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1. Introduction

In this paper we study the following semilinear elliptic problem with Robin boundary condi-
tion:

{ −�u(z) + ξ(z)u(z) = f (z,u(z)) in �,
∂u

∂n
+ β(z)u = 0 on ∂�.

}
(1)

In this problem � ⊆R
N is a bounded domain with a C2-boundary ∂�. The potential function 

ξ ∈ Ls(�) with s > N is in general sign-changing. So, the linear part of (1) is indefinite. The 
reaction term f (z, x) is a Carathéodory function (that is, for all x ∈ R, z �→ f (z, x) is measur-
able and for almost all z ∈ �, x �→ f (z, x) is continuous), which exhibits superlinear growth 
near ±∞. However, f (z, ·) does not satisfy the (usual in such cases) Ambrosetti–Rabinowitz 
condition (AR-condition, for short). Instead, we employ a more general condition which incor-
porates in our framework superlinear functions with “slower” growth near ±∞, which fail to 
satisfy the AR-condition. Another nonstandard feature of our work is that f (z, ·) does not have 
subcritical polynomial growth. In our case, the growth of f (z.·) is almost critical in the sense that 

lim
x→±∞

f (z, x)

|x|2∗−2x
= 0 uniformly for almost all z ∈ �, with 2∗ being the Sobolev critical exponent 

for 2, defined by

2∗ =
⎧⎨
⎩

2N

N − 2
if N ≥ 3

+∞ if N = 1,2.

In the boundary condition, 
∂u

∂n
denotes the normal derivative of u ∈ H 1(�) defined by exten-

sion of the continuous linear map

C1(�) 	 u �→ ∂u

∂n
= (Du,n)RN ,

with n(·) being the outward unit normal on ∂�. The boundary coefficient is β ∈ W 1,∞(∂�) and 
we assume that β(z) ≥ 0 for all z ∈ ∂�. When β ≡ 0, we have the usual Neumann problem.

Our aim in this paper is to prove existence and multiplicity results within this general ana-
lytical framework. Recently, there have been such results primarily for Dirichlet problems. We 
mention the works of Lan and Tang [14] (with ξ ≡ 0), Li and Wang [15], Miyagaki and Souto 
[17] (with ξ ≡ 0), Papageorgiou and Papalini [21], Qin, Tang and Zhang [29], Wu and An [34], 
Zhang–Liu [35]. For Neumann and Robin problems, we mention the works of D’Agui, Marano 
and Papageorgiou [5], Papageorgiou and Rădulescu [23,24,26], Papageorgiou, Rădulescu and 
Repovš [27], Papageorgiou and Smyrlis [28], Pucci et al. [2,4], Shi and Li [31]. Superlinear 
problems were treated by Lan and Tang [14], Li and Wang [15], Miyagaki and Souto [17], who 
proved only existence results. The superlinear case was not studied in the context of Neumann 
and Robin problems.

Our approach uses variational methods based on the critical point theory, together with suit-
able truncation and perturbation techniques and Morse theory (critical groups).
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2. Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality brackets 
for the pair (X∗, X). Given ϕ ∈ C1(X, R), we say that ϕ satisfies the “Cerami condition” (the 
“C-condition” for short), if the following property holds:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆R is bounded and

(1 + ||un||)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.
This is a compactness-type condition on ϕ, which compensates for the fact that the ambient 

space X is in general not locally compact. It leads to a deformation theorem from which one 
can derive the minimax theory of the critical values of ϕ. A fundamental result of this theory is 
the so-called “mountain pass theorem”, which we state here in a slightly more general form (see 
Gasinski and Papageorgiou [9, p. 648]). We also point out that Theorem 1 is a direct consequence 
of Ekeland [7, Corollaries 4 and 9].

Theorem 1. Let X be a Banach space. Assume that ϕ ∈ C1(X, R) satisfies the C-condition and 
for some u0, u1 ∈ X with ||u1 − u0|| > r > 0 we have

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ||u − u0|| = r] = mr

and c = inf
γ∈	

max
0≤t≤1

ϕ(γ (t)) with 	 = {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) = u1}. Then c ≥ mr and 

c is a critical value of ϕ (that is, there exists u0 ∈ X such that ϕ′(u0) = 0 and ϕ(u0) = c).

It is well known that when the functional ϕ has symmetry properties, then we can have an 
infinity of critical points. In this direction, we mention two such results which we will use in 
the sequel. The first is the so-called “symmetric mountain pass theorem” due to Rabinowitz [30, 
Theorem 9.12, p. 55] (see also Gasinski and Papageorgiou [9, Corollary 5.4.35, p. 688]).

