& \left.\Rightarrow \frac{d}{d t} \varphi_{c}(t u)\right|_{t=1} \leqslant p \varphi_{c}(u)+c_{3} \leqslant p a+c_{3} \quad\left(\text { recall } u \in \varphi_{c}^{a}\right) .
\end{aligned}
$$

Therefore

$$
a<-\left.\frac{c_{3}}{p} \Rightarrow \frac{d}{d t} \varphi_{c}(t u)\right|_{t=1}<0
$$

So, if $\varphi_{c}(u) \in(a-1, a]$, then we can find a unique $k(u)>0$ such that $\varphi_{c}(k(u) u)=a-1$. If $u \in \varphi_{c}^{a-1}$, then we set $k(u)=1$. The implicit function theorem implies that $k \in C\left(\varphi_{c}^{a},(0,1]\right)$. We consider the deformation $h_{1}:[0,1] \times C \rightarrow \varphi_{c}^{a}$ defined by

$$
h_{1}(t, u)=((1-t)+t k(u)) u .
$$

Let $C_{1}=h_{1}(1, C) \subseteq \varphi_{c}^{a-1}$. The set $C_{1} \subseteq C_{0}^{1}(\bar{\Omega})$ is compact. So, we can find $M_{9}>0$ such that

$$
\begin{equation*}
\left|\frac{\partial u}{\partial n}(z)\right| \leqslant M_{9} \text { for all } z \in \bar{\Omega}, \text { all } u \in C_{1} . \tag{40}
\end{equation*}
$$

Given $\epsilon>0$, we can find $\tilde{h}_{\epsilon} \in \operatorname{int} C_{+}$such that

$$
\frac{\partial \tilde{h} \epsilon}{\partial n}(z)<-M_{9} \text { for all } z \in \partial \Omega \quad \text { and } \quad\left(u+\tilde{h}_{\epsilon}\right)^{+} \neq 0
$$

To see this, set $\hat{d}(z)=d(z, \partial \Omega)$ and define

$$
\hat{h}_{\epsilon}(z)=\left\{\begin{array}{ll}
\hat{M} \hat{d}(z) & \text { if } \hat{d}(z) \leqslant \epsilon \\
\hat{M} \epsilon & \text { if } \epsilon<\hat{d}(z)
\end{array} \text { with } \hat{M}>0 .\right.
$$

Approximate \hat{h}_{ϵ} by a $C_{0}^{1}(\bar{\Omega})$-function \tilde{h}_{ϵ} and choose $\hat{M}>0$ big enough so that $\tilde{h}_{\epsilon} \in \operatorname{int} C_{+}$has the desired properties.
We have $C_{1} \subseteq \varphi_{c}^{a-1}$. Hence, if we choose $\epsilon>0$ small, then the deformation $h_{2}:[0,1] \times C_{1} \rightarrow \varphi_{c}^{a}$ defined by

$$
h_{2}(t, u)=u+t \tilde{h}_{\epsilon} \text { for all }(t, u) \in[0,1] \times C_{1},
$$

is well-defined.
Let $C_{2}=h_{2}\left(1, C_{1}\right)$ and pick $u \in C_{2}$. Then $u^{+} \neq 0$ and we have

$$
\varphi_{c}(u)=\varphi_{c}\left(u^{+}\right)+\varphi_{c}\left(-u^{-}\right) \leqslant a .
$$

From the previous considerations we know that $t \longmapsto \varphi_{c}(t u)$ is decreasing on $[1, \infty)$. Because $C_{2} \subseteq C_{0}^{1}(\bar{\Omega})$ is compact, we can find $t_{*} \geqslant 1$ such that

$$
\begin{equation*}
\varphi_{c}\left(t u^{+}\right) \leqslant a \text { for all } t \geqslant t_{*}, \text { all } u \in C_{2} . \tag{41}
\end{equation*}
$$

We introduce the deformation $h_{3}:[0,1] \times C_{2} \rightarrow \varphi_{c}^{a}$ defined by

$$
h_{3}(t, u)=\left(1-t+t t_{*}\right) u \text { for all }(t, u) \in[0,1] \times C_{2} .
$$

Evidently this is a well-defined deformation and if $C_{3}=h_{3}\left(1, C_{2}\right)$, then

$$
\begin{equation*}
\varphi_{c}\left(u^{+}\right) \leqslant a \text { for all } u \in C_{3}(\text { see }(41)) . \tag{42}
\end{equation*}
$$

The set $C_{3}=h_{3}\left(1, C_{2}\right) \subseteq C_{0}^{1}(\bar{\Omega})$ is compact. So, we can find $M_{10}>0$ such that

$$
\begin{equation*}
\varphi_{c}\left(s\left(-u^{-}\right)\right) \leqslant M_{10} \text { for all } u \in C_{3}, \text { all } s \in[0,1] . \tag{43}
\end{equation*}
$$

