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Dongdong Qin a, Vicenţiu D. Rădulescu b,c,∗, Xianhua Tang a

a School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, PR China
b Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, 

Poland
c Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13, 200585 Craiova, Romania

Received 10 March 2020; accepted 2 November 2020
Available online 12 November 2020

Abstract

In this paper, we study the following non-autonomous Choquard-Pekar equation:

{
−�u + V (x)u = (W ∗ F(u))f (u), x ∈RN (N ≥ 2),

u ∈ H 1(RN),

where the potential V (x) is 1-periodic and 0 lies in a gap of the spectrum of the Schrödinger operator 
−� +V . Under some general assumptions on the potential W and the nonlinearity f , we show the existence 
of ground state solutions. We also construct infinitely many geometrically distinct solutions by using the 
variational method and deformation arguments.
© 2020 Elsevier Inc. All rights reserved.

MSC: 35Q55; 35Q40; 35J20; 35J60; 46N50

Keywords: Choquard-Pekar equation; Ground state solution; Strongly indefinite problem; Geometrically distinct 
solutions

* Corresponding author at: Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13, 200585 
Craiova, Romania.

E-mail addresses: qindd132@163.com (D.D. Qin), radulescu@inf.ucv.ro (V.D. Rădulescu), 
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1. Introduction

The Choquard-Pekar equation

−�u + u =
(

1

|x| ∗ |u|2
)

u in R3, (1.1)

was first introduced in the pioneering work of Fröhlich [19] and Pekar [35] for the modeling of 
quantum polaron. This model corresponds to the study of free electrons in an ionic lattice interact 
with phonons associated to deformations of the lattice or with the polarization that it creates on 
the medium (interaction of an electron with its own hole). In the approximation to Hartree-Fock 
theory of one component plasma, Choquard used equation (1.1) to describe an electron trapped 
in its own hole.

The Choquard-Pekar equation is also known as the Schrödinger-Newton equation in models 
coupling the Schrödinger equation of quantum physics together with nonrelativistic Newtonian 
gravity. The equation can also be derived from the Einstein-Klein-Gordon and Einstein-Dirac 
system. Such a model was proposed for boson stars and for the collapse of galaxy fluctuations of 
scalar field dark matter. We refer for details to Elgart and Schlein [18], Giulini and Großardt [23], 
Jones [24], and Schunck and Mielke [40]. Penrose [36,37] proposed equation (1.1) as a model 
of self-gravitating matter in which quantum state reduction was understood as a gravitational 
phenomenon.

As pointed out by Lieb [27], Choquard used equation (1.1) to study steady states of the one 
component plasma approximation in the Hartree-Fock theory. Classification of solutions of (1.1)
was first studied by Ma and Zhao [31]. Pointwise bounds and blow-up for Choquard-Pekar 
inequalities at isolated singularities have been studied by Ghergu and Taliaferro [21]. For the 
Choquard-type equation and related problems, we refer to [11,31,33,44] for the existence of so-
lutions and multiplicity properties, to [13,22,47] for existence of sign-changing solutions, and to 
[12,32,45,48] for semiclassical solutions. See also [34] and references therein for a broad survey 
of Choquard equations.

This paper is concerned with the following non-autonomous Choquard-Pekar equation

{
−�u + V (x)u = (W ∗ F(u))f (u), x ∈RN (N ≥ 2)

u ∈ H 1(RN),
(1.2)

where V , W and f satisfy the following hypotheses:

(V1) V ∈ C(RN, R), V (x) is 1-periodic in xi for i = 1, 2, . . . , N , and

sup[σ(−� + V ) ∩ (−∞,0)] < 0 < inf[σ(−� + V ) ∩ (0,∞)];

(W1) W(x) is an even function, and there exist 1 ≤ r1 ≤ r2 < ∞ such that W ∈ Lr1(RN) +
Lr2(RN);

(W2) W(x) ≥ 0 and on a neighborhood of 0 we have W(x) > 0;
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(W3) there exists C0 > 0 such that for all nonnegative ϕ, ψ ∈ L1
loc(R

N),

∫
RN

(W ∗ ϕ)ψdx ≤ C0

√√√√∫
RN

(W ∗ ϕ)ϕdx

√√√√∫
RN

(W ∗ ψ)ψdx;

(F1) f ∈ C(R, R) and there exist C0 > 0 and p1, p2 > 1 with (2r2 − 1)/r2 < p1 ≤ p2 < (2r1 −
1)2∗/2r1 such that for all t ∈R,

|f (t)| ≤ C0(|t |p1−1 + |t |p2−1); (1.3)

(F2) F(t) ≥ 0 and lim|t |→∞ F(t)
|t | = ∞;

(F5) f (−t) = −f (t) for all t ∈ R.

When the particle interaction is attractive (that is, W ≥ 0), problem (1.2) turns into (1.1) with 
f (u) = u, N = 3 and V ≡ 1, which also arises in the Hartree theory of bosonic systems (cf. 
[5,20]). The case when the particle interaction is repulsive (that is, W ≤ 0) concerns the Hartree 
equation for the Helium atom. In the sequel, we assume that W does not change sign, and we 
speak of the periodic case if the exterior potential V is periodic and nonconstant.

For the case when V is nonperiodic, by applying Strauss’ lemma ([46, Corollary 1.26]) or 
using the fact the spectrum of −� +V is discrete at the bottom, problems like or similar to (1.2)
have been widely investigated in the literature, see, e.g., [27–29,43] and the references therein.

In this paper we consider the periodic case. In this abstract setting there is a lack of compact-
ness because of invariance by ZN -translation. The concentration-compactness argument is well 
employed to deal with this case. When V = V1 − λ is periodic and λ ∈ R is a free parameter, 
the eigenvalue problem (1.2) has been studied by Albanese [3] and Catto et al. [9] provided that 
f (u) = u; moreover, solutions with prescribed L2 norm were obtained in this case. Depending 
on the location of 0 in the spectrum of −� + V , there are many results about the existence and 
multiplicity solutions to equation (1.2). We recall some of these results in what follows.

i) For the positive definite case (that is, V > 0), the existence of nontrivial solutions can be 
obtained via the mountain pass theorem and weak sequential continuity of the Fréchet deriva-
tive of the energy functional associated to problem (1.2). Ackermann [1] studied (1.2) under 
assumptions (W1), (W2), (F1), (F5) and using the Ambrosetti-Rabinowitz type condition [4]:

(AR) there exists θ > 2 such that for all u ∈R \ {0}

2f (u)u ≥ θF (u) > 0.

Moreover, infinitely many geometrically distinct solutions of problem (1.2), that is, solutions 
which do not just differ by a translation, were constructed by using an abstract critical point 
theorem established by Bartsch and Ding (see [6, Theorem 4.2]).

ii) For the case when V changes sign such that (V1) holds, problem (1.2) is much more 
difficult to handle due to the fact that the operator −� + V has purely continuous spectrum, 
which consists of closed disjoint intervals (see [39, Theorem XIII.100]). In this case, problem 
(1.2) turns into a strongly indefinite problem. In [8], Buffoni et al. considered this case and proved 
the existence of a nontrivial solution for (1.2) by assuming that f (u) = u and W(x) = 1/|x|. 
Next, by taking advantage of the fact that the Fourier transform of W is positive, they showed 
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that the function � defined later by (2.7) is convex, which plays a crucial role in their proof; see 
[8] for more details. As discussed in [5,20], for potentials W behaving like

W(x) ∼ 1

|x|6 + C

|x| , for |x| large (1.4)

it is not clear how to modify this function near 0 such that the Fourier transform of W is non-
negative. In order to avoid the discussion about the non-negativity of Fourier transform of W , 
Ackermann [1] introduced the Cauchy-Schwarz type inequality (W3) in order to show the bound-
edness of Palais-Smale ((PS) for short) sequences. Ackermann [1] also showed a variant of the 
Brezis-Lieb lemma in order to get a decomposition of the energy functional 	 (defined by (2.9)) 
corresponding to (1.2) along (PS) sequences. In this way it is obtained a nontrivial solution pro-
vided that hypotheses (V1), (W1), (W2), (W3), (F1) and (AR) hold, and there are constructed 
infinitely many geometrically distinct solutions when, additionally, condition (F5) is satisfied. 
Moreover, some examples and criteria for checking condition (W3) were also given there, see [1, 
relations (2.2) and (2.3)] and [2]. Thus, it is an interesting problem to find nontrivial solutions 
and infinitely many geometrically distinct solutions of (1.2) without assuming condition (W3)
and the convexity of �. As it is well known, the classical Ambrosetti-Rabinowitz condition (AR) 
plays an important role in establishing the mountain-pass or linking geometry and in verifying 
the Palais-Smale condition. That is why this technical condition is commonly used in the liter-
ature, see, e.g., [1,4,25,26,30]. However, there are many functions that do not satisfy condition 
(AR), see, for instance, F(t) = |t | ln(1 + t2). So, it is quite natural to ask whether it is possible 
to obtain the results established in [1,8] without the classic condition (AR) or under a weaker 
condition.

In this paper we address the following question.

Question 1. Study problem (1.2) by getting rid of the Cauchy-Schwarz type inequality (W3), 
which is a crucial hypothesis of the proof developed by Ackermann [1]. In this case, how to obtain 
the existence of ground state solutions to problem (1.2) without using the classical condition 
(AR); see Remarks 1.4 and 1.6.