Theorem 2. Let X be an infinite dimensional Banach space such that X = Y ⊕ V with Y finite 
dimensional. Assume that ϕ ∈ C1(X, R) satisfies the C-condition and that

(i) there exist ϑ, ρ > 0 such that ϕ|∂Bρ∩V ≥ ϑ > 0 (here ∂Bρ = {x ∈ X : ||x|| = ρ});
(ii) for every finite dimensional subspace E ⊆ X, we can find R = R(E) such that ϕ|X\BR

≤ 0
(here BR = {u ∈ X : ||u|| < R}).

Then ϕ has an unbounded sequence of critical points.

The second such abstract multiplicity result that we will need, is a variant of a classical result 
of Clark [3], due to Heinz [11] and Kajikiya [13].

Theorem 3. If X is a Banach space, ϕ ∈ C1(X, R) satisfies the C-condition, is even and bounded 
below, ϕ(0) = 0 and for every n ∈ N there exist an n-dimensional subspace Yn of X and ρn > 0
such that

sup[ϕ(u) : u ∈ Yn ∩ ∂Bρn ] < 0

then there exists a sequence {un}n≥1 ⊆ X of critical points of ϕ such that un → 0 in X.
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In the analysis of problem (1), we will use the following three spaces:

• the Sobolev space H 1(�);
• the Banach space C1(�);
• the “boundary” Lebesgue spaces Lq(∂�) with 1 ≤ q ≤ ∞.

The Sobolev space H 1(�) is a Hilbert space with inner product given by

(u,h)H 1 =
∫
�

uhdz +
∫
�

(Du,Dh)RN dz for all u,h ∈ H 1(�).

By || · || we denote the corresponding norm defined by

||u|| =
[
||u||22 + ||Du||22

]1/
2

for all u ∈ H 1(�).

The Banach space C1(�) is an ordered Banach space with positive (order) cone given by

C+ = {u ∈ C1(�) : u(z) ≥ 0 for all z ∈ �}.

This cone has a nonempty interior containing

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ �}.

On ∂� we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using this 
measure, we can define in the usual way the “boundary” Lebesgue space Lq(∂�), 1 ≤ q ≤ ∞. 
From the theory of Sobolev spaces, we know that there exists a unique continuous linear map 
γ0 : H 1(�) → L2(∂�), known as the “trace map”, such that

γ0(u) = u|∂� for all u ∈ H 1(�) ∩ C(�).

So, the trace map extends the notion of boundary values to every Sobolev function. We know 

that the map γ0 is compact into Lq(∂�) for all q ∈
[

1,
2(N − 1)

N − 2

)
if N ≥ 3 and into Lq(∂�)

for all q ≥ 1 if N = 1, 2. Moreover, we have

kerγ0 = H 1
0 (�) and imγ0 = H

1
2 ,2(∂�).

In the sequel, for the sake of notational simplicity, we drop the use of the trace map. All 
restrictions of Sobolev functions on ∂� are understood in the sense of traces.

We will need some facts about the spectrum of the differential operator u �→ −�u + ξ(z)u

with Robin boundary condition. So, we consider the following linear eigenvalue problem:
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⎧⎨
⎩

−�u(z) + ξ(z)u(z) = λ̂u(z) in �,
∂u

∂n
+ β(z)u = 0 on ∂�.

⎫⎬
⎭ (2)

We assume that

ξ ∈ Ls(�) with s > N and β ∈ W 1,∞(∂�) with β(z) ≥ 0 for all z ∈ ∂�.

Let γ : H 1(�) → R be the C1-functional defined by

γ (u) = ||Du||22 +
∫
�

ξ(z)u2dz +
∫
∂�

β(z)u2dσ for all u ∈ H 1(�).

From D’Agui, Marano and Papageorgiou [5], we know that we can find μ > 0 such that

γ (u) + μ||u||22 ≥ c0||u||2 for all u ∈ H 1(�), some c0 > 0. (3)

Using (3) and the spectral theorem for compact self-adjoint operators on a Hilbert space, we 
show that the spectrum σ̂ (2) of (2) consists of a sequence {λ̂k}k∈N of distinct eigenvalues such 
that λ̂k → +∞. By E(λ̂k) (k ∈ N) we denote the corresponding eigenspace. These items have 
the following properties:

• λ̂1 is simple (that is, dimE(λ̂1) = 1) and

λ̂1 = inf

[
γ (u)

||u||22
: u ∈ H 1(�),u �= 0

]
. (4)

• For every m ≥ 2 we have

λ̂m = inf

[
γ (u)

||u||22
: u ∈ ⊕

k≥m
E(λ̂k), u �= 0

]

= sup

[
γ (u)

||u||22
: u ∈ m⊕

k=1
E(λ̂k), u �= 0

]
. (5)

• For every k ∈ N, E(λ̂k) is finite dimensional, E(λ̂k) ⊆ C1(�) and it has the “unique con-
tinuation property” (UCP for short), that is, if u ∈ E(λ̂k) and vanishes on a set of positive 
measure, then u ≡ 0.

