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We examine a nonlinear nonhomogeneous Dirichlet problem driven by the sum of a p-
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superlinearity is not expressed using the Ambrosetti-Rabinowitz condition, while the asymp-
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theory (critical groups), we prove a multiplicity theorem producing three nontrivial solutions.
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1. Introduction

Let © C RY be a bounded domain with a C?-boundary 0. In this paper,
we study the following nonlinear Dirichlet problem driven by the sum of a
p-Laplacian (p > 2) and a Laplacian (a (p, 2)-equation):

—Ayu(z) — Au(z) = f(z,u(z)) in Q, ulgn =0, 2 < p. (1)
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By A, we denote the p-Laplace differential operator defined by
Apu = div (|DulP~2Du) for all u € W, ().

In this problem the reaction term f(z,x) is a measurable function which is C*!
in the z € R variable and exhibits an asymmetric behavior as * — +o00. More
precisely, © — f(z,x) is (p—1)-superlinear near +oo, but it is (p—1)-sublinear
near —oo. The superlinearity in the positive direction is not expressed using the
Ambrosetti-Rabinowitz condition (the AR-condition for short). Instead we em-
ploy a weaker condition which incorporates in our framework superlinear non-
linearities with slower growth near +oo which fail to satisfy the AR-condition.
In the negative direction where f(z,-) is sublinear, our hypothesis permits res-
onance with respect to any nonprincipal eigenvalue of (—A,, VVO1 P(Q)). So,
problem (1) is asymmetric, superlinear and at resonance.

Recently such problems were studied by Recova and Rumbos [26], [27] for
semilinear Dirichlet problems driven by the Laplacian and with more restric-
tive conditions on the reaction term (see Theorem 1.1 of [26] and Theorem 1.2
of [27]). We also mention the semilinear works of de Paiva and Presoto [20]
(they study a parametric equation driven by the Laplacian) and Motreanu,
Motreanu and Papageorgiou [15] (they study an equation driven by the Lapla-
cian, no resonance is allowed as * — —oo and they produce only two nontrivial
solutions). For equations driven by the p-Laplacian, we mention the work of
Motreanu, Motreanu and Papageorgiou [16], who deal with a parametric prob-
lem involving concave nonlinearities.

We mention that (p, 2)-equations arise in many physical applications. We refer
to the works of Benci, D’Avenia, Fortunato and Pisani [3] (quantum physics)
and Cherfils and Ilyasov [4] (diffusion problems). Recently there have been
some existence and multiplicity results for such equations under different set-
tings. We mention the works of Cingolani and Degiovanni [5], Mugnai and Pa-
pageorgiou [18], Papageorgiou and Radulescu [21], Papageorgiou and Smyrlis
[23] and Papageorgiou and Winkert [24].

Our approach combines variational methods based on the critical point theory
with Morse theory (critical groups).

2. Mathematical Background

Let X be a Banach space and X* be its topological dual. By (-,-) we denote
the duality brackets for the pair (X*, X). Let ¢ € C'(X,R). We say that ¢
satisfies the “Cerami condition” (the “C-condition” for short), if the following
property holds:

“Every sequence {u,},>1 € X such that {¢(uy)},>1 C R is bounded and
(L4 [[unl)¢'(un) — 0 in X7,

admits a strongly convergent subsequence.”
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This is a compactness-type condition on the functional ¢ and it is more general
than the more common Palais-Smale condition. The C-condition leads to a
deformation theorem from which one can derive the min-max theory for the
critical values of ¢. Prominent in this theory is the so-called “mountain pass
theorem” due to Ambrosetti and Rabinowitz [2|, which we state here in a
slightly more general form (see, for example, Gasinski and Papageorgiou [9, p.
648]).

Theorem 2.1. Let X be a Banach space and assume that ¢ € C1(X,R) sat-
isfies the C-condition, ug,u; € X, ||u; — upl| > p > 0,

max{p(uo), (ur)} < inflip(u) : |[u = uol| = p] = m,

and ¢ = inf, cp maxog<1 @((t)) with I' = {v € C(]0,1], X) : v(0) = up,y(1) =
u1}. Then ¢ = m, and c is a critical value of .

In the analysis of problem (1), we will use the Sobolev spaces W,?(Q) and
H}(Q). Since p > 2, we have W, ?(Q) C HL(Q). We will also use the Banach
space C3(Q) = {u € CY(Q) : u|sg = 0}. This is an ordered Banach space with
positive cone

Cy={uecCyQ):u(z) >0 forall z € Q}.

This cone has a nonempty interior given by
. ou
intCy =queCy:u(z)>0forall z€Q, a—(z)<0forallz€89 :
n

Here g—g = (Du,n)g~x with n(z) being the outward unit normal at z € 0S.

We will also need some facts about the spectrum of (—A,, Wy*(Q)). So, we
consider the following nonlinear eigenvalue problem:

—Ayu(z) = Mu(2)[P"2u(z) in Q, ulagg =0, 1< p < . (2)

We say that A € R is an eigenvalue of (—A,, Wy *()), if problem (2) admits
a nontrivial solution o € VVO1 P(Q2) which is an eigenfunction corresponding to
the eigenvalue A. There exists a smallest eigenvalue )\1( ) > 0 which has the
following properties:

. 5\1( ) is isolated (that is, there exists € > 0 such that the open interval
(A1(p), M(p) + €) contains no eigenvalues of (—A,, Wy ?(£2))).

e \(p)is simple (that is, if 4,0 € W, (Q) are eigenfunctions corresponding
to the eigenvalue Ai(p), then @ = &0 for some & € R\{0}).

