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a School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
b Department of Mathematics, University of Craiova, Craiova, 200585, Romania

c Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, 
Poland

Received 3 June 2021; accepted 30 August 2021

Abstract

This paper is concerned with concentration and multiplicity properties of solutions to the following frac-
tional problem with unbalanced growth and critical or supercritical reaction:

⎧⎨⎩ (−�)spu + (−�)squ + V (εx)(|u|p−2u + |u|q−2u) = h(u) + |u|r−2u in RN,

u ∈ Ws,p(RN) ∩ Ws,q(RN), u > 0, in RN,

⎫⎬⎭
where ε is a positive parameter, 0 < s < 1, 2 � p < q <N/s, (−�)st (t ∈ {p, q}) is the fractional t-Laplace 
operator, while V : RN �→ R and h : R �→ R are continuous functions. The analysis developed in this pa-
per covers both critical and supercritical cases, that is, we assume that either r = q∗

s := Nq/(N − sq) or 
r > q∗

s . The main results establish the existence of multiple positive solutions as well as related concen-
tration properties. In the first case, due to the strong influence of the critical term, the result holds true for 
“high perturbations” of the subcritical nonlinearity. In the second framework, the result holds true for “low 
perturbations” of the supercritical nonlinearity. The concentration properties are achieved by combining 
topological and variational methods, provided that ε is small enough and in close relationship with the set 
where the potential V attains its minimum.
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1. Features of the paper and historical comments

In this paper, we are concerned with the study of concentration and multiplicity properties of 
solutions for a class of fractional double phase problems with critical or supercritical nonlinearity. 
The features of this paper are the following:

(i) the presence of several nonlocal operators with different growth, which generates a double 
phase associated energy;

(ii) the reaction combines the multiple effects generated by a subcritical term and a critical/su-
percritical nonlinearity;

(iii) the potential describing the absorption term satisfies a local condition and no information 
on the behavior of the potential at infinity is available;

(iv) the main concentration properties create a bridge between the global maximum point of 
the solution and the global minimum of the potential;

(v) our analysis combines the nonlocal nature of the fractional (p, q)-operator with the local 
perturbation in the absorption term.

Since the content of the paper is closely concerned with double phase problems, we start 
with a short description on the development this research. To the best of our knowledge, the 
first contributions to this field are due to J. Ball [10], in relationship with problems in nonlinear 
elasticity and composite materials. Let � ⊂ RN be a bounded domain with smooth boundary. 
If u : � → RN is the displacement and if Du is the N × N matrix of the deformation gradient, 
then the total energy can be represented by an integral of the type

I (u) =
∫
�

f (x,Du(x))dx, (1)

where the energy function f = f (x, ξ) : � ×RN×N → R is quasiconvex with respect to ξ , see 
Morrey [26]. A simple example considered by Ball is given by functions f of the type

f (ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N ×N matrix ξ , and g, h are nonnegative convex functions, 
which satisfy the growth conditions

g(ξ)� c1 |ξ |p; lim
t→+∞h(t) = +∞,

where c1 is a positive constant and 1 < p < N . The condition p � N is necessary to study the 
existence of equilibrium solutions with cavities, that is, minima of the variational integral (1) that 
are discontinuous at one point where a cavity forms; in fact, every u with finite energy belongs 
to the Sobolev space W 1,p(�, RN), and thus it is a continuous function if p >N . In accordance 
with these problems arising in nonlinear elasticity, Marcellini [22,23] considered continuous 
functions f = f (x, u) with unbalanced growth that satisfy
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c1 |u|p � |f (x,u)| � c2 (1 + |u|q) for all (x,u) ∈ � ×R,

where c1, c2 are positive constants and 1 � p � q . Pioneering contributions to the study of 
various classes of problems with nonstandard growth are due to Mingione et al., see [1,11,18]. 
We also refer to Mingione and Rădulescu [24] for an overview of recent results concerning 
elliptic variational problems with nonstandard growth conditions and related to different kinds 
of nonuniformly elliptic operators.

2. Statement of the problem and the main results

In this paper we are first concerned with multiplicity and concentration properties of positive 
solutions to the following nonlinear fractional (p, q)-Laplacian problem with critical growth:{

(−�)spu + (−�)squ + V (εx)(|u|p−2u + |u|q−2u) = λf (u) + |u|q∗
s −2u in RN,

u ∈ Ws,p(RN) ∩ Ws,q(RN), u > 0, in RN,

}
(Pλ)

where ε and λ are two positive parameters, 0 < s < 1, 2 � p < q < N/s, q∗
s = Nq/(N − sq)

is the critical Sobolev exponent, (−�)st (with t ∈ {p, q}) is the fractional t-Laplace operator, 
V :RN �→ R and f :R �→ R are continuous functions.

The double-phase problem (Pλ) is motivated by numerous local and nonlocal models arising 
in mathematical physics. For instance, we can refer to the following Born-Infeld equation [12,
13,16] that appears in electromagnetism, electrostatics and electrodynamics as a model based on 
a modification of Maxwell’s Lagrangian density:

−div

( ∇u

(1 − 2|∇u|2)1/2

)
= h(u) in �.

Indeed, by the Taylor formula, we have

(1 − x)−1/2 = 1 + x

2
+ 3

2 · 22 x
2 + 5!!

3! · 23 x
3 + · · · + (2n − 3)!!

(n − 1)!2n−1 x
n−1 + · · · for |x| < 1.

Taking x = 2|∇u|2 and adopting the first order approximation, we obtain a particular case of the 
fractional problem (Pλ) for p = 2 and q = 4. Furthermore, the n-th order approximation problem 
is driven by the multi-phase differential operator

−�u − �4u − 3

2
�6u − · · · − (2n − 3)!!

(n − 1)! �2nu.

Now, we introduce the following hypotheses on the potential V and the nonlinearity f .
Let V :RN �→ R be a continuous function satisfying the following hypotheses:

(V1) we have V0 := infx∈RN V (x) > 0;
(V2) there exists an open bounded set � ⊂RN such that

V0 < minV and M := {x ∈ � : V (x) = V0} 
= ∅.

∂�
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Y. Zhang, X. Tang and V.D. Rădulescu Journal of Differential Equations 302 (2021) 139–184
We point out that we do not assume any hypotheses about the upper boundedness or unbound-
edness of the potential V .

Meanwhile, f ∈ C(R, R) is supposed to verify the following assumptions:

(f1) limt→0
|f (t)|
|t |p−1 = 0;

(f2) there exists ν ∈ (q, q∗
s ) such that

lim|t |→+∞
|f (t)|
|t |ν−1 = 0;

(f3) there is a constant θ ∈ (q, q∗
s ) such that 0 < θF(t) := θ

∫ t

0 f (τ)dτ � f (t)t for all t > 0;

(f4) the map t �→ f (t)

tq−1 is increasing for all t ∈ (0, +∞).

Since we are interested in finding positive solutions of problem (Pλ), we can assume that 
f (t) = 0 for all t � 0.

Recall that if A is a closed subset of a topological space Y , then we use catY (A) to denote 
the Ljusternik-Schnirelmann category of A in Y , that is, the smallest number of closed and con-
tractible sets in Y which cover A; see Willem [29] for more details.

The first major achievement of this work is reflected in the following “multiplicity and con-
centration” phenomena. This result corresponds to the critical case described in problem (Pλ). In 
this abstract setting, due to the strong influence of the critical term, the result holds true for “high 
perturbations” of the subcritical nonlinearity, that is, for large values of the positive parameter λ.

Theorem 1. Assume that the nonlinearity f fulfills hypotheses (f1)–(f4) and the potential V
verifies hypotheses (V1)–(V2). Then, there exists λ∗ > 0 such that, for all λ ∈ [λ∗, +∞) and 
for every δ > 0 with Mδ := {

x ∈ RN : dist (x,M)� δ
} ⊂ �, there exists εδ,λ > 0 with the 

property that for any ε ∈ (0, εδ,λ), problem (Pλ) has at least catMδ (M) positive solutions. More-
over, if uε denotes one of these solutions and xε ∈ RN is global maximum point of uε , then 
limε→0 V (εxε) = V0.

In the second part of this paper, we consider the supercritical case. In this case, we deal with 
the sum of two homogeneous nonlinearities and add a new positive parameter.{

(−�)spu + (−�)squ + V (εx)(|u|p−2u + |u|q−2u) = |u|θ−2u + η|u|r−2u in RN,

u ∈ Ws,p(RN) ∩ Ws,q(RN), u > 0, in RN,

}
(Sη)

where ε, η > 0, 0 < s < 1, sq < N and 2 � p < q < θ < q∗
s < r .

By combining the “modular-uniform” and the “L∞-uniform” estimates of positive solutions 
with new truncation techniques, we can obtain the “multiplicity and concentration” of positive 
solutions to the supercritical problem (Sη). In this case, due to the strong influence of the super-
critical term, the result holds true for “low perturbations”, that is, for small values of the positive 
parameter η.

Theorem 2. Assume that the potential V satisfies hypotheses (V1)–(V2). Then there exists η∗ >

0 such that, for all η ∈ (0, η∗] and for every δ > 0 with Mδ := {
x ∈RN : dist (x,M)� δ

} ⊂
�, there exists εδ,η > 0 with the property that for any ε ∈ (0, εδ,η), problem (Sη) has at least 
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catMδ (M) positive solutions. Moreover, if uε denotes one of these solutions and xε ∈ RN is 
global maximum point of uε, then limε→0 V (εxε) = V0.

For related concentration and multiplicity properties of solutions, we refer to the recent paper 
by Alves, Ambrosio & Isernia [2], Alves & de Morais Filho [3], Ambrosio [6], Ambrosio, Isernia 
& Rădulescu [8], Ambrosio & Rădulescu [9], Gao, Tang & Chen [19], and Gu & Tang [20].

For the sake of simplicity, C, C1, C2,... in this paper denote positive constants whose exact 
values are unimportant and can be changed line by line, and the same C, C1, C2,... may represent 
different constants; Bρ(y) denotes the open ball centered at y ∈RN with radius ρ > 0 and Bc

ρ(y)

denotes the complement of Bρ(y) in RN . In particular, Bρ and Bc
ρ denote Bρ(0) and Bc

ρ(0), 
respectively.

3. Auxiliary results

Let u : RN �→ R. For 0 < s < 1 and p > 1, let us define Ds,p(RN) = C∞
c (RN)

[·]s,p
, where

[u]s,p :=
⎡⎢⎣∫
RN

∫
RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy

⎤⎥⎦
1
p

;

By Ws,p(RN) we denote the following fractional Sobolev space

Ws,p(RN) := {
u : |u|p < +∞, [u]s,p < +∞}

equipped with the natural norm

‖u‖Ws,p(RN) := ([u]ps,p + |u|pp
) 1
p ,

where |u|pp := ∫
RN |u|pdx.

For all u, v ∈ Ws,p(RN), let us define

〈u,v〉s,p :=
∫
RN

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dxdy.

Now, let us recall the following embedding property; see the monograph by Molica Bisci, 
Rădulescu & Servadei [25] for more details.

Theorem 3. Let s ∈ (0, 1) and p ∈ (1, +∞) satisfy N > sp. Then, there exists a constant S∗ :=
S∗(N, s, p) > 0 such that

|u|pp∗
s
� S−1∗ [u]ps,p for all u ∈ Ds,p(RN).

Moreover, Ws,p(RN) is continuously embedded in Lr(RN) for any r ∈ [p, p∗
s ] and compactly 

embedded in Lr (RN) for any r ∈ [1, p∗).
loc s
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In this work we need to introduce the following Banach space

X = Ws,p(RN) ∩ Ws,q(RN)

equipped with the norm

‖u‖X := ‖u‖Ws,p(RN) + ‖u‖Ws,q (RN).

Notice that Ws,r(RN) is a separable reflexive Banach space for all r ∈ (1, +∞), and so X is a 
separable reflexive Banach space.

For any fixed ε� 0, we also introduce the following Banach space

Xε :=

⎧⎪⎨⎪⎩u ∈ X :
∫
RN

V (εx)
(|u|p + |u|q)dx < +∞

⎫⎪⎬⎪⎭
equipped with the norm

‖u‖Xε := ‖u‖Vε,p + ‖u‖Vε,q ,

where ‖u‖t
Vε,t

:= [u]ts,t + ∫
RN V (εx)|u|t dx for all t > 1.

4. The modified problem

In order to study problem (Pλ), we will modify the nonlinear term appropriately. When ε >

0 is small enough, we can use the variational method to obtain the solutions of the modified 
problem, which are indeed the solutions of the original problem. To be more precise, we shall 
adopt the penalization method proposed by del Pino & Felmer [15] to deal with problem (Pλ).

Without loss of generality, we may assume that

0 ∈ � and V (0) = V0.

Let us choose K > λq/p > 0 and take a unique number a > 0 such that

f (a) + aq∗
s −1

λ
= V0

K
aq−1.