The analysis developed in this paper will bring some new difficulties both in the verification of 
the linking geometry and for proving the boundedness of Cerami sequences for the energy func-
tional. Employing some new techniques and introducing some generic conditions on f , we obtain 
the existence of ground state solution for equation (1.2). Such an existence result, to the best of 
our knowledge, seems to be new, see Remark 1.3. We are also concerned with the existence of 
infinitely many geometrically distinct solutions of problem (1.2). Note that multiplicity results in 
[1,7,6,15] were constructed by using pseudo-index and the (PS)I -attractor or (C)I -attractor in or-
der to obtain the deformations. Moreover, instead of dealing directly with the different exponents 
r1, r2, p1, p2 in (W1) and (F1), it needs to split W and F into a sum of functions, see [1]. One 
may ask whether is possible to consider the superquadratic part � directly and to employ a direct 
approach to show the multiplicity results. In this paper we give an affirmative answer. First, we 
construct a profile decomposition of bounded sequences in H 1(RN) (see Lemma 4.1) in order 
to analyse Cerami sequences. Next, applying the Lusternik-Schnirelmann theory and using de-
formation arguments, we obtain the existence of infinitely many geometrically distinct solutions 
of problem (1.2). The main results in this paper extend and complement the above mentioned 
655



D.D. Qin, V.D. Rădulescu and X.H. Tang Journal of Differential Equations 275 (2021) 652–683
results of [1,8]. More precisely, we will prove Theorems 1.1 and 1.2 below by using following 
conditions:

(F3) F̂(t) := f (t)t − F(t) ≥ 0, and there exist c1 > 0, max
{

1,
(2r1−1)N

(N+2)r1−N

}
< κ ≤ p2

p2−1 such 
that

|f (t)|κ ≤ c1F̂(t), ∀ t ∈R;

(F3′) F̂(t) := f (t)t − F(t) ≥ 0, and there exist c1 > 0, max
{

1,
(2r1−1)N

(N+2)r1−N

}
< κi ≤ 2r2−1

r2−1 , i =
1, 2 such that

|f (t)χ[0,1)(|t |)|κ1 + |f (t)χ[1,+∞)(|t |)|κ2 ≤ c1F̂(t), ∀ t ∈ R;

(F4) limt→0
f (t)

t
exists.

Our main results read as follows.

Theorem 1.1. Assume that V, W and f satisfy (V1), (W1), (W2), (F1), (F2) and (F3). Then 
problem (1.2) has a solution ū ∈ H 1(RN) \ {0} such that 	(ū) = infK 	 > 0, where K := {u ∈
H 1(RN) \{0} : 	′(u) = 0}. If, in addition, f satisfies (F4) and (F5), then problem (1.2) possesses 
infinitely many pairs of geometrically distinct solutions ±u.

Theorem 1.2. Assume that V, W and f satisfy (V1), (W1), (W2), (W3), (F1), (F2) and (F3′). 
Then problem (1.2) has a solution ū ∈ H 1(RN) \{0} such that 	(ū) = infK 	 > 0. If, in addition, 
f satisfies (F4) and (F5), then problem (1.2) possesses infinitely many pairs of geometrically 
distinct solutions ±u.

Remark 1.3. For case N = 3 and f (t) = t , problem (1.2) reduces to the classical Choquard-
Pekar equation:

−�u + V (x)u = (W ∗ u2)u, u ∈ H 1(R3).

Assuming that hypotheses (V1), (W1) and (W2) are satisfied, then existence and multiplicity 
results can be deduced from Theorem 1.1 directly. It is worth pointing out that the Cauchy-
Schwarz type inequality associated with W , that is, condition (W3), is crucially needed in the 
argument of Ackermann [1] in order to establish the same results for the above Choquard-Pekar 
equation, see the remarks after Theorem 2.2 of [1].

Remark 1.4. Besides the power function f (t) = a|t |p−2t with a > 0 and p ≥ 2, there are indeed 
many functions which satisfy (F1)-(F4). For example,

i). F(t) = |t | ln(1 + t2). Then

f (t) = sign(t) ln(1 + t2) + 2|t |t
2 , F̂(t) = 2|t |3

2 .

1 + t 1 + t
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Then f satisfies (F1)-(F4) with 1 ≤ r1 ≤ r2 < ∞, 2r2−1
r2

< p1 = p2 < min{3, (2r1−1)2∗
2r1

} and 
κ = p2

p2−1 . But f (t) does not satisfy (AR).

ii). F(t) = |t |p
1+t2 with p > 3. Then

f (t) = p|t |p−2t + (p − 2)|t |pt

(1 + t2)2 , F̂(t) = (p − 1)|t |p + (p − 3)|t |p+2

(1 + t2)2 .

Then f satisfies (F1)-(F4) with 1 ≤ r1 ≤ r2 < ∞, 2r2−1
r2

< p1 = p2 = p − 2 < (2r1−1)2∗
2r1

and 

κ = p−2
p−3 .

iii). F(t) = a|t |p1+b|t |p2

1+t2 with 1 < p2 − 2 < p1 < p2 and a, b > 0. Then

f (t) = ap1|t |p1−2t + bp2|t |p2−2t + a(p1 − 2)|t |p1 t + b(p2 − 2)|t |p2 t

(1 + t2)2

and

F̂(t) = a(p1 − 1)|t |p1−2t + b(p2 − 1)|t |p2−2t + a(p1 − 3)|t |p1 t + b(p2 − 3)|t |p2 t

(1 + t2)2 .

Then f satisfies (F1)-(F4) with 1 ≤ r1 ≤ r2 < ∞, 2 ≤ p1 < p2 <
(2r1−1)2∗

2r1
and κ = p2−2

p2−3 .

As mentioned in [1, relation (2.3)], any nonnegative radial decreasing functions W sat-
isfy (W3) and for W as in (1.4) we can use a simple regularization near 0 so that it satisfies
(W1)-(W3).

Consider now the Choquard equation:

−�u + V (x)u = (Iα ∗ F(u))f (u), u ∈ H 1(RN), (1.5)

where N ≥ 3, α ∈ (0, N) and Iα :RN → R is the Riesz potential defined by

Iα(x) = 
(N−α
2 )


(α
2 )π

N
2 2α|x|N−α

, x 
= 0.

Then we have the following results.

Theorem 1.5. Assume that V and f satisfy (V1), (F1), (F2) and (F3′). Then problem (1.5) has 
a solution ū ∈ H 1(RN) \ {0} such that 	(ū) = infK 	 > 0. If, in addition, f satisfies (F4) and
(F5), then problem (1.2) possesses infinitely many pairs of geometrically distinct solutions ±u.

Remark 1.6.
i) Condition (F3′) is weaker than (F3) by the fact that p2

p2−1 < 2r2−1
r2−1 , as it follows from (F1).

ii) Condition (F3′) weakens the Ambrosetti-Rabinowitz condition (AR). Indeed, if (AR) holds, 
then

1 − F(t) ≥ 1 − 2
> 0, ∀ t ∈R \ {0}.
f (t)t μ
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Consider first the case |t | < 1. We choose κ1 = p1
p1−1 and some c1 > 0 such that

|f (t)t |κ1−1

c1|t |κ1
≤ 1 − 2

μ
≤ 1 − F(t)

f (t)t
, ∀ t ∈ R \ {0},

which yields

|f (t)χ[0,1)(|t |)|κ1 ≤ c1F̂(t), ∀ t ∈ R;

For the case |t | ≥ 1, we choose κ2 = p2
p2−1 and some c1 > 0 such that

|f (t)t |κ2−1

c1|t |κ2
≤ 1 − 2

μ
≤ 1 − F(t)

f (t)t
, ∀ t ∈R \ {0}.

It follows that

|f (t)χ[1,+∞)(|t |)|κ2 ≤ c1F̂(t), ∀ t ∈ R.

Condition (F3′) holds in both cases.

Corollary 1.7. Under the hypotheses of Theorems 1.1 and 1.2, the conclusions also hold for the 
following problem with repulsive particle interaction:

−�u + V (x)u = −(W ∗ F(u))f (u), u ∈ H 1(RN).

To complete this section, we sketch our proof. In order to obtain the existence of ground state 
solutions for problem (1.2), we first construct the linking structure of 	. By using the linking 
theorem [26, Theorem 2.1], we will find the Cerami sequences for the energy functional 	. 
Boundedness of the sequences will be proved by virtue of the technical conditions (F3) and
(F3′). Next, by applying a concentration compactness argument, we find nontrivial solutions of 
problem (1.2). Finally, we constrain the functional 	 on the critical point set K and we show 
that the corresponding infimum is positive, then ground states of (1.2) are obtained by a standard 
argument. The proof of multiplicity results is carried out via the Lusternik-Schnirelmann theory 
and deformation arguments. In order to obtain the deformations we shall use the decomposition 
of 	 along the Cerami sequences and verify the discreteness of such sequences. This requires 
a deep analysis of the profile decomposition of bounded sequences in H 1(RN) due to different 
exponents r1, r2, p1, p2 that appear in (W1) and (F1); see Lemma 4.1 for details. Next, arguing by 
contradiction, we succeed in establishing the existence of infinitely many geometrically distinct 
solutions for (1.2).

The present paper is organized as follows. In Section 2, some preliminary results are pre-
sented. In Section 3, we establish the linking structure of 	 and show the existence of ground 
state solutions for problem (1.2). In Section 4, we construct a profile decomposition of bounded 
sequences in H 1(RN) and we establish multiplicity results via deformation arguments.
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2. Preliminaries

Let X be a real Hilbert space with X = X− ⊕ X+ and X−⊥ X+. We say that a func-
tional ϕ ∈ C1(X, R), ϕ is weakly sequentially lower semi-continuous if for any un ⇀ u

in X one has ϕ(u) ≤ lim infn→∞ ϕ(un); ϕ′ is said to be weakly sequentially continuous if 
limn→∞〈ϕ′(un), v〉 = 〈ϕ′(u), v〉 for each v ∈ X. Recall that a sequence {un} ⊂ X is called 
a Cerami sequence for ϕ at the level c ((Ce)c-sequence for short) if ϕ(un) → c and (1 +
‖un‖)‖ϕ′(un)‖ → 0.

