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Abstract

In this paper we are concerned with a new class of anisotropic quasilinear elliptic equations with a power-like variable reaction
term. One of the main features of our work is that the differential operator involves partial derivatives with different variable expo-
nents, so that the functional-analytic framework relies upon anisotropic Sobolev and Lebesgue spaces. Existence and nonexistence
results are deeply influenced by the competition between the growth rates of the anisotropic coefficients. Our main results point
out some striking phenomena related to the existence of a continuous spectrum in several distinct situations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to analyze the existence of solutions of the nonhomogeneous anisotropic eigenvalue
problem⎧⎪⎨

⎪⎩
−

N∑
i=1

∂xi

(|∂xi
u|pi(x)−2∂xi

u
) = λ|u|q(x)−2u in Ω,

u = 0 on ∂Ω,

(1)

where Ω ⊂ R
N (N � 3) is a bounded domain with smooth boundary, λ is a positive number, and pi , q are continuous

functions on Ω such that 2 � pi(x) < N and q(x) > 1 for any x ∈ Ω and i ∈ {1, . . . ,N}.
In the particular case when pi = p for any i ∈ {1, . . . ,N} the operator involved in (1) is the p(·)-Laplace operator,

i.e., �p(·)u := div(|∇u|p(x)−2∇u). This differential operator is a natural generalization of the isotropic p-Laplace
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operator �pu := div(|∇u|p−2∇u), where p > 1 is a real constant. However, the p(·)-Laplace operator possesses
more complicated nonlinearities than the p-Laplace operator, due to the fact that �p(·) is not homogeneous.

The study of nonlinear elliptic equations involving quasilinear homogeneous type operators like the p-Laplace
operator is based on the theory of standard Sobolev spaces Wm,p(Ω) in order to find weak solutions. These spaces
consist of functions that have weak derivatives and satisfy certain integrability conditions. In the case of nonhomoge-
neous p(·)-Laplace operators the natural setting for this approach is the use of the variable exponent Sobolev spaces.
The basic idea is to replace the Lebesgue spaces Lp(Ω) by more general spaces Lp(·)(Ω), called variable exponent
Lebesgue spaces. If the role played by Lp(Ω) in the definition of the Sobolev spaces Wm,p(Ω) is assigned instead
to a variable Lebesgue space Lp(·)(Ω) the resulting space is denoted by Wm,p(·)(Ω) and called a variable exponent
Sobolev space. Many properties of Sobolev spaces have been extended to Orlicz–Sobolev spaces, mainly by Donald-
son and Trudinger [9], and O’Neill [26] (see also Adams [2] for an excellent account of those works). The spaces
Lp(·)(Ω) and Wm,p(·)(Ω) were thoroughly studied in the monograph by Musielak [25] and the papers by Edmunds
et al. [10–12], Kovacik and Rákosník [21], Mihăilescu and Rădulescu [22–24], and Samko and Vakulov [34]. Variable
Sobolev spaces have been used in the last decades to model various phenomena. Chen, Levine and Rao [7] proposed
a framework for image restoration based on a variable exponent Laplacian. A second major application which uses
nonhomogeneous Laplace operators is related to the modelling of electrorheological fluids (sometimes referred to as
smart fluids). Materials requiring such more advanced theory have been studied experimentally since the middle of
the last century. The first major discovery in electrorheological fluids was due to Willis Winslow in 1949. These fluids
have the interesting property that their viscosity depends on the electric field in the fluid. They can raise the viscosity
by as much as five orders of magnitude. This phenomenon is known as the Winslow effect. For a general account of
the underlying physics consult Halsey [17] and for some technical applications Pfeiffer et al. [28]. Electrorheological
fluids have been used in robotics and space technology. The experimental research has been done mainly in the USA,
for instance in NASA laboratories. For more information on properties, modelling and the application of variable
exponent spaces to these fluids we refer to Acerbi and Mingione [1], Alves and Souto [3], Chabrowski and Fu [6],
Diening [8], Fan et al. [14,15], Mihăilescu and Rădulescu [22–24], Rajagopal and Ruzicka [32], and Ruzicka [33].

In this paper, the operator involved in (1) is even more general than the p(·)-Laplace operator. Thus, the variable
exponent Sobolev space Wm,p(·)(Ω) is not adequate to study nonlinear problems of this type. This leads us to seek
weak solutions for problem (1) in a more general variable exponent Sobolev space, which will be introduced in the
next section of this paper.