Note that in (4) the infimum is realized on E(λ̂1) and in (5) both the infimum and the supre-
mum, are realized on E(λ̂m). The above properties, imply that the nontrivial elements of E(λ̂1)

have constant sign, while the nontrivial elements of E(λ̂m) (for m ≥ 2) are all nodal (that is, sign 
changing) functions. By û1 we denote the L2-normalized (that is, ||û1||2 = 1) positive eigen-
function. We know that û1 ∈ C+ and by the Harnack inequality (see, for example, Motreanu, 
Motreanu and Papageorgiou [18, p. 211]), we have û1(z) > 0 for all z ∈ �. Moreover, assuming 
that ξ+ ∈ L∞(�) and using the strong maximum principle, we have û1 ∈ D+.



N.S. Papageorgiou et al. / J. Differential Equations 263 (2017) 3244–3290 3249
Now let f0 : � ×R → R be a Carathéodory function satisfying

|f0(z, x)| ≤ a0(z)(1 + |x|2∗−1) for almost all z ∈ �, all x ∈ R .

We set F0(z, x) =
x∫

0

f0(z, s)ds and consider the C1-functional ϕ0 : H 1(�) → R defined by

ϕ0(u) = 1

2
γ (u) −

∫
�

F0(z, u)dz for all u ∈ H 1(�).

The next result is a special case of a more general result of Papageorgiou and Rădulescu 
[22,25].

Proposition 4. Assume that u0 ∈ H 1(�) is a local C1(�)-minimizer of ϕ0, that is, there exists 
δ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(�) with ||h||C1(�) ≤ δ1.

Then u0 ∈ C1(�) and u0 is also a local H 1(�)-minimizer of ϕ0, that is, there exists δ2 > 0 such 
that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ H 1(�) with ||h|| ≤ δ2.

Next let us recall a few basic definitions and facts from Morse theory, which we will need in 
the sequel. So, let X be a Banach space, ϕ ∈ C1(X, R) and c ∈ R. We introduce the following 
sets:

ϕc = {u ∈ X : ϕ(u) ≤ c}, Kϕ = {u ∈ X : ϕ′(u) = 0}, Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For k ∈ N0, let Hk(Y1, Y2) denote the 
kth relative singular homology group for the pair (Y1, Y2) with integer coefficients (for k ∈ −N, 
we have Hk(Y1, Y2) = 0). Given u0 ∈ Kc

ϕ isolated, the critical groups of ϕ at u0 are defined by

Ck(ϕ,u0) = Hk(ϕ
c ∩ U,ϕc ∩ U\{u0}) for all k ∈ N0,

with U being a neighbourhood of u0 satisfying ϕc ∩ Kϕ ∩ U = {u0}. The excision property of 
singular homology implies that this definition of critical groups is independent of the choice of 
the neighbourhood U .

Suppose that ϕ satisfies the C-condition and that infϕ(Kϕ) > −∞. Let c < infϕ(Kϕ). The 
critical groups of ϕ at infinity, are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ∈N0.

This definition is independent of the choice of c < infϕ(Kϕ). Indeed, let c < ĉ < infϕ(Kϕ). 
Then from a corollary of the second deformation theorem (see Motreanu, Motreanu and Papa-
georgiou [18, Corollary 5.35, p. 115]) we have that
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ϕc is a strong deformation retract of ϕĉ.

Therefore, we have

Hk(X,ϕc) = Hk(X,ϕĉ) for all k ∈N0.

We assume that Kϕ is finite and introduce the following quantities:

M(t,u) =
∑
k�0

rank Ck(ϕ,u)tk for all t ∈R, all u ∈ Kϕ,

P (t,∞) =
∑
k�0

rank Ck(ϕ,∞)tk for all t ∈R.

Then the Morse relation says that

∑
u∈Kϕ

M(t, u) = P(t,∞) + (1 + t)Q(t), (6)

where Q(t) =
∑
k�0

β̂kt
k is a formal series in t ∈ R, with nonnegative integer coefficients β̂k.

Finally we fix our notation. So, for x ∈ R, we set x± = max{±x, 0}. Then for u ∈ H 1(�) we 
define u±(·) = u(·)± and we have

u = u+ − u− , |u| = u+ − u− , u± ∈ H 1(�).

Given a measurable function g : � ×R → R (for example, a Carathéodory function), by Ng

we denote the Nemytskii map corresponding to g, that is,

Ng(u)(·) = g(·, u(·)) for all u ∈ H 1(�).