° 5\1(]9) inf
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The infimum in (3) is realized at the corresponding one-dimensional eigenspace.
From (3) it is clear that the elements of this eigenspace do not change sign.
Let @;(p) be the LP—normalized (that is, ||41(p)||, = 1) positive eigenfunction

corresponding to A;(p). The nonlinear regularity theory (see Lieberman [12])
and the nonlinear maximum principle (see Pucci and Serrin [25]), imply that
7;[;1 (p) € int C+.

The Ljusternik-Schnirelmann minimax scheme gives a whole strictly increasing
sequence {\,(p)}es1 of distinct eigenvalues such that \y(p) — +oo. However,
we do not know if this sequence exhausts the spectrum of (—A,, Wy*(2)). This
is the case if p = 2 (linear eigenvalue problem) or if N = 1 (ordinary differential
equations).

The following lemma can be found in Motreanu, Motreanu and Papageorgiou
17, p. 305].

Lemma 2.2. Assume that 9 € L®(Q) satisfies 9(z) < M (p) (1 < p < 00) for
almost all z € ), with strict inequality on a set of positive measure. Then there
exists ¢ > 0 such that

||Du||g—/ ()|uPdz > ¢l|Dul2 for all u € WEP(Q).
Q

The same results are also true for the following weighted version of problem

(2): .
—Apu(z) = dm(2)|u(2) [P 2u(z) in Q, ulsq =0,

with m € L*>®(Q),m > 0,m # 0. In this case
|| Dul[p

lp
]u|1’dz EVVO ( )7u7£0

Mi(p, m) = inf [fg

We have the following monotonicity property for the map m — 5\1(p, m).

Proposition 2.3. Assume that m,m’ € L>(2), 0 < m(z) < m/(2) for almost
all z € Q and m £ m'. Then A\ (p,m’) < Ai(p,m).

We mention that only the first eigenvalue has eigenfunctions of constant sign.
All the other eigenvalues have nodal (that is, sign-changing) eigenfunctions.
For further details on these and related issues, we refer to Gasinski and Papa-
georgiou [9)].

For 1 < p < 0o, let A, : WyP() — W17 (Q) = WyP(Q)*(
map defined by

+ = = 1) be the

1,1
p p

(A (), h) = / DulP2(Du, Dh)gndz for all u, h € WiP(Q).
Q
When p = 2, we write Ay = A and we have A € L(H}(Q), H'(Q)). For

p # 2, A, is nonlinear and (p — 1)-homogeneous. Also we have (see Gasinski
and Papageorgiou [9, p. 746]).
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Proposition 2.4. The map A, : WyP(Q) — W5 (Q) (1 < p < 00) is con-
tinuous, strictly monotone (hence mazximal monotone too) and of type (S)4,
that s

“Up —>u i Wol’p(Q) and limsup (A,(u,), u, —u) <0
= U, — U N WOLP(Q>-

"

Next we recall some basic facts about critical groups (Morse theory). For fur-
ther details we refer to the book of Motreanu, Motreanu and Papageorgiou [17]
(see also Cingolani, Degiovanni and Vannella [6] and Cingolani and Vannella

[7].

So, let X be a Banach space and ¢ € C'(X,R), ¢ € R. We define the following
sets:

' ={ue X :p(u) <c}, K,={ue X :¢'(u)=0}
Ko ={ue€ K, :p(u)=c}.

Let (Y1,Y2) be a topological pair such that Y C Y} € X and & € Ny. By
Hi(Y1,Ys) we denote the kth relative singular homology group for the topo-
logical pair (Y7,Y3) with integer coefficients. The critical groups of ¢ at an
isolated u € K¢ are defined by

Crlp,u) = He(e° NU, p°NU\{0}) for all k € Ny,

with U being a neighborhood of w such that K, NN U = {u}. The exci-
sion property of singular homology implies that the above definition of critical
groups is independent of the choice of the neighborhood U of u.

Suppose that ¢ satisfies the C-condition and —oco < infp(K,). Let ¢ <
inf(K,). The critical groups of ¢ at infinity are defined by

Cr(p,00) = Hp(X, ¢°) for all k € Ny.

The second deformation theorem (see, for example, Gasinski and Papageorgiou
[9, p. 628]), implies that the above definition is independent of the level ¢ <
info(K,).

Suppose that ¢ € C'(X,R), satisfies the C-condition and K, is finite. We
define

M(t,u) = Zrank Cr(p,u)tt forallt € R, all u € K,

k>0

P(t,00) = Zrank Cr(p,00)t* for all t € R.
k>0
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The Morse relation says that

> M(t,u) = P(t,00) + (L + )Q(t) for all t € R, (4)

u€ Ky,

where Q(t) = 150 Btk is a formal series in ¢ € R with nonnegative integer
coefficients.

Finally we fix our notation. By ||-|| we denote the norm of W,?(€). From the
Poincaré inequality (see, for example, Gasinski and Papageorgiou [9, p. 216)),
we have

\[ul] = ||Dul|, for all u € W,P(Q).
Let € R. We define 2+ = max{#z,0}. Then for u € W, () we set

We know that u* € Wy ?(Q), u = ut —u~, |u| = u™ +u~. Given a measurable
function g : 2 x R — R, we set

N,(u)(-) = g(-,u(-)) for all u € W,*(Q).