Then, we can define the following modified functions

f̃ (t) =
⎧⎨⎩f (t) + (t+)q

∗
s −1

λ
, if t � a,

V0
K
tq−1, if t > a

and
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g(x, t) =
⎧⎨⎩χ�(x)

[
f (t) + tq

∗
s −1

λ

]
+ [1 − χ�(x)] f̃ (t), if t > 0,

0, if t � 0,

where χ� is the characteristic function on � ⊂RN . It is easy to check that the penalized nonlin-
earity g is a Carathéodory function and fulfills the following properties:

(g1) for each λ > 0, limt→0+ g(x,t)

tp−1 = 0 uniformly for all x ∈ RN ;

(g2) for each λ > 0, g(x, t) � f (t) + tq
∗
s −1

λ
for all x ∈ RN and t > 0;

(g3)i for each λ > 0, 0 < θG(x, t) := θ
∫ t

0 g(x, τ)dτ < g(x, t)t for all x ∈ � and t > 0;

(g3)ii for each λ > 0, 0 < qG(x, t) � g(x, t)t � V0
K
tq for all x ∈ �c and t > 0;

(g4) for each λ > 0 and x ∈ RN , the map t �→ g(x,t)

tq−1 is increasing in (0, +∞).

Remark 1. Let us introduce the following modified problem:{
(−�)spu + (−�)squ + V (εx)(|u|p−2u + |u|q−2u) = λg(εx,u),

u ∈ Ws,p(RN) ∩ Ws,q(RN), u > 0

}
(2)

in RN . If uε is a solution of problem (2) satisfying

uε(x)� a for all x ∈ �c
ε, where �ε :=

{
x ∈RN : εx ∈ �

}
,

then it is worth to pointing out that uε is also a solution of problem (Pλ).

Now, we define the functional Jε : Xε �→ R associated to problem (2), that is,

Jε(u) := 1

p
‖u‖p

Vε,p
+ 1

q
‖u‖q

Vε,q
− λ

∫
RN

G(εx,u)dx for all u ∈ Xε.

Obviously, Jε ∈ C1(Xε, R) and its derivative can be expressed as follows

〈J ′
ε(u), v〉 := 〈u,v〉s,p + 〈u,v〉s,q +

∫
RN

V (εx)
(
|u|p−2u + |u|q−2u

)
vdx

− λ

∫
RN

g(εx,u)vdx for all u, v ∈ Xε.

By Nε we mean the Nehari manifold related to the functional Jε, which is defined by

Nε := {
u ∈ Xε \ {0} : 〈J ′

ε(u),u〉 = 0
}
.

We set cε := infu∈Nε
Jε(u). Let X+

ε denote the following open set

X+
ε := {

u ∈ Xε : |supp (u+) ∩ �ε| > 0
}
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and set S+
ε := Sε ∩ X+

ε , where Sε := {
u ∈ Xε : ‖u‖Xε = 1

}
.

We observe that S+
ε is an incomplete C1,1-manifold of codimension one. So, for all u ∈ S+

ε

we have Xε = TuS
+
ε

⊕
Ru, where

TuS
+
ε :=

⎧⎪⎨⎪⎩v ∈ Xε : 〈u,v〉s,p + 〈u,v〉s,q +
∫
RN

V (εx)
(
|u|p−2u + |u|q−2u

)
vdx = 0

⎫⎪⎬⎪⎭ .

Now, we show that the functional Jε has a Mountain Pass Geometry (see Willem [29]).

Lemma 4. For each fixed λ > 0, the following properties are fulfilled for the functional Jε:

(i) there exist �, ρ > 0 such that Jε(u) � � with ‖u‖Xε = ρ;
(ii) there exists e ∈ X+

ε satisfying ‖e‖Xε > ρ and Jε(e) < 0.

Proof. By (g2), (f1) and (f2), we see that for all σ > 0, there exists Cσ > 0 such that

|g(x, t)| � σ |t |p−1 + Cσ |t |q∗
s −1 for all (x, t) ∈RN ×R.

Note that λ > 0 and q > p > 1. Thus, taking σ = (q−p)V0
λq

, choosing ‖u‖Xε = ρ ∈ (0, 1) and 
using Theorem 3, we have

Jε(u)�
1

q

(
‖u‖q

Vε,p
+ ‖u‖q

Vε,q

)
− λCσ

q∗
s

|u|q∗
s

q∗
s
� 1

2q−1q
‖u‖q

Xε
− C1‖u‖q∗

s

Xε
,

for some constant C1 > 0. Since 1 < q < q∗
s , it is easy check that (i) is fulfilled.

(ii) According to (f3), we infer that there exist two positive constants C2, C3 such that

F(x, t)� C2t
θ − C3 for all t > 0.

The above inequality combined with λ > 0 and 1 < p < q < θ implies that Jε(tu) → −∞ as 
t → +∞ for all u ∈ X+

ε . So, property (ii) also holds true. �
Since f is only assumed continuous, we need to establish some useful results in order to 

overcome the non-differentiability of Nε and the incompleteness of S+
ε .

Lemma 5. Fix λ > 0 and assume that hypotheses (f1)–(f4) and (V1)–(V2) are fulfilled. Then, 
we have the following properties.

(a) For any fixed u ∈ X+
ε , let the mapping �u : R+ �→ R be defined by �u(t) := Jε(tu). Then, 

there exists a unique tu > 0 such that

�′
u(t) > 0 for all t ∈ (0, tu),

�′
u(t) < 0 for all t ∈ (tu,+∞).
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(b) There exists τ > 0 independent of u such that tu � τ for all u ∈ S+
ε . Moreover, for each 

compact set W ⊂ S+
ε , there is a constant CW > 0 such that tu � CW for all u ∈W .

(c) The mapping m̂ε : X+
ε �→Nε introduced by m̂ε(u) := tuu is continuous and mε := m̂ε|S+

ε
is a 

homeomorphism between S+
ε and Nε , and the inverse of mε is given by m−1

ε (u) := u/‖u‖Xε .
(d) If there exists a sequence {un}n∈N ⊂ S+

ε such that dist (un, ∂S+
ε ) → 0 as n → ∞, then 

‖mε(un)‖Xε → +∞ and Jε(mε(un)) → +∞ as n → ∞.

Proof. (a) Similar to the proof of Lemma 4, we obtain �u(0) = 0, �u(t) > 0 for t sufficiently 
small and �u(t) < 0 for t large enough. Thus, maxt�0 �u(t) is achieved at some tu > 0 satisfying 
�′
u(tu) = 0 and tuu ∈ Nε .

Next, we assert the uniqueness of tu > 0. Otherwise, we may assume that there exist positive 
numbers t1 and t2 such that �′

u(t1) = �′
u(t2) = 0, that is,

t
p−1
i ‖u‖p

Vε,p
+ t

q−1
i ‖u‖q

Vε,q
= λ

∫
RN

g(εx, tiu)udx, i = 1, 2,

hence (
1

t
q−p

1

− 1

t
q−p

2

)
‖u‖p

Vε,p
= λ

∫
RN

[
g(εx, t1u

+)

(t1u+)q−1 − g(εx, t2u
+)

(t2u+)q−1

]
(u+)qdx.

This equality, together with (g4), q > p > 1 and λ > 0, implies that t1 = t2.
(b) For all u ∈ S+

ε , we deduce from (a) that there exists tu > 0 such that

t
p−1
u ‖u‖p

Vε,p
+ t

q−1
u ‖u‖q

Vε,q
= λ

∫
RN

g(εx, tuu)udx.

Using (g2), (f1), (f2) and Theorem 3, for all σ > 0 we can take Cσ > 0 such that

t
p−1
u ‖u‖p

Vε,p
+ t

q−1
u ‖u‖q

Vε,q
= λ

∫
RN

g(εx, tuu)udx � λσ t
p−1
u ‖u‖p

Vε,p
+ λCσ t

q∗
s −1

u ‖u‖q∗
s

Vε,q
.

Choosing σ = 1/(2λ) > 0 and recalling that ‖u‖Xε = 1, we have

1

2
t
p−1
u ‖u‖p

Vε,p
+ t

q−1
u ‖u‖q

Vε,q
� Ct

q∗
s −1

u ‖u‖q∗
s

Vε,q
� Ct

q∗
s −1

u ,

where C := C(λ) is a positive constant.
Assume that tu � 1. Then we have

Ct
q−1
u � 1

2
t
q−1
u

(
‖u‖q

Vε,p
+ ‖u‖q

Vε,q

)
for some constant C > 0

� 1
t
p−1
u ‖u‖p

V ,p + t
q−1
u ‖u‖q

V ,q
2 ε ε
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(since q > p, tu � 1 and 1 = ‖u‖Xε � ‖u‖Vε,p)

� Ct
q∗
s −1

u ,

⇒ tu � τ for some constant τ > 0 (since q∗
s > q),

where τ is dependent of u.

Assume that tu > 1. Then we obtain

Ct
p−1
u � 1

2
t
p−1
u

(
‖u‖q

Vε,p
+ ‖u‖q

Vε,q

)
for some constant C > 0

� 1

2
t
p−1
u ‖u‖p

Vε,p
+ t

q−1
u ‖u‖q

Vε,q

(since q > p, tu > 1 and 1 = ‖u‖Xε � ‖u‖Vε,p)

� Ct
q∗
s −1

u ,

⇒ tu � τ for some constant τ > 0 (since q∗
s > q > p),

where τ does not depend on u.

So, there exists τ > 0 independent of u such that tu � τ for all u ∈ S+
ε .

Suppose that W ⊂ S+
ε is a compact set. Arguing by contradiction, we may assume that there 

exists a sequence {un}n∈N ⊂ W such that 1 � tn := tun → +∞ as n → ∞. Since W is a compact 
set, there exists u ∈W such that

un → u in Xε as n → ∞.

Using the above facts and proceeding as in the proof of Lemma 4-(ii), we infer that

Jε(tnun) → −∞ as n → ∞. (3)

Moreover, for each ϕ ∈ Nε , we have 〈J ′
ε(ϕ), ϕ〉 = 0. From the above relation and (g3)i–(g3)ii , 

it follows that

Jε(ϕ) = Jε(ϕ) − 1

θ
〈J ′

ε(ϕ),ϕ〉

� (θ − q)(q − p)

q2θ

(
‖ϕ‖p

Vε,p
+ ‖ϕ‖q

Vε,q

)
=: C

(
‖ϕ‖p

Vε,p
+ ‖ϕ‖q

Vε,q

)
,

since θ > q > p and K > λq/p > 0.
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In the above inequality we choose ϕn = tnun ∈Nε , and then we obtain

Jε(tnun)� C
(
t
p
n ‖un‖p

Vε,p
+ t

q
n ‖un‖q

Vε,q

)
� C

(
t
p
n ‖un‖q

Vε,p
+ t

q
n ‖un‖q

Vε,q

)
(since q > p and 1 = ‖un‖Xε � ‖un‖Vε,p)

� Ct
p
n for some constant C > 0 (since q > p, tn � 1 and ‖un‖Xε = 1),

⇒ − ∞� +∞ (see (3) and use the assumption tn → +∞ as n → ∞),

which is a contradiction.
(c) Clearly, the mappings m̂ε , mε and m−1

ε are well defined. In fact, using (a), for any fixed 
u ∈ X+

ε it follows that there exists a unique m̂ε(u) ∈ Nε . In addition, if u ∈ Nε , then u ∈ X+
ε . 

Otherwise, we obtain |supp (u+) ∩ �ε| = 0. The above equality, hypothesis (V1), the definition 
of g and (g3)ii yield that

‖u‖p
Vε,p

+ ‖u‖q
Vε,q

= λ

∫
RN

g(εx,u)udx

= λ

∫
�c

ε

g(εx,u+)u+dx + λ

∫
�ε

g(εx,u+)u+dx

� λ

K

∫
�c

ε

V (εx)|u|qdx

� p

q

∫
�c

ε

V (εx)|u|qdx
(

since K >
λq

p
> 0

)

� p

q
‖u‖q

Vε,q
,

⇒
(

1 − p

q

)(
‖u‖p

Vε,p
+ ‖u‖q

Vε,q

)
� 0,

⇒ u = 0 (since q > p > 1),

which contradicts the fact that u 
= 0. Hence, m−1
ε (u) = u/‖u‖Xε ∈ S+

ε is well defined and con-
tinuous. For any u ∈ S+

ε , it follows that

m−1
ε (mε(u)) = m−1

ε (tuu) = tuu

‖tuu‖Xε

= u

‖u‖Xε

= u.

So, we conclude that mε is a bijection.
Next, we show that m̂ε is continuous. To this end, let {un, u}n∈N ⊂ X+

ε be such that un → u

in Xε as n → ∞. On account of the fact that m̂ε(tu) = m̂ε(u) for all t > 0, we can assume that 
‖un‖Xε = ‖u‖Xε = 1 for all n ∈ N . Using (b), we see that there exists tn := tun → t0 > 0 (as 
n → ∞) such that tnun ∈Nε , hence
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t
p
n ‖un‖p

Vε,p
+ t

q
n ‖un‖q

Vε,q
= λ

∫
RN

g(εx, tnun)tnundx.

In the above equality we pass to the limit as n → ∞. Then we have

t
p
0 ‖u‖p

Vε,p
+ t

q
0 ‖u‖q

Vε,q
= λ

∫
RN

g(εx, t0u)t0udx.