From (42) and since $t \longmapsto \varphi_{c}\left(t u^{+}\right)$is decreasing on $[1, \infty)$, we can find $\hat{t}_{*} \geqslant 1$ big such that

$$
\varphi_{c}\left(\hat{t}_{*} u^{+}\right) \leqslant a-M_{10} \text { for all } u \in C_{3} .
$$

We consider the deformation $h_{4}:[0,1] \times C_{3} \rightarrow \varphi_{c}^{a}$ defined by

$$
h_{4}(t, u)=\left(1-t+t \hat{t}_{*}\right) u^{+}+u^{-} .
$$

This deformation too is well-defined. We set $C_{4}=h_{3}\left(1, C_{3}\right)$ and have

$$
\begin{gather*}
C_{4} \subseteq C_{0}^{1}(\bar{\Omega}) \text { is compact } \\
C_{4} \subseteq \varphi_{c}^{a} \cap\left\{u \in C_{0}^{1}(\bar{\Omega}): \varphi_{c}\left(u^{+}\right) \leqslant a-M_{10}\right\} \quad(\text { see }(43)) . \tag{44}
\end{gather*}
$$

Using $C_{4} \subseteq C_{0}^{1}(\bar{\Omega})$, we will deform to a compact subset of positive functions in φ_{c}^{a}. To this end, let $h_{5}:[0,1] \times C_{4} \rightarrow \varphi_{c}^{a}$ be the deformation defined by

$$
h_{5}(t, u)=u^{+}+(1-t)\left(-u^{-}\right) \text {for all }(t, u) \in[0,1] \times C_{4} .
$$

We have

$$
\begin{aligned}
& \varphi_{c}\left(h_{5}(t, u)\right)=\varphi_{c}\left(u^{+}+(1-t)\left(-u^{-}\right)\right) \\
&=\varphi_{c}\left(u^{+}\right)+\varphi_{c}\left((1-t)\left(-u^{-}\right)\right) \\
& \leqslant a-M_{10}+M_{10}=a(\text { see }(3) \text { and }(43)), \\
& \Rightarrow \quad h_{5} \text { is well defined. }
\end{aligned}
$$

So, if $C_{5}=h\left(1, C_{4}\right)$, then we have

$$
\begin{align*}
& C_{5} \subseteq \varphi_{c}^{a} \quad \text { and } \quad C_{5} \subseteq C_{+}, \\
\Rightarrow \quad & C_{5} \subseteq \varphi_{c}^{a} \cap C_{+}=C_{+}^{a} . \tag{45}
\end{align*}
$$

Let $\partial B_{+}^{c}=\left\{u \in C_{0}^{1}(\bar{\Omega}):\|u\|_{C_{0}^{1}(\bar{\Omega})}=1\right\} \cap C_{+}$. From the first part of the proof we have

$$
C_{+}^{a}=\left\{t u: u \in \partial B_{+}^{c}, t \geqslant \hat{k}(u)\right\}
$$

with $\hat{k}(u)>0$ being the unique real such that $\varphi_{c}(\hat{k}(u) u)=a$. Using the radial retraction, we see that C_{+}^{a} and ∂B_{+}^{c} are homotopy equivalent. We consider the deformation $h_{+}:[0,1] \times \partial B_{+}^{c} \rightarrow \partial B_{+}^{c}$ defined by

$$
h_{+}(t, u)=\frac{(1-t) u+t \hat{u}_{1}(p)}{\left\|(1-t) u+t \hat{u}_{1}(p)\right\|_{C_{0}^{1}(\bar{\Omega})}} \text { for all }(t, u) \in[0,1] \times \partial B_{+}^{c} .
$$

Note that

$$
\begin{aligned}
& h_{+}(1, u)=\frac{\hat{u}_{1}(p)}{\left\|\hat{u}_{1}(p)\right\|_{C_{0}^{1}(\bar{\Omega})}} \in \partial B_{+}^{c}, \\
\Rightarrow & \partial B_{+}^{c} \text { is contractible, } \\
\Rightarrow & C_{+}^{a} \text { is contractible. }
\end{aligned}
$$

Then from (45) we infer that C_{5} is contractible. Since C was deformed to C_{5} by successive deformations, we conclude that C is contractible in φ_{c}^{a} for $a<0$ with $|a|>0$ big. This proves the Claim.