Then z +—— Ny(u)(z) = ¢(z,u(z)) is measurable. By |- |y we denote the
NN—_’; ifp< N

+oo IfN<p

Lebesgue measure on RY and by p* = { the critical Sobolev

exponent.

3. Multiplicity Theorem

In this section we prove a multiplicity theorem for problem (1) producing three
nontrivial solutions. Our hypotheses on the reaction term f(z,z) are the fol-
lowing;:

H: f:Q xR — R is a measurable function such that for almost all z € ,
f(2,0)=0, f(z,-) € CY(R) and

() |fi(z,2)| < a(z)(1 + |z|7?) for almost all z € Q, all x € R, with a €
Lo(Q)4, p<r<ph
(i) if F(z,2) = [y f(z,s)ds, then

lim F(z z)
r—+4oo P

= 400 uniformly for almost all z € €;

(iii) if £(z,7) = f(z,2)r — pF(z,z), then there exists v € L'(2) such that

E(z,2) <&(2,y) +v(z) for almost all z € Q, all 0 <z < y;
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(iv) there exist functions 1,7 € L>(Q2) and ¢y > 0 such that

n(z) = 5\1(]0) for almost all z € , strictly on a set of positive measure,
f(z,2)
li f
n(e) < Hminf 0

o)

< 7)(2z) uniformly for almost all z € €;

< limsu
= a:—>+oop ’x|p*2x

—co < f(z,2)xr — pF(z,2z) for almost all z € Q, all x < 0;

(V) fi(z,0) = lim,_ (Z %) uniformly for almost all z € Q, f/(z,0) < Ay(2) for
almost all z € Q and the mequahty is strict on a set of posmve measure;

(vi) for every p > 0, there exists 5,) > 0 such that f(z,2) + 5 2P~1 > 0 for
almost all z € 2, all 0 <z < p.

Remark 3.1. Hypothesis H (ii) implies that for almost all z € Q, the primitive
F(z,-) is p-superlinear near +oo. This fact and hypothesis H(iii), imply that
for almost all z € Q, f(z,-) is (p — 1)-superlinear near +oco (see Li and Yang
[13, Lemma 2.4]). Hypothesis H (iii) replaces the AR-condition which says that
there exist ¢ > p and M > 0 such that

0<qF(z,z) < f(z,x)x for almost all z € Q, all x > M (ba)
0 < ess ing(-7 M) (5b)

An easy integration of (5a) and the use of (5b), imply the weaker condition
cx? < F(z,x) for almost all z € Q, all x > M with ¢; > 0. (6)

So, the AR-condition restricts F(z, -) to have at least g-polynomial growth near
+oo. With H(iii) we avoid this (see the examples which follow). Condition
H(iii) also extends earlier ones used by Li and Yang [13] and Miyagaki and
Souto [14]. Hypothesis H (iv) implies that for almost all z € Q, f(z,-) is (p—1)-
sublinear near —oo. Note that this hypothesis does not exclude resonance with
respect to a nonprincipal eigenvalue.

Example 3.2. The following functions satisfy hypotheses H. For the sake of
simplicity we drop the z-dependence:

nzP2z + (n—19) ifz< -1

fi(z) = < Yz if —1<z<1
(90— 1) if 1 <z,
n|z|P~2x + (n — 9) if < —1
fo(z) = ¢ dx if —1<2<1

xp_l(ln:r+]—1)) + (19— }—17) if 1 <ux,

with 9 < A;(2). Note that f, does not satisfy the AR-condition (see (6)).
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Let ¢ : WyP(Q) — R be the energy functional for problem (1) defined by

1 1
o(u) = ];HDUH]I; - éHDUH% - /Q F(z,u)dz for all u e WyP(Q).

We have ¢ € C?(W,7(Q)).

Proposition 3.3. If hypotheses H hold, then the functional ¢ satisfies the C-
condition.

Proof. Let {u,}n>1 € W,7(Q) be a sequence such that

lo(uy)| < My for some M; >0, alln > 1 (7)
(1 + a6 (00) — 0 10 W (©) 2 n — oo )

From (8) we have

_ alltl
\
L+ ||un|

(Ap(un)o )+ (Al ) = [ Fa )z
0
for all h € W,?(Q) with €, — 0*.

Recall that u, = u} — u; for all n > 1. So, we have

1 1
5HDUZH§+§HDU$H§
1 1 1 _ 1 _
= Z—9||Dun||§ + §||Dun||§ - ];IIDunlli’é - §||Dun||§

—l—/F(z,un)dz—/F(z,un)dz

0 0

1 _ 1 _
zwww——whﬁﬁ——WMA@+/F®mww
p 2 Q

p
(see (7) and recall p > 2).

