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Eigenvalue problems for anisotropic discrete boundary value problems
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In this paper, we prove the existence of a continuous spectrum for a family of discrete
boundary value problems. The main existence results are obtained by using critical
point theory. The equations studied in the paper represent a discrete variant of some
recent anisotropic variable exponent problems, which deserve as models in different
fields of mathematical physics.

Keywords: eigenvalue problem; discrete boundary value problem; critical point; weak
solution; continuous spectrum
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1. Introduction and main results

This paper is concerned with the study of the existence of solutions for the discrete

boundary value problem

2DðjDuðk 2 1Þj
pðk21Þ22

Duðk 2 1ÞÞ ¼ ljuðkÞj
qðkÞ22

uðkÞ; k [ Z½1; T�;

uð0Þ ¼ uðT þ 1Þ ¼ 0;

8<
: ð1Þ

where T $ 2 is a positive integer and Du(k) ¼ u(k þ 1) 2 u(k) is the forward difference

operator. Here and hereafter, we denote by Z[a, b ] the discrete interval {a, a þ 1, . . . , b}

where a and b are integers and a , b. Moreover, in this paper, we assume that functions

p:Z[0, T ] ! [2, 1) and q:Z[1, T ] ! [2, 1) are bounded while l is a positive constant.

The study of discrete boundary value problems has captured special attention in the

last years. We just refer to the recent results of Agarwal et al. [2], Cai and Yu [4], Yu and

Guo [22], Zhang and Liu [23] and the references therein. The studies regarding such type

of problems can be placed at the interface of certain mathematical fields such as nonlinear

partial differential equations and numerical analysis. On the other hand, they are strongly

motivated by their applicability in mathematical physics. We note that problem (1) is the

discrete variant of the variable exponent anisotropic problem

2
XN

i¼1

›

›xi

›u

›xi

����
����
piðxÞ22

›u

›xi

 !
¼ ljuj

qðxÞ22
u; for x [ V

u ¼ 0; for x [ ›V;

8>><
>>: ð2Þ
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where V , RN (N $ 3) is a bounded domain with smooth boundary, l . 0 is a real

number, and pi(x), q(x) are continuous on �V such that N . pi(x) $ 2 and q(x) . 1 for any

x [ �V and all i [ Z[1, N ]. Problem (2) was recently analyzed by Mihăilescu–Pucci–

Rădulescu in Refs. [10,11] (see also the studies in Refs. [8,16,17,20,21] for the case, when

pi(x) are constant functions). Problems like (2) have been intensively studied in the last

decades, since they can model various phenomena arising from the study of elastic

mechanics (see, Zhikov [24]), electrorheological fluids (see, Acerbi and Mingione [1],

Diening [6], Halsey [9], Ruzicka [18], Mihăilescu and Rădulescu [12–15]) or image

restoration (see, Chen, Levine and Rao [5]).

In this paper, our goal is to use the critical point theory in order to establish the

existence of a continuous spectrum of eigenvalues for problems of type (1). Our idea is to

transfer the problem of the existence of solutions for problem (1) into the problem of

existence of critical points for some associated energy functional. On the other hand, we

point out that, to our best knowledge, discrete problems like (1), involving anisotropic

exponents, have not yet been discussed. Thus, the present paper can be regarded as a

contribution in this direction.

We are interested in finding week solutions for problems of type (1). For this purpose,

we define the function space

H ¼ {u : Z½0; T þ 1�! R; such that uð0Þ ¼ uðT þ 1Þ ¼ 0}:

Clearly, H is a T-dimensional Hilbert space (see [2]) with the inner product

ðu; vÞ ¼
XTþ1

k¼1

Duðk 2 1ÞDvðk 2 1Þ; ; u; v [ H:

This associated norm is defined by

kuk ¼
XTþ1

k¼1

jDuðk 2 1Þj
2

 !1=2

:

By a weak solution for problem (1) we understand a function u [ H such that

XTþ1

k¼1

jDuðk 2 1Þj
pðk21Þ22

Duðk 2 1ÞDvðk 2 1Þ2 l
XT

k¼1

juðkÞj
qðkÞ22

uðkÞvðkÞ ¼ 0;

for any v [ H.

Denote for short maxk[Z[a,b ]p(k) by maxZ[a,b ]p and mink[Z[a,b ]p(k) by minZ[a,b ]p.