Let $* \in \dot{\varphi}_{c}^{a}$. For $a<\inf \varphi\left(K_{\varphi}\right)$, we have

$$
\begin{align*}
& H_{k}\left(\varphi_{c}^{a}, *\right)=H_{k}\left(\dot{\varphi}_{c}^{a}, *\right) \text { for all } k \in \mathbb{N}_{0} \tag{46}\\
& \quad(\text { see Granas and Dugundji [10, p. 407]). }
\end{align*}
$$

The Banach space $C_{0}^{1}(\bar{\Omega})$ is separable. So, we can find a sequence $\left\{V_{n}\right\}_{n \geqslant 1}$ of increasing finite dimensional subspaces of $C_{0}^{1}(\bar{\Omega})$ such that

$$
C_{0}^{1}(\bar{\Omega})=\overline{\bigcup_{\mathrm{n} \geqslant 1} V_{n}}
$$

From the Claim we have

$$
\begin{equation*}
H_{k}\left(\dot{\varphi}_{c}^{a}, *\right)=H_{k}\left(\dot{\varphi}_{c}^{a}, \dot{\varphi}_{c}^{a} \cap \bar{B}_{n}^{V_{n}}\right) \text { for all } k \in \mathbb{N}_{0}, \tag{47}
\end{equation*}
$$

where $\bar{B}_{n}^{V_{n}}=\left\{u \in V_{n}:\|u\|_{C_{0}^{1}(\bar{\Omega})} \leqslant n\right\}, * \in \bar{B}_{n}^{V_{n}}$. From Palais [19] (Corollary p. 5) (see also Granas and Dugundji [10, Theorem D.6, p. 615]), we have

$$
0=H_{k}\left(\dot{\varphi}_{c}^{a}, \dot{\varphi}_{c}^{a}\right)=\lim _{\vec{n}} H_{k}\left(\dot{\varphi}_{c}^{a}, \dot{\varphi}_{c}^{a} \cap \bar{B}_{n}^{V_{n}}\right)
$$

where $\lim _{\vec{n}}$ denotes the inductive limit. So, from (47), we infer that

$$
\begin{equation*}
H_{k}\left(\varphi_{c}^{a}, *\right)=0 \text { for all } k \in \mathbb{N}_{0} . \tag{48}
\end{equation*}
$$

Consider the following triple of sets:

$$
\{*\} \subseteq \varphi_{c}^{a} \subseteq C_{0}^{1}(\bar{\Omega}) .
$$

For this triple, we introduce corresponding long exact sequence of singular homology groups

$$
\begin{equation*}
\cdots \rightarrow H_{k}\left(\varphi_{c}^{a}, *\right) \xrightarrow{i_{*}} H_{k}\left(C_{0}^{1}(\bar{\Omega}), \varphi_{c}^{a}\right) \xrightarrow{\partial_{*}} H_{k-1}\left(\varphi_{c}^{a}, *\right) \rightarrow \cdots \tag{49}
\end{equation*}
$$

Here i_{*} is the homomorphism induced by the inclusion $i:\left(\varphi_{c}^{a}, *\right) \rightarrow\left(C_{0}^{1}(\bar{\Omega}), \varphi_{c}^{a}\right)$ and ∂_{*} is the boundary homomorphism. From (48) and the exactness of (49), we see that

$$
\begin{aligned}
& H_{k}\left(C_{0}^{1}(\bar{\Omega}), \varphi_{c}^{a}\right)=0 \text { for all } k \in \mathbb{N}_{0}, \\
\Rightarrow & C_{k}\left(\varphi_{c}, \infty\right)=0 \text { for all } k \in \mathbb{N}_{0}, \\
\Rightarrow & C_{k}(\varphi, \infty)=0 \text { for all } k \in \mathbb{N}_{0} .
\end{aligned}
$$

786 N. S. Papageorgiou, V. D. Rădulescu / Asymmetric, Noncoercive, ...
Proposition 3.7. If hypotheses H hold, then $u=0$ is a local minimizer of the functional φ.

Proof. Hypotheses H (i),(iv) imply that given $\epsilon>0$, we can find $c_{\epsilon}>0$ such that

$$
\begin{equation*}
F(z, x) \leqslant \frac{1}{2}\left(f_{x}^{\prime}(z, 0)+\epsilon\right) x^{2}+\frac{c_{\epsilon}}{r}|x|^{r} \text { for almost all } z \in \Omega, \text { all } x \in \mathbb{R} \tag{50}
\end{equation*}
$$

Then for all $u \in W_{0}^{1, p}(\Omega)$ we have

$$
\begin{aligned}
& \varphi(u) \geqslant \frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\left[\|D u\|_{2}^{2}-\int_{\Omega} f_{x}^{\prime}(z, 0) u^{2} d z\right]-\frac{\epsilon}{2} \frac{1}{\hat{\lambda}_{1}(2)}\|D u\|_{2}^{2}-c_{4}\|u\|^{r} \\
& \quad \text { for some } c_{4}=c_{4}(\epsilon)>0(\text { see }(50) \text { and }(3)) \\
& \geqslant \frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\left[\hat{c}-\frac{\epsilon}{\hat{\lambda}_{1}(2)}\right]\|D u\|_{2}^{2}-c_{4}\|u\|^{r} \quad(\text { see Lemma 2.2 })
\end{aligned}
$$

Choosing $\epsilon \in\left(0, \hat{\lambda}_{1}(2) c_{6}\right)$, we have

$$
\varphi(u) \geqslant \frac{1}{p}\|u\|^{p}+c_{5}\|u\|^{2}-c_{4}\|u\|^{r} \text { for some } c_{5}>0, \text { all } u \in W_{0}^{1, p}(\Omega)
$$