Evidently, z �→ Ng(u)(z) is measurable on �. By | · |N we denote the Lebesgue measure 
on R

N . We set

m+ = min{k ∈N : λ̂k > 0} and m− = max{k ∈N : λ̂k < 0}.

Then we have the following orthogonal direct sum decomposition of the Sobolev space 
H 1(�):

H 1(�) = H− ⊕ E(0) ⊕ H+

with H− = m−⊕
k=1

E(λ̂k), H+ = ⊕
k�m+

E(λ̂k). So, every u ∈ H 1(�) admits a unique sum decompo-

sition

u = u + u0 + û , with u ∈ H− , u0 ∈ E(0), û ∈ H+
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If 0 /∈ σ̂ (2) = {λ̂k}k∈N, then E(0) = 0 and m− = m+ − 1.
If ξ � 0 and ξ �≡ 0 or β �≡ 0, then λ̂1 > 0 and so m+ = 1 and m− = 0.
If ξ ≡ 0, β ≡ 0 (Neumann problem with zero potential), then

m+ = 2, m− = 0, E(0) =R.

If u, v ∈ H 1(�), and v ≤ u, then by [v, u] we denote the order interval defined by

[v,u] = {y ∈ H 1(�) : v(z) ≤ y(z) ≤ u(z) for almost all z ∈ �}.

3. Existence theorems

In this section we prove two existence theorems. The two existence results differ on the ge-
ometry near the origin of the energy (Euler) functional.

For the first existence theorem, we assume that f (z, ·) is strictly sublinear near the origin. 
More precisely, our hypotheses on the data of problem (1) are the following:

H(ξ): ξ ∈ Ls(�) with s >N.
H(β): β ∈ W 1,∞(∂�) with β(z) � 0 for all z ∈ ∂�.

Remark 1. When β ≡ 0, we have the usual Neumann problem.

H(f )1: f : � ×R → R is a Carathéodory function such that
(i) for every ρ > 0, there exists aρ ∈ L∞(�)+ such that

|f (z, x)| ≤ aρ(z) for almost all z ∈ � , all |x| ≤ ρ

and lim
x→±∞

f (z, x)

(x)2∗−2x
= 0 uniformly for almost all z ∈ �;

(ii) if F(z, x) =
x∫

0

f (z, s)ds and τ(z, x) = f (z, x)x − 2F(z, x), then

lim
x→±∞

F(z, x)

x2
= +∞ uniformly for almost all z ∈ � and there exists e ∈ L1(�)

such that

τ(z, x) ≤ τ(z, y) + e(z) for almost all z ∈ � , all 0 ≤ x ≤ y and all y ≤ x ≤ 0;

(iii) lim
x→0

f (z, x)

x
= 0 uniformly for almost all z ∈ � and there exists δ > 0 such that

[a] F(z, x) ≤ 0 for almost all z ∈ �, all |x| ≤ δ,

or [b] F(z, x) � 0 for almost all z ∈ �, all |x| ≤ δ.

Remark 2. Hypothesis H(f )1(i) is more general than the usual subcritical polynomial growth 
which says that
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|f (z, x)| ≤ c1(1 + |x|r−1) for almost all z ∈ � , all x ∈R,

with c1 > 0 and 1 ≤ r < 2∗. Here the growth of f (z, ·) is almost critical and this means we face 
the difficulty that the embedding of H 1(�) into L2∗

(�) is not compact. We overcome this dif-
ficulty without use of the concentration-compactness principle. Instead we use Vitali’s theorem. 
Hypothesis H(f )1(ii) implies that

lim
x→±∞

f (z, x)

x
= +∞ uniformly for almost all z ∈ �.

Therefore f (z, ·) is superlinear near ±∞. Usually such problems are studied using the so-
called Ambrosetti–Rabinowitz condition (the AR-condition for short). We recall that the AR-
condition says that there exist q > 2 and M > 0 such that

0 < q F(z, x) ≤ f (z, x)x for almost all z ∈ � , all |x| � M (7a)

0 < essinf�F(·,±M). (7b)

Integrating (7a) and using (7b), we obtain the following weaker condition

c2|x|q ≤ F(z, x) for almost all z ∈ � , all |x| � M. (8)

From (7a) and (8), we see that f (z, ·) has at least (q − 1)-polynomial growth. This restriction 
removes from consideration superlinear functions with “slower” growth near ±∞. For example, 
consider a function f (x) which satisfies:

f (x) = x

[
ln |x| + 1

2

]
for all |x| � M.