1
< My + - [/ pF(z,un)dz — || Du,, |[) — HDu;Hg} for all m > 1 (10)
Q

In (9) we choose h = —u; € W,?(Q) and obtain

<e¢, foralln >1,

Mm%%+WMA§—Af%—%MﬂQMz

= —|[|Du, ||E = ||Du||5 < €n — / f(z,—u,)(—u,)dz foralln>1. (11)
Q
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We return to (10) and use (11). Then

1 1 1
SIDuLI + SIDuE < Mo+ [ [pP (i) = Fle =) )] de (12
Q
for some My >0, alln >1

We have
pF(z,u,) = pF(z,ul) + pF(z,—u,) foralln >1 (13)

and from hypothesis H(iv), we have
pF(z,—u,) — f(z,—u, )(—u,) < ¢ for almost all z € Q, alln >1. (14)
Returning to (12) and using (13) and (14) we obtain
SIDuLIE + 5lIDutE < M+ [ Ple. s

with M3 = My + Co|Q|N >0, foralln > 1,
= p(u) < Mj foralln > 1. (15)

In (9) we choose h = ut € W, ?(Q) and have

—||Duf|E — || Dut|3 —i—/ﬂf(z,u:)u:dz <e, foralln>1. (16)
From (15) and since p > 2, we have

[Duf |5+ || Dut|[5 — /QpF(z,u:)dz < pM; foralln > 1. (17)
Adding (16) and (17), we obtain

/Q [f(z,u))ut — pF(z,u))] dz < My for some My >0, all n > 1,
= /Qf(z,ujl)dz < M, foralln > 1. (18)

Claim 3.4. {u/},>1 € W, ?(Q) is bounded.

We argue indirectly. So, suppose that {u },s1 € WyP(Q) is not bounded.
Then we may assume that ||u,}|| — 0o as n — co. We set y, = %n > 1. We

have
llyn|]] =1 and gy, >0 foralln > 1.

Hence we may assume that

Yo =y in WyP(Q) and y, —y in L'(Q) as n — oo, y = 0. (19)
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Suppose that y # 0. Then |[{y > 0}|§ = 0 (recall that y > 0, see (14)) and we
have
ul(2) — +oo for almost all z € {y > 0}.

Hypothesis H(ii) implies that
F(z uy(2) _ F(zu,(2))

B n(2)" for almost all 2 € {y > 0}
[|lut]||P wt(z)r Yn(2)P — +oo for almost all z € {y }

This fact and Fatou’s lemma (see hypothesis H (ii)), imply that

[ FGu)
woe Jo g [P

dz = 400. (20)
Since £(z,0) = 0 for almost all z € €, from hypothesis H (iii) we have
pF(z,u}) < f(z,u))ul +70(2) for almost all z € Q,

_ /pF )z < /f Yurdz + ol

< Ms + || Duf|[f + || Duy 113
for some M5 > 0, all n > 1 (see (16))

< M + || Du|[h + S| Duif] [} since p > 2

= [T < S Dl + o Dl
TS Dyn, ol p—2 1Yn
lutlle ™S Bl 2[fuf |2 ’
< Mg for some Mg >0, all n > 1. (21)

Comparing (20) and (21) we reach a contradiction.

So, suppose that y = 0. For k > 1, we set
v, = (pk)YPy, € WP (Q).

We have
v, — 0 in L"(Q) (see (19) and recall that y = 0).

Hypothesis H(i) implies that
|F(z,2)| < c1(1 4 |z|") for almost all z € Q, all z € R with ¢; > 0.

Using the Krasnoselskii theorem (see, for example, Gasinski and Papageorgiou
9, p. 407]), we have

/ F(z,v,)dz — 0 as n — oo. (22)
0
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Since ||u;|| — oo, we can find ny € N such that

0 < (pk)'/P <1 for all n > ny. (23)

1cael

Let ¢(u) = 1||Du||p — [ F(z,u)dz for all w € Wy P(Q). Let t, € [0,1] be such

that
S(tput) = max[p(tul) : 0 <t < 1). (24)

From (23) and (24) we see that

— HIDwll~ [ Fle.on)a:

=k— / F(z,v,)dz for all n > no,
Q

n

k
= Ptn,ut) = B for all n > ny > ng (see (22)).

But £ > 0 is arbitrary. So, we infer that
Q(tout) — +o00 asn — oo. (25)
We have
$(0)=0 and ¢@(u) < Mz forall n > 1 (see (15) and note that ¢ < ¢).
Because of (25), we see that we can find ny € N such that
€ (0,1) for all n > na.

Then from (24) it follows that

d
pria o(tu)) =0 for all n > no,
t=tn
= <95 > =0 for all n > ny (by the chain rule),
= < >:0foralln>n2,
= ||D(tnu:{)||2’; — / f(z, thou)) (tout)dz for all n > ny. (26)
0

Hypothesis H(iii) implies that

n d 27
/Qaz,t ut /5 )z + ol < (27)

for some M; > 0, all n > ny (see (18) and recall ¢,, € (0,1))
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We return to (26) and use (27). Then

|| D (tnu,)| [ < M7 + /QpF(z,tnu:)dz for all n > na,

M
= P(tyut) < ~ forall n > ny. (28)
p

Comparing (25) and (28) we reach a contradiction.
This proves the Claim.
From (9) and using the Claim, we have that

(Ay(—uz), b+ (A(—uy), ) — / Fles—us)hdz| < Mlll (29)

for some Mg > 0, alln > 1.