Because $2 \leqslant p<r$, for $\rho \in(0,1)$ small we have

$$
\begin{aligned}
& \varphi(u)>0=\varphi(0) \text { for all } u \in W_{0}^{1, p}(\Omega) \text { with } 0<\|u\| \leqslant \rho, \\
\Rightarrow \quad & u=0 \text { is a (strict) local minimizer of } \varphi .
\end{aligned}
$$

Now we are ready to produce two nontrivial constant sign solutions.
Proposition 3.8. If hypotheses H hold, then problem (1) has at least two constant sign solutions

$$
u_{0} \in \operatorname{int} C_{+} \quad \text { and } \quad v_{0} \in-\operatorname{int} C_{+} .
$$

Proof. Let $\varphi_{+}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be the C^{1}-functional defined by

$$
\varphi_{+}(u)=\frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} F\left(z, u^{+}\right) d z \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Claim 3.9. The functional φ_{+}satisfies the C-condition.
Let $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega)$ be a sequence such that

$$
\begin{gather*}
\left|\varphi_{+}\left(u_{n}\right)\right| \leqslant M_{11} \text { for some } M_{11}>0, \text { all } n \geqslant 1 \tag{51}\\
\left(1+\left\|u_{n}\right\|\right) \varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W^{-1, p^{\prime}}(\Omega) \text { as } n \rightarrow \infty \tag{52}
\end{gather*}
$$

From (52) we have

$$
\begin{equation*}
\left|\left\langle A_{p}\left(u_{n}\right), h\right\rangle+\left\langle A\left(u_{n}\right), h\right\rangle-\int_{\Omega} f\left(z, u_{n}^{+}\right) h d z\right| \leqslant \frac{\epsilon_{n}\|h\|}{1+\left\|u_{n}\right\|} \tag{53}
\end{equation*}
$$

$$
\text { for all } h \in W_{0}^{1, p}(\Omega) \text { with } \epsilon_{n} \rightarrow 0^{+} .
$$

In (53) we choose $h=-u_{n}^{-} \in W_{0}^{1, p}(\Omega)$. Then

$$
\begin{align*}
& \left\|D u_{n}^{-}\right\|_{p}^{p}+\left\|D u_{n}^{-}\right\|_{2}^{2} \leqslant \epsilon_{n} \text { for all } n \in \mathbb{N}, \\
\Rightarrow & u_{n}^{-} \rightarrow 0 \text { in } W_{0}^{1, p}(\Omega) \text { as } n \rightarrow \infty \tag{54}
\end{align*}
$$

From (51) and (54) it follows that

$$
\begin{equation*}
\varphi_{+}\left(u_{n}^{+}\right) \leqslant M_{12} \text { for some } M_{12}>0, \text { for all } n \in \mathbb{N} . \tag{55}
\end{equation*}
$$

In (53) we choose $h=u_{n}^{+} \in W_{0}^{1, p}(\Omega)$. Then

$$
\begin{equation*}
-\left\|D u_{n}^{+}\right\|_{p}^{p}-\left\|D u_{n}^{+}\right\|_{2}^{2}+\int_{\Omega} f\left(z, u_{n}^{+}\right) u_{n}^{+} d z \leqslant \epsilon_{n} \text { for all } n \in \mathbb{N} \tag{56}
\end{equation*}
$$

From (55) and since $2 \leqslant p$, we have

$$
\begin{equation*}
\left\|D u_{n}^{+}\right\|_{p}^{p}+\left\|D u_{n}^{+}\right\|_{2}^{2}-\int_{\Omega} p F\left(z, u_{n}^{+}\right) d z \leqslant p M_{12} \text { for all } n \in \mathbb{N} \text {. } \tag{57}
\end{equation*}
$$

Adding (56) and (57), we obtain

$$
\begin{equation*}
\int_{\Omega} \xi\left(z, u_{n}^{+}\right) d z \leqslant M_{13} \text { for some } M_{13}>0, \text { all } n \in \mathbb{N} \text {. } \tag{58}
\end{equation*}
$$

Using (58) and reasoning as in the Claim in the proof of Proposition 3.3, we obtain that

$$
\begin{aligned}
& \left\{u_{n}^{+}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega) \quad \text { is bounded, } \\
\Rightarrow & \left.\left\{u_{n}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded (see }(54)\right) .
\end{aligned}
$$

From this, as in the proof of Proposition 3.3, via the $(S)_{+}$-property of the map A_{p} (see Proposition 2.4), we conclude that φ_{+}satisfies the C-condition. This proves Claim 3.9.
It is straightforward to check that

$$
u \in K_{\varphi_{+}} \Rightarrow u \geqslant 0
$$

So, we may assume that $K_{\varphi_{+}}$is finite or otherwise we already have a sequence of distinct positive solutions for problem (1).