As far as we are aware, nonlinear eigenvalue problems like (1) involving multiple anisotropic exponents have not
yet been studied. That is why, at our best knowledge, the present paper is a first contribution in this direction. Another
major feature of this work is that, due to the “competition” between the growths of the functions pi and q , some
striking phenomena, not arising in the homogeneous case, characterize eigenvalue problems of this type.

2. Abstract framework

We recall in this section some definitions and basic properties of the variable exponent Lebesgue–Sobolev spaces
Lp(·)(Ω) and W

1,p(·)
0 (Ω), where Ω is a bounded domain in R

N . Roughly speaking, anisotropic Lebesgue and Sobolev
spaces are functional spaces of Lebesgue’s and Sobolev’s type in which different space directions have different roles.

Set C+(Ω) = {h ∈ C(Ω): minx∈Ω h(x) > 1}. For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω), we introduce the variable exponent Lebesgue space

Lp(·)(Ω) =
{
u: u is a measurable real-valued function such that

∫
Ω

∣∣u(x)
∣∣p(x)

dx < ∞
}
,

endowed with the so-called Luxemburg norm

|u|p(·) = inf

{
μ > 0;

∫ ∣∣∣∣u(x)

μ

∣∣∣∣
p(x)

dx � 1

}
,

Ω
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which is a separable and reflexive Banach space. For basic properties of the variable exponent Lebesgue spaces we
refer to [21]. If 0 < |Ω| < ∞ and p1, p2 are variable exponents in C+(Ω) such that p1 � p2 in Ω , then the embedding
Lp2(·)(Ω) ↪→ Lp1(·)(Ω) is continuous [21, Theorem 2.8].

Let Lp′(·)(Ω) be the conjugate space of Lp(·)(Ω), obtained by conjugating the exponent pointwise that is, 1/p(x)+
1/p′(x) = 1 [21, Corollary 2.7]. For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the following Hölder type inequality∣∣∣∣

∫
Ω

uv dx

∣∣∣∣ �
(

1

p− + 1

p′−
)

|u|p(·)|v|p′(·) (2)

is valid.
An important role in manipulating the generalized Lebesgue–Sobolev spaces is played by the p(·)-modular of the

Lp(·)(Ω) space, which is the mapping ρp(·) : Lp(·)(Ω) → R defined by

ρp(·)(u) =
∫
Ω

|u|p(x) dx.

If (un), u ∈ Lp(·)(Ω), then the following relations hold:

|u|p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1), (3)

|u|p(·) > 1 ⇒ |u|p−
p(·) � ρp(·)(u) � |u|p+

p(·), (4)

|u|p(·) < 1 ⇒ |u|p+
p(·) � ρp(·)(u) � |u|p−

p(·), (5)

|un − u|p(·) → 0 ⇔ ρp(·)(un − u) → 0, (6)

since p+ < ∞. For a proof of these facts see [21].
If p ∈ C+(Ω), the variable exponent Sobolev space W 1,p(·)(Ω), consisting of functions u ∈ Lp(·)(Ω) whose

distributional gradient ∇u exists almost everywhere and belongs to [Lp(·)(Ω)]N , endowed with the norm

‖u‖ = |u|p(·) + |∇u|p(·),

is a separable and reflexive Banach space. As shown by Zhikov [39,40] the smooth functions are in general not dense
in W 1,p(·)(Ω), but if the exponent variable p in C+(Ω) is logarithmic Hölder continuous, that is

∣∣p(x) − p(y)
∣∣ � − M

log(|x − y|) for all x, y ∈ Ω such that |x − y| � 1/2, (7)

then the smooth functions are dense in W 1,p(·)(Ω) and so the Sobolev space with zero boundary values, denoted by
W

1,p(·)
0 (Ω), as the closure of C∞

0 (Ω) under the norm ‖ · ‖, are meaningful, see [18,20]. Furthermore, if p ∈ C+(Ω)

satisfies (7), then C∞
0 (Ω) is dense in W

1,p(·)
0 (Ω), that is H

1,p(·)
0 (Ω) = W

1,p(·)
0 (Ω) [19, Theorem 3.3]. Since Ω is an

open bounded set and p ∈ C+(Ω) satisfies (7), the p(·)-Poincaré inequality

|u|p(·) � C|∇u|p(·)

holds for all u ∈ W
1,p(·)
0 (Ω), where C depends on p, |Ω|, diam(Ω) and N [19, Theorem 4.3], and so