This implies that t0u ∈ Nε . From (a) it follows that tu = t0. Therefore, this leads to m̂ε(un) →
m̂ε(u) in X+

ε as n → ∞. In conclusion, m̂ε and mε are continuous mappings.
(d) Assume that {un}n∈N ⊂ S+

ε is a sequence such that dist (un, ∂S+
ε ) → 0 as n → ∞. For 

any ϕ ∈ ∂S+
ε and n ∈ N , then we obtain |u+

n | � |un − ϕ| a.e. in �ε . Hence, from (V1) and the 
Sobolev embedding theorem, for any r ∈ [p, q∗

s ] and n ∈N it follows that

|u+
n |Lr(�ε) � inf

ϕ∈∂S+
ε

|un − ϕ|Lr(�ε) � Cr inf
ϕ∈∂S+

ε

‖un − ϕ‖Xε .

Note that q > p. Then, for all t > 0 we can deduce from (V1), (g2), (f1)–(f2) and (g3)ii that∫
RN

G(εx, tun)dx =
∫
�c

ε

G(εx, tun)dx +
∫
�ε

G(εx, tun)dx

� V0

Kq

∫
�c

ε

tq |un|qdx +
∫
�ε

[
F(tu+

n ) + 1

λq∗
s

(tu+
n )q

∗
s

]
dx

� tq

Kp

∫
RN

V (εx)|un|qdx + C1t
p

∫
�ε

(u+
n )pdx + C2t

q∗
s

∫
�ε

(u+
n )q

∗
s dx

� tq

Kp

∫
RN

V (εx)|un|qdx + Ĉpt
pdist (un, ∂S

+
ε )p + Ĉq∗

s
tq

∗
s dist (un, ∂S

+
ε )q

∗
s ,

where C1, C2, Ĉp and Ĉq∗
s

are some positive constants. So, we have

λ

∫
RN

G(εx, tun)dx � λtq

Kp

∫
RN

V (εx)|un|qdx + on(1) as n → ∞, (4)

since λ > 0. Moreover, for any t > 1 we infer that

tp

p
‖un‖p

Vε,p
+ tq

q
‖un‖q

Vε,q
− λtq

Kp

∫
RN

V (εx)|un|qdx

= tp

p
‖un‖p

Vε,p
+ tq

q
[un]qs,q +

(
1

q
− λ

Kp

)
tq

∫
N

V (εx)|un|qdx

R
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�C1t
p‖un‖p

Vε,p
+ C2t

q‖un‖q
Vε,q

(
since K >

λq

p
> 0

)
�C1t

p‖un‖q
Vε,p

+ C2t
q‖un‖q

Vε,q
(due to q > p and 1 = ‖un‖Xε � ‖un‖Vε,p)

�C3t
p (due to q > p, t > 1 and ‖un‖Xε = 1), (5)

where C1, C2 and C3 are some positive constants. Recalling the definition of mε and invoking 
relations (4) and (5), for all t > 1 we can deduce that

lim inf
n→∞ Jε(mε(un))� lim inf

n→∞ Jε(tun)� C3t
p.

The above inequality combined with the definition of Jε and the arbitrariness of t > 1 means that

lim inf
n→∞

[
1

p
‖mε(un)‖p

Vε,p
+ 1

q
‖mε(un)‖q

Vε,q

]
� lim inf

n→∞ Jε(mε(un)) = +∞,

and so ‖mε(un)‖Xε → +∞ as n → ∞. This proof is now complete. �
Now, we introduce the following functionals

ψ̂ε : X+
ε �→ R and ψε : S+

ε �→R

defined by ψ̂ε(u) := Jε(m̂ε(u)) for u ∈ X+
ε and ψε := ψ̂ε|S+

ε
.

Using Lemma 5 and invoking Corollary 2.3 in Szulkin & Weth [28], we have the following 
result.

Lemma 6. Fix λ > 0 and assume that hypotheses (f1)–(f4) and (V1)–(V2) are fulfilled. Then,

(a) ψ̂ε ∈ C1(X+
ε , R) and 〈ψ̂ ′

ε(u), v〉 = ‖m̂ε(u)‖Xε‖u‖Xε
〈J ′

ε(m̂ε(u)), v〉 for all u ∈ X+
ε , all v ∈ Xε;

(b) ψε ∈ C1(S+
ε , R) and 〈ψ ′

ε(u), v〉 = ‖mε(u)‖Xε 〈J ′
ε(mε(u)), v〉 for all u ∈ S+

ε , all v ∈ TuS
+
ε ;

(c) if {un}n∈N is a Palais-Smale sequence for ψε , then {mε(un)}n∈N is a Palais-Smale sequence 
for Jε . If {un}n∈N ⊂ Nε is a bounded Palais-Smale sequence for Jε, then {m−1

ε (un)}n∈N ⊂
S+
ε is a Palais-Smale sequence for ψε;

(d) u ∈ S+
ε is a critical point of ψε if and only if mε(u) ∈ Nε is a critical point of Jε . Moreover, 

the corresponding critical values coincide and

inf
u∈S+

ε

ψε(u) = inf
u∈Nε

Jε(u) = cε.

Remark 2. Using the same ideas as in Szulkin & Weth [28], for each λ > 0 the following varia-
tional characterization of the infimum of the functional Jε over Nε is satisfied:

0 < cε = inf
u∈Nε

Jε(u) = inf
u∈X+

ε

max
t>0

Jε(tu) = inf
u∈S+

ε

max
t>0

Jε(tu).

Furthermore, if
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ĉε := inf
γ∈�ε

max
t∈[0,1]Jε(γ (t)), where �ε := {γ ∈ C([0,1],Xε) : γ (0) = 0 and Jε(γ (1)) < 0} ,

then arguing as in Willem [29], we can check that cε = ĉε .

The main characteristic of the modified functional is that it satisfies a compactness condition. 
We start by proving the boundedness of Palais-Smale sequences.

Lemma 7. For each λ > 0. Assume that {un}n∈N ⊂ Xε is a (PS)c sequence for the functional 
Jε at the level c ∈ R. Then, the sequence {un}n∈N ⊂ Xε is bounded.

Proof. By a simple computation, for n ∈N large enough we observe that

C1(1 + ‖un‖Xε)� Jε(un) − 1

θ
〈J ′

ε(un), un〉

=
(

1

p
− 1

θ

)
‖un‖p

Vε,p
+
(

1

q
− 1

θ

)
‖un‖q

Vε,q

+ λ

θ

∫
�ε

[g(εx,un)un − θG(εx,un)]dx

+ λ

θ

∫
�c

ε

[g(εx,un)un − θG(εx,un)]dx

�
(

1

q
− 1

θ

)(
‖un‖p

Vε,p
+ ‖un‖q

Vε,q

)
−
(

1

q
− 1

θ

)
λ

K

∫
�c

ε

V (εx)
(|un|p + |un|q

)
dx

(using λ > 0, θ > q > p and (g3)i , (g3)ii )

�
(

1

q
− 1

θ

)(
1 − λ

K

)(
‖un‖p

Vε,p
+ ‖un‖q

Vε,q

)
�
(

1

q
− 1

θ

)(
1 − p

q

)(
‖un‖p

Vε,p
+ ‖un‖q

Vε,q

)
(

since K >
λq

p
> 0

)
.

Using this inequality, we deduce that the sequence {un}n∈N ⊂ Xε is bounded, and we omit the 
details here. Thus, we complete the proof of the lemma. �

Now, we show that the modified functional Jε satisfies the Palais-Smale condition.

Lemma 8. For each λ > 0. Let {un}n∈N ⊂ Xε be a (PS)c sequence for the modified functional 
Jε at the level c ∈ R. Then un → u ∈ Xε as n → ∞ for all c ∈ (0, s SN/(sq)∗ ).
N
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Proof. From Lemma 7 it follows that {un}n∈N ⊂ Xε is bounded. Thus, up to a subsequence (still 
denoted by itself), we can assume that un

w−→ u in Xε , un(x) → u(x) a.e. in RN and un → u in 
Lr

loc(R
N) for all r ∈ [1, q∗

s ) as n → ∞. A simple calculation can show that the weak limit u is 
actually the critical point of the modified functional Jε. Therefore, 〈J ′

ε(u), u〉 = 0.
In order to prove that the Palais-Smale sequence satisfies the Palais-Smale condition, we need 

to establish the following asymptotic behavior with respect to large balls:

lim sup
n→∞

∫
Bc
R

⎧⎪⎨⎪⎩
∫
RN

[ |un(x) − un(y)|p
|x − y|N+sp

+ |un(x) − un(y)|q
|x − y|N+sq

]
dy + V (εx)

(|un|p + |un|q
)⎫⎪⎬⎪⎭dx

→ 0 as R → +∞. (6)

For some fixed R > 0, let ηR ∈ C∞(RN) be such that

0 � ηR � 1, ηR = 0 in BR
2
, ηR = 1 in Bc

R

and

|∇ηR|� C/R

for some constant C > 0 (which is independent of R).
From the boundedness of {ηRun}n∈N ⊂ Xε , it follows that 〈J ′

ε(un), ηRun〉 → 0 as n → ∞. 
So, for n ∈N large enough we have∫

RN

∫
RN

|un(x) − un(y)|pηR(x)
|x − y|N+sp

dxdy +
∫
RN

∫
RN

|un(x) − un(y)|qηR(x)
|x − y|N+sq

dxdy

+
∫
RN

V (εx)
(|un|p + |un|q

)
ηRdx

= on(1) −
∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x − y|N+sp
dxdy

−
∫
RN

∫
RN

|un(x) − un(y)|q−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x − y|N+sq
dxdy

+ λ

∫
RN

g(εx,un)unηRdx.

Let R > 0 large enough such that

�ε ⊂ BR
2
.

Recalling the definitions of ηR and K , together with (g3)ii , we get
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∫
RN

∫
RN

|un(x) − un(y)|pηR(x)
|x − y|N+sp

dxdy +
∫
RN

∫
RN

|un(x) − un(y)|qηR(x)
|x − y|N+sq

dxdy

+
(

1 − p

q

) ∫
RN

V (εx)
(|un|p + |un|q

)
ηRdx

� on(1) −
∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x − y|N+sp
dxdy

−
∫
RN

∫
RN

|un(x) − un(y)|q−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x − y|N+sq
dxdy, (7)

as n → ∞.
Invoking the Hölder inequality and using the boundedness of {un}n∈N ⊂ Xε , we infer that 

there exists some constant C > 0 such that∣∣∣∣∣∣∣
∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x − y|N+sp
dxdy

∣∣∣∣∣∣∣
� C

⎡⎢⎣∫
RN

∫
RN

|ηR(x) − ηR(y)|p|un(x)|p
|x − y|N+sp

dxdy

⎤⎥⎦
1
p

. (8)

On the other hand, by the definition of ηR , polar coordinates and the boundedness of 
{un}n∈N ⊂ Xε , we have∫

RN

∫
RN

|ηR(x) − ηR(y)|p|un(x)|p
|x − y|N+sp

dxdy

�
∫
RN

∫
|x−y|>R

|ηR(x) − ηR(y)|p|un(x)|p
|x − y|N+sp

dxdy

+
∫
RN

∫
|x−y|�R

|ηR(x) − ηR(y)|p|un(x)|p
|x − y|N+sp

dxdy

� C

∫
RN

∫
|z|>R

|un(x)|p
|z|N+sp

dxdz + C

Rp

∫
RN

∫
|z|�R

|un(x)|p
|z|N+sp−p

dxdz

� C

Rsp

∫
RN

|un|pdx + C

Rp
R−sp+p

∫
RN

|un|pdx

� C

Rsp
. (9)
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Using relations (8) and (9), we deduce that∣∣∣∣∣∣∣
∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x − y|N+sp
dxdy

∣∣∣∣∣∣∣�
C

Rs
. (10)

In a similar fashion, we also have∣∣∣∣∣∣∣
∫
RN

∫
RN

|un(x) − un(y)|q−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x − y|N+sq
dxdy

∣∣∣∣∣∣∣�
C

Rs
. (11)

So, from (7), (10) and (11), we see that the claim (6) is fulfilled.
The claim (6), together with the locally compact embedding Xε ↪→ L

p

loc(R
N), implies that 

un → u in Lp(RN) as n → ∞. Then, we deduce from the interpolation inequality that un → u

in Lr(RN) as n → ∞ for all r ∈ [p, q∗
s ).

Because of the emergence of the critical nonlinear term, we need a more accurate analysis. 
Similar to the obtained relation (9), we also have∫

RN

∫
RN

|ηR(x) − ηR(y)|q |un(y)|q
|x − y|N+sp

dxdy � C

Rsq
. (12)

Recalling the definition of ηR and the Sobolev inequality, and using relations (7), (10), (11), (12), 
we see that

|un|q
Lq∗

s (Bc
R)

� |unηR|qq∗
s
� C[unηR]qs,q

� C

∫
RN

∫
RN

|un(x) − un(y)|qηR(x)
|x − y|N+sq

dxdy

+ C

∫
RN

∫
RN

|un(y)|q |ηR(x) − ηR(y)|q
|x − y|N+sq

dxdy

� on(1) + C

Rs
+ C

Rsq
as n → ∞.