A careful reading of the proof of Proposition 3.7, reveals that $u=0$ is also a local minimizer for φ_{+}. So, we can find $\rho \in(0,1)$ small such that

$$
\begin{equation*}
\varphi_{+}(0)=0<\inf \left[\varphi_{+}(u):\|u\|=\rho\right]=m_{\rho}^{+} \tag{59}
\end{equation*}
$$

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).
Finally note that hypothesis H (ii) implies that

$$
\begin{equation*}
\varphi_{+}\left(t \hat{u}_{1}(p)\right) \rightarrow-\infty \text { as } t \rightarrow+\infty \tag{60}
\end{equation*}
$$

The Claim and (59) and (60), permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find $u_{0} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
u_{0} \in K_{\varphi_{+}} \quad \text { and } \quad m_{\rho}^{+} \leqslant \varphi_{+}\left(u_{0}\right) \tag{61}
\end{equation*}
$$

From (59) and (61), we see that $u_{0} \neq 0, u_{0} \geqslant 0$. Also, we have

$$
\begin{align*}
& A_{p}\left(u_{0}\right)+A\left(u_{0}\right)=N_{f}\left(u_{0}\right) \text { in } W^{-1, p^{\prime}}(\Omega), \\
\Rightarrow & -\Delta_{p}\left(u_{0}\right)(z)-\Delta u_{0}(z)=f\left(z, u_{0}(z)\right) \text { for almost all } z \in \Omega,\left.u_{0}\right|_{\partial \Omega}=0 . \tag{62}
\end{align*}
$$

From Ladyzhenskaya and Uraltseva [11, Theorem 7.1, p. 286], we have that $u_{0} \in L^{\infty}(\Omega)$. So, we can apply Theorem 1 of Lieberman [12] and infer that $u_{0} \in C_{+} \backslash\{0\}$.
Let $a(y)=|y|^{p-2}+y$ for all $y \in \mathbb{R}^{N}$. Evidently $a \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ and

$$
\begin{aligned}
& \nabla a(y)=|y|^{p-2}\left[I+(p-2) \frac{y \otimes y}{|y|^{2}}\right]+I \text { for all } y \in \mathbb{R}^{N}, \\
\Rightarrow & (\nabla a(y) \xi, \xi)_{\mathbb{R}^{N}} \geqslant|\xi|^{2} \text { for all } y, \xi \in \mathbb{R}^{N} .
\end{aligned}
$$

Note that

$$
\operatorname{div} a(D u)=\Delta_{p} u+\Delta u \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

So, we can use the tangency principle of Pucci and Serrin [25, Theorem 2.5.2, p. 35] and have

$$
u_{0}(z)>0 \text { for all } z \in \Omega .
$$

For $\rho=\left\|u_{0}\right\|_{\infty}$, let $\hat{\xi}_{\rho}>0$ be as postulated by hypothesis H (iv). From (62) we have

$$
\begin{aligned}
& -\Delta_{p} u_{0}(z)-\Delta u_{0}(z)+\hat{\xi}_{\rho} u_{0}(z)^{p-1} \geqslant 0 \text { for almost all } z \in \Omega, \\
\Rightarrow \quad & \Delta_{p} u_{0}(z)+\Delta u_{0}(z) \leqslant \hat{\xi}_{\rho} u_{0}(z)^{p-1} \text { for almost all } z \in \Omega .
\end{aligned}
$$

Then the boundary point theorem of Pucci and Serrin [25, Theorem 5.5.1, p. 120] implies that $u_{0} \in \operatorname{int} C_{+}$.
Next we produce a negative solution. For this purpose let

$$
f_{-}(z, x)=f\left(z,-x^{-}\right), \quad F_{-}(z, x)=\int_{0}^{x} f_{-}(z, s) d s
$$

and let $\varphi_{-}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be the C^{1}-functional defined by

$$
\varphi_{-}(u)=\frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} F_{-}(z, u) d z \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Claim 3.10. The functional φ_{-}satisfies the C-condition.
Let $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega)$ be a sequence such that

$$
\begin{gather*}
\left|\varphi_{-}\left(u_{n}\right)\right| \leqslant M_{14} \text { for some } M_{14}>0, \text { all } n \in \mathbb{N} \tag{63}\\
\left(1+\left\|u_{n}\right\|\right) \varphi_{-}^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W^{-1, p^{\prime}}(\Omega) \text { as } n \rightarrow \infty \tag{64}
\end{gather*}
$$

From (64) we have

$$
\begin{align*}
& \left|\left\langle A_{p}\left(u_{n}\right), h\right\rangle+\left\langle A\left(u_{n}\right), h\right\rangle-\int_{\Omega} f_{-}\left(z, u_{n}\right) h d z\right| \leqslant \frac{\epsilon_{n}\|h\|}{1+\left\|u_{n}\right\|} \tag{65}\\
& \quad \text { for all } h \in W^{1, p}(\Omega), \text { with } \epsilon_{n} \rightarrow 0^{+} .
\end{align*}
$$