The main results of this paper are the following.

Theorem 1. Assume that functions p and q verify the hypothesis

max
Z½0;T�

p , min
Z½1;T�

q: ð3Þ

Then for any l . 0 problem (1) has a nontrivial weak solution.

M. Mihăilescu et al.558
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Theorem 2. Assume that functions p and q verify the hypothesis

max
Z½1;T�

q , min
Z½0;T�

p: ð4Þ

Then, there exists l** . 0 such that for any l . l** problem (1) has a nontrivial weak

solution.

Theorem 3. Assume that functions p and q verify the hypothesis

min
Z½1;T�

q , min
Z½0;T�

p: ð5Þ

Then, there exists l* . 0 such that for any l [ (0,l*) problem (1) has a nontrivial weak

solution.

Remark 1. We point out that if relation (5) is verified then relation (4) is fulfilled, too.

Consequently, the result of Theorem 2 can be completed with the conclusion of Theorem

3. More exactly, we deduce the following corollary.

Corollary 1. Assume that functions p and q verify the hypothesis

min
Z½1;T�

q , min
Z½0;T�

p:

Then there exist l* . 0 and l** . 0 such that for any l [ (0,l*) < (l**,1) problem (1)

possesses a nontrivial weak solution.

Remark 2. On the other hand, we point out that the result of Theorem 3 holds true in

situations that extend relation (4) since in relation (5) we could have

min
Z½1;T�

q , min
Z½0;T�

p , max
Z½1;T�

q:

2. Auxiliary results

From now on we will use the following notations:

p2 ¼ min
Z½0;T�

p; pþ ¼ max
Z½0;T�

p; q2 ¼ min
Z½1;T�

q; qþ ¼ max
Z½1;T�

q:

On the other hand, it is useful to introduce other norms on H, namely

jujm ¼
XT

k¼1

juðkÞj
m

 !1=m

; ; u [ H andm $ 2:

It can be verified (see Ref. [4]) that

T ð22mÞ=ð2mÞ·juj2 # jujm # T 1=m·juj2; ; u [ H andm $ 2: ð6Þ
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We start with the following auxiliary result.

Lemma 1.

(a) There exist two positive constants C1 and C2 such that

XTþ1

k¼1

jDuðk 2 1Þj
pðk21Þ

$ C1·kuk
p2

2 C2; ; u [ H with kuk . 1:

(b) There exists a positive constant C3 such that

XTþ1

k¼1

jDuðk 2 1Þj
pðk21Þ

$ C3·kuk
pþ

; ; u [ H with kuk , 1:

(c) For any m $ 2 there exists a positive constant cm such that

XT

k¼1

juðkÞj
m
# cm·

XTþ1

k¼1

jDuðk 2 1Þj
m
; ; u [ H:

Proof.

(a) Fix u [ H with kuk . 1. We define

ak ¼
pþ; if jDuðkÞj , 1

p2; if jDuðkÞj . 1;

(

for each k [ Z[0, T].

We deduce that

XTþ1

k¼1

jDuðk21Þj
pðk21Þ

$
XTþ1

k¼1

jDuðk21Þj
ak21

$
XTþ1

k¼1

jDuðk21Þj
p2

2
X

{k[Z½0;T�;ak21¼pþ}

ðjDuðk21Þj
p2

2jDuðk21Þj
pþ

Þ

$
XTþ1

k¼1

jDuðk21Þj
p2

2T :

The above inequality and relation (6) imply

XTþ1

k¼1

jDuðk 2 1Þj
pðk21Þ

$ T ð22p2Þ=2·kuk
p2

2 T; ; u [ H with kuk . 1:

M. Mihăilescu et al.560
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Thus, we proved that (a) holds true.

(b) Assume u [ H with kuk , 1. It follows that jDu(k)j , 1 for each k [ Z[0, T]. So,

by (6) we deduce that

XTþ1

k¼1

jDuðk 2 1Þj
pðk21Þ

$
XTþ1

k¼1

jDuðk 2 1Þj
pþ

$ 1=T ð22pþÞ=2·kuk
pþ

:

Thus, we proved that (b) holds true.