Thus, we obtain

lim
R→+∞ lim sup

n→∞
|un|q

Lq∗
s (Bc

R)
= 0. (13)

Moreover, it is easy to see that

lim
R→+∞ lim sup

n→∞
|un|rLr (Bc

R) = 0 for any r ∈ [p,q∗
s ). (14)
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Taking into account of the growth of g and using relations (13), (14), for any σ > 0 we can 
find some R := R(σ) > 0 such that

lim sup
n→∞

∫
Bc
R

g(εx,un)undx � Cσ. (15)

Choosing R > 0 sufficiently large, we also have∫
Bc
R

g(εx,u)udx � σ. (16)

By relations (15) and (16), for any σ > 0 it follows that

lim sup
n→∞

∣∣∣∣∣∣∣
∫
Bc
R

g(εx,un)undx −
∫
Bc
R

g(εx,u)udx

∣∣∣∣∣∣∣� Cσ.

This estimate combined with the arbitrariness of σ > 0 means that

lim
n→∞

∫
Bc
R

g(εx,un)undx =
∫
Bc
R

g(εx,u)udx. (17)

The definition of g yields that

g(εx,un)un � f (un)un + aq∗
s

λ
+ V0

K
|un|q for all x ∈ RN \ �ε.

The above inequality, together with hypotheses (f1)–(f2), Theorem 3 and the Dominated Con-
vergence Theorem, implies that

lim
n→∞

∫
BR∩(RN\�ε)

g(εx,un)undx =
∫

BR∩(RN\�ε)

g(εx,u)udx. (18)

Next, we prove that

lim
n→∞

∫
BR∩�ε

g(εx,un)undx =
∫

BR∩�ε

g(εx,u)udx. (19)

To this end, it is sufficient to prove that the following limit holds true:

lim
n→∞

∫
�ε

(u+
n )q

∗
s dx =

∫
�ε

(u+)q
∗
s dx. (20)
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In the sequel, we will use the following notations:

|Dsu|q(x) :=
∫
RN

|u(x) − u(y)|q
|x − y|N+sq

dy and |Dsun|q(x) :=
∫
RN

|un(x) − un(y)|q
|x − y|N+sq

dy for all n ∈N.

Since the sequences {|Dsun|q}n∈N and 
{
|un|q∗

s

}
n∈N are bounded in L1(RN), we deduce from 

Prokhorov’s Theorem (up to a subsequence) that there exist two nonnegative bounded measures 
μ and υ such that

|Dsun|q w−→ μ and |un|q∗
s

w−→ υ as n → ∞ (21)

in the sense of measures. Invoking the concentration-compactness principle in Ambrosio [7], we 
know that there exist an at most countable index set I, sequences {xi}i∈I ⊂ RN , {μi}i∈I, {υi}i∈I
in (0, +∞) such that

υ = |u|q∗
s +

∑
i∈I

υiδxi , μ� |Dsu|q +
∑
i∈I

μiδxi , S∗υ
q

q∗
s

i � μi for all i ∈ I. (22)

Now, we show that {xi}i∈I ∩�ε = ∅. Otherwise, by contradiction, we assume that there exists 
some i ∈ I such that xi ∈ �ε . Let us define

ξρ(x) := ξ

(
x − xi

ρ

)
for any ρ > 0,

where ξ ∈ C∞
c (RN) is such that 0 � ξ � 1, ξ = 1 in B1, ξ = 0 in Bc

2 and |∇ξ |L∞(RN) � 2. We 
always assume that ρ is chosen so that the support of ξρ is contained in �ε .

We first deduce from the Hölder inequality, the boundedness of {un}n∈N ⊂ Xε and Lemma 
2.2 in Ambrosio [7] that

lim
ρ→0

lim sup
n→∞

∣∣∣∣∣∣∣
∫
RN

∫
RN

|un(x) − un(y)|t−2(un(x) − un(y))(ξρ(x) − ξρ(y))un(y)

|x − y|N+st
dxdy

∣∣∣∣∣∣∣
� C lim

ρ→0
lim sup
n→∞

⎡⎢⎣∫
RN

∫
RN

|ξρ(x) − ξρ(y)|t |un(x)|t
|x − y|N+st

dxdy

⎤⎥⎦
1
t

= 0 (23)

for t ∈ {p, q}.
Clearly, we have

lim
ρ→0

lim sup
n→∞

∫
RN

V (εx)|un|t ξρdx = 0 for t ∈ {p,q}. (24)

Taking into account the fact that f has a subcritical growth and recalling the definition of ξρ , 
we obtain
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lim
ρ→0

lim sup
n→∞

∫
RN

f (un)unξρdx = 0. (25)

Since we have 〈J ′
ε(un), ξρun〉 → 0 as n → ∞, for n ∈N large enough we deduce that

∫
RN

∫
RN

|un(x) − un(y)|pξρ(x)
|x − y|N+sp

dxdy +
∫
RN

∫
RN

|un(x) − un(y)|qξρ(x)
|x − y|N+sq

dxdy

+
∫
RN

V (εx)
(|un|p + |un|q

)
ξρdx

= on(1) −
∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(ξρ(x) − ξρ(y))un(y)

|x − y|N+sp
dxdy

−
∫
RN

∫
RN

|un(x) − un(y)|q−2(un(x) − un(y))(ξρ(x) − ξρ(y))un(y)

|x − y|N+sq
dxdy

+ λ

∫
RN

f (un)unξρdx +
∫
RN

|un|q∗
s ξρdx. (26)

Putting together (21), (23), (24), (25) and (26), we deduce that υi � μi .
Note that 〈J ′

ε(un), u−
n 〉 = on(1) as n → ∞, where u−

n := min {un,0}, and g(x, t) = 0 for 
t � 0. So, we can deduce that

‖u−
n ‖p

Vε,p
+ ‖u−

n ‖q
Vε,q

� on(1) as n → ∞,

which implies that u−
n → 0 in Xε as n → ∞. Consequently, from (g3)i–(g3)ii and p < q , it 

follows that

c = Jε(un) − 1

q
〈J ′

ε(un), un〉 + on(1)

=
(

1

p
− 1

q

)
‖un‖p

Vε,p
+ λ

∫
RN\�ε

[
1

q
g(εx,un)un − G(εx,un)

]
dx

+ λ

∫
�ε

[
1

q
f (un)un − F(un)

]
dx +

(
1

q
− 1

q∗
s

)∫
�ε

|u+
n |q∗

s dx + on(1)

� s

N

∫
�ε

(
|un|q∗

s − |u−
n |q∗

s

)
dx + on(1) (using u−

n → 0 in Xε as n → ∞ and Theorem 3)

� s

N

∫
|un|q∗

s dx + on(1)
�ε
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� s

N

∫
�ε

|un|q∗
s ξρdx + on(1),

as n → ∞.
In the above inequality, we pass to the limit as ρ → 0. Then, we deduce from relation (22)

and υi � μi that

c >
s

N

∑
{i∈I :xi∈�ε}

ξρ(xi)υi �
s

N
υi �

s

N
S

N
sq∗ ,

which contradicts c < s
N
S

N
sq∗ . So, relation (20) holds true.

By combining relation (20) with (g2), (f1), (f2), Theorem 3 and the Dominated Convergence 
Theorem, we deduce that relation (19) holds true. Thus, by (17), (18) and (19) it follows that

lim
n→∞

∫
RN

g(εx,un)undx =
∫
RN

g(εx,u)udx. (27)

On the other hand, we can use 〈J ′
ε(u), u〉 = 0 and 〈J ′

ε(un), un〉 = on(1) (as n → ∞) to infer 
that

‖un‖p
Vε,p

+ ‖un‖q
Vε,q

= λ

∫
RN

g(εx,un)undx + on(1) as n → ∞

and

‖u‖p
Vε,p

+ ‖u‖q
Vε,q

= λ

∫
RN

g(εx,u)udx.

Consequently, by above two relations, together with (27), we obtain

‖un‖p
Vε,p

+ ‖un‖q
Vε,q

= ‖u‖p
Vε,p

+ ‖u‖q
Vε,q

+ on(1) as n → ∞.

Therefore, we can deduce from the above relation and the Brezis-Lieb lemma [14] that

‖un − u‖p
Vε,p

+ ‖un − u‖q
Vε,q

= on(1) as n → ∞,

which means that un → u in Xε as n → ∞. This proof is now complete. �
Corollary 9. The modified functional Jε fulfills the (PS)c condition on S+

ε at any level c ∈
(0, s

N
S
N/(sq)∗ ).

Proof. Suppose that {un}n∈N ⊂ S+
ε is a Palais-Samle sequence for the functional ψε at the level 

c, that is,

ψε(un) → c in R and ψ ′
ε(un) → 0 in (TunS

+
ε )′ as n → ∞.
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From Lemma 6-(c), it follows that {mε(un)}n∈N ⊂ Xε is also a Palais-Samle sequence for the 
functional Jε at the level c. Thus, we can derive from Lemma 8 that the functional Jε satisfies 
the (PS)c condition. Hence, we pass to a subsequence and we can find some u ∈ S+

ε such that 
mε(un) → mε(u) in Xε as n → ∞. This fact combined with Lemma 5-(c) implies that un → u

in S+
ε as n → ∞. The proof of the corollary is now complete. �

5. The limit problem

In what follows, we need to consider the limit problem associated with problem (Pλ), that is,{
(−�)spu + (−�)squ + V0(|u|p−2u + |u|q−2u) = λf (u) + |u|q∗

s −2u in RN,

u ∈ Ws,p(RN) ∩ Ws,q(RN), u > 0, λ > 0 in RN.

}
(Qλ)

The energy functional IV0 : X0 �→R related to problem (Qλ) is defined by

IV0(u) := 1

p
[u]ps,p + 1

q
[u]qs,q + V0

(
1

p
|u|pp + 1

q
|u|qq

)
− λ

∫
RN

F (u)dx − 1

q∗
s

∫
RN

(u+)q
∗
s dx

for all u ∈ X0. By standard arguments, we know that the functional IV0 is well-defined and 
belongs to C1, and it holds

〈I ′
V0
(u), v〉 = 〈u,v〉s,p + 〈u,v〉s,q +

∫
RN

V0

(
|u|p−2u + |u|q−2u

)
vdx

− λ

∫
RN

f (u)vdx −
∫
RN

(u+)q
∗
s −1vdx,

for all u, v ∈ X0.
Let us consider the Nehari manifold associated with the functional IV0 , that is,

N0 := {
u ∈ X0 \ {0} : 〈I ′

V0
(u),u〉 = 0

}
.

Moreover, we set cV0 := infu∈N0 IV0(u).
Next, we define the following sets

X+
0 := {

u ∈ X0 : |supp (u+)| > 0
}

and S+
0 = S0 ∩ X+

0 ,

where S0 is the unit sphere of X0.
As in section 4, S+

0 is also an incomplete C1,1-manifold of codimension one and contained in 
X+

0 . Hence, X0 = TuS
+
0

⊕
Ru for each u ∈ S+

0 , where

TuS
+
0 :=

⎧⎪⎨⎪⎩v ∈ X0 : 〈u,v〉s,p + 〈u,v〉s,q +
∫
RN

V0

(
|u|p−2u + |u|q−2u

)
vdx = 0

⎫⎪⎬⎪⎭ .

Arguing as in the proof of Lemma 5, we can show that the following results are fulfilled.
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Lemma 10. For any fixed λ > 0, assume that (f1)–(f4) and (V1)–(V2) are fulfilled. Then, we 
have the following properties:

(a) for any fixed u ∈ X+
0 , let the mapping �u : R+ �→ R be defined by �u(t) := IV0(tu). Then, 

there is a unique tu > 0 such that

�′
u(t) > 0 for all t ∈ (0, tu),

�′
u(t) < 0 for all t ∈ (tu,+∞);

(b) there exists τ > 0 independent of u such that tu � τ for all u ∈ S+
0 . Moreover, for each 

compact set W ⊂ S+
0 , there is a constant CW > 0 such that tu � CW for all u ∈W;

(c) the mapping m̂0 : X+
0 �→ N0 introduced by m̂0(u) := tuu is continuous and m0 := m̂0|S+

0
is a 

homeomorphism between S+
0 and N0, and the inverse of m0 is given by m−1

0 (u) := u/‖u‖X0 ;
(d) if there exists a sequence {un}n∈N ⊂ S+

0 such that dist (un, ∂S
+
0 ) → 0 as n → ∞, then 

‖m0(un)‖X0 → +∞ and IV0(m0(un)) → +∞ as n → ∞.

Consider the mappings

ψ̂V0 : X+
0 �→ R and ψV0 : S+

0 �→R

defined by ψ̂V0(u) := IV0(m̂0(u)) for all u ∈ X+
0 and ψV0 := ψ̂V0 |S+

0
.