Suppose that ||u, || — oo and set w,, = %n > 1. Then

l|lwy]|] =1 and w, >0 foralln > 1.
So, we may assume that
w, 2w in WyP(Q) and w, — w in LP(Q), w > 0. (30)
From (29) we have

1 Ny(—u,)

T2 (A(=wn), h) — (31)

‘(Ap(—wn), h) + hdz‘ < Ms|Infl

o llug (P70 Hug [P

foralln >1
Hypotheses H(i),(iv) imply that
|f(z,2)] < o1+ |z[P7!) for almost all z € Q, all 2 < 0 and some ¢, > 0,
= {%}@1 C L (Q) is bounded (% + % = 1) :
Using this fact and hypothesis H(iv) we have, at least for a subsequence, that
Ny ()

o [P = —dw"™! in Lp/(Q) with 7(z) < 9¥(z) < 7(2) for almost all z € Q
UTL

(32)
(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 16). In (31)
we use h = w, —w € WyP(R), pass to the limit as n — oo and use (30) and
(32). We obtain

lim (Ay(w,),w, —w) =0 (recall p > 2),

= w, — w in Wy?(Q) (see Proposition 2.4), hence ||w|| = 1,w > 0. (33)
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Therefore, if in (31) we pass to the limit as n — oo and use (32) and (33), then

(A (w), Y = / I(=)u " hdz for all h € WP(Q),
Q
= — Ayw(z) = 9(2)w(2)P" for almost all 2z € Q, w|pg = 0. (34)
Recall that )
Ai(p) < n(z) < I(z) for almost all z € 2

and the first inequality is strict on a set of positive measure. So, using Propo-
sition 2.3, we have
)\l(p7 19) < )‘l(p7 A1) = 1.

Then returning to (34) we infer that w(-) must be nodal or zero, a contradiction
(see (33)). Therefore

{u; }ns1 C WyP(Q) is bounded,
= {up}ns1 € WyP(Q) is bounded (see the Claim).

So, we may assume that
Uy = u in WyP(Q) and w, — u in L"(Q). (35)

In (9) we choose h = u, — u € WyP(£2), pass to the limit as n — oo and use
(35). Then

lim [(A,(un), uy — uw) + (A(un), uy, —w)] =0,

n—oo

= limsup [(Ap(un), u — u) + (A(u),u, —u)] <0 (since A is monotone),

n—oo

= limsup (A,(u,), u, —u) <0,

n—oo

= u, —u in W)P(Q) (see Proposition 2.4).
This proves that ¢ satisfies the C'-condition. O]

Having established that ¢ satisfies the C'-condition, we can compute the critical
groups of ¢ at infinity.

Proposition 3.5. If hypotheses H hold and p(K,) is bounded below, then
Cr(p,00) =0 for all k € Ny.

Proof. Let ¢. = g0|cé (@) From the nonlinear regularity theory (see Lieberman
[12]), we have that K, = K, = K. Moreover, since C3(Q) is dense in W, (),

from Palais [19, Theorem 16}, we have

H (W3 P(Q), 9%) = Hy(CL(Q),¢?) foralla € R, all k €N, (36)
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with ¢ = {u € Wy"(Q) : p(u) < a}, 92 = {u € C§(Q) : pe(u) < a}.
Choosing a < inf p(K) = inf @.(K) (this is possible by hypothesis), we have
Hy(Wy"(2), ") = Hl(Wy?(Q),¢") = Cilp,00) forall k € No,  (37)
Hy,(Co(Q), ¢2) = Hi(Cy(Q), ¢") = Ci(pe,00) forallk €Ny (38)
(see Granas and Dugundji [10, p. 407]). From (36), (37), (38) we see that in

order to prove the proposition, we need to show that

Hy(C3(2), %) = 0 for all k € N.

To this end, let C' C ¢ be a compact set.
Claim 3.6. For a < 0 with |a| > 0 big, the set C is contractible in 2.

In what follows by (-,-); we denote the duality brackets for the pair
(CHQ)*, CL(Q)). Also, let i : CH(Q) — WyP(Q) be the continuous embed-
ding map. We have
pe=poi
= ¢l(u) =i*¢ (u) for all u € C3 (). (39)

Let u € ¢¢. Then for ¢ > 0 we have

%@C(tu)
= (p.(tu),u), (by the chain rule)
= (¢'(tu),u) (see (39))
= %(g@'(tu) tu)
_ % {tPHDUHP—l—t?HDqu /f 2, tu) (tut dz—/f ot ) (—tu- )d]
< % [tT’HDuHP—l—tQHDuHQ /QpF(Z’t“+>dZ—/QpF(Z,—tu)dz+c3}

with ¢3 = ||y0l]1 + co|Q|y > 0 (see hypotheses H (iii),(iv))

1
< - [tp||Du||§ + Z§9t2||Du||g — /QpF(z, tu)dz + 63:| (since p > 2)

N| — o+

—y [P%(tu) + C3] s

< ppe(u) + 3 < pa+csz (recall u € pf).
t=1

— .t
:‘dtw(U)

Therefore

< 0.
t=1

a<——= 4 (tu)
at’e
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So, if ¢.(u) € (a—1,a], then we can find a unique k(u) > 0 such that
we(k(uw)u) = a—1. If u € ¢* ! then we set k(u) = 1. The implicit func-
tion theorem implies that k& € C(¢% (0,1]). We consider the deformation
hy :[0,1] x C' — ¢% defined by

ha(t,u) = (1 —1t) + th(u))u.

Let C; = hy(1,C) C ¢ 1. The set C; C C3(Q) is compact. So, we can find
Mgy > 0 such that

ou

8_(2) <My forall z€Q, allu € C. (40)
n

Given € > 0, we can find k. € int C; such that

%(z) < —M,y forall z€dQ and (u+h)™ #0.
n

To see this, set d(z) = d(z,d9Q) and define

. Md(z) ifd(z) < -
he(z) = { (2) ifd(z) with M > 0.

€
Me if e < d(2)

Approximate he by a C}(Q)-function h. and choose M > 0 big enough so that
he € int Cy has the desired properties.

