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In this paper, we prove the existence of a continuous spectrum for a family of discrete
boundary value problems. The main existence results are obtained by using critical
point theory. The equations studied in the paper represent a discrete variant of some
recent anisotropic variable exponent problems, which deserve as models in different
fields of mathematical physics.

Keywords: eigenvalue problem; discrete boundary value problem; critical point; weak
solution; continuous spectrum
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1. Introduction and main results

This paper is concerned with the study of the existence of solutions for the discrete
boundary value problem

—A(Autk — DI* 2 Auk — 1) = Au*C " uk), &k € 711, T,

ey
w0)=u(T +1)=0,

where T = 2 is a positive integer and Au(k) = u(k + 1) — u(k) is the forward difference
operator. Here and hereafter, we denote by Z[a, b] the discrete interval {a, a + 1,..., b}
where a and b are integers and a < b. Moreover, in this paper, we assume that functions
p:Z[0, T]— [2, 00) and ¢:Z[1, T] — [2, 00) are bounded while A is a positive constant.
The study of discrete boundary value problems has captured special attention in the
last years. We just refer to the recent results of Agarwal et al. [2], Cai and Yu [4], Yu and
Guo [22], Zhang and Liu [23] and the references therein. The studies regarding such type
of problems can be placed at the interface of certain mathematical fields such as nonlinear
partial differential equations and numerical analysis. On the other hand, they are strongly
motivated by their applicability in mathematical physics. We note that problem (1) is the

discrete variant of the variable exponent anisotropic problem

i=1

ou
axi

pi(x)—2 ou )
— ) = AMul™ %, for x€Q
0X; )

u=>0, for x € 942,
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where Q C RY (N = 3) is a bounded domain with smooth boundary, A > 0 is a real
number, and p,(x), ¢(x) are continuous on () such that N > p,(x) = 2 and g(x) > 1 for any
x € Q and all i € Z[1, N]. Problem (2) was recently analyzed by Mihiilescu—Pucci—
Radulescu in Refs. [10,11] (see also the studies in Refs. [8,16,17,20,21] for the case, when
pi(x) are constant functions). Problems like (2) have been intensively studied in the last
decades, since they can model various phenomena arising from the study of elastic
mechanics (see, Zhikov [24]), electrorheological fluids (see, Acerbi and Mingione [1],
Diening [6], Halsey [9], Ruzicka [18], Mihailescu and Radulescu [12—-15]) or image
restoration (see, Chen, Levine and Rao [5]).

In this paper, our goal is to use the critical point theory in order to establish the
existence of a continuous spectrum of eigenvalues for problems of type (1). Our idea is to
transfer the problem of the existence of solutions for problem (1) into the problem of
existence of critical points for some associated energy functional. On the other hand, we
point out that, to our best knowledge, discrete problems like (1), involving anisotropic
exponents, have not yet been discussed. Thus, the present paper can be regarded as a
contribution in this direction.

We are interested in finding week solutions for problems of type (1). For this purpose,
we define the function space

H={u:7[0,T+1]— R; suchthat u(0) = u(T + 1) = 0}.
Clearly, H is a T-dimensional Hilbert space (see [2]) with the inner product
T+1
,v) =Y Autk — DAvk — 1), V u,v € H.

k=1

This associated norm is defined by

T41 1/2
llull = (ZIAu(k - 1)|2> :
k=1

By a weak solution for problem (1) we understand a function u € H such that

T+1 T
> 1Autk — D72 Autk — DAV — 1) = A |u() " utkvik) = 0,
k=1 k=1

for any v € H.

Denote for short maxiez(,.»1p(k) by maxz,, p and mingez(,pp(k) by ming, 1p.
The main results of this paper are the following.

THEOREM 1. Assume that functions p and q verify the hypothesis

max p < ming. 3
Z[O,T]p Z[I‘T]q )

Then for any N > 0 problem (1) has a nontrivial weak solution.



16:01 2 July 2009

[Geary, Nicole][Trinity University] At:

Downl oaded By:

Journal of Difference Equations and Applications 559

THEOREM 2. Assume that functions p and q verify the hypothesis

maxqg < min p. 4
Z[I,T]q Z[O,T]p @

Then, there exists N¥* > 0 such that for any N > N** problem (1) has a nontrivial weak
solution.

THEOREM 3. Assume that functions p and q verify the hypothesis

min g < min p. 5
Z[I,T]q Z[(),T]p )

Then, there exists N* > 0 such that for any N € (0,\*) problem (1) has a nontrivial weak
solution.