Lemma 11. For any fixed λ > 0, assume that (f1)–(f4) and (V1)–(V2) are fulfilled. Then,

(a) ψ̂V0 ∈ C1(X+
0 , R) and 〈ψ̂ ′

V0
(u), v〉 = ‖m̂0(u)‖X0‖u‖X0

〈I ′
V0
(m̂0(u)), v〉 for all u ∈ X+

0 , all v ∈ X0;

(b) ψV0 ∈ C1(S+
0 , R) and 〈ψ ′

V0
(u), v〉 = ‖m0(u)‖X0〈I ′

V0
(m0(u)), v〉 for all u ∈ S+

0 , all v ∈
TuS

+
0 ;

(c) if {un}n∈N is a Palais-Smale sequence for ψV0 , then {m0(un)}n∈N is a Palais-Smale 
sequence for IV0 . If {un}n∈N ⊂ N0 is bounded Palais-Smale sequence for IV0 , then 
{m−1

0 (un)}n∈N ⊂ S+
0 is a Palais-Smale sequence for ψV0;

(d) u ∈ S+
0 is a critical point of ψV0 if and only if m0(u) ∈ N0 is a critical point of IV0 . Moreover, 

the corresponding critical values coincide and

inf
u∈S+

0

ψV0(u) = inf
u∈N0

IV0(u) = cV0 .

Arguing as in Lemma 4, we can show that the functional IV0 has a Mountain Pass Geometry 
(see Willem [29]).

Lemma 12. For each fixed λ > 0, the following properties are fulfilled for the functional IV0:

(i) there exist �̂, ρ̂ > 0 such that IV0(u) � �̂ with ‖u‖X0 = ρ̂;
(ii) there exists ê ∈ X+ satisfying ‖ê‖X > ρ̂ and IV (ê) < 0.
0 0 0
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Remark 3. Arguing as in Section 4, for each λ > 0 we have the following variational character-
ization for cV0 :

0 < cV0 = inf
u∈N0

IV0(u) = inf
u∈X+

0

max
t>0

IV0(tu) = inf
u∈S+

0

max
t>0

IV0(tu).

Moreover, if

ĉV0 := inf
γ∈�0

max
t∈[0,1] IV0(γ (t)), where �0 := {

γ ∈ C([0,1],X0) : γ (0) = 0 and IV0(γ (1)) < 0
}
,

proceeding as in Willem [29], we can check that cV0 = ĉV0 .

The next result shows that we can compare cV0 with a suitable constant which involves S∗.

Lemma 13. There exists λ∗ > 0 such that cV0 ∈ (0, s
N
S
N/(sq)∗ ) for each λ � λ∗.

Proof. Clearly, there exists tλ > 0 such that IV0(tλê) = maxt�0 IV0(t ê), where ê is given by 
Lemma 12. As a consequence of 〈I ′

V0
(tλê), tλê〉 = 0, it holds

t
p
λ ‖ê‖p

V0,p
+ t

q
λ ‖ê‖q

V0,q
= λ

∫
RN

f (tλê)tλêdx + t
q∗
s

λ |ê|q∗
s

q∗
s
. (28)

The above relation combined with (f3) implies that

t
p
λ ‖ê‖p

V0,p
+ t

q
λ ‖ê‖q

V0,q
� t

q∗
s

λ |ê|q∗
s

q∗
s
.

Since p < q < q∗
s , we conclude that {tλ}λ>0 ⊂ R is bounded, and so there exists a sequence 

{λn}n∈N ⊂ R (λn → +∞ as n → ∞) such that tλn → t0 as n → ∞. Arguing by contradiction 
and using (28), we can infer that t0 = 0.

Next, we define γ (t) = t ê with t ∈ [0, 1]. So, γ ∈ �0 and we have

0 < cV0 � max
t∈[0,1] IV0(t ê) = IV0(tλê)� t

p
λ ‖ê‖p

V0,p
+ t

q
λ ‖ê‖q

V0,q
. (29)

Then we can take λ > 0 large enough to ensure that

t
p
λ ‖ê‖p

V0,p
+ t

q
λ ‖ê‖q

V0,q
<

s

N
S

N
sq∗ ,

which means that 0 < cV0 < s
N
S

N
sq∗ for λ > 0 sufficiently large. In particular, the fact that tλ → 0

as λ → +∞, together with (29), implies that cV0 → 0 as λ → +∞. �
Lemma 14. For each λ � λ∗, where λ∗ is given in Lemma 13. Assume that {un}n∈N ⊂ X0 is 
a (PS)cV0

sequence of the functional IV0 at the level cV0 . Then {un}n∈N ⊂ X0 is bounded and 
there exist a sequence {yn}n∈N ⊂ RN and some constants R, α > 0 such that
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lim inf
n→∞

∫
BR(yn)

|un|qdx � α.

Proof. Similar to the argument of Lemma 7, we are able to deduce that {un}n∈N ⊂ X0 is 
bounded. Proceeding by contradiction, we may suppose that for all R > 0 the following limit 
is fulfilled:

lim
n→∞ sup

y∈RN

∫
BR(y)

|un|qdx = 0.

By Lemma 2.2 in Alves, Ambrosio & Isernia [2], it follows that

un → 0 in Lr(RN) for all r ∈ (p, q∗
s ) as n → ∞. (30)

In particular, we deduce from (f1)–(f2) and (30) that

lim
n→∞

∫
RN

F (un)dx = lim
n→∞

∫
RN

f (un)undx = 0.

According to the fact that 〈I ′
V0
(un), un〉 = on(1) as n → ∞, we obtain

‖un‖p
V0,p

+ ‖un‖q
V0,q

= λ

∫
RN

f (un)undx + |u+
n |q∗

s

q∗
s
+ on(1) as n → ∞.

Then, we can pass to a subsequence and we assume that

‖un‖p
V0,p

+ ‖un‖q
V0,q

→ b� 0 and |u+
n |q∗

s

q∗
s

→ b� 0 as n → ∞.

Next, for each λ � λ∗ we show that b = 0. Otherwise, b > 0. Clearly, we observe that

cV0 �
s

N
b.

On the other hand, from Theorem 3 it follows that

‖un‖p
V0,p

+ ‖un‖q
V0,q

� [un]qs,q � S∗|u+
n |qq∗

s
,

⇒ b� S
N
sq∗ .

So, we have

cV0 �
s

N
b� s

N
S

N
sq∗ .

But, for each λ � λ∗, from Lemma 13 we know that
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cV0 <
s

N
S

N
sq∗ .

Now, we get a contradiction for each λ � λ∗. Thus, for each λ � λ∗ we have b = 0. But, this 
leads to ‖un‖X0 → 0 as n → ∞, and then we infer that IV0(un) → 0 as n → ∞. This is also a 
contradiction since IV0(un) → cV0 > 0 as n → ∞. The proof of the lemma is now complete. �
Remark 4. Fix arbitrarily λ � λ∗, where λ∗ is given in Lemma 13. If u is the weak limit of a 
(PS)cV0

sequence for the functional IV0 , then we can assume that u 
= 0. Indeed, un
w−→ 0, and 

if un � 0 in X0 as n → ∞, then we can use Lemma 14 to conclude that there exist a sequence 
{yn}n∈N ⊂ RN and some positive constants R, α such that

lim inf
n→∞

∫
BR(yn)

|un|qdx � α.

Let us define vn(x) := un(x + yn). According to the invariance of RN by translation, we infer 
that {vn}n∈N ⊂ X0 is a bounded (PS)cV0

sequence for the functional IV0 . Thus, there exists 

0 
= v ∈ X0 such that vn
w−→ v as n → ∞.

Theorem 15. For each λ � λ∗, where λ∗ is given in Lemma 13, problem (Qλ) has a positive 
ground state solution.

Proof. By a variant of the Mountain Pass Theorem without the Palais-Smale condition (see 
Willem [29]) and applying Lemma 12, we know that there is a Palais-Smale sequence {un}n∈N ⊂
X0 of the functional IV0 at the level cV0 . As in the proof of Lemma 7, we can infer that {un}n∈N ⊂
X0 is bounded. Now, we can pass to a subsequence (still denoted by {un}n∈N ) and suppose that 
there exists u ∈ X0 such that un

w−→ u in X0 and un → u in Lr
loc(R

N) for all r ∈ [1, q∗
s ) as 

n → ∞.
With the same ideas as in the proof of Lemma 8, we can show that I ′

V0
(u) = 0. By Remark 4

we can directly assume that u 
= 0. In addition, (f3) combined with Fatou’s Lemma yields

cV0 � IV0(u) = IV0(u) − 1

q
〈I ′

V0
(u),u〉 � lim inf

n→∞

[
IV0(un) − 1

q
〈I ′

V0
(un), un〉

]
= cV0 .

So, we get IV0(u) = cV0 .
Eventually, we show that u > 0 in RN . Since min {u,0} =: u− ∈ X0, and recalling that f (t) =

0 for t � 0 and using 〈I ′
V0
(u), u−〉 = 0, we can obtain

‖u−‖p
V0,p

+ ‖u−‖q
V0,q

� 0,

which means that u− = 0, and so u � 0 in RN . Consequently, u � 0 and u 
≡ 0. Arguing as in the 
proof of Lemma 24, we deduce that u ∈ L∞(RN). By Corollary 2.1 in Ambrosio & Rădulescu 
[9], we see that u ∈ Cσ (RN) for some σ ∈ (0, 1). Proceeding as the proof of Theorem 1.1-(ii) in 
Jarohs [21], we infer that u is positive in RN . This proof is now complete. �
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Firstly, we introduce a compactness result for the autonomous problem, which will be very 
useful in the sequel.

Lemma 16. Fix λ � λ∗, where λ∗ is given in Lemma 13. Assume that {un}n∈N ⊂ N0 is a se-
quence such that IV0(un) → cV0 in R as n → ∞, then {un}n∈N ⊂ X0 admits a convergent 
subsequence.

Proof. Note that {un}n∈N ⊂ N0 and IV0(un) → cV0 in R as n → ∞. Then we deduce from 
Lemma 10-(c), Lemma 11-(d) and the definition of cV0 that

wn := m−1
0 (un) ∈ S+

0 for all n ∈ N

and

ψV0(wn) = IV0(un) → cV0 = inf
w∈S+

0

ψV0(w) in R as n → ∞.

Consider the mapping

E(u) =
{
ψV0(u) if u ∈ S+

0 ,

+∞ if u ∈ ∂S+
0 .

Now, we are able to present the following properties:

(i) (S+
0 , δV0), where δV0(u, v) = ‖u − v‖X0 , is a complete metric space;

(ii) E ∈ C(S+
0 , R ∪ {+∞}), by Lemma 10-(d);

(iii) E is bounded below, by Lemma 11-(d).

So, we can apply the Ekeland variational principle (see Ekeland [17]) to the functional E , and 
then we find a sequence 

{
ŵn

}
n∈N ⊂ S+

0 such that 
{
ŵn

}
n∈N is a (PS)cV0

for the functional ψV0

and ‖ŵn − wn‖X0 = on(1) as n → ∞. This means that ψV0(ŵn) → cV0 in R and ψ ′
V0
(ŵn) →

0 in (Tŵn
S+

0 )′ as n → ∞. Using Lemma 11, Theorem 15 and proceeding as in the proof of 
Corollary 9, the proof of the remainder of the lemma can be completed. �

Next, we establish the following useful relationship between the minimax levels cε and cV0 .

Lemma 17. Fix λ � λ∗, where λ∗ is given in Lemma 13. Then

lim
ε→0

cε = cV0 <
s

N
S

N
sq∗ .

Proof. For each λ � λ∗, we assume that ω is a positive ground state solution of problem (Qλ). 
Let ζ ∈ C∞

c (RN) satisfy 0 � ζ � 1, ζ(x) = 1 in Br and supp (ζ ) ⊂ B2r ⊂ � for some r > 0. 
Now, we define ωε(x) := ζε(x)ω(x), where ζε(x) = ζ(εx) for ε > 0. Applying the Dominated 
Convergence Theorem and arguing as in the proof of Lemma 2.2 in Ambrosio [5], we can deduce 
that
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ωε → ω in X0 and IV0(ωε) → IV0(ω) = cV0 as ε → 0. (31)

Next, for each ε > 0 we take a unique number tε > 0 satisfying

Jε(tεωε) = max
t�0

Jε(tωε).

From supp (ζ ) ⊂ � and the definition of g, for ε > 0 small enough, it follows that

tpε ‖ωε‖p
Vε,p

+ tqε ‖ωε‖q
Vε,q

=
∫
RN

[
λf (tεωε)tεωε + (tεωε)

q∗
s

]
dx,

⇒ tp−q
ε ‖ωε‖p

Vε,p
+ ‖ωε‖q

Vε,q
=

∫
RN

λf (tεωε) + (tεωε)
q∗
s −1

(tεωε)q−1 ωq
ε dx. (32)

If tε → +∞ as ε → 0, relations (31)–(32), together with q > p and (f3) yield that +∞ >
‖ω‖q

V0,q
= +∞. This is impossible.

Up to a subsequence, we can now suppose that tε → t0 ∈ [0, +∞) as ε → 0. Indeed, t0 > 0. 
Otherwise, we are able to infer that ‖ω‖V0,p = 0, which implies that ω ≡ 0. Since ω > 0 in RN , 
we reach a contradiction. Then we pass to the limit as ε → 0 in the relation (32), and using 
relation (31) we have

t
p−q

0 ‖ω‖p
V0,p

+ ‖ω‖q
V0,q

=
∫
RN

λf (t0ω) + (t0ω)q
∗
s −1

(t0ω)q−1 ωqdx.

Then, we can use the above equality, (f4) and ω ∈ N0 to get the fact that t0 = 1. Eventually, we 
deduce from the Dominated Convergence Theorem, t0 = 1 and ω ∈N0 that

lim
ε→0

Jε(tεωε) = IV0(ω) = cV0 .