We have C; C %', Hence, if we choose ¢ > 0 small, then the deformation
hy : [0,1] x Cy — % defined by

ho(t,u) = u+ th, for all (t,u) € [0,1] x O,

is well-defined.
Let Cy = ho(1,C4) and pick u € Cy. Then ut # 0 and we have

Pe(u) = eo(u™) + pe(—u”) < a.

From the previous considerations we know that ¢t —— ¢.(tu) is decreasing on
[1,00). Because Cy C C3(Q) is compact, we can find ¢, > 1 such that

(tu) <a forallt >t,, all u € Cy. (41)
We introduce the deformation hs : [0,1] x Cy — ¢? defined by
hs(t,u) = (1 —t+tt.)u for all (t,u) € [0, 1] x Ch.
Evidently this is a well-defined deformation and if C3 = h3(1,Cy), then

ve(u) < a for all u € Cj (see (41)). (42)
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The set Cs = hs(1,Cy) C C3(Q) is compact. So, we can find My > 0 such that
we(s(—u")) < My for all u € Cs, all s € [0,1]. (43)

From (42) and since ¢ — @ (tu™) is decreasing on [1,00), we can find #, > 1
big such that

~

pe(tiu®) <a— My for all u € C.
We consider the deformation hy : [0, 1] X C5 — ¢% defined by
ha(t,u) = (1 —t +tt)u’ +u.
This deformation too is well-defined. We set Cy = h3(1,C5) and have
Cy C C5(Q) is compact
Cyi C o N{ueCy(Q): p(ut) <a— My} (see (43)). (44)

Using O C C¢(Q), we will deform to a compact subset of positive functions in
¢%. To this end, let hs : [0,1] x Cy — ¢? be the deformation defined by

hs(t,u) =u® + (1 —t)(—u~) for all (t,u) € [0,1] x Cy.
We have

pe(hs(t,u) = @e(u™ + (1 = t)(—u"))
= Soc(u-i_) + Qpc<<1 - t)(_u_))
< a— My + My = a (see (3) and (43)),
= hs is well defined.

So, if C5 = h(1,C}), then we have

Cs C¢t and (5 CCy,
= (5 CepenCy=0C1. (45)

Let 0BS = {u € C3(Q) : |ullca@ = 1} N C4. From the first part of the proof
we have
Ct ={tu:uecdB,,t>k(u)}

with k(u) > 0 being the unique real such that ¢.(k(u)u) = a. Using the radial
retraction, we see that C¢ and 0B are homotopy equivalent. We consider the
deformation hy : [0,1] x 0B — 0B defined by

(1 —t)u+ tiy(p)
hy(t,u) = - for all (¢t,u) € [0,1] x OB¢.
0 = 0t )l (tu) € 10, 1] x 055
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Note that

he(1,u) = A“&
Hul(P)Hcg(ﬁ)
= 0B is contractible,

= (1 is contractible.

€ 0B,

Then from (45) we infer that C5 is contractible. Since C' was deformed to Cs
by successive deformations, we conclude that C'is contractible in ¢% for a < 0
with |a| > 0 big. This proves the Claim.

Let * € 2. For a < infy(K,,), we have
Hy (0%, %) = Hi(9%, %) for all k € Ny (46)
(see Granas and Dugundji [10, p. 407]).

The Banach space CZ(Q) is separable. So, we can find a sequence {V, },>1 of
increasing finite dimensional subspaces of C;(£2) such that

Co () = Jva.

n>1

From the Claim we have
Hy (9% %) = Hip(¢%, ¢ N BY) for all k € Ny, (47)
where B)» = {u € V,, : [[ullcy) < n}, * € B). From Palais [19] (Corollary
p. 5) (see also Granas and Dugundji [10, Theorem D.6, p. 615]), we have
0= Hi(pg, 7)) = h%? Hy(¢g, 92N By

where lim denotes the inductive limit. So, from (47), we infer that
n

Hi(¢o, %) =0 for all k € Ny. (48)
Consider the following triple of sets:
{#} C ¢l C Co(Q).

For this triple, we introduce corresponding long exact sequence of singular
homology groups

C— Hi(l %) 5 Hy(CHQ), %) 25 Hy 1 (9%,%) — - (49)

Here i, is the homomorphism induced by the inclusion i : (¢2, *) — (C3(Q), ¢2)
and 0, is the boundary homomorphism. From (48) and the exactness of (49),
we see that

Hy(CYQ), %) = 0 for all k € Ny,
=  Ci(pe,0) =0 for all k£ € Ny,
= Cik(p,00) =0 for all k € Ny. O
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Proposition 3.7. If hypotheses H hold, then u = 0 is a local minimizer of the
functional .

Proof. Hypotheses H(i),(iv) imply that given € > 0, we can find ¢, > 0 such
that

F(z,2) < =(f.(2,0) + €)z* + %|x|r for almost all z € 2, all z € R.  (50)
r

DN | —

Then for all u € W,*(Q) we have

1 1] e 1
u) = —||Dulf + = DuQ—/;z,OUde]——A Dul|3 — cql|u||”
plw) 2 ZNIDull+ 5 _H 12 Qf( ) 2A1(2)|| Iz = callul]
for some ¢4 = c4(€) > 0 (see (50) and (3))
> Lo + L ¢ 1Dull2 = caljull” (see Lemma 2.2)
S W) 2 e

~

Choosing € € (0, A\1(2)cg), we have
1
o(u) = = |[ul|[P 4 e5||ul|* — cal|u||” for some ¢5 > 0, all u € W, ()
p

Because 2 < p < r, for p € (0,1) small we have

o(u) > 0= p(0) for all u € W,?(Q) with 0 < |Jul| < p,
= wu =0 1is a (strict) local minimizer of ¢. O

Now we are ready to produce two nontrivial constant sign solutions.