In (65) we choose $h=u_{n}^{+} \in W_{0}^{1, p}(\Omega)$. Then

$$
\begin{align*}
& \left\|D u_{n}^{+}\right\|_{p}^{p}+\left\|D u_{n}^{+}\right\|_{2}^{2} \leqslant \epsilon_{n} \text { for all } n \in \mathbb{N}, \\
\Rightarrow & u_{n}^{+} \rightarrow 0 \text { in } W_{0}^{1, p}(\Omega) \text { as } n \rightarrow \infty \tag{66}
\end{align*}
$$

Then using (66), inequality (65) becomes

$$
\begin{aligned}
& \left|\left\langle A_{p}\left(-u_{n}^{-}\right), h\right\rangle+\left\langle A\left(-u_{n}^{-}\right), h\right\rangle-\int_{\Omega} f\left(z,-u_{n}^{-}\right) h d z\right| \leqslant \epsilon_{n}^{\prime}\|h\| \\
& \quad \text { for all } h \in W_{0}^{1, p}(\Omega), \text { with } \epsilon_{n}^{\prime} \rightarrow 0^{+} .
\end{aligned}
$$

Reasoning as in the last part of the proof of Proposition 3.3 (see the part of the proof after (29)), we obtain

$$
\begin{aligned}
& \left\{u_{n}^{-}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded } \\
\Rightarrow \quad & \left\{u_{n}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded (see (66)), } \\
\Rightarrow & \varphi_{-} \text {satisfies the } C \text {-condition (as before using Proposition 2.4). }
\end{aligned}
$$

This proves Claim 3.10.
As we did for φ_{+}, a critical inspection of the proof of Proposition 3.7, reveals that $u=0$ is a local minimizer of φ_{-}. Also, it is easy to see that $K_{\varphi_{-}} \subseteq-C_{+}$ and so we may assume that $K_{\varphi_{-}}$is finite or otherwise we already have a whole sequence of distinct negative solutions of (1). These facts imply that we can find $\rho \in(0,1)$ small such that

$$
\begin{equation*}
\varphi_{-}(0)=0<\inf \left[\varphi_{-}(u):\|u\|=\rho\right]=m_{\rho}^{-} \tag{67}
\end{equation*}
$$

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).
Note that hypothesis H (iv) implies that

$$
\begin{equation*}
\varphi_{-}\left(t \hat{u}_{1}(p)\right) \rightarrow-\infty \text { as } t \rightarrow-\infty . \tag{68}
\end{equation*}
$$

Then Claim 3.10 and (67), (68) permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find $v_{0} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
v_{0} \in K_{\varphi_{-}} \quad \text { and } \quad m_{\rho}^{-} \leqslant \varphi_{-}\left(v_{0}\right) \tag{69}
\end{equation*}
$$

From (67) and (69) we see that

$$
v_{0} \in\left(-C_{+}\right) \backslash\{0\} \text { (see Lieberman [12]). }
$$

In fact as we did for u_{0}, using the tangency principle and the boundary point theorem of Pucci and Serrin [25, pp. 35 and 120], we have

$$
v_{0} \in-\operatorname{int} C_{+} .
$$

Next we compute the critical groups of φ at these solutions.
Proposition 3.11. If hypotheses H hold and K_{φ} is finite, then $C_{k}\left(\varphi, u_{0}\right)=$ $C_{k}\left(\varphi, v_{0}\right)=\delta_{k, 1} \mathbb{Z}$ for all $k \in \mathbb{N}_{0}$.

Proof. Let $h_{+}(t, u)=(1-t) \varphi_{+}(u)+t \varphi(u)$ for all $(t, u) \in[0,1] \times W_{0}^{1, p}(\Omega)$. Suppose that we can find $\left\{t_{n}\right\}_{n \geqslant 1} \subseteq[0,1]$ and $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
t_{n} \rightarrow t, u_{n} \rightarrow u_{0} \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad\left(h_{+}\right)_{u}^{\prime}\left(t_{n}, u_{n}\right)=0 \text { for all } n \in \mathbb{N} . \tag{70}
\end{equation*}
$$

From (70) we have

$$
\begin{align*}
& A_{p}\left(u_{n}\right)+A\left(u_{n}\right)=N_{f}\left(u_{n}^{+}\right)+t_{n} N_{f}\left(-u_{n}^{-}\right) \\
\Rightarrow \quad & -\Delta_{p} u_{n}(z)-\Delta u_{n}(z)=f\left(z, u_{n}^{+}(z)\right)+t_{n} f\left(z,-u_{n}^{-}(z)\right) \tag{71}\\
& \text { for almost all } z \in \Omega,\left.u_{n}\right|_{\partial \Omega}=0 .
\end{align*}
$$