(c) Since

juðkÞj #
Xk21

i¼0

jDuðiÞj; ; u [ H and k [ Z½0; T�;

we deduce that for any positive real number m $ 2, there exists a positive constant

cm, k such that

juðkÞj
m
# cm;k·

Xk21

i¼0

jDuðiÞj
m
; ; u [ H and k [ Z½0; T�:

The above information implies that there exists a positive constant cm such that

XT

k¼1

juðkÞj
m
# cm·

XTþ1

k¼1

jDuðk 2 1Þj
m
; ; u [ H: ð7Þ

The proof of Lemma 1 is complete. A

3. Proof of the main results

For any l . 0 the energy functional corresponding to problem (1) is defined as Jl:H ! R,

JlðuÞ ¼
XTþ1

k¼1

1

pðk 2 1Þ
jDuðk 2 1Þj

pðk21Þ
2 l·

XT

k¼1

1

qðkÞ
juðkÞj

qðkÞ
:

Standard arguments assure that Jl [ C 1(H, R) and

kJ 0
lðuÞ; vl ¼

XTþ1

k¼1

jDuðk 2 1Þj
pðk21Þ22

Duðk 2 1ÞDvðk 2 1Þ2 l
XT

k¼1

juðkÞj
qðkÞ22

uðkÞvðkÞ;

for all u, v [ H. Thus, the weak solutions of (1) coincide with the critical points of Jl.

3.1 Proof of Theorem 1

In order to prove that Jl has a nontrivial critical point our idea is to show that actually Jl
possesses a mountain-pass geometry. With that end in view, we start by proving two

auxiliary results.

Lemma 2. There exist h . 0 and a . 0, such that Jl(u) $ a . 0, for any u [ H with

kuk ¼ h.

Journal of Difference Equations and Applications 561
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Proof. First, we point out that

juðkÞj
q2

þ juðkÞj
qþ

$ juðkÞj
qðkÞ

; ; k [ Z½1; T� and u [ H: ð8Þ

Using the above inequality, we find

JlðuÞ $
1

pþ

XTþ1

k¼1

1

pðk 2 1Þ
jDuðk 2 1Þj

pðk21Þ
2

l

q2
juj

q2

q2 þ juj
qþ

qþ

� �
; ; u [ H: ð9Þ

Next, we focus on the case, when u [ H with kuk , 1. Thus, jDu(k)j , 1 for any k [ Z[0,

T þ 1]. Then, using Lemma 1(c) and relation (6), we infer

juj
q2

q2 þ juj
qþ

qþ # cq2

XTþ1

k¼1

jDuðk 2 1Þj
q2

þ cqþ

XTþ1

k¼1

jDuðk 2 1Þj
qþ

# cq2Tkuk
q2

þ cqþTkuk
qþ

: ð10Þ

For u [ H with kuk , 1 the above inequalities combined with relation (9), Lemma 1(b) and

relation (6) imply

JlðuÞ $
C3

pþ
kuk

pþ

2
l

q2
cq2T ·kuk

q2

þ cqþT ·kuk
qþ

� �
¼ ðd1 2 d2·kuk

q22pþ

2 d3·kuk
qþ2pþ

Þ·kuk
pþ

;

where d1, d2 and d3 are positive constants.

We remark that the function g:[0,1] ! R defined by

gðtÞ ¼ d1 2 d2·t
qþ2pþ

2 d3·t
q22pþ

;

is positive in a neighborhood of the origin by continuity argument. We conclude that

Lemma 2 holds true. A

Lemma 3. There exists e [ H with kek . h (where h is given in Lemma 2) such that

Jl(e) , 0.

Proof. Consider the function c : Z½0; T þ 1�! R such that there exists k0 an integer

satisfying 0 , k0 , T þ 1, for which c (k0) ¼ 1 and c (k) ¼ 0 for any

k [ Z[0,T þ 1]n{k0}. Thus, we deduce that c [ H. For each t . 1 we have

JlðtcÞ ¼
t pðk0Þ

pðk0Þ
þ

t pðk021Þ

pðk0 2 1Þ
2 l·

t qðk0Þ

qðk0Þ
#

2·t pþ

p2
2 l·

t q2

qþ
:

Since q 2 . p þ, it is clear that limt!1Jl(tc) ¼ 21. Then, for t . 1 large enough, we can

take e ¼ tc such that kek . h and Jl(e) , 0.