‖u‖1,p(·) = |∇u|p(·)

is an equivalent norm in W
1,p(·)
0 (Ω). Of course also the norm

‖u‖p(·) =
N∑

i=1

|∂xi
u|p(·)

is an equivalent norm in W
1,p(·)
0 (Ω). Hence W

1,p(·)
0 (Ω) is a separable and reflexive Banach space. Note that when

s ∈ C+(Ω) and s(x) < p�(x) for all x ∈ Ω , where p�(x) = Np(x)/[N − p(x)] if p(x) < N and p�(x) = ∞ if
p(x) � N , then the embedding W

1,p(·)
0 (Ω) ↪→ Ls(·)(Ω) is compact and continuous. Details, extensions and further

references can be found in [18–21].
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Finally, we introduce a natural generalization of the variable exponent Sobolev space W
1,p(·)
0 (Ω) that will enable

us to study with sufficient accuracy problem (1). For this purpose, let us denote by �p : Ω → R
N the vectorial function

�p = (p1, . . . , pN). We define W
1, �p(·)
0 (Ω), the anisotropic variable exponent Sobolev space, as the closure of C∞

0 (Ω)

with respect to the norm

‖u‖ �p(·) =
N∑

i=1

|∂xi
u|pi(·).

In the case when pi ∈ C+(Ω) are constant functions for any i ∈ {1, . . . ,N} the resulting anisotropic Sobolev space
is denoted by W

1, �p
0 (Ω), where �p is the constant vector (p1, . . . , pN). The theory of such spaces was developed

in [16,27,30,31,37,38]. It was proved that W
1, �p
0 (Ω) is a reflexive Banach space for any �p ∈ R

N with pi > 1 for all

i ∈ {1, . . . ,N}. This result can be easily extended to W
1, �p(·)
0 (Ω). Indeed, denoting by X = Lp1(·)(Ω)×· · ·×LpN(·)(Ω)

and considering the operator T : W
1, �p(·)
0 (Ω) → X, defined by T (u) = ∇u, it is clear that W

1, �p(·)
0 (Ω) and X are

isometric by T , since ‖T u‖X = ∑N
i=1 |∂xi

u|pi(·) = ‖u‖ �p(·). Thus, T (W
1, �p(·)
0 (Ω)) is a closed subspace of X, which is

a reflexive Banach space. By Proposition III.17 in [5] it follows that T (W
1, �p(·)
0 (Ω)) is reflexive and consequently also

W
1, �p(·)
0 (Ω) is a reflexive Banach space.

On the other hand, in order to facilitate the manipulation of the space W
1, �p(·)
0 (Ω) we introduce �P+, �P− ∈ R

N as

�P+ = (
p+

1 , . . . , p+
N

)
, �P− = (

p−
1 , . . . , p−

N

)
,

and P ++ , P +− , P −− ∈ R
+ as

P ++ = max
{
p+

1 , . . . , p+
N

}
, P +− = max

{
p−

1 , . . . , p−
N

}
, P −− = min

{
p−

1 , . . . , p−
N

}
.

Throughout this paper we assume that

N∑
i=1

1

p−
i

> 1 (8)

and define P �− ∈ R
+ and P−,∞ ∈ R

+ by

P �− = N∑N
i=1 1/p−

i − 1
, P−,∞ = max{P +− ,P �−}.

3. Main results

Our first main result extends Theorem 1 in [16] and states a compactness embedding between the spaces W
1, �p(·)
0 (Ω)

and Lq(·)(Ω).

Theorem 1. Assume Ω ⊂ R
N (N � 3) is a bounded domain with smooth boundary. Assume relation (8) is fulfilled.

For any q ∈ C(Ω) verifying

1 < q(x) < P−,∞ for all x ∈ Ω, (9)

the embedding

W
1, �p(·)
0 (Ω) ↪→ Lq(·)(Ω)

is continuous and compact.