From Theorem 7.1, p. 286 of Ladyzhenskaya and Uraltseva [11], we can find $M_{15}>0$ such that

$$
\left\|u_{n}\right\|_{\infty} \leqslant M_{15} \text { for all } n \in \mathbb{N}
$$

Invoking Theorem 1 of Lieberman [12], we can find $\beta \in(0,1)$ and $M_{16}>0$ such that

$$
\begin{equation*}
u_{n} \in C_{0}^{1, \beta}(\bar{\Omega}) \quad \text { and } \quad\left\|u_{n}\right\|_{C_{0}^{1, \beta}(\bar{\Omega})} \leqslant M_{16} \text { for all } n \in \mathbb{N} . \tag{72}
\end{equation*}
$$

Since $C_{0}^{1, \beta}(\bar{\Omega})$ is embedded compactly into $C_{0}^{1}(\bar{\Omega})$, from (70) and (72) we infer that

$$
u_{n} \rightarrow u_{n} \text { in } C_{0}^{1}(\bar{\Omega})
$$

Recall that $u_{0} \in \operatorname{int} C_{+}$(see Proposition 3.8). So, we have

$$
\begin{aligned}
& u_{n} \in \operatorname{int} C_{+} \text {for all } n \geqslant n_{0}, \\
\Rightarrow \quad & \left\{u_{n}\right\}_{n \geqslant n_{0}} \subseteq K_{\varphi}(\text { see }(71)),
\end{aligned}
$$

which contradicts our hypothesis that K_{φ} is finite. So, (65) cannot hold. Since for every $t \in[0,1]$ and every bounded set $D \subseteq W_{0}^{1, p}(\Omega), h_{+}(t, \cdot)$ satisfies the C-condition on D (see Proposition 2.4), using Theorem 5.2 of Corvellec and Hantoute [8] (the homotopy invariance of the critical groups), we have

$$
\begin{equation*}
C_{k}\left(\varphi, u_{0}\right)=C_{k}\left(\varphi_{+}, u_{0}\right) \text { for all } k \in \mathbb{N}_{0} \tag{73}
\end{equation*}
$$

From the proof of Proposition 3.8, we know that u_{0} is a critical point of φ_{+}of mountain pass-type. Then from Proposition 6.10, p. 176 of Motreanu, Motreanu and Papageorgiou [17], we have

$$
\begin{aligned}
& C_{1}\left(\varphi_{+}, u_{0}\right) \neq 0 \\
\Rightarrow \quad & C_{1}\left(\varphi, u_{0}\right) \neq 0 \quad(\text { see }(73)) .
\end{aligned}
$$

But $\varphi \in C^{2}\left(W_{0}^{1, p}(\Omega)\right)$. So, from Papageorgiou and Smyrlis [23] (see also Papageorgiou and Rădulescu [21]), we have

$$
C_{k}\left(\varphi, u_{0}\right)=\delta_{k, 1} \mathbb{Z} \text { for all } k \in \mathbb{N}_{0}
$$

Similarly for $v_{0} \in-\operatorname{int} C_{+}$, using this time the functional φ_{-}.
Now we are ready for the multiplicity theorem concerning problem (1).
Theorem 3.12. If hypotheses H hold, then problem (1) has at least three nontrivial solutions

$$
u_{0} \in \operatorname{int} C_{+}, \quad v_{0} \in-\operatorname{int} C_{+} \quad \text { and } \quad y_{0} \in C_{0}^{1}(\bar{\Omega})
$$

Proof. From Proposition 3.8, we already have two constant sign solutions

$$
u_{0} \in \operatorname{int} C_{+} \quad \text { and } \quad v_{0} \in-\operatorname{int} C_{+} .
$$

Suppose $K_{\varphi}=\left\{0, u_{0}, v_{0}\right\}$. From Proposition 3.11, we have

$$
\begin{equation*}
C_{k}\left(\varphi, u_{0}\right)=C_{k}\left(\varphi, v_{0}\right)=\delta_{k, 1} \mathbb{Z} \text { for all } k \in \mathbb{N}_{0} \tag{74}
\end{equation*}
$$

From Proposition 3.7 we know that $u=0$ is a local minimizer of φ. Hence

$$
\begin{equation*}
C_{k}(\varphi, u)=\delta_{k, 0} \mathbb{Z} \text { for all } k \in \mathbb{N}_{0} \tag{75}
\end{equation*}
$$

Moreover, from Proposition 3.5 we have

$$
\begin{equation*}
C_{k}(\varphi, \infty)=0 \text { for all } k \in \mathbb{N}_{0} \tag{76}
\end{equation*}
$$

From (74), (75), (76) and the Morse relation with $t=-1$ (see (4)), we have

$$
\begin{aligned}
& (-1)^{0}+2(-1)^{1}=0 \\
\Rightarrow \quad & (-1)^{1}=0 \quad \text { a contradiction. }
\end{aligned}
$$

So, there exists $y_{0} \in K_{\varphi}, y_{0} \notin\left\{0, u_{0}, v_{0}\right\}$. Then y_{0} is a third nontrivial solution of problem (1) and the nonlinear regularity theory (see Lieberman [12]), implies that $y_{0} \in C_{0}^{1}(\bar{\Omega})$.