In this case the primitive is F(x) = 1

2
x2 ln |x| for all |x| ≥ M and so (3) fails. In particular, 

then the AR-condition (see (7a) and (7b)) does not hold. In contrast f (·) satisfies our hypothesis 
H(f )1(ii). This condition is a slightly more general form of a condition used by Li and Yang [15]. 
It is satisfied, if there exists M > 0 such that

x �→ f (z, x)

x
is nondecreasing on [M,+∞),

x �→ f (z, x)

x
is nonincreasing on (−∞,−M] (see [16]).

Hypothesis H(f )1(iii) implies that f (z, ·) is sublinear near zero.

Examples. The following functions satisfy hypotheses H(f )1. For the sake of simplicity, we 
drop the z-dependence:

f1(x) = x

[
ln(1 + |x|) + |x|

1 + |x|
]

for all x ∈ R

and
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f2(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|x|2∗−2x

ln(1 + |x|)
[

1 − 1

2∗
|x|

(1 + |x|) ln(1 + |x|)
]

− c if x < −1

|x|r−2x if − 1 ≤ x ≤ 1

|x|2∗−2x

ln(1 + |x|)
[

1 − 1

2∗
|x|

(1 + |x|) ln(1 + |x|)
]

+ c if 1 < x

with r > 2 and c = 1 − 1

ln 2

[
1 − 1

2∗
1

2 ln 2

]
.

Note that we have

F1(x) = 1

2
x2 ln (1 + |x|) for all x ∈R

F2(x) = 1

2∗
|x|2∗

ln (1 + |x|) + c|x| for all |x| � 1.

Observe that f1(·) although superlinear, fails to satisfy the AR-condition, while f2 has almost 
critical growth.

Let ϕ : H 1(�) → R be the energy (Euler) functional for problem (1) defined by

ϕ(u) = 1

2
γ (u) −

∫
�

F(z,u)dz for all u ∈ H 1(�).

Evidently, ϕ ∈ C1(H 1(�)). First we show that the functional ϕ satisfies the C-condition.

Proposition 5. If hypotheses H(ξ), H(β), H(f )1(i), (ii) hold, then the functional ϕ satisfies the 
C-condition.

Proof. We consider a sequence {un}n≥1 ⊆ H 1(�) such that

|ϕ(un)| ≤ M1 for some M1 > 0, all n ∈ N, (9)

(1 + ||un||)ϕ′(un) → 0 in H 1(�)∗ as n → ∞. (10)

From (10) we have∣∣∣∣∣∣〈A(un),h〉 +
∫
�

ξ(z)unhdz +
∫
∂�

β(z)unhdσ −
∫
�

f (z,un)hdz

∣∣∣∣∣∣ ≤ εn||h||
1 + ||un|| (11)

for all h ∈ H 1(�), with εn → 0+.
In (11) we choose h = un ∈ H 1(�) and obtain

−γ (un) +
∫
�

f (z,un)undz ≤ εn for all n ∈N. (12)

On the other hand, by (9), we have
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γ (un) −
∫
�

2F(z,un)dz ≤ 2M1 for all n ∈N. (13)

We add (12) and (13) and obtain

∫
�

τ(z,un)dz ≤ M2 for some M2 > 0, all n ∈ N. (14)

Claim 1. {un}n≥1 ⊆ H 1(�) is bounded.

We argue by contradiction. So, we assume that the Claim is not true. Then by passing to a 
subsequence if necessary, we have

||un|| → +∞. (15)

Let yn = un

||un|| for all n ∈N. Then ||yn|| = 1 and so we may assume that

yn
w−→ y in H 1(�) and yn → y in L

2s
s−1 (�) and in L2(∂�) (16)

(note that since s > N (see hypothesis H(ξ)), we have 
2s

s − 1
< 2∗).

First, we assume that y �= 0. Let �∗ = {z ∈ � : y(z) �= 0}. Then |�∗|N > 0 and we have

|un(z)| → +∞ for almost all z ∈ �∗ (see (15)).

Using hypothesis H(f )1(ii) we have

F(z,un(z))

||un||2 = F(z,un(z))

un(z)2
yn(z)

2 → +∞ for almost all z ∈ �∗.

Using Fatou’s lemma we can say that

∫
�∗

F(z,un)

||un||2 dz → +∞ as n → ∞. (17)

Hypothesis H(f )(ii) implies that we can find M3 > 0 such that

F(z, x) ≥ 0 for almost all z ∈ �, all |x| ≥ M3. (18)

From (15) we see that we may assume that

||un|| ≥ 1 for all n ∈ N. (19)

Then we have
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∫
�

F(z,un)

||un||2 dz =
∫
�∗

F(z,un)

||un||2 dz +
∫

�\�∗

F(z,un)

||un||2 dz

=
∫
�∗

F(z,un)

||un||2 dz +
∫

(�\�∗)∩{|un|≥M3}

F(z,un)

||un||2 dz

+
∫

(�\�∗)∩{|un|<M3}

F(z,un)

||un||2 dz

≥
∫
�∗

F(z,un)

||un||2 dz − c3 for some c3 > 0, all n ∈N

(see (18), (19) and hypothesis H(f )1(i))