Lemma 2.1. [25,26] Let (X, ‖ · ‖) be a real Hilbert space with X = X− ⊕ X+ and X−⊥ X+, 
and let ϕ ∈ C1(X, R) of the form

ϕ(u) = 1

2

(‖u+‖ − ‖u−‖)− ψ(u), u = u− + u+ ∈ X− ⊕ X+.

Suppose that the following assumptions are satisfied:

(KS1) ψ ∈ C1(X, R) is bounded from below and weakly sequentially lower semi-continuous;
(KS2) ψ ′ is weakly sequentially continuous;
(KS3) there exist r > ρ > 0 and e ∈ X+ with ‖e‖ = 1 such that

κ := infϕ(S+
ρ ) > supϕ(∂Q),

where

S+
ρ = {

u ∈ X+ : ‖u‖ = ρ
}
, Q = {

v + se : v ∈ X−, s ≥ 0, ‖v + se‖ ≤ r
}
.

Then there exist a constant c ∈ [κ, supϕ(Q)] and a sequence {un} ⊂ X satisfying

ϕ(un) → c, ‖ϕ′(un)‖(1 + ‖un‖) → 0.

Let A = −� +V . Then A is self-adjoint in L2(RN) with domain D(A) = H 2(RN) (see [17, 
Theorem 4.26]). Let {E(λ) : −∞ ≤ λ ≤ +∞} and |A| be the spectral family and the absolute 
value of A, respectively, and |A|1/2 be the square root of |A|. Set U = id − E(0) − E(0−). Then 
U commutes with A, |A| and |A|1/2, and A = U |A| is the polar decomposition of A (see [16, 
Theorem IV 3.3]). Let

E = D(|A|1/2), E− = E(0)E, E+ = [id − E(0)]E. (2.1)

For any u ∈ E, we have u = u− + u+, where

u− := E(0)u ∈ E−, u+ := [id − E(0)]u ∈ E+ (2.2)

and

Au− = −|A|u−, Au+ = |A|u+, ∀ u ∈ E ∩D(A). (2.3)
659
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Define an inner product

(u, v) =
(
|A|1/2u, |A|1/2v

)
L2

, u, v ∈ E (2.4)

and the corresponding norm

‖u‖ =
∥∥∥|A|1/2u

∥∥∥
2
, u ∈ E, (2.5)

where (·, ·)L2 denotes the inner product of L2(RN) and ‖ · ‖s is the norm of Ls(RN). By (V1), 
E = H 1(RN) with equivalent norms. Therefore, E embeds continuously in Ls(RN) for all 2 ≤
s ≤ 2∗. In addition, one has the decomposition E = E− ⊕ E+ orthogonal with respect to both 
(·, ·)L2 and (·, ·).

Lemma 2.2. [1, Lemma 3.1] Let r > 1 and s′ be the conjugate exponent for s = 2r/(2r − 1), let 
t ∈ [s, ∞), and let μ be given by 1/s′ + 1/t = 1/μ. Assume that U ∈ Lr(RN). Then the bilinear 
map Ls × Lt → Lμ, sending (u, v) to (U ∗ u)v, is well defined and continuous, with

‖(U ∗ u)v‖μ ≤ ‖U ∗ u‖s′‖v‖t ≤ ‖U‖r‖u‖s‖v‖t . (2.6)

If {un} ⊂ Ls and {vn} ⊂ Lt are bounded and either un → u in Ls and vn → v in Lt
loc or un → u

in Ls
loc and vn → v in Lt , then (U ∗ un)vn → (U ∗ u)v in Lμ.

We set

�(u) =
∫
RN

(W ∗ F(u))F (u)dx, ∀ u ∈ E. (2.7)

Employing Lemma 2.2 and using a standard argument, we obtain the following property.

Lemma 2.3. Assume that (W2), (F1) and (F2) hold. Then � is nonnegative, weakly sequentially 
lower semi-continuous, and �′ is weakly sequentially continuous.

Lemma 2.4. [10, Proposition 2.3] Assume that (V1) hold and q ∈ (2, ∞). Then

‖E(0)u‖q ≤ c2‖u‖q, ∀ u ∈ L2(RN) ∩ Lq(RN). (2.8)

In view of Lemma 2.3, under assumptions (V1), (W1), (W2) and (F1), the solutions of prob-
lem (1.2) are the critical points of the following energy functional

	(u) = 1

2

∫
RN

(
|∇u|2 + V (x)u2

)
dx − 1

2

∫
RN

(W ∗ F(u))F (u)dx, ∀ u ∈ E. (2.9)

Then 	 is of class C1(E, R) and
660
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〈	′(u), v〉 =
∫
RN

(∇u∇v + V (x)uv)dx −
∫
RN

(W ∗ F(u))f (u)vdx, ∀ u,v ∈ E. (2.10)

In view of (2.3) and (2.5), we have

	(u) = 1

2

(
‖u+‖2 − ‖u−‖2

)
− 1

2

∫
RN

(W ∗ F(u))F (u)dx (2.11)

and

〈	′(u),u〉 = ‖u+‖2 − ‖u−‖2 −
∫
RN

(W ∗ F(u))f (u)udx, ∀ u = u− + u+ ∈ E. (2.12)

3. The existence of ground state solutions

In this section, we show the existence of ground state solutions for problem (1.2).
Set si = 2ri

2ri−1 , i = 1, 2, and define

ζ(si) =

⎧⎪⎨⎪⎩
2∗si

2∗−si
, if si ≥ N

N−1 and N ≥ 3,

2, if si < N
N−1 and N ≥ 3,

2si , if N = 2;
η(si) =

⎧⎪⎨⎪⎩
2∗, if si ≥ N

N−1 and N ≥ 3,
2si

2−si
, if si < N

N−1 and N ≥ 3,

2si, if N = 2.

(3.1)

It follows from (F1) that sipj ∈ (2, 2∗) for i, j ∈ {1, 2}. By (W2), there exists r0 > 0 such that 
W(x) > 0 for |x| ≤ r0.

By Lemma 2.2, we have the following auxiliary property.

Lemma 3.1. Assume that (W1) hold. Then

i) for w1, w2 ∈ Lsi (RN),∫
RN

(Wi ∗ |w1|)|w2|dx ≤ Ci‖w1‖si ‖w2‖si , i = 1,2; (3.2)

ii) for w1 ∈ Lsi (RN), w2 ∈ Lsipj /(pj −1)(RN) and w3 ∈ Lsipj (RN),∫
RN

(Wi ∗ |w1|)|w2||w3|dx ≤ Ci‖w1‖si‖w2‖sipj /(pj −1)‖w3‖sipj
, i, j = 1,2; (3.3)

iii) for w1 ∈ Lsi (RN), w2 ∈ Lζ(si )(RN) and w3 ∈ Lη(si )(RN),∫
N

(Wi ∗ |w1|)|w2||w3|dx ≤ Ci‖w1‖si ‖w2‖ζ(si )‖w3‖η(si ), i = 1,2. (3.4)
R
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Lemma 3.2. Assume that (V1), (W1) and (F1) hold. Then there exists ρ > 0 such that

κ̂ := inf
{
	(u) : u ∈ E+,‖u‖ = ρ

}
> 0. (3.5)

The proof of Lemma 3.2 is standard and hence is omitted.

Lemma 3.3. Assume that (V1), (W1), (W2), (F1) and (F2) hold. Then for any e ∈ E+, there is 
r > ρ such that sup	(∂Q) ≤ 0, where ρ is defined by Lemma 3.2 and

Q = {
w + se+ : w ∈ E−, s ≥ 0, ‖w + se+‖ ≤ r

}
. (3.6)

Proof. It is sufficient to show that 	(se +w) → −∞ as s ∈ R, w ∈ E−, ‖se +w‖ → ∞. Argu-
ing indirectly, assume that for some sequence {sne + wn} ⊂ R e ⊕ E− with ‖sne + wn‖ → ∞, 
there is M > 0 such that 	(sne + wn) ≥ −M for all n ∈ N . Set vn = (sne + wn)/‖sne + wn‖ =
tne + v−

n , then ‖tne + v−
n ‖ = 1. Passing to a subsequence, we may assume that tn → t̄ and 

v−
n ⇀ v− in E, and so v−

n → v− a.e. on RN , and

− M

‖sne + wn‖2 ≤ 	(sne + wn)

‖sne + wn‖2

= t2
n

2
‖e‖2 − 1

2
‖v−

n ‖2 − 1

2

∫
RN

(W ∗ F(sne + wn))F (sne + wn)

‖sne + wn‖2 dx. (3.7)

If t̄ = 0, it follows from (3.7) that

0 ≤ 1

2
‖v−

n ‖2 + 1

2

∫
RN

(W ∗ F(sne + wn))F (sne + wn)

‖sne + wn‖2 dx ≤ t2
n

2
‖e‖2 + M

‖sne + wn‖2 → 0,

which yields ‖v−
n ‖ → 0, and so 1 = ‖tne + v−

n ‖ → 0, a contradiction.
If t̄ 
= 0, then t̄ e + v− 
= 0. Hence, we can choose x0 ∈ RN and r1 ∈ (0, r0/2) such that 

|t̄ e + v−| > 0 for x ∈ Br1(x0). It follows from (W2), (F2) and (3.7) that

0 ≤ lim sup
n→∞

⎡⎢⎣ t2
n

2
‖e‖2 − 1

2
‖v−

n ‖2 − 1

2

∫
RN

(W ∗ F(sne + wn))F (sne + wn)

‖sne + wn‖2 dx

⎤⎥⎦
≤ t̄2

2
‖e‖2 − 1

2
lim inf
n→∞

∫
RN

∫
RN

W(x − y)
F ((sne + wn)(x))

|(sne + wn)(x)| |(tne + v−
n )(x)|

×F((sne + wn)(y))

|(sne + wn)(y)| |(tne + v−
n )(y)|dxdy

≤ t̄2

2
‖e‖2 − 1

2

∫
B (x )

∫
B (x )

W(x − y)

[
lim inf
n→∞

F((sne + wn)(x))

|(sne + wn)(x)| |(tne + v−
n )(x)|

]

r1 0 r1 0
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×
[

lim inf
n→∞

F((sne + wn)(y))

|(sne + wn)(y)| |(tne + v−
n )(y)|

]
dxdy

= −∞,

a contradiction. �
By Lemmas 2.1, 2.3, 3.2 and 3.3, we have the following lemma.