Remark 3.13. When $p=2$, Theorem 3.12 is related to the multiplicity theorems of Recova and Rumbos [26], [27] who produce three nontrivial solutions under more restrictive regularity conditions on the reaction $f(z, x)$ and using the Ambrosetti-Rabinowitz condition to express the superlinearity condition in the positive direction. A precise improvement of the works of Recova and Rumbos [26], [27], in fact to Robin problems with an indefinite potential, can be found in the paper of Papageorgiou and Rădulescu [22].

References

[1] S. Aizicovici, N. S. Papageorgiou, V. Staicu: Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 915 (2008) 1-70.
[2] A. Ambrosetti, P. Rabinowitz: Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.
[3] V. Benci, P. D'Avenia, D. Fortunato, L. Pisani: Solutions in several space dimensions: Dirrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154 (2000) 297-324.
[4] L. Cherfils, Y. Ilyasov: On the stationary solutions of generalized reaction diffusion equations with $p \& q$ Laplacian, Commun. Pure Appl. Anal. 4 (2005) 9-22.
[5] S. Cingolani, M. Degiovanni: Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth, Commun. Partial Differ. Equations 30 (2005) 1191-1203.
[6] S. Cingolani, M. Degiovanni, G. Vannella: On the critical polynomial of functionals related to p-area $(1<p<\infty)$ and p-Laplace $(1<p \leqslant 2)$ type operators, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 26 (2015) 49-56.
[7] S. Cingolani, G. Vannella: Critical groups computations on a class of Sobolev Banach spaces via Morse index, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20 (2003) 271-292.
[8] J. N. Corvellec, A. Hantoute: Homotopical stability of isolated critical points of continuous functionals, Set Valued Anal. 10 (2002) 143-164.
[9] L. Gasinski, N. S. Papageorgiou: Nonlinear Analysis, Chapman \& Hall/CRC, Boca Raton (2006).
[10] A. Granas, J. Dugundji: Fixed Point Theory, Springer, New York (2003).
[11] O. Ladyzhenskaya, N. Uraltseva: Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968).
[12] G. Lieberman: Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988) 1203-1219.
[13] G. Li, C. Yang: The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of a p-Laplacian type without the AmbrosettiRabinowitz condition, Nonlinear Anal. 72 (2010) 4602-4613.
[14] O. H. Miyagaki, M. A. S. Souto: Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differ. Equations 245 (2008) 3628-3638.
[15] D. Motreanu, V. V. Motreanu, N. S. Papageorgiou: Multiple solutions for Dirichlet problems which are superlinear at $+\infty$ and sublinear at $-\infty$, Commun. Appl. Anal. 13 (2009) 341-358.
[16] D. Motreanu, V. V. Motreanu, N. S. Papageorgiou: On p-Laplacian equations with concave terms and asymmetric perturbations, Proc. R. Soc. Edinb., Sect. A, Math. 141 (2011) 171-192.
[17] D. Motreanu, V. V. Motreanu, N. S. Papageorgiou: Topological and Variational Methods with Applications to Boundary Value Problems, Springer, New York (2014).
[18] D. Mugnai, N. S. Papageorgiou: Wang's multiplicity result for superlinear (p, q) equations without the Ambrosetti-Rabinowitz condition, Trans. Amer. Math. Soc. 366 (2014) 4919-4937.
[19] R. Palais: Homotopy theory of infinite dimensional manifolds, Topology 5 (1966) 1-16.
[20] F. O. de Paiva, A. Presoto: Semilinear elliptic problems with asymmetric nonlinearities, J. Math. Anal. Appl. 409 (2014) 254-262.
[21] N. S. Papageorgiou, V. D. Rădulescu: Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim 69 (2014) 393-430.
[22] N. S. Papageorgiou, V. D. Rădulescu: Robin problems with indefinite and unbounded potential, resonant at $-\infty$, superlinear at $+\infty$, Tohoku Math. J. 69 (2017) 261-286.
[23] N. S. Papageorgiou, G. Smyrlis: On nonlinear nonhomogeneous resonant Dirichlet equations, Pac. J. Math. 264 (2013) 421-453.
[24] N. S. Papageorgiou, P. Winkert: Resonant ($p, 2$)-equations with concave terms, Appl. Anal. 94 (2015) 342-360.
[25] P. Pucci, J. Serrin: The Maximum Principle, Birkhäuser, Basel (2007).
[26] L. Recova, A. Rumbos: Multiple solutions to asymmetric semilinear elliptic problems via Morse theory, Electron. J. Differ. Equ. 2014(207) (2014) 1-29.
[27] L. Recova, A. Rumbos: An asymmetric superlinear elliptic problem at resonance, Nonlinear Anal. 112 (2015) 181-198.