⇒
∫
�

F(z,un)

||un||2 dz → +∞ as n → ∞ (see (17)). (20)

By (9) we have

∫
�

F(z,un)

||un||2 dz ≤ M1

||un||2 + 1

2
γ (yn) ≤ M4 for some M4 > 0, all n ∈ N (21)

(see (19)).
Comparing (20) and (21), we get a contradiction.
Now suppose that y = 0. Let η > 0 and set vn = (2η)1

/
2yn ∈ H 1(�) for all n ∈N. Then from 

(16) and since y = 0, we have

vn
w−→ 0 in H 1(�) and vn → 0 in L

2s
s−1 (�) and in L2(∂�). (22)

Let c4 = sup
n≥1

||vn||2∗
2∗ (see (22)). From hypothesis H(f )1(i) we see that given ε > 0, we can 

find c5 = c5(ε) > 0 such that

|F(z, x)| ≤ ε

2c4
|x|2∗ + c5 for almost all z ∈ �, all x ∈R. (23)

Let E ⊆ � be a measurable set such that |E|N ≤ ε

2c5
. Then we have

∣∣∣∣∣∣
∫
E

F(z, vn)dz

∣∣∣∣∣∣ ≤
∫
E

|F(z, vn)|dz

≤ ε

2c4
||vn||2∗

2∗ + c5|E|N (see (23))

≤ ε for all n ∈N,

⇒ {F(·, vn(·))}n≥1 ⊆ L1(�) is uniformly integrable.
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Also note that by (22) and by passing to a subsequence if necessary, we have

F(z, vn(z)) → 0 for almost all z ∈ � as n → +∞ .

So, invoking Vitali’s theorem (the extended dominated convergence theorem) we have

∫
�

F(z, vn)dz → 0 as n → ∞ . (24)

From (15), we see that we can find n0 ∈N such that

0 < (2η)
1/

2
1

||un|| ≤ 1 for all n ≥ n0. (25)

We choose tn ∈ [0, 1] such that

ϕ(tnun) = max [ϕ(tun) : 0 ≤ t ≤ 1] . (26)

From (25) and (26) we have

ϕ(tnun) ≥ ϕ(vn)

= η
[
γ (yn) + μ||yn||22

]
−

∫
�

F(z, vn)dz − μη||yn||22

≥ η
[
c0 − μ||yn||22

]
−

∫
�

F(z, vn)dz for all n ≥ n0 (27)

(see (3)).

Recall that y = 0. So, from (16), (24) and (27), we see that we can find n1 ∈N, n1 ≥ n0 such 
that

ϕ(tnun) ≥ 1

2
ηc0 for all n ≥ n1.

But η > 0 was arbitrary. Therefore it follows that

ϕ(tnun) → +∞ as n → ∞ . (28)

We have

ϕ(0) = 0 and ϕ(un) ≤ M1 for all n ∈N (see (9)). (29)

From (28) and (29) we see that we can find n2 ∈N such that

tn ∈ (0,1) for all n ≥ n2. (30)

From (26) and (30), we have
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d

dt
ϕ(tun)|t=tn = 0 for all n ≥ n2,

⇒ 〈ϕ′(tnun), tnun〉 = 0 for all n ≥ n2 (by the chain rule),

⇒ γ (tnun) =
∫
�

f (z, tnun)(tnun)dz for all n ≥ n2. (31)

From hypothesis H(f )1(ii) and (30), we have

τ(z, tnun) ≤ τ(z,un) + e(z) for almost all z ∈ �, all n ≥ n2,

⇒
∫
�

τ(z, tnun)dz ≤
∫
�

τ(z,un)dz + ||e||1 for all n ≥ n2

⇒
∫
�

f (z, tnun)(tnun)dz ≤ c6 +
∫
�

2F(z, tnun)dz (32)

for some c6 > 0, all n ≥ n2 (see (14)).

We return to (31) and use (32). Then

2ϕ(tnun) ≤ c6 for all n ≥ n2. (33)

Comparing (28) and (33) we get a contradiction. This proves the Claim.
On account of the Claim, we may assume that

un
w−→ u in H 1(�) and un → u in L

2s
s−1 and in L2(∂�). (34)

In (11) we choose h = un − u ∈ H 1(�), pass to the limit as n → ∞ and use (34). Then

lim
n→∞〈A(un),un − u〉 = 0,

⇒ ||Dun||2 → ||Du||2
⇒ un → u in H 1(�)

(by the Kadec–Klee property, see (34) and Gasinski and Papageorgiou [9, p. 901]).