Lemma 3.4. Assume that (V1), (W1), (W2), (F1) and (F2) hold. Then there exist a constant 
c̄ > 0 and a sequence {un} ⊂ E satisfying

	(un) → c̄, ‖	′(un)‖(1 + ‖un‖) → 0. (3.8)

Lemma 3.5. Assume that (V1), (W1), (W2), (F1), (F2) and (F3) hold. Then any sequence {un} ⊂
E satisfying

	(un) → c ≥ 0, 〈	′(un), u
±
n 〉 → 0 (3.9)

is bounded in E.

Proof. In view of (2.11), (2.12) and (3.9), one has

c + o(1) = 	(un) − 1

2
〈	′(un), un〉 = 1

2

∫
RN

(W ∗ F(un))F̂(un)dx. (3.10)

To prove the boundedness of {un}, arguing by contradiction, suppose that ‖un‖ → ∞. Let 
vn = un/‖un‖. Then 1 = ‖vn‖. If δ := lim supn→∞ supy∈RN

∫
B1(y)

|vn|2dx = 0, then by Lions’ 

concentration-compactness principle [46, Lemma 1.21], vn → 0 in Ls(RN) for 2 < s < 2∗. By 
(F1) and (F3), we have

max

{
1,

(2r1 − 1)N

(N + 2)r1 − N

}
< κ ≤ p2

p2 − 1
<

2r2 − 1

r2 − 1
. (3.11)

Set κ ′ = κ/(κ − 1). Then (3.11), together with the fact that 1 < p1 ≤ p2 and s1 ≥ s2 > 1, implies

1 < p1 ≤ p2 ≤ κ ′, 2 < s2κ
′ ≤ s1κ

′ < 2∗. (3.12)

By virtue of (W1), (W2), (F1), (F3), (2.8), (3.2), (3.10), (3.12) and the Hölder inequality, we find

1

‖un‖

∣∣∣∣∣∣∣
∫
RN

(W ∗ F(un))f (un)v
+
n dx

∣∣∣∣∣∣∣
≤ 1

‖un‖

⎡⎢⎣∫
N

(W ∗ F(un))|f (un)|κdx

⎤⎥⎦
1/κ ⎡⎢⎣∫

N

(W ∗ F(un))|v+
n |κ ′

dx

⎤⎥⎦
1/κ ′
R R

663
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≤ C1

‖un‖

⎡⎢⎣∫
RN

(W ∗ F(un))F̂(un)dx

⎤⎥⎦
1/κ ⎡⎢⎣∫

RN

(W ∗ F(un))|v+
n |κ ′

dx

⎤⎥⎦
1/κ ′

≤ C2

‖un‖

⎡⎢⎣∫
RN

(W ∗ F(un))|v+
n |κ ′

dx

⎤⎥⎦
1/κ ′

= C2

‖un‖

⎡⎢⎣∫
RN

(W1 ∗ F(un))|v+
n |κ ′

dx +
∫
RN

(W2 ∗ F(un))|v+
n |κ ′

dx

⎤⎥⎦
1/κ ′

≤ C2

‖un‖
[
‖W1‖r1‖F(un)‖s1‖v+

n ‖κ ′
s1κ

′ + ‖W2‖r2‖F(un)‖s2‖v+
n ‖κ ′

s2κ
′
]1/κ ′

≤ C3

‖un‖
[(‖un‖p1

s1p1 + ‖un‖p2
s1p2

)‖v+
n ‖κ ′

s1κ
′ + (‖un‖p1

s2p1 + ‖un‖p2
s2p2

)‖v+
n ‖κ ′

s2κ
′
]1/κ ′

≤ C4

‖un‖
[(

‖un‖p1/κ
′ + ‖un‖p2/κ

′)(‖v+
n ‖s1κ

′ + ‖v+
n ‖s2κ

′
)]

≤ C5
(‖v+

n ‖s1κ
′ + ‖v+

n ‖s2κ
′
)

≤ C6
(‖vn‖s1κ

′ + ‖vn‖s2κ
′
)= o(1). (3.13)

Similarly, we have

1

‖un‖
∫
RN

(W ∗ F(un))f (un)v
−
n dx = o(1). (3.14)

Hence, combining (3.13) with (3.14) and making use of (2.10) and (3.9), we have

1 + o(1) = ‖un‖2 − 〈	′(un), u
+
n − u−

n 〉
‖un‖2

= 1

‖un‖
∫
RN

(W ∗ F(un))f (un)v
+
n dx − 1

‖un‖
∫
RN

(W ∗ F(un))f (un)v
−
n dx

≤ o(1).

This contradiction shows that δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ ZN such that ∫

B1+√
N

(kn)
|vn|2dx > δ

2 . Let wn(x) = vn(x + kn). Recall that V (x) is 1-periodic in each of 

x1, x2, . . ., xN . Then ‖wn‖ = ‖vn‖ = 1, and∫
B √ (0)

|wn|2dx >
δ

2
. (3.15)
1+ N
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Passing to a subsequence, we have wn ⇀ w in E, wn → w in Ls
loc(R

N), 2 ≤ s < 2∗, wn → w

a.e. on RN . Obviously, (3.15) implies that w 
= 0.
Now we define ukn

n (x) = un(x +kn), then ukn
n /‖un‖ = wn → w a.e. on RN , w 
= 0. Hence, we 

can choose x0 ∈ RN and r2 ∈ (0, r0/2) such that |w(x)| > 0 for a.e. x ∈ Br2(x0). For x ∈ Br2(x0), 
we have limn→∞ |ukn

n (x)| = ∞. Hence, it follows from (2.9), (3.9), (F2), (F3), (W2) and Fatou’s 
lemma that

0 = lim
n→∞

c + o(1)

‖un‖2 = lim
n→∞

	(un)

‖un‖2

= lim
n→∞

⎡⎢⎣1

2

(
‖v+

n ‖2 − ‖v−
n ‖2

)
− 1

2‖un‖2

∫
RN

(W ∗ F(un))F (un)dx

⎤⎥⎦
≤ 1

2
− 1

2
lim inf
n→∞

∫
RN

∫
RN

W(x − y)
F (u

kn
n (x))

|ukn
n (x)| |wn(x)|F(u

kn
n (y))

|ukn
n (y)| |wn(y)|dxdy

≤ 1

2
− 1

2

∫
Br2 (x0)

∫
Br2 (x0)

W(x − y)

[
lim inf
n→∞

F(u
kn
n (x))

|ukn
n (x)| |wn(x)|

]

×
[

lim inf
n→∞

F(u
kn
n (y))

|ukn
n (y)| |wn(y)|

]
dxdy

≤ −∞.

This contradiction shows that {un} is bounded. �
Lemma 3.6. Assume that (V1), (W1), (W2), (W3), (F1), (F2) and (F3′) hold. Then any sequence 
{un} ⊂ E satisfying

	(un) → c ≥ 0, 〈	′(un), u
±
n 〉 → 0 (3.16)

is bounded in E.

Proof. In view of (2.11), (2.12) and (3.16), one has (3.10) and

c + o(1) = 	(un) = 1

2

(
‖u+

n ‖2 − ‖u−
n ‖2

)
− 1

2

∫
RN

(W ∗ F(un))F (un)dx. (3.17)

To prove the boundedness of {un}, arguing by contradiction, suppose that ‖un‖ → ∞. Let 
vn = un/‖un‖. Then 1 = ‖vn‖. If δ := lim supn→∞ supy∈RN

∫
B1(y)

|vn|2dx = 0, then by Lions’ 

concentration-compactness principle [46, Lemma 1.21], vn → 0 in Ls(RN) for 2 < s < 2∗. Set 
κ ′
i = κi/(κi − 1), i = 1, 2. Then (F1) and (F3′) imply

2 ≤ s2κ
′ ≤ s1κ

′ < 2∗. (3.18)
i i
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From (W1), (3.2) and (3.18), we deduce that∫
RN

(W ∗ |v+
n |κ ′

i )|v+
n |κ ′

i dx

=
∫
RN

(W1 ∗ |v+
n |κ ′

i )|v+
n |κ ′

i dx +
∫
RN

(W2 ∗ |v+
n |κ ′

i )|v+
n |κ ′

i dx

= C1‖v+
n ‖2κ ′

i

s1κ
′
i

+ C2‖v+
n ‖2κ ′

i

s2κ
′
i

, i = 1,2. (3.19)

Set f1(t) = f (t)χ[0,1)(|t |) and f2(t) = f (t)χ[1,+∞)(|t |). Then by virtue of (W1), (W2), (W3), 
(F1), (F3′), (3.10), (3.17), (3.19) and the Hölder inequality, we obtain

1

‖un‖

∣∣∣∣∣∣∣
∫
RN

(W ∗ F(un))fi(un)v
+
n dx

∣∣∣∣∣∣∣
≤ 1

‖un‖

⎡⎢⎣∫
RN

(W ∗ F(un))|fi(un)|κi dx

⎤⎥⎦
1/κi

⎡⎢⎣∫
RN

(W ∗ F(un))|v+
n |κ ′

i dx

⎤⎥⎦
1/κ ′

i

≤ C1

‖un‖

⎡⎢⎣∫
RN

(W ∗ F(un))F̂(un)dx

⎤⎥⎦
1/κi

⎡⎢⎣∫
RN

(W ∗ F(un))|v+
n |κ ′

i dx

⎤⎥⎦
1/κ ′

i

≤ C2

‖un‖

⎡⎢⎣∫
RN

(W ∗ F(un))|v+
n |κ ′

i dx

⎤⎥⎦
1/κ ′

i

≤ C3

‖un‖

⎡⎢⎣∫
RN

(W ∗ F(un))F (un)dx

⎤⎥⎦
1/2κ ′

i
⎡⎢⎣∫
RN

(W ∗ |v+
n |κ ′

i )|v+
n |κ ′

i dx

⎤⎥⎦
1/2κ ′

i

≤ C4

‖un‖‖un‖1/κ ′
i ‖v+

n ‖ = o(1), i = 1,2. (3.20)

It follows that

1

‖un‖
∫
RN

(W ∗ F(un))f (un)v
+
n dx = o(1). (3.21)

Similarly, we have

1

‖un‖
∫
N

(W ∗ F(un))f (un)v
−
n dx = o(1). (3.22)
R
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The rest of the proof is the same as for Lemma 3.5. �
Lemma 3.7. Assume that V, W and f satisfy (V1), (W1), (W2), (F1), (F2) and (F3). Then (1.2)
has a solution ū ∈ E \ {0}, that is,

K := {u ∈ E \ {0} : 	′(u) = 0} 
= ∅.