Remark 1. We point out that if relation (5) is verified then relation (4) is fulfilled, too.
Consequently, the result of Theorem 2 can be completed with the conclusion of Theorem
3. More exactly, we deduce the following corollary.

COROLLARY 1. Assume that functions p and q verify the hypothesis

ming < min p.
zu,r]q Z[(),T]p

Then there exist N* > 0 and N** > 0 such that for any N € (0,\*) U (N** 00) problem (1)
possesses a nontrivial weak solution.

Remark 2. On the other hand, we point out that the result of Theorem 3 holds true in
situations that extend relation (4) since in relation (5) we could have

ming < min p < maxgq.
Z[I,T]q Z[O,T]p Z[I,T]q

2. Auxiliary results

From now on we will use the following notations:

— . + — . +
= min = max = min = maxg.
p Z[O,T]p7 p Z|0,T|p’ 1 Z[l,T]q’ 1 Z[l,T]q

On the other hand, it is useful to introduce other norms on H, namely

T 1/m
|M|m = (Z |M(k)|m> 5 V u e Handm = 2
k=1

It can be verified (see Ref. [4]) that

TC=m/Cm yly < lul, = TV |ul,, V uE Handm = 2. (6)
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We start with the following auxiliary result.

LeEmma 1.
(a) There exist two positive constants Cy and C, such that
T+1 -
S lAute = DPCV = Cpllull” = €, Y u € H with |lull > 1.
k=1
(b) There exists a positive constant C3 such that
T+1

S 1Aute = DPV = Coellull””, Y u € H with llull < 1.
k=1

(c¢) For any m = 2 there exists a positive constant c,, such that

T+1

T
Z lu(k)|™ = cm-z |Autk — DI™, ¥ u € H.
k=1 k=1

Proof.
(a) Fix u € H with ||lu|]| > 1. We define

it [Auth] < 1
T oL JAub)l > 1,

for each k € Z|0, T].
We deduce that

T+1 T+1
> lAutk— HPED = > 1Autk — 1)
k=1 k=1
T+1 - - .
=> luk=DF = > (Auk= DI —1dutk—DI")
k=1 {kEZ(0,TT;00—1=p}

T+1

= Z [Autk— DI —T.
k=1

The above inequality and relation (6) imply

T+1 B
> lAuk = DI = TCPORYWP — T,V u € Hwith [lull > 1.
k=1
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Thus, we proved that (a) holds true.

(b) Assume u € H with ||u|| < 1.1t follows that |Au(k)| < 1 for each k € Z[0, T]. So,
by (6) we deduce that

T+1 T+1 N N i
> 1Auk = DI = Autk = DI = 1/TEOR |l
k=1 k=1

Thus, we proved that (b) holds true.
(c) Since

k—1
lu(k)| = Z |Au(i)l, VY u € H and k € Z[0,T],
i=0

we deduce that for any positive real number m = 2, there exists a positive constant
Cm, « Such that

k—1
lu(k)|™ < c,,uk.Z |Au()|”, VY u € H and k € Z[0,T].
=0

The above information implies that there exists a positive constant c,, such that

T T+1
> " = e Autk = D", ¥ uE€H. @)
=1 k=1

The proof of Lemma 1 is complete. 0

3. Proof of the main results
For any A > 0 the energy functional corresponding to problem (1) is defined as J,:H — R,

T+1 T
1 k—1) 1 (k)
@ =3 ———Autk — DP* = ST —Juo)Y.
! ,; pk—1) ,; q(k)
Standard arguments assure that J, € C l(H, R) and
T+1 T
@), v)y =" Auk — DI Auk — DAk — 1) = A Lu()l ™ ukvik),
A
k=1 k=1

for all u, v € H. Thus, the weak solutions of (1) coincide with the critical points of J,.

3.1 Proof of Theorem 1

In order to prove that J) has a nontrivial critical point our idea is to show that actually J,
possesses a mountain-pass geometry. With that end in view, we start by proving two
auxiliary results.