Proof. Clearly Lpi(·)(Ω) is continuously embedded in Lp−
i (Ω) for any i ∈ {1, . . . ,N}, since p−

i � pi(x) for all
x ∈ Ω . Thus, for each i ∈ {1, . . . ,N} there exists a positive constant Ci > 0 such that

|ϕ| − � Ci |ϕ|p (·) for all ϕ ∈ Lpi(·)(Ω).
pi
i
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If u ∈ W
1, �p(·)
0 (Ω), then ∂xi

u ∈ Lpi(·)(Ω) for each i ∈ {1, . . . ,N}. The above inequalities imply

‖u‖ �P− =
N∑

i=1

|∂xi
u|p−

i
� C

N∑
i=1

|∂xi
u|pi(·) = C‖u‖ �p(·),

where C = max{C1, . . . ,CN }. Thus, we deduce that W
1, �p(·)
0 (Ω) is continuously embedded in W

1, �P−
0 (Ω). On the

other hand, since relation (9) holds true, we infer that q+ < P−,∞. This fact combined with the result of Theorem 1

in [16] implies that W
1, �P−
0 (Ω) is compactly embedded in Lq+

(Ω). Finally, since q(x) � q+ for each x ∈ Ω , we

deduce that Lq+
(Ω) is continuously embedded in Lq(·)(Ω). The above piece of information yields to the conclusion

that W
1, �p(·)
0 (Ω) is compactly embedded in Lq(·)(Ω). The proof of Theorem 1 is complete. �

We give in what follows our main results regarding the existence of weak solutions for problem (1). By a weak

solution for problem (1) we understand a function u ∈ W
1, �p(·)
0 (Ω) such that

∫
Ω

{
N∑

i=1

|∂xi
u|pi(x)−2∂xi

u∂xi
ϕ − λ|u|q(x)−2uϕ

}
dx = 0

for all ϕ ∈ W
1, �p(·)
0 (Ω).

Theorem 2. Assume that the function q ∈ C(Ω) verifies the hypothesis

P ++ < min
x∈Ω

q(x) � max
x∈Ω

q(x) < P �−. (10)

Then for any λ > 0 problem (1) possesses a nontrivial weak solution.

Theorem 3. If q ∈ C(Ω) satisfies the inequalities

1 < min
x∈Ω

q(x) � max
x∈Ω

q(x) < P −− , (11)

then there exists λ�� > 0 such that for any λ > λ�� problem (1) possesses a nontrivial weak solution.

Theorem 4. If q ∈ C(Ω), with

1 < min
x∈Ω

q(x) < P −− and max
x∈Ω

q(x) < P−,∞, (12)

then there exists λ� > 0 such that for any λ ∈ (0, λ�) problem (1) possesses a nontrivial weak solution.

Remark 1. If q ∈ C(Ω) verifies (11), then it satisfies (12). Consequently, the result of Theorem 3 can be completed
with the conclusion of Theorem 4. More precisely, we deduce the following consequence.

Corollary 1. Let q ∈ C(Ω) verify

1 < min
x∈Ω

q(x) � max
x∈Ω

q(x) < P −− .

Then there exist λ� > 0 and λ�� > 0 such that for any λ ∈ (0, λ�) and λ > λ�� problem (1) possesses a nontrivial weak
solution.

Remark 2. On the other hand, we point out that the result of Theorem 4 holds true in situations that extend rela-
tion (11), since in relation (12) we could have

1 < min
x∈Ω

q(x) < P −− < max
x∈Ω

q(x) < P−,∞.
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4. Proof of Theorem 2

From now on E denotes the anisotropic variable exponent Orlicz–Sobolev space W
1, �p(·)
0 (Ω). For any λ > 0 the

energy functional corresponding to problem (1) is defined by Jλ : E → R,

Jλ(u) =
∫
Ω

{
N∑

i=1

|∂xi
u|pi(x)

pi(x)
− λ

q(x)
|u|q(x)

}
dx. (13)

Theorem 1 assures that Jλ ∈ C1(E,R) and the Fréchet derivative is given by

〈
J ′

λ(u), v
〉 = ∫

Ω

{
N∑

i=1

|∂xi
u|pi(x)−2∂xi

u∂xi
v − λ|u|q(x)−2uv

}
dx

for all u,v ∈ E. Thus the weak solutions of (1) coincide with the critical points of Jλ.
In order to prove that the Jλ has a nontrivial critical point, our idea is to show that actually Jλ possesses a mountain

pass geometry. It turns out that also the application of this, by now standard tools, is not straightforward, due to the
fact that the kinetic functional Jλ is no longer homogeneous, as in the isotropic case.