The proof of Lemma 3 is complete. A

M. Mihăilescu et al.562
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Proof of Theorem 1. By Lemma 2 and 3 and the mountain-pass theorem of Ambrosetti and

Rabinowitz [3], we deduce the existence of a sequence {un} , H such that

JlðunÞ! �c . 0 and J 0
lðunÞ! 0 as n !1: ð11Þ

We prove that {un} is bounded in H. Arguing by contradiction, we assume that passing

eventually to a subsequence, still denoted by {un}, we have kunk ! 1. Thus, we may

assume that for n large enough, we have kunk . 1.

Relation (11) and the above considerations imply that for n large enough, we have

1þ �c þ kunk $ JlðunÞ2
1

q2
kJ 0

lðunÞ; unl $
1

pþ
2

1

q2

� �XTþ1

k¼1

jDunðk 2 1Þj
pðk21Þ

:

By Lemma 1(a) and the above inequality, we deduce that there exist two positive

constants D1 and D2 such that

1þ �c þ kunk $ D1·kunk
p2

2 D2;

for n large enough. Dividing by kunk
p 2

in the above inequality and passing to the limit as

n ! 1, we obtain a contradiction. It follows that {un} is bounded in H. That information

combined with the fact that H is a finite dimensional Hilbert space implies that there exists

a subsequence, still denoted by {un}, and u0 [ H such that {un} converges to u0 in H.

Then, by relation (11) we have

Jlðu0Þ ¼ �c . 0 and J 0
lðu0Þ ¼ 0:

We conclude that u0 is a nontrivial weak solution of problem (1). A

3.2 Proof of Theorem 2

For any l . 0, let Jl be defined as above.

Now, we show that Jl possesses a nontrivial global minimum point in H. With that end

in view, we remark that Lemma 1(a) implies that Jl is coercive on H. On the other hand, it

is obvious that it is also weakly lower semicontinuous on the finite dimensional Hilbert

space H. These two facts enable us to apply Theorem 1.2 in [19] in order to find that there

exists ul [ H a global minimizer of Jl and thus, a weak solution of problem (1).

We show that ul is not trivial for l large enough. Indeed, letting t0 . 1 be a fixed real

and defining the function v0 : Z½0; T þ 1�! R such that there exists an integer k0 with

0 , k0 , T þ 1, for which v0(k0) ¼ t0 and v0(k) ¼ 0 for any k [ Z[0,T þ 1]n{k0}, we

deduce that v0 [ H and

Jlðv0Þ ¼
t

pðk021Þ
0

pðk0 2 1Þ
þ

t
pðk0Þ
0

pðk0Þ
2

l·t
qðk0Þ
0

qðk0Þ
# L1 2 L2·l;

where L1 and L2 are two positive constants. Thus, there exists l** . 0, such that

Jl(v0) , 0 for any l [ [l**,1). It follows that Jl(ul) , 0 for any l $ l** and thus, ul is

a nontrivial weak solution of problem (1) for l large enough. The proof of Theorem 2 is

complete.

Journal of Difference Equations and Applications 563
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3.3 Proof of Theorem 3

For any l . 0 let Jl be defined as above.

We show that, by using the hypothesis of Theorem 3, the functional Jl has a nontrivial

critical point by applying Ekeland’s variational principle [7]. In order to do that we first

prove two auxiliary results.

Lemma 4. There exists l* . 0, such that for any l [ (0,l*) there exist r, a . 0, such that

Jl(u) $ a . 0 for any u [ H with kuk ¼ r.

Proof. First, let us remark that for any u [ H, Lemma 1(c) implies

c2·kuk $ juj2:

Combining that fact and inequality (6), we deduce that

c2·T
1=q2

·kuk $ jujq2 ; ; u [ H: ð12Þ

We fix r [ (0,1) such that r , min{1,1/(c2·T
1/q 2

)}. Thus, for any u [ H with kuk ¼ r,

we have jujq 2 , 1. It follows that, in this case, ju(k)j , 1 holds for any k [ Z[0, T þ 1].