Proof. Combining Lemma 3.4 with Lemma 3.5, we deduce that there exists a bounded sequence 
{un} ⊂ E satisfying (3.8). If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)

|un|2dx = 0,

then by Lions’ concentration-compactness principle [46, Lemma 1.21], un → 0 in Ls(RN) for 
2 < s < 2∗. By virtue of (W1), (W2), (F1), (3.2), (3.10) and the Hölder inequality, we find

c̄ + o(1) = 	(un) − 1

2
〈	′(un), un〉 = 1

2

∫
RN

(W ∗ F(un))F̂(un)dx

≤ C1

∫
RN

(W ∗ F(un))
(|un|p1 + |un|p2

)
dx

≤ C2
[‖F(un)‖s1

(‖un‖p1
s1p1 + ‖un‖p2

s1p2

)+ ‖F(un)‖s2

(‖un‖p1
s2p1 + ‖un‖p2

s2p2

)]
≤ C3

[(‖un‖p1
s1p1 + ‖un‖p2

s1p2

)2 + (‖un‖p1
s2p1 + ‖un‖p2

s2p2

)2
]

= o(1). (3.23)

This contradiction shows that δ > 0. Using Lemma 2.3, by a standard argument, we can show 
that 	′(ū) = 0 for some ū ∈ E \ {0}. �

Similarly, we can prove the following lemma.

Lemma 3.8. Assume that V, W and f satisfy (V1), (W1), (W2), (W3), (F1), (F2) and (F3′). Then 
(1.2) has a solution ū ∈ E \ {0}.

Lemma 3.9. Assume that (V1), (W1), (W2), (F1), (F2) and (F3) hold. Then

i) ϑ0 := inf{‖u‖ : u ∈ K} > 0;
ii) c0 := inf{	(u) : u ∈ K} > 0.

Proof. We only consider the case where N ≥ 3, since the case where N = 2 can be dealt with 
similar arguments. Lemma 3.7 shows that K 
= ∅. Let {un} ⊂ K such that ‖un‖ → ϑ0. From 
(2.10), one has

‖un‖2 =
∫
N

(W ∗ F(un))f (un)(u
+
n − u−

n )dx. (3.24)
R
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Hence, from (F1), (3.3) and (3.24), we have

‖un‖2 =
∫
RN

(W ∗ F(un))f (un)(u
+
n − u−

n )dx

≤ C1

∫
RN

(W ∗ |F(un)|)
(
|un|p1−1 + |un|p2−1

)
|u+

n − u−
n |dx

≤ C2 ‖F(un)‖s1
‖un‖p1−1

s1p1 ‖u+
n − u−

n ‖s1p1

+C2 ‖F(un)‖s2
‖un‖p1−1

s2p1 ‖u+
n − u−

n ‖s2p1

+C2 ‖F(un)‖s1
‖un‖p2−1

s1p2 ‖u+
n − u−

n ‖s1p2

+C2 ‖F(un)‖s2
‖un‖p2−1

s2p2 ‖u+
n − u−

n ‖s2p2

≤ C3
(‖un‖p1

s1p1 + ‖un‖p2
s1p2

) [‖un‖p1−1
s1p1 ‖u+

n − u−
n ‖s1p1

+‖un‖p2−1
s1p2 ‖u+

n − u−
n ‖s1p2

]
+C3

(‖un‖p1
s2p1 + ‖un‖p2

s2p2

) [‖un‖p1−1
s2p1 ‖u+

n − u−
n ‖s2p1

+‖un‖p2−1
s2p2 ‖u+

n − u−
n ‖s2p2

]
≤ C4

(‖un‖p1 + ‖un‖p2
) (‖un‖p1 + ‖un‖p2

)
≤ 1

2
‖un‖2 + C5‖un‖2p2 .

Therefore

ϑ0 + o(1) = ‖un‖ ≥ (2C5)
−1/(2p2−2) > 0. (3.25)

This shows that i) holds. Next, we prove that ii) also holds. Let {un} ⊂ K such that 	(un) → c0. 
Then 〈	′(un), v〉 = 0 for any v ∈ E. From (2.11) and (2.12), one has

c0 + o(1) = 	(un) − 1

2
〈	′(un), un〉 = 1

2

∫
RN

(W ∗ F(un))F̂(un)dx. (3.26)

By i), we can define vn = un/‖un‖. Then 1 = ‖vn‖2. Set κ ′ = κ/(κ −1). By virtue of (F3), (3.26)
and the Hölder inequality, we have that

1

‖un‖
∫
RN

(W ∗ F(un))f (un)v
+
n dx

≤ 1

‖un‖

⎡⎢⎣∫
N

(W ∗ F(un))|f (un)|κdx

⎤⎥⎦
1/κ ⎡⎢⎣∫

N

(W ∗ F(un))|v+
n |κ ′

dx

⎤⎥⎦
1/κ ′
R R
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≤ C6

‖un‖

⎡⎢⎣∫
RN

(W ∗ F(un))F̂(un)dx

⎤⎥⎦
1/κ ⎡⎢⎣∫

RN

(W ∗ F(un))|v+
n |κ ′

dx

⎤⎥⎦
1/κ ′

= C7

‖un‖ [c0 + o(1)]1/κ

⎡⎢⎣∫
RN

(W ∗ F(un))|v+
n |κ ′

dx

⎤⎥⎦
1/κ ′

≤ C8

‖un‖
[(

‖un‖p1/κ
′ + ‖un‖p2/κ

′)(‖v+
n ‖s1κ

′ + ‖v+
n ‖s2κ

′
)]

[c0 + o(1)]1/κ

≤ C9 [c0 + o(1)]1/κ . (3.27)

Similarly, we have

1

‖un‖
∫
RN

(W ∗ F(un))f (un)v
−
n dx ≤ C10 [c0 + o(1)]1/κ . (3.28)

Hence, combining (3.27) with (3.28) and making use of (2.10), we deduce that

1 = ‖un‖2 − 〈	′(un), u
+
n − u−

n 〉
‖un‖2

= 1

‖un‖
∫
RN

(W ∗ F(un))f (un)v
+
n dx + 1

‖un‖
∫
RN

(W ∗ F(un))f (un)v
−
n dx

≤ C11 [c0 + o(1)]1/κ .

We conclude that c0 > 0. �
Lemma 3.10. Assume that (V1), (W1), (W2), (W3), (F1), (F2) and (F3′) hold. Then

i) ϑ0 := inf{‖u‖ : u ∈ K} > 0;
ii) c0 := inf{	(u) : u ∈ K} > 0.

Proof. The proof of i) is the same as of Lemma 3.9.
Next, we prove that ii) also holds. We only consider the case where N ≥ 3, since the case 

where N = 2 can be dealt similarly. Let {un} ⊂ K such that 	(un) → c0. Then 〈	′(un), v〉 = 0
for any v ∈ E. From (2.11) and (2.12), we obtain (3.26) and

c0 + o(1) = 	(un) = 1

2

⎡⎢⎣‖u+
n ‖2 − ‖u−

n ‖2 −
∫
RN

(W ∗ F(un))F (un)dx

⎤⎥⎦ . (3.29)

Let vn = un/‖un‖. Then 1 = ‖vn‖. Set f1(t) and f2(t) as in Lemma 3.6 and set κ ′
i = κi/(κi −

1), i = 1, 2. By virtue of (W3), (F3′), (3.19), (3.26) and the Hölder inequality, we have
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D.D. Qin, V.D. Rădulescu and X.H. Tang Journal of Differential Equations 275 (2021) 652–683
1

‖un‖

∣∣∣∣∣∣∣
∫
RN

(W ∗ F(un))fi(un)v
+
n dx

∣∣∣∣∣∣∣
≤ 1

‖un‖

⎡⎢⎣∫
RN

(W ∗ F(un))|fi(un)|κi dx

⎤⎥⎦
1/κi

⎡⎢⎣∫
RN

(W ∗ F(un))|v+
n |κ ′

i dx

⎤⎥⎦
1/κ ′

i

≤ C1

‖un‖

⎡⎢⎣∫
RN

(W ∗ F(un))F̂(un)dx

⎤⎥⎦
1/κi

⎡⎢⎣∫
RN

(W ∗ F(un))|v+
n |κ ′

i dx

⎤⎥⎦
1/κ ′

i

≤ C2

‖un‖ [c0 + o(1)]1/κi

⎡⎢⎣∫
RN

(W ∗ F(un))|v+
n |κ ′

i dx

⎤⎥⎦
1/κ ′

i

≤ C3

‖un‖ [c0 + o(1)]1/κi

⎡⎢⎣∫
RN

(W ∗ F(un))F (un)dx

⎤⎥⎦
1/2κ ′

i

×
⎡⎢⎣∫
RN

(W ∗ |v+
n |κ ′

i )|v+
n |κ ′

i dx

⎤⎥⎦
1/2κ ′

i

≤ C4

‖un‖ [c0 + o(1)]1/κi ‖un‖1/κ ′
i ‖v+

n ‖

≤ C5 [c0 + o(1)]1/κi , i = 1,2. (3.30)