We start with two auxiliary results.

Lemma 1. There exist η > 0 and α > 0 such that Jλ(u) � α > 0 for any u ∈ E with ‖u‖ �p(·) = η.

Proof. First, we point out that∣∣u(x)
∣∣q− + ∣∣u(x)

∣∣q+
�

∣∣u(x)
∣∣q(x) for all x ∈ Ω. (14)

Using the above inequality and (13), we find

Jλ(u) � 1

P ++

N∑
i=1

∫
Ω

|∂xi
u|pi(x) dx − λ

q−
(|u|q−

q− + |u|q+
q+

)
(15)

for any u ∈ E.
Since (10) holds, then E is continuously embedded both in Lq−

(Ω) and in Lq+
(Ω) by Theorem 1. It follows that

there exist two positive constants B1 and B2 such that

B1‖u‖ �p(·) � |u|q+ , B2‖u‖ �p(·) � |u|q− for all u ∈ E. (16)

Next, we focus our attention on the case when u ∈ E and ‖u‖ �p(·) < 1. For such an element u we have |∂xi
u|pi(·) < 1

and, by relation (5), we obtain

‖u‖P++
�p(·)

NP++ −1
= N

(∑N
i=1 |∂xi

u|pi(·)
N

)P++
�

N∑
i=1

|∂xi
u|P

++
pi(·) �

N∑
i=1

|∂xi
u|p

+
i

pi (·) �
N∑

i=1

∫
Ω

|∂xi
u|pi(x) dx. (17)

Relations (15)–(17) imply

Jλ(u) � 1

P ++ NP++ −1
‖u‖P++

�p(·) − λ

q−
[(

B1‖u‖ �p(·)
)q+ + (

B2‖u‖ �p(·)
)q−]

= (
B3 − B4‖u‖q+−P++

�p(·) − B5‖u‖q−−P++
�p(·)

)‖u‖P++
�p(·)

for any u ∈ E with ‖u‖ �p(·) < 1, where B3, B4 and B5 are positive constants.
Since the function g : [0,1] → R defined by

g(t) = B3 − B4t
q+−P++ − B5t

q−−P++

is positive in a neighborhood of the origin, the conclusion of the lemma follows at once. �
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Lemma 2. There exists e ∈ E with ‖e‖ �p(·) > η (where η is given in Lemma 1) such that Jλ(e) < 0.

Proof. Let ψ ∈ C∞
0 (Ω), ψ � 0 and ψ ≡ 0, be fixed and let t > 1. By (13)

Jλ(tψ) =
∫
Ω

{
N∑

i=1

tpi (x)

pi(x)
|∂xi

ψ |pi(x) − λ
tq(x)

q(x)
|ψ |q(x)

}
dx

� tP
++

P −−

N∑
i=1

∫
Ω

|∂xi
ψ |pi(x) dx − λtq

−

q+

∫
Ω

|ψ |q(x) dx.

Since q− > P ++ by (10), it is clear that limt→∞ Jλ(tψ) = −∞. Then for t > 1 large enough we can take e = tψ such
that ‖e‖ �p(·) > η and Jλ(e) < 0. This completes the proof. �
Proof of Theorem 2. By Lemmas 1 and 2 and the mountain pass theorem of Ambrosetti and Rabinowitz [4] (see
also Pucci and Serrin [29] for the case of mountains of zero altitude), we deduce the existence of a sequence (un) ⊂ E

such that

Jλ(un) → c > 0 and J ′
λ(un) → 0 (in E�) as n → ∞. (18)

We prove that (un) is bounded in E. In order to do that, we assume by contradiction that passing eventually to a
subsequence, still denoted by (un), we have ‖un‖ �p(·) → ∞ and ‖un‖ �p(·) > 1 for all n.

Relation (18) and the above considerations imply that for n large enough we have

1 + c + ‖un‖ �p(·) � Jλ(u) − 1

q−
〈
J ′

λ(un), un

〉

�
(

1

P ++
− 1

q−

) N∑
i=1

∫
Ω

|∂xi
un|pi(x) dx.