The above relation, together with the definition of tε, implies that cV0 � lim supε→0 cε . On the 
other hand, from (V1) we see that lim infε→0 cε � cV0 . By Lemma 13, we have

lim
ε→0

cε = cV0 <
s

N
S

N
sq∗ for each λ� λ∗.

This proof is now complete. �
We complete this section with the following existence property.

Theorem 18. Fix λ � λ∗, where λ∗ is given in Lemma 13. Assume that hypotheses (f1)–(f4)

and (V1)–(V4) are fulfilled. Then, for ε > 0 sufficiently small, problem (2) admits a nontrivial 
nonnegative solution.
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Proof. According to Lemma 4, Remark 2, Lemma 17 and Lemma 8, we can use the Mountain 
Pass Theorem of Ambrosetti & Rabinowitz [4] to conclude that, for each λ � λ∗ and if ε > 0 is 
small enough, there exists a critical point uε ∈ Xε \ {0} for the functional Jε . It is easy to check 
that uε � 0 in RN and uε 
≡ 0. This proof is now complete. �
6. The barycenter map

In this section, we provide some technical results, which will be used to prove the multiplicity 
of solutions for the modified problem (2).

Let δ > 0 be such that

Mδ :=
{
x ∈RN : dist (x,M)� δ

}
⊂ � (33)

and η ∈ C∞([0, +∞), [0, 1]) be a non-increasing cut-off function verifying η(t) = 1 for t ∈
(0, δ/2), η(t) = 0 for t ∈ [δ, +∞) and |η′(t)| � C for some constant C > 0. For each λ � λ∗, 
where λ∗ is given in Lemma 13, we may assume that ω is a positive ground state solution to the 
limit problem (Qλ). For any y ∈ M , we introduce the following function

�ε,y(x) := η(|εx − y|)ω
(
εx − y

ε

)
with the unique number tε > 0 satisfying

max
t�0

Jε(t�ε,y) = Jε(tε�ε,y),

and we consider the mapping �ε : M �→Nε defined by

�ε(y) := tε�ε,y.

Lemma 19. For each λ � λ∗, where λ∗ is given in Lemma 13, the mapping �ε has the following 
property:

lim
ε→0

Jε(�ε(y)) = cV0 uniformly in y ∈ M.

Proof. Arguing by contradiction, we may assume that there exist δ0 > 0, {yn}n∈N ⊂ M and 
εn → 0 in R as n → ∞ such that

∣∣Jεn(�εn(yn)) − cV0

∣∣� δ0. (34)

We first note that for each n ∈ N and for all z ∈ B δ
εn

, εnz ∈ Bδ , hence εnz + yn ∈ Bδ(yn) ⊂
Mδ ⊂ �.

Applying the change of variable z = (εnx − yn)/εn and recalling that G(x, t) = F(x, t) +
1∗ tq

∗
s in � × [0, +∞) and η(t) = 0 for t � δ, we get
λqs
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Jεn(�εn(yn)) = t
p
εn

p
‖�εn,yn‖p

Vεn ,p
+ t

q
εn

q
‖�εn,yn‖q

Vεn ,q

− λ

∫
RN

G(εnx, tεn�εn,yn)dx

= t
p
εn

p

⎡⎢⎣[η(|εn · |)ω]ps,p +
∫
RN

V (εnz + yn)(η(|εnz|)ω(z))pdz

⎤⎥⎦

+ t
q
εn

q

⎡⎢⎣[η(|εn · |)ω]qs,q +
∫
RN

V (εnz + yn)(η(|εnz|)ω(z))qdz

⎤⎥⎦
−
∫
RN

[
λF(tεnη(|εnz|)ω(z)) + 1

q∗
s

(tεnη(|εnz|)ω(z))q
∗
s

]
dz. (35)

Next, we prove that the sequence 
{
tεn
}
n∈N ⊂ R verifies tεn → 1 in R as n → ∞. Using the 

definition of tεn , we see that tεn�εn,yn ∈Nεn , that is,

tp−q
εn

‖�εn,yn‖p
Vεn ,p

+ ‖�εn,yn‖q
Vεn ,q

=
∫
RN

λf (tεn�εn,yn)�εn,yn + t
q∗
s −1

εn (�εn,yn)
q∗
s

t
q−1
εn

dx

(since g = f on � × [0,+∞))

=
∫
RN

λf (tεnη(|εnz|)ω(z)) + (tεnη(|εnz|)ω(z))q
∗
s −1

(tεnη(|εnz|)ω(z))q−1 (η(|εnz|)ω(z))qdz. (36)

Clearly, η(|x|) = 1 for x ∈ Bδ
2

and Bδ
2

⊂ B δ
εn

for n ∈ N sufficiently large. Then, we conclude 

from (36) that

tp−q
εn

‖�εn,yn‖p
Vεn ,p

+ ‖�εn,yn‖q
Vεn ,q

�
∫
B δ

2

λf (tεnω(z)) + (tεnω(z))q
∗
s −1

(tεnω(z))q−1 (ω(z))qdz.

In addition, ω is a continuous and positive function in RN , so there exists z̄ ∈RN such that

ω(z̄) = min
z∈B δ

2

ω(z) > 0.

Consequently, we infer from (f4) that

tp−q
εn

‖�εn,yn‖p
Vεn ,p

+ ‖�εn,yn‖q
Vεn ,q

�
[
λf (tεnω(z̄))

q−1 (ω(z̄))q + t
q∗
s −q

εn (ω(z̄))q
∗
s

] ∣∣∣Bδ
2

∣∣∣ . (37)

(tεnω(z̄))
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Arguing as in the proof of Lemma 2.2 in Ambrosio [5], we can obtain

‖�εn,yn‖Vεn ,t
→ ‖ω‖V0,t ∈ (0,+∞) in R as n → ∞ for t ∈ {p,q} . (38)

Hence, if tεn → +∞, we see that

lim
n→∞

(
tp−q
εn

‖�εn,yn‖p
Vεn ,p

+ ‖�εn,yn‖q
Vεn ,q

)
= ‖ω‖q

V0,q
, (39)

since q > p. Additionally, from (f3) it follows that

lim
n→∞

f (tεnω(z̄))

(tεnω(z̄))q−1 = +∞. (40)

Since q∗
s > q , from (37), (39) and (40), we get a contradiction. Therefore, we pass to a subse-

quence and assume that there exists t0 such that tεn → t0 � 0 as n → ∞. Applying (36), (38) and 
using (f1)–(f2), we obtain that t0 > 0.

In (36) we pass to the limit as n → ∞, then we can use (38) and the Dominated Convergence 
Theorem to conclude that

t
p−q
0 ‖ω‖p

V0,p
+ ‖ω‖q

V0,q
=

∫
RN

λf (t0ω) + (t0ω)q
∗
s −1

(t0ω)q−1 ωqdx. (41)

Since ω ∈ N0, we see that

‖ω‖p
V0,p

+ ‖ω‖q
V0,q

=
∫
RN

[
λf (ω)ω + ωq∗

s

]
dx. (42)

Consequently, from (41), (42) and (f4), it follows that t0 = 1.
In (35) we pass to the limit as n → ∞ and we have

lim
n→∞Jεn(�εn(yn)) = IV0(ω) = cV0 .

This contradicts relation (34). The proof is now complete. �
For each λ � λ∗, where λ∗ is given in Lemma 13, let us define the function e :R+ �→ R+ such 

that e(ε) := supy∈M

∣∣Jε(�ε(y)) − cV0

∣∣ for all ε > 0. Then, we introduce the following subset of 
Nε:

N̂ε := {
u ∈ Nε : Jε(u)� cV0 + e(ε)

}
.

From Lemma 19 it follows that e(ε) → 0 as ε → 0. Additionally, we deduce from the definition 
of the function e that �ε(y) ∈ N̂ε for any y ∈ M and ε > 0, and so N̂ε 
= ∅.

For any δ > 0 given by (33), let us choose ρ := ρ(δ) > 0 such that Mδ ⊂ Bρ . Consider the 
map ζ̂ : RN �→ RN defined by
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ζ̂ (x) :=
{
x if |x| < ρ,

ρx
|x| if |x| � ρ.

Now, we introduce the following barycenter map βε :Nε �→ RN defined by

βε(u) :=
∫
RN ζ̂ (εx) (|u|p + |u|q) dx∫

RN (|u|p + |u|q) dx
for all u ∈Nε .

Lemma 20. For each λ � λ∗, where λ∗ is given in Lemma 13, the map βε has the following 
property:

lim
ε→0

βε(�ε(y)) = y uniformly in y ∈ M.

Proof. Arguing by contradiction, there exist δ0 > 0, {yn}n∈N ⊂ M and εn → 0 as n → ∞ such 
that ∣∣βεn(�εn(yn)) − yn

∣∣� δ0. (43)

By the definitions of �εn , βεn , ζ̂ and using the change of variable z = (εnx − yn)/εn, we can 
conclude that

βεn(�εn(yn)) = yn +
∫
RN

[
ζ̂ (εnz + yn) − yn

] [|η(|εnz|)ω(z)|p + |η(|εnz|)ω(z)|q]dz∫
RN [|η(|εnz|)ω(z)|p + |η(|εnz|)ω(z)|q ]dz

.

Thanks to {yn}n∈N ⊂ M ⊂ Mδ , by the Dominated Convergence Theorem, we can derive that

lim
n→∞|βεn(�εn(yn)) − yn| = 0,

which contradicts relation (43). This proof is now complete. �
Lemma 21. Fix λ � λ∗, where λ∗ is given in Lemma 13. Assume that the sequences {εn}n∈N ⊂ R
and {un}n∈N ⊂ Nεn satisfy εn → 0 in R and Jεn(un) → cV0 in R as n → ∞, then there is a se-
quence 

{
ŷn
}
n∈N ⊂ RN such that the sequence 

{
ûn(x) := un(x + ŷn)

}
n∈N admits a subsequence 

which converges in X0. Furthermore, the sequence 
{
yn := εnŷn

}
n∈N ⊂ RN has a subsequence 

{yn}n∈N (still denoted by itself) such that yn → y0 ∈ M as n → ∞.

Proof. It is worth to pointing out that λ � λ∗. In the fashion of the proof of Lemma 7, we see 
that {un}n∈N ⊂ X0 is bounded. Then, arguing as in the proof of Lemma 14 and Remark 4, we 
know that there are a sequence 

{
ŷn
}
n∈N ⊂ RN and two positive constants R, α > 0 such that

lim inf
n→∞

∫
|un|qdx � α.
BR(ŷn)
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Set

ûn(x) := un(x + ŷn).

Thus, 
{
ûn

}
n∈N ⊂ X0 is bounded. So, passing to a subsequence, there exists 0 
= û ∈ X0 such that

ûn
w−→ û in X0 as n → ∞.

Let tn > 0 be such that

v̂n := tnûn ∈N0

and set

yn := εnŷn.

Therefore, we conclude that

cV0 � IV0(v̂n) (from the definition of cV0)

� 1

p
[v̂n]ps,p + 1

q
[v̂n]qs,q +

∫
RN

V (εnx + yn)

(
1

p
|v̂n|p + 1

q
|v̂n|q

)
dx

−
∫
RN

[
λF(v̂n) + 1

q∗
s

(v̂+
n )q

∗
s

]
dx

� t
p
n

p
[un]ps,p + t

q
n

q
[un]qs,q +

∫
RN

V (εnx)

(
t
p
n

p
|un|p + t

q
n

q
|un|q

)
dx

− λ

∫
RN

G(εx, tnun)dx (by (g2))

= Jεn(tnun)� Jεn(un) (since un ∈ Nεn)

= cV0 + on(1) as n → ∞.

This implies that

IV0(v̂n) → cV0 in R as n → ∞ and v̂n ∈N0.

Clearly, the sequence 
{
v̂n
}
n∈N ⊂ X0 is bounded. Thus, up to a subsequence if necessary, still 

denoted by itself, we may assume that there is an element v̂ ∈ X0 such that v̂n
w−→ v̂ in X0 as 

n → ∞. It is easy to see that the sequence {tn}n∈N ⊂ R is bounded and it holds that tn → t0 � 0
as n → ∞.

We claim that t0 > 0. Otherwise, t0 = 0, so, we infer from the boundedness of 
{
v̂n
}
n∈N ⊂ X0

that ‖v̂n‖X = tn‖ûn‖X → 0 in R as n → ∞, and so IV (v̂n) → 0 in R as n → ∞, but this is 
0 0 0
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impossible, since cV0 > 0. Thus, t0 > 0. We deduce from the uniqueness of the weak limit that 
v̂ = t0û and û 
= 0. Then, from Lemma 16 it follows that

v̂n → v̂ in X0 as n → ∞, (44)

and so ûn → û in X0 as n → ∞. Moreover, IV0(v̂) = cV0 and 〈I ′
V0
(v̂), v̂〉 = 0.