Proposition 3.8. If hypotheses H hold, then problem (1) has at least two con-
stant sign solutions

ug €intCy and vy € —int Cy.

Proof. Let ¢, : Wy ?(Q) — R be the C'-functional defined by
1 1 2 + 1,p
¢4 (u) = =||Dul[5 + §||Du||2 — | F(z,u")dz for all u € W;,"(2).
p Q
Claim 3.9. The functional ¢, satisfies the C'-condition.

Let {un }ns1 C Wy (Q) be a sequence such that

|04 (upn)| < My for some My >0, alln>1 (51)
(14 [|tnl)¢ (1) — 0 in WHP(Q) as n — oco. (52)
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From (52) we have

nl|h
(A, B + (A, 1) = [ unaz] < 2L o)
o 1 [fun||
for all h € W,?(Q) with €, — 0%.
In (53) we choose h = —u;, € Wy (Q). Then
| Du, ||+ || Du,, ||5 < €, foralln €N,
= u; — 0 in WyP(Q) as n — oo. (54)
From (51) and (54) it follows that

oy (ub) < My, for some My > 0, for all n € N. (55)

In (53) we choose h = u;” € Wy (Q). Then
DU — 1Dt | + /Q fleub)utdz <e, forallm€N.  (56)
From (55) and since 2 < p, we have
D |2+ [|Dut|f5 — /QpF(z,u;[)dz < pMi, for alln € N, (57)
Adding (56) and (57), we obtain
/Qf(z,u;[)dz < M,z for some M3 >0, all n € N. (58)

Using (58) and reasoning as in the Claim in the proof of Proposition 3.3, we
obtain that

{u} }s1 € WyP(9) is bounded,
= {Uptns1 € WyP(Q) is bounded (see (54)).
From this, as in the proof of Proposition 3.3, via the (S) -property of the map

A, (see Proposition 2.4), we conclude that ¢ satisfies the C-condition. This
proves Claim 3.9.

It is straightforward to check that
ue K,, = uz=0.

So, we may assume that K is finite or otherwise we already have a sequence
of distinct positive solutions for problem (1).
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A careful reading of the proof of Proposition 3.7, reveals that u = 0 is also a
local minimizer for ¢. So, we can find p € (0,1) small such that

0+(0) = 0 < inflpy (u) : ||ull = p] =m, (59)
(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).
Finally note that hypothesis H (ii) implies that
o (tuy(p)) — —o0 ast — +oo. (60)

The Claim and (59) and (60), permit the use of Theorem 2.1 (the mountain
pass theorem). So, we can find uy € W, 7() such that

ug € Ky, and  m; < oy (uo). (61)
From (59) and (61), we see that uy # 0, up = 0. Also, we have

Ap(uo) + Alug) = Ny(ug) in WH(Q),
= — Ay(ug)(2) — Aug(z) = f(z,up(z)) for almost all z € Q, uglaq = 0. (62)

From Ladyzhenskaya and Uraltseva [11, Theorem 7.1, p. 286], we have that
up € L>®(2). So, we can apply Theorem 1 of Lieberman [12] and infer that

uo € C4\{0}.
Let a(y) = |y[P~2 + y for all y € RY. Evidently a € C*(RY,R") and

Va(y) = |y[F~ {I +(p— 2)yﬁ) y} +1 forally € RV,
y

= (Va(y)&, Ory > [¢* for all y,& € RY.

Note that
diva(Du) = Apu + Au for all u € WP (Q).

So, we can use the tangency principle of Pucci and Serrin [25, Theorem 2.5.2,
p. 35] and have
up(z) >0 for all z € Q.

For p = ||t |, let €, > 0 be as postulated by hypothesis H(iv). From (62) we
have

— Apug(z) — Aug(z) + Eug(2)PH > 0 for almost all z € Q,
= Ayug(2) + Aug(z) < Eug(2)P! for almost all z € Q.

Then the boundary point theorem of Pucci and Serrin [25, Theorem 5.5.1, p.
120] implies that ug € int C.

Next we produce a negative solution. For this purpose let

f-(z,2) = f(z,—z7), F (z,2) = /Off f-(z,8)ds
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and let ¢_ : W, () — R be the C"'-functional defined by
1 1 9 1p
o_(u) = }—?HDqu + §HDu||2 — QF_(z,u)dz for all u € Wy"(€2).
Claim 3.10. The functional p_ satisfies the C'-condition.

Let {un}ns1 € Wy (Q) be a sequence such that

lo_(u)| < Myy for some My > 0, all n € N, (63)
(1 + |[un])@(up) — 0 in W™HP(Q) as n — oco. (64)

From (64) we have

h
(A ) + (A 1) = [ - (unaz| < 2L (6s)
0 1+ [funl|
for all h € WP(Q), with €, — 07.
In (65) we choose h = u; € Wy(Q). Then
|| Dut [+ ||[Duf|3 <e, forallneN,
= ul — 0 in WyP(Q) as n — oo. (66)

Then using (66), inequality (65) becomes

< €|l

(Ap(—uy), h) + (A(—uy,), h) — /Q f(z,—u, )hdz

for all b € W, 7(Q), with €, — 0%.