This proves that ϕ satisfies the C-condition. �
We assume that Kϕ is finite (otherwise we already have an infinity of nontrivial solutions for 

problem (1)). Then the finiteness of Kϕ and Proposition 5 permit the computation of the critical 
groups of ϕ at infinity.

Proposition 6. If hypotheses H(ξ), H(β), H(f )1, (i), (ii) hold, then Ck(ϕ, ∞) = 0 for all k ∈N.

Proof. Hypotheses H(f )1(i), (ii) imply that given any η > 0, we can find c7 = c7(η) > 0 such 
that
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F(z, x) ≥ η

2
x2 − c7 for almost all z ∈ �, all x ∈ R. (35)

Let ∂B1 = {u ∈ H 1(�) : ||u|| = 1}. Then for u ∈ ∂B1 and t > 0, we have

ϕ(tu) = t2

2
γ (u) −

∫
�

F(z, tu)dz

≤ t2

2

[
γ (u) − η||u||22

]
+ c7|�|N (see (35))

≤ t2

2

[
c8 − η||u||22

]
+ c7|�|N for some c8 > 0 (36)

(see hypotheses H(ξ), H(β)).

Recall that η > 0 is arbitrary. So, we can choose η >
c8

||u||22
. Then it follows from (36) that

ϕ(tu) → −∞ as t → +∞ (u ∈ ∂B1). (37)

For u ∈ ∂B1 and t > 0, we have

d

dt
ϕ(tu) = 〈ϕ′(tu), u〉 (by the chain rule)

= 1

t
〈ϕ′(tu), tu〉

= 1

t

⎡
⎣γ (tu) −

∫
�

f (z, tu)(tu)dz

⎤
⎦

≤ 1

t

⎡
⎣γ (tu) −

∫
�

2F(z, tu)dz + ||e||1
⎤
⎦ see hypothesis H(f )1(ii)

= 1

t
[2ϕ(tu) + ||e||1] . (38)

From (37) and (38) we infer that

d

dt
ϕ(tu) < 0 for t > 0 big.

Invoking the implicit function theorem, we can find ϑ ∈ C(∂B1) such that

ϑ > 0 and ϕ(ϑ(u)u) = ρ0 < −||e||1
2

. (39)

We extend ϑ on H 1(�)\{0} by defining
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ϑ̂(u) = 1

||u||ϑ
(

u

||u||
)

for all u ∈ H 1(�)\{0}.

We have that ϑ̂ ∈ C(H 1(�)\{0}) and ϕ(ϑ̂(u)u) = ρ0. Also

ϕ(u) = ρ0 ⇒ ϑ̂(u) = 1. (40)

Therefore, if we define

ϑ0(u) =
{

1 if ϕ(u) ≤ ρ0

ϑ̂(u) if ρ0 < ϕ(u)
(41)

then ϑ0 ∈ C1(H 1(�)\{0}) (see (40)).
Consider the deformation h : [0, 1] × (H 1(�)\{0}) → H 1(�)\{0} defined by

h(t, u) = (1 − t)u + tϑ0(u)u for all t ∈ [0,1] all u ∈ H 1(�)\{0}.

We have

h(0, ·) = id|H 1(�)\{0}
h(1, u) ∈ ϕρ0 (see (41) and (40))

h(t, ·)|ϕρ0 = id|ϕρ0 (see (41)).

These properties imply that

ϕρ0 is a strong deformation retract of H 1(�)\{0}. (42)

Consider the map r0 : H 1(�)\{0} → ∂B1 defined by

r0(u) = u

||u|| for all u ∈ H 1(�)\{0}.

We see that

r0(·) is continuous and r0|∂B1 = id|∂B1,

⇒ ∂B1 is a retract of H 1(�)\{0}. (43)

Also, if we consider the deformation h0 : [0, 1] × (H 1(�)\{0}) → H 1(�)\{0} defined by

h0(t, u) = (1 − t)u + tr0(u) for all t ∈ [0,1], all u ∈ H 1(�)\{0}

then we see that

H 1(�)\{0} is deformable into ∂B1. (44)

From (43), (44) and Theorem 6.5 of Dugundji [6, p. 325] it follows that
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∂B1 is a deformation retract of H 1(�)\{0}. (45)

From (42) and (45) we infer that

ϕρ0 and ∂B1 are homotopy equivalent,

⇒ Hk(H
1(�),ϕρ0) = Hk(H

1(�), ∂B1) for all k ∈N0 (46)

(see Motreanu, Motreanu and Papageorgiou [18, p. 143]).
Since ∂B1 is the unit sphere of the infinite dimensional Hilbert space H 1(�) then it is con-

tractible (see Gasinski and Papageorgiou [10, Problems 4.154 and 4.159]). Therefore