Next, we shall prove that the sequence {yn}n∈N ⊂ RN has a subsequence, still denoted by 
itself, such that yn → y0 ∈ M as n → ∞. We first show the boundedness of {yn}n∈N ⊂ RN . 
Otherwise, the sequence {yn}n∈N ⊂ RN is not bounded. So, we may assume that there exists a 
subsequence, still denoted by itself, such that |yn| → +∞ in R as n → ∞. Then, we choose 
R > 0 large enough such that � ⊂ BR and we may suppose that |yn| > 2R for n ∈N sufficiently 
large, and so for all x ∈ BR/εn we have

|εnx + yn| � |yn| − |εnx| >R.

Therefore, recalling that the definition of g, for n ∈N sufficiently large we have

‖ûn‖p
V0,p

+ ‖ûn‖q
V0,q

� λ

∫
RN

g(εnx + yn, ûn)ûndx

� λ

∫
BR/εn

f̃ (ûn)ûndx +
∫

Bc
R/εn

[
λf (ûn)ûn + (û+

n )q
∗
s

]
dx

� λ

∫
BR/εn

V0

K

(|ûn|p + |ûn|q
)
dx +

∫
Bc
R/εn

[
λf (ûn)ûn + (û+

n )q
∗
s

]
dx,

(since f̃ (ûn)ûn �
V0

K

(|ûn|p + |ûn|q
)

on BR/εn)

� p

q

∫
BR/εn

V0
(|ûn|p + |ûn|q

)
dx +

∫
Bc
R/εn

[
λf (ûn)ûn + (û+

n )q
∗
s

]
dx

( since K > λq/p > 0)

� p

q

(
‖ûn‖p

V0,p
+ ‖ûn‖q

V0,q

)
+

∫
Bc
R/εn

[
λf (ûn)ûn + (û+

n )q
∗
s

]
dx.

Since ûn → û in X0 as n → ∞ and using the Dominated Convergence Theorem, we obtain∫
Bc
R/εn

[
λf (ûn)ûn + (û+

n )q
∗
s

]
dx = on(1) as n → ∞.

So, we have (
1 − p

)(
‖ûn‖p

V0,p
+ ‖ûn‖q

V0,q

)
� on(1) as n → ∞.
q
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Using q > p and ûn → û 
= 0 in X0 as n → ∞ again, we achieve a contradiction.
Now, we get the boundedness of {yn}n∈N ⊂ RN . Passing to a subsequence (still denoted by 

{yn}n∈N ), we may assume that there exists y0 ∈ RN such that yn → y0 ∈ � as n → ∞. In fact, 
if y0 /∈ �, we can find a positive number r > 0 such that yn ∈ Br/2(y0) ⊂ �

c
. Arguing as before, 

we can reach a contradiction. Hence, y0 ∈ �.
It remains to show that V (y0) = V0. Arguing by contradiction again we may assume that 

V (y0) > V0. From (44), together with Fatou’s Lemma and the invariance by translations of RN

it follows that

cV0 = IV0(v̂)

< lim inf
n→∞

{
1

p
[v̂n]ps,p + 1

q
[v̂n]qs,q +

∫
RN

V (εnx + yn)

(
1

p
|v̂n|p + 1

q
|v̂n|q

)
dx

−
∫
RN

[
λF(v̂n) + 1

q∗
s

(v̂+
n )q

∗
s

]
dx

}

� lim inf
n→∞ Jεn(tnun)� lim inf

n→∞ Jεn(un) = cV0 .

This leads to a contradiction. Therefore, by hypothesis (V2), we know that y0 ∈ M . This proof is 
now complete. �
Lemma 22. Fix λ � λ∗, where λ∗ is given in Lemma 13. Then, for any δ > 0, we have

lim
ε→0

sup
u∈N̂ε

dist (βε(u),Mδ) = 0.

Proof. Let εn → 0 in R as n → ∞, then we can find a sequence {un}n∈N ⊂ N̂εn such that

sup
u∈N̂εn

inf
y∈Mδ

|βεn(un) − y| = inf
y∈Mδ

|βεn(un) − y| + on(1) as n → ∞.

Taking into account the fact that {un}n∈N ⊂ N̂εn ⊂ Nεn , we infer that

cV0 � cεn � Jεn(un)� cV0 + e(εn),

and so

lim
n→∞Jεn(un) = cV0 .

Then, we deduce from Lemma 21 that for n ∈ N large enough there exists 
{
ŷn
}
n∈N ⊂ RN such 

that yn = εnŷn ∈ Mδ . So, we have

βεn(un) = yn +
∫
RN

[
ζ̂ (εnz + yn) − yn

] [|un(z + ŷn)|p + |un(z + ŷn)|q
]
dz∫ [|u (z + ŷ )|p + |u (z + ŷ )|q]dz .
RN n n n n
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On account of the facts that 
{
ûn(· + ŷn)

}
n∈N ⊂ X0 admits a convergent subsequence and 

εnz + yn → y0 ∈ M as n → ∞, we can infer that βεn(un) = yn + on(1) in RN as n → ∞. Thus, 
there is a sequence {yn}n∈N ⊂ Mδ such that

lim
n→∞|βεn(un) − yn| = 0.

Now, we complete the proof of the lemma. �
7. Multiple solutions for problem (2)

In this section we will focus on establishing a relationship between the topology of M and 
the number of solutions to problem (2). Since Nε is not a C1 submanifold of Xε and S+

ε is not a 
complete metric space, we cannot use directly the standard Ljusternik-Schnirelmann theory, but 
we can circumvent this difficulty by applying the abstract results in Szulkin & Weth [28].

Theorem 23. Fix λ � λ∗, where λ∗ is given in Lemma 13. Assume that (f1)–(f4) and (V1)–(V2)

are valid, then for any δ > 0 satisfying Mδ ⊂ �, there exists ε̂δ,λ > 0 such that, for any ε ∈
(0, ̂εδ,λ), problem (2) admits at least catMδ (M) positive solutions.

Proof. For any fixed ε > 0 we consider the mapping αε : M �→ S+
ε defined by

αε(y) := m−1
ε (�ε(y)) for all y ∈ M.

Then, we infer from Lemma 19 that

lim
ε→0

ψε(αε(y)) = lim
ε→0

Jε(�ε(y)) = cV0 uniformly in y ∈ M. (45)

Define the function

ē(ε) := sup
y∈M

|ψε(αε(y)) − cV0 |.

So, relation (45) implies that ē(ε) → 0 in R as ε → 0. Also, we introduce the following set:

Ŝ+
ε := {

ω ∈ S+
ε : ψε(ω)� cV0 + ē(ε)

}
.

Clearly, for all y ∈ M and ε > 0, ψε(αε(y)) ∈ Ŝ+
ε , that is, Ŝ+

ε 
= ∅.
Using the above information and invoking Lemma 19, Lemma 10-(c), Lemma 20 and 

Lemma 22, we derive that there exists ε̂ = ε̂δ,λ > 0 such that, for all ε ∈ (0, ̂εδ,λ), the follow-
ing diagram is well-defined:

M
�ε�−→ �ε(M)

m−1
ε�−→ αε(M)

mε�−→ �ε(M)
βε�−→ Mδ.

By Lemma 20 and decreasing ε̂ if necessary, then, for all y ∈ M we obtain βε(�ε(y)) =
y + l(ε, y), where |l(ε, y)| � δ/2 uniformly in y ∈ M and for all ε ∈ (0, ̂ε). Hence, H(t, y) :=
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y + (1 − t)l(ε, y) for (t, y) ∈ [0, 1] ×M is homotopy between βε ◦�ε = (βε ◦ mε) ◦
(
m−1

ε ◦ �ε

)
and the inclusion map id : M �→ Mδ . This fact means that

catαε(M)αε(M)� catMδ (M). (46)

Note that λ � λ∗. From Corollary 9, Lemma 17 and Theorem 27 in Szulkin & Weth [28], 
with c = cε � cV0 + ē(ε) = d and K = αε(M), it follows that ψε admits at least catαε(M)αε(M)

critical points on Ŝ+
ε . Finally, applying Lemma 6-(d) and (46), we see that the functional Jε has 

at least catMδ (M) critical points in N̂ε . This proof is now complete. �
8. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. The most important thing is to show that 
the solutions obtained in Theorem 23 satisfy the following estimate:

for ε > 0 sufficiently small, uε(x)� a for all x ∈ �c
ε.

Then we can exploit this fact and recall the definitions of g, G, and deduce that these solutions are 
indeed solutions of the original problem (Pλ). For this purpose, we shall consider the regularity 
of nonnegative solutions of problem (2). Inspired by Moser [27] and Ambrosio & Rădulescu [9], 
we start with the following lemma which plays an important role in the study of behavior of the 
maximum points of solutions to problem (Pλ).

Lemma 24. Fix λ � λ∗, where λ∗ is given in Lemma 13. Let εn → 0 in R as n → ∞ and 
un ∈ N̂εn be a solution to problem (2). Then, Jεn(un) → cV0 in R as n → ∞, and there is some 
sequence 

{
ŷn
}
n∈N ⊂ RN such that ûn(·) := un(· + ŷn) ∈ L∞(RN) and |ûn|L∞(RN) � C for all 

n ∈N , for some constant C > 0. Furthermore,

ûn(x) → 0 as |x| → +∞ uniformly in n ∈ N. (47)

Proof. Note that λ � λ∗ and un ∈ N̂εn . Proceeding as in the proof of Lemma 22, we know that 
Jεn(un) → cV0 in R as n → ∞. Then, we can use Lemma 21 to deduce that there is a sequence {
ŷn
}
n∈N ⊂ RN such that ûn(·) := un(· + ŷn) → û(·) ∈ X0 and yn := εnŷn → y0 ∈ M as n → ∞. 

For any L > 0 and β > 1 we introduce the function

ψ(ûn) := ûnû
q(β−1)
n,L ∈ Xεn, where ûn,L := min

{
ûn,L

}
.

Choosing ψ(ûn) as test function, we have

∫
RN

∫
RN

|ûn(x) − ûn(y)|p−2(ûn(x) − ûn(y))(ψ(ûn(x)) − ψ(ûn(y)))

|x − y|N+sp
dxdy

+
∫
N

∫
N

|ûn(x) − ûn(y)|q−2(ûn(x) − ûn(y))(ψ(ûn(x)) − ψ(ûn(y)))

|x − y|N+sq
dxdy
R R
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+
∫
RN

V (εnx + yn)|ûn|p−2ûnψ(ûn)dx +
∫
RN

V (εnx + yn)|ûn|q−2ûnψ(ûn)dx

= λ

∫
RN

g(εnx + yn, ûn)ψ(ûn)dx.

According to the growth of g, we see that for any σ > 0 there exists Cσ > 0 such that

|g(x, t)| � σ |t |p−1 + Cσ |t |q∗
s −1 for all (x, t) ∈RN ×R.

Using (V1) and taking σ ∈ (0, V0/λ), together with the above relations, we can conclude that∫
RN

∫
RN

|ûn(x) − ûn(y)|p−2(ûn(x) − ûn(y))(ψ(ûn(x)) − ψ(ûn(y)))

|x − y|N+sp
dxdy

+
∫
RN

∫
RN

|ûn(x) − ûn(y)|q−2(ûn(x) − ûn(y))(ψ(ûn(x)) − ψ(ûn(y)))

|x − y|N+sq
dxdy

� C

∫
RN

|ûn|q∗
s û

q(β−1)
n,L dx (48)

for some constant C > 0.
Let us introduce the following functions

ϕ(t) := |t |q
q

and ϒ(t) :=
t∫

0

(ψ ′(τ ))
1
q dτ.

We first observe that ψ is an increasing function, thus it holds

(a − b)(ψ(a) − ψ(b))� 0 for all a, b ∈ R. (49)

Then we can use (49) and the Jensen inequality to obtain that

ϕ′(a − b)(ψ(a) − ψ(b))� |ϒ(a) − ϒ(b)|q for all a, b ∈ R. (50)

Obviously, we have

ϒ(ûn)�
1

β
ûnû

β−1
n,L . (51)

Thus, by (48), (49), (50) and (51) and using Theorem 3, we can find some constant C > 0 such 
that

|ûnû
β−1
n,L |qq∗

s
� Cβq

∫
RN

û
q∗
s

n û
q(β−1)
n,L dx. (52)
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Choose β = q∗
s

q
and let R > 0 large enough. Combining ûn → û in X0 as n → ∞ with the 

Hölder inequality, we can infer that there exists some constant C > 0 such that

⎡⎢⎣∫
RN

(
ûnû

q∗
s −q

q

n,L

)q∗
s

dx

⎤⎥⎦
q

q∗
s

� Cβq

∫
RN

Rq∗
s −q û

q∗
s

n dx + Cε

⎡⎢⎣∫
RN

(
ûnû

q∗
s −q

q

n,L

)q∗
s

dx

⎤⎥⎦
q

q∗
s

.

Then, we choose a fixed ε ∈ (0, 1/C) and infer that

⎡⎢⎣∫
RN

(
ûnû

q∗
s −q

q

n,L

)q∗
s

dx

⎤⎥⎦
q

q∗
s

� Cβq

∫
Rq∗

s −q û
q∗
s

n dx < +∞.

In the above inequality we pass to the limit as L → +∞ and we have ûn ∈ L
q∗
s

2

q (RN).
Due to 0 � ûn,L � ûn, then in (52) we pass to the limit as L → +∞ and we get

|ûn|βqβq∗
s
� Cβq

∫
RN

û
q∗
s +q(β−1)

n dx.