Reasoning as in the last part of the proof of Proposition 3.3 (see the part of
the proof after (29)), we obtain
{u; Y1 € WyP(Q) is bounded,
= {up}tns1 € WyP(Q) is bounded (see (66)),
= _ satisfies the C-condition (as before using Proposition 2.4).
This proves Claim 3.10.

As we did for ¢, a critical inspection of the proof of Proposition 3.7, reveals
that u = 0 is a local minimizer of ¢_. Also, it is easy to see that K, C —C,
and so we may assume that K, _ is finite or otherwise we already have a whole
sequence of distinct negative solutions of (1). These facts imply that we can
find p € (0,1) small such that

p-(0) =0 <inflp_(u) : [[ul| = p| =m, (67)
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(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).

Note that hypothesis H(iv) implies that
w_(tu(p)) — —o0 ast — —o0. (68)

Then Claim 3.10 and (67), (68) permit the use of Theorem 2.1 (the mountain
pass theorem). So, we can find vy € W, () such that

vo € Ko and m, < ¢ (vo). (69)
From (67) and (69) we see that
vy € (—C4)\{0} (see Lieberman [12]).

In fact as we did for ug, using the tangency principle and the boundary point
theorem of Pucci and Serrin [25, pp. 35 and 120], we have

Vg € —int0+. ]

Next we compute the critical groups of ¢ at these solutions.

Proposition 3.11. If hypotheses H hold and K, is finite, then Cy(p,up) =
Cr(p,v9) = 0k Z for all k € Ny.

] x W ().

Proof. Let hy(t,u) = (1 — t)py(u) + tp(u) for all (t,u) € [0,1
(Q) such that

Suppose that we can find {¢,,},>1 C [0,1] and {u,}n,>1 C Wol’p
tn — tup, — ug in WyP(Q) and  (hy),(tn,un) =0 forallm e N.  (70)
From (70) we have

Ap(un) + A(up) = Ny(ut) + t,Ne(—u,,),
= = Apun(2) = Aun(2) = f(2,u,(2) + taf (2, —u, (2)) (71)
for almost all z € Q, u,|sq = 0.

From Theorem 7.1, p. 286 of Ladyzhenskaya and Uraltseva [11], we can find
M5 > 0 such that
||tn]loo < M5 for all n € N.

Invoking Theorem 1 of Lieberman [12], we can find 8 € (0,1) and Mg > 0
such that

un € Co’(Q) and  Jug||crsq) < Mg for all n € N. (72)

Since Co?(Q) is embedded compactly into C2(€), from (70) and (72) we infer
that B
Uy, — u, in Cp()
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Recall that uy € int C'y (see Proposition 3.8). So, we have

u, € int Cy for all n > ny,
= {untnzn, C© K, (see (71)),

which contradicts our hypothesis that K, is finite. So, (65) cannot hold. Since
for every t € [0,1] and every bounded set D C W,7(Q), hy(t,-) satisfies the
C-condition on D (see Proposition 2.4), using Theorem 5.2 of Corvellec and
Hantoute [8] (the homotopy invariance of the critical groups), we have

Ck(QO, Uo) = Ck(QO_i_,Uo) for all k € No. (73)

From the proof of Proposition 3.8, we know that wug is a critical point of ¢ of
mountain pass-type. Then from Proposition 6.10, p. 176 of Motreanu, Motre-
anu and Papageorgiou [17], we have

Cl(gp—i-a U’O) 7é 07
= Ci(p,up) #0 (see (73)).

But ¢ € 02(W01 P(Q)). So, from Papageorgiou and Smyrlis [23] (see also Papa-
georgiou and Radulescu [21]), we have

Cr(p,up) = dx1Z for all k € Ny.
Similarly for vy € —int C';, using this time the functional ¢_. O

Now we are ready for the multiplicity theorem concerning problem (1).

Theorem 3.12. [f hypotheses H hold, then problem (1) has at least three non-
trivial solutions

ug €intCy, vy € —intC, and yo € CH(Q).

Proof. From Proposition 3.8, we already have two constant sign solutions

up €intCy and vy € —int C,.
Suppose K, = {0, ug, vo}. From Proposition 3.11, we have

Cr(p,up) = Cr(p,v9) = 017 for all k € Ny. (74)

From Proposition 3.7 we know that v = 0 is a local minimizer of ¢. Hence

Cr(p,u) = dgoZ for all k € Ny. (75)
Moreover, from Proposition 3.5 we have

Ci(p,00) =0 for all k € Ny. (76)
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From (74), (75), (76) and the Morse relation with ¢ = —1 (see (4)), we have

(-1 +2(-1)' =0,
= (=1)' =0 a contradiction.

So, there exists yo € K, yo ¢ {0, uo, vo}. Then gy, is a third nontrivial solution
of problem (1) and the nonlinear regularity theory (see Lieberman [12]), implies

that yo € C(Q). O

Remark 3.13. When p = 2, Theorem 3.12 is related to the multiplicity the-
orems of Recova and Rumbos [26], [27] who produce three nontrivial solutions
under more restrictive regularity conditions on the reaction f(z,x) and using
the Ambrosetti-Rabinowitz condition to express the superlinearity condition
in the positive direction. A precise improvement of the works of Recova and
Rumbos [26], [27], in fact to Robin problems with an indefinite potential, can
be found in the paper of Papageorgiou and Radulescu [22].
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