It follows that

1

‖un‖
∫
RN

(W ∗ F(un))f (un)v
+
n dx ≤ C6

{
[c0 + o(1)]1/κ1 + [c0 + o(1)]1/κ2

}
. (3.31)

Similarly, we have

1

‖un‖
∫
RN

(W ∗ F(un))f (un)v
−
n dx ≤ C7

{
[c0 + o(1)]1/κ1 + [c0 + o(1)]1/κ2

}
. (3.32)

The rest of the proof is the same as the one of Lemma 3.9. �
Proof of the first part in Theorem 1.1. By Lemmas 3.7 and 3.9, K 
= ∅ and c0 := inf{	(u) :
u ∈ K} > 0. Let {un} ⊂ K such that 	(un) → c0. By virtue of Lemma 3.5, the sequence {un} is 
bounded in E. Hence, by a standard argument, we deduce that there exists ū ∈ E \ {0} such that 
	′(ū) = 0 and 	(ū) = c0 > 0. �
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Proof of the first part in Theorem 1.2. By Lemmas 3.8 and 3.10, K 
= ∅ and c0 := inf{	(u) :
u ∈ K} > 0. Let {un} ⊂ K such that 	(un) → c0. In view of Lemma 3.6, the sequence {un} is 
bounded in E. Hence, by a standard argument, we deduce that there exists ū ∈ E \ {0} such that 
	′(ū) = 0 and 	(ū) = c0 > 0. �
4. The existence of infinitely many solutions

In this section, we give the proofs of the second part in Theorem 1.1 and Theorem 1.2. To this 
end, we need some notations. For d2 ≥ d1 > −∞, we set

	d2 := {u ∈ E : 	(u) ≤ d2}, 	d1 := {u ∈ E : 	(u) ≥ d1}, 	
d2
d1

:= 	d1 ∩ 	d2 ,

and

Kc := {u ∈K : 	(u) = c}.

Lemma 4.1. Assume that (W1), (W2), (F1) and (F4) hold. If un ⇀ ū in H 1(RN), then for vn =
un − ū, up to a subsequence of {un}, we have

sup
ϕ∈H 1(RN),‖ϕ‖≤1

∣∣∣∣∣∣∣
∫
RN

[(W ∗ F(un))f (un) − (W ∗ F(vn))f (vn) − (W ∗ F(ū))f (ū)]ϕdx

∣∣∣∣∣∣∣= o(1).

(4.1)

Proof. From un ⇀ ū in H 1(RN), we deduce, up to a subsequence that un − ū = vn ⇀ 0 in 
H 1(RN), vn → 0 in Ls

loc(R
N) for 2 ≤ s < 2∗ and vn → 0 a.e. x ∈ RN . For any a > 0, we set

Aa
n = {x ∈ RN : |vn(x)| ≤ a}, Ba

n = RN \ Aa
n.

Since {vn} is bounded in H 1(RN), then there exists a constant C1 > 0 such that

|Ba
n | ≤ 1

a2

∫
Ba

n

|vn|2dx ≤ C1

a2 → 0 as a → ∞. (4.2)

Define g(t) = lims→t f (s)/s for t ∈ R. Then (F1) and (F4) imply g ∈ C(R, R), and there 
exists C2 > 0 such that

|g(t)| ≤ C2(|t |p1−2 + |t |p2−2), ∀ t ∈ R. (4.3)

Moreover, we have

f (vn + ū) − f (vn) = g(vn + ū)ū + [g(vn + ū) − g(vn)]vn. (4.4)

From (F1) and (F4), we obtain 2 ≤ p1 ≤ p2 < (2r1 − 1)2∗/(2r1), which, together with (3.1), 
implies
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2 ≤ ζ(s2) ≤ ζ(s1) ≤ ζ(s1)(p2 − 1) < 2∗. (4.5)

By (4.3) and (4.5), the Hölder inequality and the Sobolev inequality, we find∫
Ba

n

|g(vn + ū) − g(vn)|ζ(si ) |vn|ζ(si )dx

≤ C3

∫
Ba

n

(
|vn|p1−2 + |ū|p1−2 + |vn|p2−2 + |ū|p2−2

)ζ(si ) |vn|ζ(si )dx

≤ C4

∫
Ba

n

(
|vn|ζ(si )(p1−1) + |vn|ζ(si )(p2−1)

+|ū|ζ(si )(p1−2)|vn|ζ(si ) + |ū|ζ(si )(p2−2)|vn|ζ(si )
)

dx

≤ C4

{[
meas(Ba

n )
]1− ζ(si )(p1−1)

2∗
[
‖vn‖ζ(si )(p1−1)

2∗ + ‖ū‖ζ(si )(p1−2)

2∗ ‖vn‖ζ(si )
2∗

]
+ [

meas(Ba
n )
]1− ζ(si )(p2−1)

2∗
[
‖vn‖ζ(si )(p2−1)

2∗ + ‖ū‖ζ(si )(p2−2)
2∗ ‖vn‖ζ(si )

2∗
]}

≤ C5

{[
meas(Ba

n )
]1− ζ(si )(p1−1)

2∗ + [
meas(Ba

n )
]1− ζ(si )(p2−1)

2∗
}

for N ≥ 3 (4.6)

and ∫
Ba

n

|g(vn + ū) − g(vn)|ζ(si ) |vn|ζ(si )dx

=
∫
Ba

n

|g(vn + ū) − g(vn)|2si |vn|2si dx

≤ C6

∫
Ba

n

(
|vn|2si (p1−1) + |vn|2si (p2−1) + |ū|2si (p1−2)|vn|2si + |ū|2si (p2−2)|vn|2si

)
dx

≤ C7

{[
meas(Ba

n )
]1− si (p1−1)

4p2

[
‖vn‖2si (p1−1)

8p2
+ ‖ū‖2si (p1−2)

8p2
‖vn‖2si

8p2

]
+ [

meas(Ba
n)
]1− si (p2−1)

4p2

[
‖vn‖2si (p2−1)

8p2
+ ‖ū‖2si (p2−2)

8p2
‖vn‖2si

8p2

]}
≤ C8

{[
meas(Ba

n )
]1− si (p1−1)

4p2 + [
meas(Ba

n)
]1− si (p2−1)

4p2

}
for N = 2. (4.7)

For any ε > 0, relations (4.2), (4.6) and (4.7) imply that there exists â > 0 such that∫
â

|g(vn + ū) − g(vn)|ζ(si ) |vn|ζ(si )dx ≤ ε, ∀ n ∈N. (4.8)
Bn
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By the uniformly continuity of g on [−â, â], there exists δ > 0 such that

|g(t + h) − g(t)| < ε for all (t, h) ∈ [−â, â] × [−δ, δ]. (4.9)

Set

Gδ = {x ∈RN : |ū(x)| ≤ δ}, Dδ = RN \ Gδ.

Clearly,

meas(Dδ) ≤ 1

δ2

∫
Dδ

|ū|2dx ≤ ‖ū‖2
2

δ2 . (4.10)

From (4.3), (4.5), (4.9), (4.10), the Hölder inequality and the Sobolev inequality, we have∫
Aâ

n

|g(vn + ū) − g(vn)|ζ(si ) |vn|ζ(si )dx

=
∫

Aâ
n∩Gδ

|g(vn + ū) − g(vn)|ζ(si ) |vn|ζ(si )dx

+
∫

Aâ
n∩Dδ

|g(vn + ū) − g(vn)|ζ(si ) |vn|ζ(si )dx

≤ εζ(si )

∫
Aâ

n∩Gδ

|vn|ζ(si )dx + C9

∫
Aâ

n∩Dδ

(
|vn|p1−2 + |ū|p1−2

+|vn|p2−2 + |ū|p2−2
)ζ(si ) |vn|ζ(si )dx

≤ εζ(si )‖vn‖ζ(si )

ζ(si )
+ C10

∫
Dδ

(
|vn|ζ(si )(p1−1) + |vn|ζ(si )(p2−1)

+|ū|ζ(si )(p1−2)|vn|ζ(si ) + |ū|ζ(si )(p2−2)|vn|ζ(si )
)

dx

≤ C11ε + C10

∫
Dδ

(
|vn|ζ(si )(p1−1) + |vn|ζ(si )(p2−1)

)
dx

+C10

⎛⎜⎝∫
Dδ

|vn|ζ(si )(p1−1)dx

⎞⎟⎠
1

p1−1

‖ū‖ζ(si )(p1−2)

ζ(si )(p1−1)

+C10

⎛⎜⎝∫
δ

|vn|ζ(si )(p2−1)dx

⎞⎟⎠
1

p2−1

‖ū‖ζ(si )(p2−2)

ζ(si )(p2−1)
D
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≤ C11ε + o(1). (4.11)

Here we have used vn ⇀ 0 and meas(Dδ) ≤ ‖ū‖2
2

δ2 . By a standard argument, there exists R > 0
such that ∫

RN\BR(0)

|g(vn + ū)|ζ(si )|ū|ζ(si )dx ≤ ε, i = 1,2 (4.12)

and ∫
RN\BR(0)

|f (ū)|ζ(si )dx ≤ ε, i = 1,2. (4.13)