For each i ∈ {1, . . . ,N} and n we define

αi,n =
{

P ++ if |∂xi
un|pi(·) < 1,

P −− if |∂xi
un|pi(·) > 1.

Using relations (4) and (5) we infer that for n large enough we have

1 + c + ‖un‖ �p(·) �
(

1

P ++
− 1

q−

) N∑
i=1

∫
Ω

|∂xi
un|pi(x) dx �

(
1

P ++
− 1

q−

) N∑
i=1

|∂xi
un|αi,n

pi (·)

�
(

1

P ++
− 1

q−

) N∑
i=1

|∂xi
un|P

−−
pi(·) −

(
1

P ++
− 1

q−

) ∑
{i;αi,n=P++ }

(|∂xi
un|P

−−
pi(·) − |∂xi

un|P
++

pi(·)
)

�
(

1

P ++
− 1

q−

)
1

NP−−
‖un‖P−−

�p(·) − N

(
1

P ++
− 1

q−

)
. (19)

Dividing by ‖un‖P−−
�p(·) in the above inequality and passing to the limit as n → ∞, we obtain a contradiction. It follows

that (un) is bounded in E. This information, combined with the fact that E is reflexive, implies that there exist a
subsequence, still denoted by (un), and u0 ∈ E such that (un) converges weakly to u0 in E. Since, by Theorem 1,
the space E is compactly embedded in Lq(·)(Ω), it follows that (un) converges strongly to u0 in Lq(·)(Ω). Then by
inequality (2) we deduce

lim
n→∞

∫
|un|q(x)−2un(un − u0) dx = 0.
Ω
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This fact and relation (18) yield

lim
n→∞

〈
J

′
λ(un), un − u0

〉 = 0.

Thus, we deduce that

lim
n→∞

N∑
i=1

∫
Ω

|∂xi
un|pi(x)−2∂xi

un(∂xi
un − ∂xi

u0) dx = 0. (20)

Since (un) converge weakly to u0 in E, by relation (20) we find

lim
n→∞

N∑
i=1

∫
Ω

(|∂xi
un|pi(x)−2∂xi

un − |∂xi
u0|pi(x)−2∂xi

u0
)
(∂xi

un − ∂xi
u0) dx = 0. (21)

Next, we apply the following inequality (see Simon [35, formula (2.2)])(|ξ |r−2ξ − |ψ |r−2ψ
) · (ξ − ψ) � 2−r |ξ − ψ |r , ξ,ψ ∈ R

N, (22)

valid for all r � 2. Relations (21) and (22) show that actually (un) converges strongly to u0 in E. Then by relation (18)
we have

Jλ(u0) = c > 0 and J ′
λ(u0) = 0,

that is, u0 is a nontrivial weak solution of Eq. (1). �
5. Proof of Theorem 3

For any λ > 0 let Jλ be defined as in (13). This time our idea is to show that Jλ possesses a nontrivial global
minimum point in E. We start with the following auxiliary result.

Lemma 3. The functional Jλ is coercive on E.

Proof. By relations (15) and (16) we deduce that for all u ∈ E,

Jλ(u) � 1

P ++

N∑
i=1

∫
Ω

|∂xi
u|pi(x) dx − λ

q−
[(

B1‖u‖ �p(·)
)q+ + (

B2‖u‖ �p(·)
)q−]

. (23)

Now, we focus our attention on the elements u ∈ E with ‖u‖ �p(·) > 1. Using the same techniques as in the proof of (19)
combined with relation (23), we find that

Jλ(u) � 1

P ++ NP−−
‖u‖P−−

�p(·) − N

P ++
− λ

q−
[(

B1‖u‖ �p(·)
)q+ + (

B2‖u‖ �p(·)
)q−]

for any u ∈ E with ‖u‖ �p(·) > 1. Since by relation (11) we have P −− > q+ � q− we infer that Jλ(u) → ∞ as
‖u‖ �p(·) → ∞. In other words, Jλ is coercive in E, completing the proof. �
Proof of Theorem 3. The same arguments as in the proof of Lemma 3.4 of [22] can be used in order to show that Jλ

is weakly lower semicontinuous on E. By Lemma 3, the functional Jλ is also coercive on E. These two facts enable
us to apply Theorem 1.2 in [36] in order to find that there exists uλ ∈ E a global minimizer of Jλ and thus a weak
solution of problem (1).