This fact means that⎛⎜⎝∫
RN

û
βq∗

s
n dx

⎞⎟⎠
1

q∗
s (β−1)

� (C1/qβ)
1

β−1

⎡⎢⎣∫
RN

û
q∗
s +q(β−1)

n dx

⎤⎥⎦
1

q(β−1)

.

Now, we consider the sequence {βm}m�1 ⊂ R (m ∈ N) which satisfies the following recursive 
relation:

q∗
s + q(βm+1 − 1) = βmq∗

s and β1 = q∗
s

q
.

It follows that

βm+1 = βm
1 (β1 − 1) + 1,

and so

lim
m→∞βm = +∞.

Let us define

Tm :=
⎛⎜⎝∫

N

û
βmq∗

s
n dx

⎞⎟⎠
1

q∗
s (βm−1)

.

R
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So, we have

Tm+1 � (C1/qβm+1)
1

βm+1−1 Tm.

Clearly, using a standard iteration argument we have

Tm+1 �
m∏

k=1

(C1/qβk+1)
1

βk+1−1 T1 � CT1, where C is independent of m.

In the above inequality we pass to the limit as m → ∞ and then we conclude that |ûn|L∞(RN) �
C uniformly in n ∈N .

Next, let us define

κn := −V (εnx + yn)
(
û
p−1
n + û

q−1
n

)
+ λg(εnx + yn, ûn).

We observe that ûn fulfills the following equation:

(−�)spûn + (−�)sq ûn = κn in RN.

By the growth hypotheses on g, Corollary 2.1 in Ambrosio & Rădulescu [9], ûn → û in X0
as n → ∞ and the uniformly boundedness of 

{
ûn

}
n∈N in L∞(RN) ∩ X0, we can infer that 

ûn(x) → 0 in R as |x| → +∞ uniformly with respect to n ∈N . The proof of this lemma is now 
finished. �
Proof of Theorem 1 completed. Let us take δ > 0 small enough such that Mδ ⊂ �. We claim 
that there exists ε̄δ,λ > 0 such that for any ε ∈ (0, ̄εδ,λ) and any solution uε ∈ N̂ε of problem (2), 
we have

|uε|L∞(�c
ε)

< a. (53)

Otherwise, we may assume that there is a subsequence {εn}n∈N ⊂ R such that εn → 0 as n → ∞, 
uεn ∈ N̂εn such that J ′

εn
(uεn) = 0 and

|uεn |L∞(�c
εn

) � a. (54)

Clearly, we know that Jεn(uεn) → cV0 in R as n → ∞, and then we can use Lemma 21 to 
deduce that there is a sequence 

{
ŷn
}
n∈N ⊂ RN such that ûn(·) := uεn(· + ŷn) → û(·) in X0 and 

εnŷn → y0 ∈ M as n → ∞.

Let r be a positive real number such that Br(y0) ⊂ B2r (y0) ⊂ �, and so B r
εn

(
y0
εn

)
⊂ �εn . 

Additionally, for n large enough we can conclude that �c
εn

⊂ Bc
r
εn

(ŷn). Using (47), we see that 

ûn(x) → 0 as |x| → +∞ uniformly in n ∈N . Therefore, we can find R > 0 such that ûn(x) < a

for any |x| � R, n ∈ N . Consequently, uεn(x) < a for any x ∈ Bc
R(ŷn), n ∈ N . Moreover, for all 

n ∈N large enough, we obtain that

�c
εn

⊂ Bc
r (ŷn) ⊂ Bc

R(ŷn).

εn
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Hence, we derive that uεn(x) < a for any x ∈ �c
εn

and for all n ∈N large enough, which contra-
dicts relation (54).

Fix ε ∈ (0, εδ,λ), where εδ,λ := min{ε̂δ,λ, ̄εδ,λ}. It follows from Theorem 23 that problem 
(2) has at least catMδ (M) nontrivial solutions for each λ � λ∗. If uε represents one of these 
solutions, we have that uε ∈ N̂ε , and then we can apply relation (53) and review the definitions 
of the modified nonlinearity g to infer that uε is also a solution to problem (Pλ) for each λ � λ∗. 
Thus, problem (Pλ) admits at least catMδ (M) nontrivial solutions for each λ � λ∗.

Eventually, we show the behavior of the maximum points of solutions of problem (Pλ) for 
each λ � λ∗. Let us choose εn → 0 (as n → ∞) and consider a sequence {un}n∈N ⊂ Xεn of 
solutions for problem (Pλ) as before. From (g1) it follows that there exists a positive constant 
ι < a such that

g(εx, t)t � V0

K

(
tp + tq

)
for any x ∈RN, t ∈ [0, ι]. (55)

Proceeding as before, there exists R > 0 such that

|un|L∞(Bc
R(ŷn)) < ι. (56)

In addition, we can extract a subsequence {un}n∈N ⊂ Xεn (still denoted by itself) and assume 
that it has

|un|L∞(BR(ŷn)) � ι. (57)

Otherwise, if relation (57) does not hold, we deduce from (56) that |un|L∞(RN) < ι. Taking into 
account un ∈ Nεn again, (55) and recalling that K > λq/p > 0, we get

‖un‖p
Vεn ,p

+ ‖un‖q
Vεn ,q

� λ

∫
RN

g(εnx,un)undx,

� pV0

q

∫
RN

(|un|p + |un|q
)
dx.

This fact means that ‖un‖Xεn
= 0, which is absurd. Thus, relation (57) is fulfilled. Using relations 

(56) and (57), we see that if pn is a global maximum point of un and pn = ŷn + qn for some qn ∈
BR . Therefore, εnpn → y0 ∈ M as n → ∞. This fact combined the continuity of the potential V
yields that V (εnpn) → V (y0) = V0 in R as n → ∞. This proof is now complete. �
9. The supercritical case

In the last section we study problem (Sη). Since problem (Sη) has a supercritical nonlinear 
term, we first truncate the nonlinearity fη(u) := |u|θ−2u + η|u|r−2u in an appropriate way. Let 
b > 0 be a real number, and its value will be fixed later. Now, we introduce the following trunca-
tion function:
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fη(t) =

⎧⎪⎨⎪⎩
0 if t < 0,

tθ−1 + ηtr−1 if 0 � t < b,

(1 + ηbr−θ )tθ−1 if t � b.

It is easy to see that fη is a continuous function and verifies the following properties:

(f ′
1) limt→0

fη(t)

|t |p−1 = 0;

(f ′
2) there exists ν ∈ (q, q∗

s ) such that

lim|t |→+∞
fη(t)

|t |ν−1 = 0;

(f ′
3) 0 < θFη(t) := θ

∫ t

0 fη(τ )dτ � fη(t)t for all t > 0;

(f ′
4) the map t �→ fη(t)

tq−1 is increasing for all t ∈ (0, +∞),

(fη) fη(t) � (1 + ηbr−θ )tθ−1 for all t � 0.

Next, we consider the following truncation problem:

{
(−�)spu + (−�)squ + V (εx)(|u|p−2u + |u|q−2u) = fη(u) in RN,

u ∈ Ws,p(RN) ∩ Ws,q(RN), u > 0, η > 0 in RN.

}
(Tη)

The functional Jε,η : Xε �→ R associated to problem (Tη) is defined by

Jε,η(u) := 1

p
‖u‖p

Vε,p
+ 1

q
‖u‖q

Vε,q
−
∫
RN

Fη(u)dx for all u ∈ Xε.

Also, we introduce the functional of the limit problem of problem (Tη) as follows

J0,η(u) := 1

p
[u]ps,p + 1

q
[u]qs,q + V0

(
1

p
|u|pp + 1

q
|u|qq

)
−
∫
RN

Fη(u)dx for all u ∈ X0.

Arguing as in the proof of Theorem 1 (see also Ambrosio & Rădulescu [9, Theorem 1.1]), we 
infer that for each η � 0 and δ > 0, there exists ε̂(δ, η) > 0 such that, for any ε ∈ (0, ̂ε(δ, η)), 
problem (Tη) has at least catMδ (M) positive solutions. If uε,η denotes one of these solutions, 
we can show that the Ws,q -norm of uε,η can be uniformly estimated with respect to η� 0. This 
statement can be expressed as follows:

Lemma 25. Fix η� 0. Then there is a constant C > 0 such that, for any ε > 0 small enough,

‖uε,η‖Vε,q � C,

where C is independent of η and ε.
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Proof. By a simple examination of the proof of Theorem 1, we know that for each solution uε,η

of problem (Tη) fulfills the following relation:

Jε,η(uε,η)� c0,η + eη(ε),

where c0,η is the mountain pass level with respect to the functional J0,η and eη(ε) → 0 as ε → 0. 
Decreasing ε̂(δ, η) if necessary, we may assume that for any ε ∈ (0, ̂ε(δ, η)),

Jε,η(uε,η)� c0,η + 1.

On account of the fact that c0,0 � c0,η for all η� 0, for any ε ∈ (0, ̂ε(δ, η)) we infer that

Jε,η(uε,η)� c0,0 + 1. (58)

In addition, we have

Jε,η(uε,η) = Jε,η(uε,η) − 1

θ
〈J ′

ε,η(uε,η), uε,η〉

=
(

1

p
− 1

θ

)
‖uε,η‖p

Vε,p
+
(

1

q
− 1

θ

)
‖uε,η‖q

Vε,q

+
∫
RN

[
1

θ
fη(uε,η)uε,η − Fη(uε,η)

]
dx

�
(

1

q
− 1

θ

)
‖uε,η‖q

Vε,q
(using (f ′

3)). (59)

Combining (58) and (59), we derive that there exists some constant C > 0, independent of ε
and η, such that

‖uε,η‖Vε,q � C,

for any ε ∈ (0, ̂ε(δ, η)). The proof is now complete. �
Finally, our aim is to prove that uε,η is the solution of the original problem (Sη) if η is small 

enough. For this goal, we shall develop a suitable Moser iteration technique. For simplicity, let 
u = uε,η and set uL := min{u, L}. Choosing ψ(u) := uu

q(β−1)
L (β > 1 will be chosen later) as 

the test function in problem (Tη), we obtain

∫
RN

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y)))

|x − y|N+sp
dxdy

+
∫
N

∫
N

|u(x) − u(y)|q−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y)))

|x − y|N+sq
dxdy
R R
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+
∫
RN

V (εx)|u|p−2uψ(u)dx +
∫
RN

V (εx)|u|q−2uψ(u)dx

=
∫
RN

fη(u)ψ(u)dx.

Then, we can argue as in the proof of relation (52) and use (fη) to conclude that

|uuβ−1
L |qq∗

s
� C1β

q
(
1 + ηbr−θ

) ∫
RN

uθu
q(β−1)
L dx,

⇒ |uuβ−1
L |qq∗

s
� C1β

q
(
1 + ηbr−θ

) |u|θ−q
q∗
s

|uuβ−1
L |qκ∗ (60)

(using the Hölder inequality, where κ∗ = qq∗
s /(q

∗
s − θ + q),

where C1 is a positive constant and independent of ε and η.
Now, we can deduce from Lemma 25, Theorem 3 and relation (60) that there exist C2 > 0, 

independent of ε and η, such that

|uuβ−1
L |qq∗

s
� C2β

q
(
1 + ηbr−θ

) |uuβ−1
L |qκ∗ . (61)

If uβ ∈ Lκ∗
(RN) then, from the fact that uL � u and relation (61), it follows that

|uuβ−1
L |qq∗

s
� C2β

q
(
1 + ηbr−θ

) |u|qββκ∗ < +∞ (using the assumption uβ ∈ Lκ∗
(RN)). (62)

In relation (62) we pass to the limit as L → +∞ and use the Fatou’s Lemma to deduce that

|u|q∗
s β

� (C2 + ηC2b
r−θ )

1
qβ β

1
β |u|βκ∗ (63)

for uβκ∗ ∈ L1(RN).
Set β = q∗

s

κ∗ > 1. Due to u ∈ Lq∗
s (RN), relation (63) holds true for this choice of β . Via a 

standard iterative step, for each 1 �m ∈ N , we deduce that

|u|q∗
s β

m � (C2 + ηC2b
r−θ )

∑m
k=1 q−1β−k

β
∑m

k=1 kβ−k |u|q∗
s
,

⇒ |u|L∞(RN) � (C2 + ηC2b
r−θ )

∑∞
k=1 q−1β−k

β
∑∞

k=1 kβ−k

C3 (64)

(letting m → ∞ and using Theorem 3, Lemma 25),

where C3 is a positive constant and independent of ε and η.
Take

b := 2C
∑∞

k=1 q−1β−k

2 β
∑∞

k=1 kβ−k

C3 and η∗ :=
(

2
1∑∞

k=1 q−1β−k −1 − 1

2

)
bθ−r .

Then, from (64) it follows that
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|u|L∞(RN) < b for any η ∈ [0, η∗],

which implies that u = uε,η is a solution of problem (Sη). This proof of Theorem 2 is now 
complete. �
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[8] V. Ambrosio, T. Isernia, V.D. Rădulescu, Concentration of positive solutions for a class of fractional p-Kirchhoff 
type equations, Proc. R. Soc. Edinb. A 151 (2021) 601–651.
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