Therefore,

XT

k¼1

juðkÞj
qðkÞ

# juj
q2

q2 ; ; u [ H with kuk ¼ r: ð13Þ

By relations (12) and (13), we obtain

XT

k¼1

juðkÞj
qðkÞ

# c
q2

2 ·T ·kuk
q2

; ; u [ H with kuk ¼ r:

By Lemma 1(b) and the above relation we deduce that for any u [ H with kuk ¼ r, the

following inequalities hold true

JlðuÞ $
C3

pþ
·kuk

pþ

2
l·c

q2

2 ·T

q2
·kuk

q2

¼ C4·r
pþ2q2

2 l·C5

� �
·rq2

;

where C4 and C5 are positive constants. By the above inequality and the fact that

q 2 , p 2 # p þ, we remark that if we define

l* ¼
C4·r

pþ2q2

2·C5

; ð14Þ

then for any l [ (0,l*) and any u [ H with kuk ¼ r there exists a ¼ C4�r
p þ

/2 such that

JlðuÞ $ a . 0:

The proof of Lemma 4 is complete. A

Lemma 5. There exists w [ H such that w $ 0, w – 0 and Jl(tw) , 0, for t . 0 small

enough.

M. Mihăilescu et al.564
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Proof. Since q 2 , p 2 it follows that there exists an integer k0 such that 0 , k0 , T þ 1

and q 2 ¼ q(k0) , p 2 # p(k0). We define the function w : Z½0; T þ 1�! R such that

w(k0) ¼ 1 and w(k) ¼ 0, for any k [ Z[0,T þ 1]n{k0}. We deduce that w [ H and for any

t [ (0,1) we have

Jlðt·wÞ ¼
t pðk021Þ

pðk0 2 1Þ
þ

t pðk0Þ

pðk0Þ
2 l·

t qðk0Þ

qðk0Þ
#

2·t p2

p2
2

l·t q2

qþ
:

The above inequality implies

Jlðt·wÞ , 0;

for any t , d 1/(p 2 2 q 2 ) where

0 , d ,
p2·l

2·qþ
:

The proof of Lemma 5 is complete. A

Proof of Theorem 3. Let l* . 0 be defined as in (14) and l [ (0,l*). By Lemma 4, it

follows that on the boundary of the ball centered at the origin and of radius r in H, denoted

by Br(0), we have

inf
›Brð0Þ

Jl . 0: ð15Þ

On the other hand, by Lemma 5, there exists w [ H such that Jl(tw) , 0 for all t . 0 small

enough. Moreover, relation (6) and Lemma 1(b) imply that for any u [ Br(0), we have

JlðuÞ $
C3

pþ
kuk

pþ

2
l

q2
cq2T ·kuk

q2

þ cqþT ·kuk
qþ

� �
:

It follows that

21 , c U inf
Brð0Þ

Jl , 0:

We let now

0 , e , inf
›Brð0Þ

Jl 2 inf
Brð0Þ

Jl:

Applying Ekeland’s variational principle to the functional Jl : Brð0Þ! R, we find ue [
Brð0Þ such that

Jlðue Þ , inf
Brð0Þ

Jl þ e

Jlðue Þ , JlðuÞ þ e ·ku 2 uek; u – ue :

Since

Jlðue Þ # inf
Brð0Þ

Jl þ e # inf
Brð0Þ

Jl þ e , inf
›Brð0Þ

Jl;
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we deduce that ue [ Br(0). Now, we define Il : Brð0Þ! R by IlðuÞ ¼ JlðuÞ þ e ·ku 2 uek.

It is clear that ue is a minimum point of Il and thus,

Ilðue þ t·vÞ2 Ilðue Þ

t
$ 0;

for small t . 0 and any v [ B1(0). The above relation yields

Jlðue þ t·vÞ2 Jlðue Þ

t
þ e ·kvk $ 0:

Letting t ! 0, it follows that kJ0l(ue),vl þ e·kvk . 0 and we infer that kJ0l(ue)k # e.

We deduce that there exists a sequence {wn} , Br(0) such that

JlðwnÞ! c and J 0
lðwnÞ! 0: ð16Þ

Since the sequence {wn} is bounded in H, there exists w [ H such that, up to a

subsequence, {wn} converges to w in H. So, by (16),

JlðwÞ ¼ c , 0 and J 0
lðwÞ ¼ 0: ð17Þ

We conclude that w is a nontrivial weak solution for problem (1).

The proof of Theorem 3 is complete. A
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M. Mihăilescu and V. Rădulescu have been supported by Grant CNCSIS PN II–79/2007 Procese
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