LeEMMA 2. There exist > 0 and o > 0, such that Jy(u) = a > 0, for any u € H with
llull = 7.
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Proof. First, we point out that

(ol + )| = lu®)"®, ¥ k€ Z[1,T) and u € H. ®)
Using the above inequality, we find
Bw=5 L o - A (g ), veen o)
u) = — — Au(k — — — | |ul?- ul’ |, u .
g prim pk—1) g -\ 1 1
Next, we focus on the case, when u € H with |[u|| < 1. Thus, |Au(k)| < 1 for any k € Z[0,
T + 1]. Then, using Lemma 1(c) and relation (6), we infer
_ . T+1 B T+1 .
luld - + |M|Z+ = cq—z [Autk — D|? + cq+z [Au(k — 1)|?
=1 k=1
- +
= ¢y Tl + ¢y Thall”" (10)

For u € H with ||u|| < 1 the above inequalities combined with relation (9), Lemma 1(b) and
relation (6) imply

C PA - N
Ina) =l === (- Tllull’” + e Tl )
p* q

-_p+ +_p+ +
= (dy — do-|lull” " —ds-llull” 7 )Nl
where dy, d, and d5 are positive constants.

We remark that the function g:[0,1] — R defined by

+

gty =d; —dyt? P —dyt? P

is positive in a neighborhood of the origin by continuity argument. We conclude that
Lemma 2 holds true. O

LEMMA 3. There exists e € H with |le|| > n (where n is given in Lemma 2) such that
Ty(e) < 0.

Proof. Consider the function ¢ : Z[0,7 + 1] — R such that there exists ko an integer
satisfying 0 <ky<T+ 1, for which ¢(kp)=1 and ¢(k)=0 for any
k € Z[0,T + 11\{ko}. Thus, we deduce that s € H. For each t > 1 we have

1Pko) tPko—1) (ko) 2.tP + ta”
It = + - A =" — A —.
M pko) T ptko = 1) " alke)  p q*
Sinceq >p *, itis clear that lim,_,coJ A(t) = — oo, Then, for t > 1 large enough, we can

take e = ti such that ||e]| > n and J,(e) < 0.
The proof of Lemma 3 is complete. U
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Proof of Theorem 1. By Lemma 2 and 3 and the mountain-pass theorem of Ambrosetti and
Rabinowitz [3], we deduce the existence of a sequence {u,} C H such that

Ja(uy)—¢ >0 and J)(u,) = 0asn— oo. (11)

We prove that {u,} is bounded in H. Arguing by contradiction, we assume that passing
eventually to a subsequence, still denoted by {u,}, we have |lu,|| — oo. Thus, we may
assume that for n large enough, we have ||u,|| > 1.

Relation (11) and the above considerations imply that for n large enough, we have

1 1 1)\ _
F2 o luall = Jaun) = = ), ) = (p—+ - q—) > 1Au, (ke = DI
k=1

By Lemma 1(a) and the above inequality, we deduce that there exist two positive
constants D; and D, such that

1+ ¢+ llugll = Dy-llu,ll” — Dy,

for n large enough. Dividing by ||u,]|”  in the above inequality and passing to the limit as

n — oo, we obtain a contradiction. It follows that {u,,} is bounded in H. That information

combined with the fact that H is a finite dimensional Hilbert space implies that there exists

a subsequence, still denoted by {u,}, and uy € H such that {u,} converges to u, in H.
Then, by relation (11) we have

Jy(up) =¢ >0 and Jl)‘(u()) =0.

We conclude that ug is a nontrivial weak solution of problem (1). O

3.2 Proof of Theorem 2

For any A > 0, let J, be defined as above.

Now, we show that J, possesses a nontrivial global minimum point in H. With that end
in view, we remark that Lemma 1(a) implies that J) is coercive on H. On the other hand, it
is obvious that it is also weakly lower semicontinuous on the finite dimensional Hilbert
space H. These two facts enable us to apply Theorem 1.2 in [19] in order to find that there
exists u), € H a global minimizer of J, and thus, a weak solution of problem (1).

We show that u, is not trivial for A large enough. Indeed, letting #, > 1 be a fixed real
and defining the function vy : Z[0,T 4+ 1] — R such that there exists an integer k, with
0 < ko < T+ 1, for which vy(ky) = t, and vo(k) = 0 for any k € Z[0,T + 1]\ {ko}, we
deduce that vy € H and

tg(ko —1) t(z)ﬂ(ko) A tg(ko)
Jr(v) = + - =L, — LA,
M T ko — 1) ptko)  qtkoy !

where L, and L, are two positive constants. Thus, there exists A** > 0, such that
Ja(vg) < 0O forany A € [X**, 00). It follows that J,(u)) < O for any A = A** and thus, u, is
a nontrivial weak solution of problem (1) for A large enough. The proof of Theorem 2 is
complete.
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3.3 Proof of Theorem 3

For any A > 0 let J, be defined as above.