We show that uλ is not trivial for λ large enough. Indeed, letting t0 > 1 be a fixed real number and Ω1 be an open
subset of Ω with |Ω1| > 0, we deduce that there exists v0 ∈ C∞

0 (Ω) ⊂ E such that v0(x) = t0 for any x ∈ Ω1 and
0 � v0(x) � t0 in Ω \ Ω1. We have

Jλ(v0) =
∫ {

N∑
i=1

1

pi(x)
|∂xi

v0|pi(x) − λ

q(x)
|v0|q(x)

}
dx � L − λ

q+

∫
|v0|q(x) dx � L − λ

q+ t
q−
0 |Ω1|,
Ω Ω1
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where L is a positive constant. Thus, there exists λ�� > 0 such that Jλ(u0) < 0 for any λ ∈ [λ��,∞). It follows that
Jλ(uλ) < 0 for any λ � λ�� and thus uλ is a nontrivial weak solution of problem (1) for λ large enough. The proof of
Theorem 3 is complete. �
6. Proof of Theorem 4

For any λ > 0, let Jλ be defined as in (13). Applying Ekeland’s variational principle [13], we show that assump-
tion (12) implies that the functional Jλ has a nontrivial critical point. We start with two auxiliary results.

Lemma 4. There exists λ� > 0 such that for any λ ∈ (0, λ�) there are ρ, a > 0 such that Jλ(u) � a > 0 for any u ∈ E

with ‖u‖ �p(·) = ρ.

Proof. Since (12) holds, it follows by Theorem 1 that E is continuously embedded in Lq(·)(Ω). Thus, there exists a
positive constant c1 such that

|u|q(·) � c1‖u‖ �p(·) for all u ∈ E. (24)

We fix ρ ∈ (0,1) such that ρ < 1/c1. Then relation (24) implies

|u|q(·) < 1 for all u ∈ E, with ‖u‖ �p(·) = ρ.

Furthermore, relation (5) yields∫
Ω

|u|q(x) dx � |u|q−
q(·) for all u ∈ E, with ‖u‖ �p(·) = ρ. (25)

Relations (24) and (25) imply∫
Ω

|u|q(x) dx � c
q−
1 ‖u‖q−

�p(·) for all u ∈ E, with ‖u‖ �p(·) = ρ. (26)

Taking into account relations (17) and (26), we deduce that for any u ∈ E with ‖u‖ �p(·) = ρ the following inequalities
hold true:

Jλ(u) � 1

P ++ NP++ −1
‖u‖P++

�p(·) − λ

q−

∫
Ω

|u|q(x) dx � 1

P ++ NP++ −1
‖u‖P++

�p(·) − λc
q−
1

q− ‖u‖q−
�p(·)

= ρq−
(

1

P ++ NP++ −1
ρP++ −q− − λc

q−
1

q−

)
.

Hence if we define

λ� = q−

2c
q−
1 P ++ NP++ −1

ρP++ −q−
, (27)

then for any λ ∈ (0, λ�) and u ∈ E with ‖u‖ �p(·) = ρ the number a = ρP++ /2P ++ NP++ −1 is such that

Jλ(u) � a > 0.

This completes the proof. �
Lemma 5. There exists ϕ ∈ E such that ϕ � 0, ϕ ≡ 0 and Jλ(tϕ) < 0 for t > 0 small enough.

Proof. Assumption (12) implies that q− < P −− . Let ε0 > 0 be such that q− + ε0 < P −− . On the other hand, since
q ∈ C(Ω), it follows that there exists an open set Ω2 ⊂ Ω such that |q(x) − q−| < ε0 for all x ∈ Ω2. Thus, we
conclude that q(x) � q− + ε0 < P −− for all x ∈ Ω2.
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Let ϕ ∈ C∞
0 (Ω) be such that supp(ϕ) ⊃ Ω2, ϕ(x) = 1 for all x ∈ Ω2 and 0 � ϕ � 1 in Ω . Then using the above

information and (13), for any t ∈ (0,1), we have

Jλ(tϕ) =
∫
Ω

{
N∑

i=1

tpi (x)

pi(x)
|∂xi

ϕ|pi(x) − λ
tq(x)

q(x)
|ϕ|q(x)