Since un → ū in L2(BR(0)) ∩ Lζ(s1)(p2−1)(BR(0)), then [46, Lemma A.1] implies that there 
exists w ∈ L2(BR(0)) ∩ Lζ(s1)(p2−1)(BR(0)) such that, up to a subsequence,

|ū(x)|, |un(x)| ≤ w(x), a.e. x ∈ BR(0). (4.14)

Then by (F1) and (4.14), we have

|f (un) − f (vn) − f (ū)|ζ(si )

≤ C12

(
|un|p1−1 + |ū|p1−1 + |un|p2−1 + |ū|p2−1

)ζ(si )

≤ C13

[
|un|ζ(si )(p1−1) + |ū|ζ(si )(p1−1) + |un|ζ(si )(p2−1) + |ū|ζ(si )(p2−1)

]
≤ 2C13

[
|w|ζ(si )(p1−1) + |w|ζ(si )(p2−1)

]
, a.e. x ∈ BR(0). (4.15)

Since |w|ζ(si )(p1−1) + |w|ζ(si )(p2−1) ∈ L1(BR(0)) and

f (un) − f (vn) − f (ū) → 0, a.e. x ∈ BR(0),

then it follows from (4.15) and the Lebesgue dominated convergence theorem that∫
BR(0)

|f (un) − f (vn) − f (ū)|ζ(si ) dx = o(1). (4.16)

From (4.8), (4.11), (4.12), (4.13) and (4.16), we have∫
RN

|f (un) − f (vn) − f (ū)|ζ(si ) dx

≤
∫

B (0)

|f (un) − f (vn) − f (ū)|ζ(si ) dx + C14

∫
N

|f (ū)|ζ(si ) dx
R R \BR(0)
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+C14

∫
RN\BR(0)

|f (un) − f (vn)|ζ(si ) dx

≤
∫

BR(0)

|f (un) − f (vn) − f (ū)|ζ(si ) dx + C14

∫
RN\BR(0)

|f (ū)|ζ(si ) dx

+C15

∫
Aâ

n

|g(vn + ū) − g(vn)|ζ(si ) |vn|ζ(si )dx

+C15

∫
Bâ

n

|g(vn + ū) − g(vn)|ζ(si ) |vn|ζ(si )dx

+C15

∫
RN\BR(0)

|g(vn + ū)|ζ(si )|ū|ζ(si )dx

≤ C16ε + o(1). (4.17)

Since ε > 0 is arbitrary, then it follows from (4.17) that∫
RN

|f (un) − f (vn) − f (ū)|ζ(si ) dx = o(1), i = 1,2. (4.18)

Since F(t) = ∫ t

0 f (s)ds, by a standard argument, we can prove that

∫
RN

|F(un) − F(vn) − F(ū)|si dx = o(1), i = 1,2. (4.19)

Note that for any ϕ ∈ E,∫
RN

[(W ∗ F(un))f (un) − (W ∗ F(vn))f (vn) − (W ∗ F(ū))f (ū)]ϕdx

=
∫
RN

∫
RN

W(x − y) [F(un(y))f (un(x)) − F(vn(y))f (vn(x))

−F(ū(y))f (ū(x))]ϕ(x)dxdy

=
∫
RN

∫
RN

W(x − y) [F(un(y)) − F(vn(y)) − F(ū(y))]

× [f (un(x)) − f (vn(x))]ϕ(x)dxdy

+
∫
N

∫
N

W(x − y)F (ū(y)) [f (un(x)) − f (vn(x)) − f (ū(x))]ϕ(x)dxdy
R R
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+
∫
RN

∫
RN

W(x − y) [F(un(y)) − F(vn(y))]f (vn(x))ϕ(x)dxdy

+
∫
RN

∫
RN

W(x − y)F (vn(y)) [f (un(x)) − f (vn(x))]ϕ(x)dxdy

:= I1 + I2 + I3 + I4. (4.20)

From (F1), (3.4), (4.5), (4.18) and (4.19), we have

|I1|
≤
∫
RN

∫
RN

W(x − y) |F(un(y)) − F(vn(y)) − F(ū(y))|

× |f (un(x)) − f (vn(x))| |ϕ(x)|dxdy

=
∫
RN

(W ∗ |F(un) − F(vn) − F(ū)|) |f (un) − f (vn)| |ϕ|dx

≤ C1 ‖F(un) − F(vn) − F(ū)‖s1
‖f (un) − f (vn)‖ζ(s1)

‖ϕ‖η(s1)

+C2 ‖F(un) − F(vn) − F(ū)‖s2
‖f (un) − f (vn)‖ζ(s2)

‖ϕ‖η(s2)

≤ o(1)‖ϕ‖ (4.21)

and

|I2| ≤
∫
RN

∫
RN

W(x − y) |F(ū(y))| |f (un(x)) − f (vn(x)) − f (ū(x))| |ϕ(x)|dxdy

=
∫
RN

(W ∗ |F(ū)|) |f (un) − f (vn) − f (ū)| |ϕ|dxdy

≤ C1 ‖F(ū)‖s1
‖f (un) − f (vn) − f (ū)‖ζ(s1)

‖ϕ‖η(s1)

+C2 ‖F(ū)‖s2
‖f (un) − f (vn) − f (ū)‖ζ(s2)

‖ϕ‖η(s2)

≤ o(1)‖ϕ‖. (4.22)

Since F(ū) ∈ Ls1(RN) ∩ Ls2(RN), then for any ε > 0, there exists R1 > 0 such that

⎛⎜⎝ ∫
RN\BR1 (0)

|F(ū(y))|si dy

⎞⎟⎠
1
si

< ε, i = 1,2. (4.23)

Let �ε := {x ∈RN \B1(0) : W(x) ≥ ε} and �c
ε := {x ∈RN \B1(0) : W(x) < ε}. Then (W1) im-

plies that meas(�ε) < ∞. Hence, it follows from the Hölder inequality and vn → 0 in Ls
loc(R

N)

for 2 ≤ s < 2∗ that
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∫
RN\BR1+1(0)

|f (vn(x))||ϕ(x)|
⎡⎢⎣ ∫
BR1 (0)

W(x − y) |F(ū(y))|dy

⎤⎥⎦dx

=
∫

BR1 (0)

|F(ū(y))|
⎡⎢⎣ ∫
RN\BR1+1(0)

W(x − y)|f (vn(x))||ϕ(x)|dx

⎤⎥⎦dy

≤
(

sup
(RN\B1(0))∩�c

ε

W

)⎛⎜⎝ ∫
BR1 (0)

|F(ū(y))|dy

⎞⎟⎠
⎛⎜⎝ ∫
RN\BR1+1(0)

|f (vn(x))|2dx

⎞⎟⎠
1
2

‖ϕ‖2

+
∫

BR1 (0)

|F(ū(y))|
⎡⎢⎣∫

�ε

W(z)|f (vn(z + y))||ϕ(z + y)|dz

⎤⎥⎦dy

≤ (C17ε + o(1))‖ϕ‖. (4.24)

From (3.2), (4.23) and vn → 0 in Ls
loc(R

N) for 2 ≤ s < 2∗, we have

∫
BR1+1(0)

|f (vn(x))||ϕ(x)|
⎡⎢⎣ ∫
BR1 (0)

W(x − y) |F(ū(y))|dy

⎤⎥⎦dx

≤ C1

⎛⎜⎝ ∫
BR1 (0)

|F(ū(y))|s1 dy

⎞⎟⎠
1
s1
⎛⎜⎝ ∫

BR1+1(0)

|f (vn)|ζ(s1)dx

⎞⎟⎠
1

ζ(s1)

‖ϕ‖η(s1)

+C2

⎛⎜⎝ ∫
BR1 (0)

|F(ū(y))|s2 dy

⎞⎟⎠
1
s2
⎛⎜⎝ ∫

BR1+1(0)

|f (vn)|ζ(s2)dx

⎞⎟⎠
1

ζ(s2)

‖ϕ‖η(s2)

≤ o(1)‖ϕ‖ (4.25)

and

∫
RN

|f (vn(x))||ϕ(x)|
⎡⎢⎣ ∫
RN\BR1 (0)

W(x − y) |F(ū(y))|dy

⎤⎥⎦dx

≤ C1

⎛⎜⎝ ∫
RN\B (0)

|F(ū(y))|s1 dy

⎞⎟⎠
1
s1

‖f (vn)‖ζ(s1)‖ϕ‖η(s1)
R1
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+C2

⎛⎜⎝ ∫
RN\BR1 (0)

|F(ū(y))|s2 dy

⎞⎟⎠
1
s2

‖f (vn)‖ζ(s2)‖ϕ‖η(s2)

≤ C18ε‖ϕ‖. (4.26)

From (4.24), (4.25) and (4.26), we have∫
RN

∫
RN

W(x − y) |F(ū(y))| |f (vn(x))||ϕ(x)|dxdy

=
∫

BR1+1(0)

|f (vn(x))||ϕ(x)|
⎡⎢⎣ ∫
BR1 (0)

W(x − y) |F(ū(y))|dy

⎤⎥⎦dx

+
∫

RN\BR1+1(0)

|f (vn(x))||ϕ(x)|
⎡⎢⎣ ∫
BR1 (0)

W(x − y) |F(ū(y))|dy

⎤⎥⎦dx

+
∫
RN

|f (vn(x))||ϕ(x)|
⎡⎢⎣ ∫
RN\BR1 (0)

W(x − y) |F(ū(y))|dy

⎤⎥⎦dx

≤ [C19ε + o(1)]‖ϕ‖. (4.27)

Hence, it follows from (3.4), (4.19) and (4.27) that

|I3| ≤
∫
RN

∫
RN

W(x − y) |F(un(y)) − F(vn(y))| |f (vn(x))||ϕ(x)|dxdy

≤
∫
RN

∫
RN

W(x − y) |F(un(y)) − F(vn(y)) − F(ū(y))| |f (vn(x))||ϕ(x)|dxdy

+
∫
RN

∫
RN

W(x − y) |F(ū(y))| |f (vn(x))||ϕ(x)|dxdy

≤ C1 ‖F(un) − F(vn) − F(ū)‖s1
‖f (vn)‖ζ(s1)