We show that, by using the hypothesis of Theorem 3, the functional J, has a nontrivial
critical point by applying Ekeland’s variational principle [7]. In order to do that we first
prove two auxiliary results.

LEMMA 4. There exists A* > 0, such that for any A € (0,\*) there exist p, a > 0, such that
JI\w) = a > 0 for any u € H with |lul| = p.

Proof. First, let us remark that for any u € H, Lemma 1(c) implies
callull = lul,.
Combining that fact and inequality (6), we deduce that
TV ull = lul,-, VY u€H. (12)
We fix p € (0,1) such that p < min{1,1/(c;-T"¢ )}. Thus, for any u € H with ||ul| = p,

we have |ul, - < 1. It follows that, in this case, |u(k)| < 1 holds for any k € Z[0, T + 1].
Therefore,

T
S @™ = ull-, ¥ u€H with llull = p. (13)
k=1

By relations (12) and (13), we obtain
T — —
Z lu(k)| "™ < A Tl , V u€H with |[ull = p.
=1
By Lemma 1(b) and the above relation we deduce that for any u € H with |[u|| = p, the

following inequalities hold true

C oA T . .
T = Ll = T2l = (Capt T = s )

where C, and Cs are positive constants. By the above inequality and the fact that
g~ <p =pt, weremark that if we define

Cypl' =
ne=AP 14
205 (14)
then for any A € (0,A%) and any u € H with ||u|| = p there exists a = C4- p” /2 such that
) =a>0.

The proof of Lemma 4 is complete. U

LEMMA 5. There exists ¢ € H such that ¢ =0, ¢ # 0 and J\(tp) <0, for t > 0 small
enough.
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Proof. Since ¢ < p it follows that there exists an integer ky such that 0 < ko < T 4+ 1
and g = q(ko) < p = p(ko). We define the function ¢ : Z[0,T 4+ 1] — R such that
o(ko) = 1 and (k) = 0, for any k € Z[0,T + 1]1\{ko}. We deduce that ¢ € H and for any
t € (0,1) we have

tPko=1) P ko) 1 4(ko) _ 24P Atd

Jat-@) = A= .
e o s T R S e

The above inequality implies

J,\(I'QD) < 07
for any r < 8%~ %) where
0<s<l
2-q+
The proof of Lemma 5 is complete. U

Proof of Theorem 3. Let A* > 0 be defined as in (14) and A € (0,A¥). By Lemma 4, it
follows that on the boundary of the ball centered at the origin and of radius p in H, denoted
by B,(0), we have

i > 0.
a%;rpl(’[;))J)\ 0 (15)

On the other hand, by Lemma 5, there exists ¢ € H such that J,(t¢) < 0 for all + > 0 small
enough. Moreover, relation (6) and Lemma 1(b) imply that for any u € B,(0), we have

C + A - +
T = lll” = = (e Tlll” + o Tl

It follows that

—o0 < ¢:= infJ) <O.
B,(0)

We let now

0<e< inf J, — inf J,.
9B,(0) B,(0)

Applying Ekeland’s variational principle to the functional J, : B,(0) — R, we find u. €
B,(0) such that

Ja(ue) < infJ) + €
B,(0)

J)\(Me) < JA(M) + E”u - ue”v u 7 Ue.

Since

Ja(ue) = infJy+ €= infJy+e < inf J
(o) B,(0) g B,(0) A 9B,(0) o
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we deduce that u. € B,(0). Now, we define I, : B,(0) = R by I, (1) = Jy(u) + €-|lu — ucl.
It is clear that u. is a minimum point of 7, and thus,

Inute + 1) = Do) _
t

)

for small # > 0 and any v € B;(0). The above relation yields

+ e |v]| = 0.

Ia(ue + 1v) — Jy(ue)
t
Letting ¢ — 0, it follows that (J3(u.),v) + €-||v]| > 0 and we infer that ||/\(uo)l| = €.
We deduce that there exists a sequence {w,} C B,(0) such that
Jawy) — ¢ and J)\(w,) — 0. (16)

Since the sequence {w,} is bounded in H, there exists w € H such that, up to a
subsequence, {w,} converges to w in H. So, by (16),

Jxw)=¢ <0 and J\(w)=0. 17)
We conclude that w is a nontrivial weak solution for problem (1).
The proof of Theorem 3 is complete. U
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