}
dx

� tP
−−

P −−

N∑
i=1

∫
Ω

|∂xi
ϕ|pi(x) dx − λ

q+

∫
Ω

tq(x)|ϕ|q(x) dx

� tP
−−

P −−

N∑
i=1

∫
Ω

|∂xi
ϕ|pi(x) dx − λ

q+

∫
Ω2

tq(x)|ϕ|q(x) dx

� tP
−−

P −−

N∑
i=1

∫
Ω

|∂xi
ϕ|pi(x) dx − λtq

−+ε0

q+

∫
Ω2

|ϕ|q(x) dx.

Therefore

Jλ(tϕ) < 0

for t < δ1/(P−− −q−−ε0) with

0 < δ < min

{
1,

λP −−
q+

∫
Ω2

|ϕ|q(x) dx
/ N∑

i=1

∫
Ω

|∂xi
ϕ|pi(x) dx

}
.

This is possible since we claim that
∑N

i=1

∫
Ω

|∂xi
ϕ|pi(x) dx > 0. Indeed, it is clear that∫

Ω2

|ϕ|q(x) dx �
∫
Ω

|ϕ|q(x) dx �
∫
Ω

|ϕ|q−
dx.

On the other hand, E = W
1, �p(x)

0 (Ω) is continuously embedded in Lq−
(Ω) and thus, there exists a positive constant c2

such that

|ϕ|q− � c2‖ϕ‖ �p(·).

The last two inequalities imply that

‖ϕ‖ �p(·) > 0

and combining this fact with relations (4) or (5) the claim follows at once. The proof of the lemma is now com-
pleted. �
Proof of Theorem 4. Let λ� > 0 be defined as in (27) and λ ∈ (0, λ�). By Lemma 4 it follows that on the boundary
of the ball centered at the origin and of radius ρ in E, denoted by Bρ(0), we have

inf
∂Bρ(0)

Jλ > 0. (28)

On the other hand, by Lemma 5, there exists ϕ ∈ E such that Jλ(tϕ) < 0 for all t > 0 small enough. Moreover,
relations (17), (26) and (5) imply that for any u ∈ Bρ(0) we have

Jλ(u) � 1

P ++ NP++ −1
‖u‖P++

�p(·) − λc
q−
1

q− ‖u‖q−
�p(·).

It follows that

−∞ < c := inf
B (0)

Jλ < 0.

ρ
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We let now 0 < ε < inf∂Bρ(0) Jλ − infBρ(0) Jλ. Applying Ekeland’s variational principle (see [13]) to the functional

Jλ : Bρ(0) → R, we find uε ∈ Bρ(0) such that

Jλ(uε) < inf
Bρ(0)

Jλ + ε,

Jλ(uε) < Jλ(u) + ε‖u − uε‖ �p(·), u = uε.

Since

Jλ(uε) � inf
Bρ(0)

Jλ + ε � inf
Bρ(0)

Jλ + ε < inf
∂Bρ(0)

Jλ,

we deduce that uε ∈ Bρ(0). Now, we define Iλ : Bρ(0) → R by Iλ(u) = Jλ(u) + ε‖u − uε‖ �p(·). It is clear that uε is a
minimum point of Iλ and thus

Iλ(uε + tv) − Iλ(uε)

t
� 0

for small t > 0 and any v ∈ B1(0). The above relation yields

Jλ(uε + tv) − Jλ(uε)

t
+ ε‖v‖ �p(·) � 0.

Letting t → 0 it follows that 〈J ′
λ(uε), v〉 + ε‖v‖ �p(·) > 0 and we infer that ‖J ′

λ(uε)‖ � ε.
We deduce that there exists a sequence (wn) ⊂ Bρ(0) such that

Jλ(wn) → c and J ′
λ(wn) → 0. (29)

It is clear that (wn) is bounded in E. Thus, there exists w ∈ E such that, up to a subsequence, (wn) converges weakly
to w in E. Actually, with similar arguments as those used in the end of Theorem 2 we can show that (wn) converges
strongly to w in E. Thus, by (29)

Jλ(w) = c < 0 and J ′
λ(w) = 0, (30)

that is, w is a nontrivial weak solution for problem (1). This completes the proof. �
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