‖ϕ‖η(s1)

+C2 ‖F(un) − F(vn) − F(ū)‖s2
‖f (vn)‖ζ(s2)

‖ϕ‖η(s2) + [C19ε + o(1)]‖ϕ‖
≤ [C19ε + o(1)]‖ϕ‖. (4.28)

Similarly to (4.27), we can show that∫
N

∫
N

W(x − y) |F(vn(y))| |f (ū(x))||ϕ(x)|dxdy
R R
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=
∫

BR1+1(0)

|F(vn(y))|
⎡⎢⎣ ∫
BR1 (0)

W(x − y)|f (ū(x))||ϕ(x)|dx

⎤⎥⎦dy

+
∫

RN\BR1+1(0)

|F(vn(y))|
⎡⎢⎣ ∫
BR1 (0)

W(x − y)|f (ū(x))||ϕ(x)|dx

⎤⎥⎦dy

+
∫
RN

|F(vn(y))|
⎡⎢⎣ ∫
RN\BR1 (0)

W(x − y)|f (ū(x))||ϕ(x)|dx

⎤⎥⎦dy

≤ [C20ε + o(1)]‖ϕ‖, (4.29)

which, together with (3.4) and (4.18), implies that

|I4| ≤
∫
RN

∫
RN

W(x − y) |F(vn(y))| |f (un(x)) − f (vn(x))||ϕ(x)|dxdy

≤
∫
RN

∫
RN

W(x − y) |F(vn(y))| |f (un(x)) − f (vn(x)) − f (ū(x))||ϕ(x)|dxdy

+
∫
RN

∫
RN

W(x − y) |F(vn(y))| |f (ū(x))||ϕ(x)|dxdy

≤ C1 ‖F(vn)‖s1
‖f (un) − f (vn) − f (ū)‖ζ(s1)

‖ϕ‖η(s1)

+C2 ‖F(vn)‖s2
‖f (un) − f (vn) − f (ū)‖ζ(s2)

‖ϕ‖η(s2) + [C20ε + o(1)]‖ϕ‖
≤ [C20ε + o(1)]‖ϕ‖. (4.30)

Then it follows from (4.20), (4.21), (4.22), (4.28) and (4.30) that

sup
ϕ∈E,‖ϕ‖≤1

∣∣∣∣∣∣∣
∫
RN

[(W ∗ F(un))f (un) − (W ∗ F(vn))f (vn) − (W ∗ F(ū))f (ū)]ϕdx

∣∣∣∣∣∣∣
≤ (C19 + C20)ε + o(1).

Since ε > 0 is arbitrary, the conclusion follows from the above inequality. �
Applying Lemma 4.1, we can prove the following lemma by standard arguments (see [15, 

Lemma 4.2]).

Lemma 4.2. Assume that (V1), (W1), (W2), (F1) and (F4) hold. If un ⇀ ū in E, then

	(un) = 	(ū) + 	(un − ū) + o(1), (4.31)

	′(un) = 	′(ū) + 	′(un − ū) + o(1). (4.32)
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By the existence results established in Theorem 1.1 and Theorem 1.2, problem (1.2) has a 
nontrivial solution ū ∈ E satisfying 	(ū) = c0 := infK 	 > 0 under (V1), (W1), (W2) and (F1)-
(F3). Therefore, K ⊇ Kc0 
= ∅. As in [14], [15] and [42], we choose a subset F of K such that 
F = −F and each orbit O(w) ⊂ K has a unique representative in F . It suffices to show that the 
set F is infinite. Employing the ideas used in [44], we can get the desired result. Here we sketch 
the proofs for reader’s convenience. We argue by contradiction and assume that

F is a finite set. (4.33)

Let [a] denote the integer part of a ∈ R. As a consequence of Lemma 4.2 and Lemmas 3.5, 
3.9 (or Lemmas 3.6, 3.10), we have the following result (see [14], [15]).

Lemma 4.3. Assume that (V1), (W1), (W2), (F1), (F2) and (F3)-(F4) (or (F3′) and (W3)) hold. 
Let {un} be a (Ce)c-sequence for 	 in E. Then either

i) un → 0 in E (and hence c = 0); or
ii) c ≥ c0 and there exist a positive integer l ≤ [c/c0], points ū1, ..., ūl ∈ K, a subsequence 

denoted again by {un}, and sequences {ai
n} ⊂ ZN such that∥∥∥∥∥un −

l∑
i=1

ai
n ∗ ūi

∥∥∥∥∥→ 0 as n → ∞,

∣∣∣ai
n − a

j
n

∣∣∣→ ∞ for i 
= j as n → ∞

and

l∑
i=1

	(ūi) = c.

For any c ≥ c0, as in [14] and [15], we let

Fc :=
⎧⎨⎩

j∑
i=1

(ai ∗ ui) : 1 ≤ j ≤
[

c

c0

]
, ai ∈ZN, ui ∈F

⎫⎬⎭ .

It follows that Fc′ ⊆ Fc for any c ≥ c′ ≥ c0. Following an argument of [14], we obtain the 
following property.

Lemma 4.4. Let c ≥ c0. Then κc := inf{‖u1 − u2‖ : u1, u2 ∈ Fc, u1 
= u2} > 0.

Lemma 4.5. (Discreteness of (Ce)-sequences). Let c ≥ c0. If {u1
n}, {u2

n} ⊂ 	c
c0

are two (Ce)-
sequences for 	, then either limn→∞ ‖u1

n − u2
n‖ = 0 or lim supn→∞ ‖u1

n − u2
n‖ ≥ κc .

Proof. By virtue of Lemma 3.5 or Lemma 3.6, {u1
n} and {u2

n} are two bounded (Ce)-sequences 
for 	. Next, by Lemma 4.3, there exist two sequences {w1}, {w2} ⊂ Fc such that
n n
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‖ui
n − wi

n‖ → 0, i = 1,2. (4.34)

By Lemma 4.4, we have that either limn→∞ ‖w1
n − w2

n‖ = 0 or lim supn→∞ ‖w1
n − w2

n‖ ≥ κc . 
Hence, the conclusion follows from (4.34). �

In the following, for a subset A ⊂ E and δ > 0, we denote Uδ(A) := {v ∈ E : dist(v, A) < δ}. 
For a closed and symmetric subset A ⊂ E \ {0} (that is, A = −A = Ā), denote by γ (A) the 
Krasnoselskii genus of A (see [38,41]).

Let c > c0 and δ ∈ (0, κc/4). It is easy to show that there exist α > 0 and b0 ∈ (0, (c − c0)/2]
such that

(1 + ‖u‖)‖	′(u)‖ ≥ α for all u ∈ 	
c+2b0
c−2b0

\ Uδ(Fc). (4.35)

For each u ∈ E \ (K ∪ {0}), consider the Cauchy problem:{
dη

dt
= −g(η),

η(0, u) = u,
(4.36)

where

g(u) = (1 + ‖u‖)W(u)

‖	′(u)‖ , u ∈ E \ (K ∪ {0}), (4.37)

and W : E \(K∪{0}) → E is an odd locally Lipschitz continuous map such that (see [41, Lemma 
II.3.9]) { ‖W(u)‖ ≤ 2‖	′(u)‖,

〈	′(u),W(u)〉 ≥ ‖	′(u)‖2.
(4.38)

It follows from (4.37) and (4.38) that

‖g(u)‖ = (1 + ‖u‖)‖W(u)‖
‖	′(u)‖ ≤ 2(1 + ‖u‖), ∀ u ∈ E \ (K ∪ {0}). (4.39)

Then by the existence-uniqueness theorem for ordinary differential equations, we get that for 
each u ∈ E \ (K ∪ {0}), problem (4.36) has a unique solution η(t, u) defined on [0, ∞), and 
η(t, u) is odd with respect to u ∈ E.

Using the same arguments as in the proofs of [44, Lemmas 4.7, 4.8, 4.9 and 4.10], we have 
the following lemmas.

Lemma 4.6. Let c > c0, b ∈ (0, b0] and u ∈ E \ (K∪{0}) be such that c−b ≤ 	(η(t, u)) ≤ c+b

for all t ∈ [0, ∞). Then u∞ := limt→∞ η(t, u) exists and u∞ ∈ 	c+b
c−b ∩K.

Lemma 4.7. Let c > c0. If Kc = ∅, then there exists ε > 0 such that limt→∞ 	(η(t, u)) < c − ε

for u ∈ 	c+ε .

Lemma 4.8. Let c > c0. Then for every δ ∈ (0, κc/4), there exist ε = ε(c, δ) > 0 and an odd and 
continuous map ϕ : 	c+ε \ Uδ(Fc) → 	c−ε .
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Lemma 4.9. Let c ≥ c0. Then for every δ ∈ (0, κc/4), γ (Uδ(Fc)) = 1.

Proof of the second parts in Theorems 1.1 and 1.2. For j ∈ N , we consider the family �j of 
all closed and symmetric subsets A ⊂ E \ {0} with γ (A) ≥ j . Moreover, we consider the nonde-
creasing sequence of Lusternik-Schnirelmann values for 	 defined by

ck := inf{c ≥ c0 : γ (	c) ≥ k}, k ∈ N. (4.40)

Taking the advantage of Lemmas 4.7, 4.8 and 4.9, as in [44], we show that

Kck

= ∅ and ck < ck+1, k ∈N. (4.41)

Then it follows that there is an infinite sequence {uk} of pairs of geometrically distinct critical 
points of 	 with 	(uk) = ck , contrary to (4.33). The proof is now complete. �
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