Hk(H
1(�), ∂B1) = 0 for all k ∈ N0 (47)

(see Motreanu, Motreanu and Papageorgiou [18, p. 147]).
From (46) and (47) it follows that

Hk(H
1(�),ϕρ0) = 0 for all k ∈N0. (48)

Taking ρ0 more negative if necessary (see (39)), we have

Hk(H
1(�),ϕρ0) = Ck(ϕ,∞) for all k ∈ N0,

⇒ Ck(ϕ,∞) = 0 for all k ∈N0. �
We also compute the critical groups of ϕ at the origin. Recall that we have the orthogonal 

direct sum decomposition

H 1(�) = H− ⊕ E(0) ⊕ H+

with H− = m_⊕
k=1

E(λ̂k), H+ = ⊕
k≥m+

E(λ̂k) (see Section 2). We set

d− = dimH− and d0− = dim (H− ⊕ E(0)). Note that

• d− = 0 if λ̂k ≥ 0 for all k ∈N0 (that is, H− = {0}).
• d0− = 0 if λ̂k > 0 for all k ∈ N0 (that is, H− ⊕ E(0) = {0}).

Proposition 7. If hypotheses H(ξ), H(β), H(f )1 hold, then Cd−(ϕ, 0) �= 0 or Cd0−(ϕ, 0) �= 0.

Proof. First we assume that hypothesis H(f )1(iii) [a] holds.
Hypotheses H(f )1 imply that given ε > 0, we can find c9 = c9(ε) > 0 such that

|F(z, x)| ≤ ε

2
x2 + c9|x|2∗

for almost all z ∈R all x ∈R (49)

(if N = 1, 2, then we replace 2∗ by r > 2). For u ∈ H− we have
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ϕ(u) = 1

2
γ (u) −

∫
�

F(z,u)dz

≤ λ̂m− + ε

2
||u||22 + c9||u||2∗

2∗ (see (49) and recall that u ∈ H−). (50)

Recall that λ̂m− < 0. So, if we choose ε ∈ (0, −λ̂m−) and exploit the fact that since H− is 
finite dimensional all norms are equivalent, then from (50) we have

ϕ(u) ≤ −c10||u||2 + c11||u||2∗
for some c10, c11 > 0, all u ∈ H−. (51)

Since 2 < 2∗, we see from (51) that we can find ρ1 ∈ (0, 1) small such that

u ∈ H−, ||u|| ≤ ρ1 ⇒ ϕ(u) ≤ 0. (52)

Recall that E(0) is finite dimensional. So, all norms are equivalent and we can find ρ0 > 0
such that

u ∈ E0, ||u|| ≤ ρ0 ⇒ |u(z)| ≤ δ/2 for almost all z ∈ �. (53)

Here, δ > 0 is as postulated by hypothesis H(f )1(iii).
Let u ∈ E(0) ⊕ H+. Then u admits a unique sum decomposition

u = u0 + û with u0 ∈ E(0), û ∈ H+.

Note that

||u|| ≤ ρ0 ⇒ ||u0|| ≤ ρ0, (54)

since u0 is the orthogonal projection of u on E(0) and the orthogonal projection operator has 
operator norm equal to 1.

We define �δ =
{
z ∈ � : |û(z)| ≤ δ

2

}
. Then for u ∈ E(0) ⊕ H+ with ||u|| ≤ ρ0, we have

|u(z)| ≤ |u0(z)| + |û(z)| ≤ δ

2
+ δ

2
= δ for almost all z ∈ �δ

(see (53), (54)),

⇒
∫
�δ

F (z,u(z))dz ≤ 0 (see hypothesis H(f )1(iii)[a]). (55)

Also, for u ∈ E(0) ⊕ H+ with ||u|| ≤ ρ0, we have

|u(z)| ≤ |u0(z)| + |û(z)| ≤ 2|û(z)| for almost all z ∈ �\�δ (56)

(see (53), (54)).
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So, for u ∈ E(0) ⊕ H+ with ||u|| ≤ ρ0, exploiting the orthogonality of the component spaces, 
we have

ϕ(u) = 1

2
γ (u) −

∫
�

F(z,u)dz

� 1

2
γ (û) −

∫
�\�δ

F (z,u)dz (see (55) and recall that u0 ∈ E(0))

� 1

2
γ (û) − ε||û||22 − c12||û||2∗

for some c12 > 0 (see (49), (56))

� c13||û||2 − c12||û||2∗
for some c13 > 0, choosing ε > 0 small (57)

(recall that û ∈ H+).

Since 2 < 2∗, choosing ρ2 ∈ (0, ρ0] small, from (57) we have

ϕ(u) > 0 = ϕ(0) for all u ∈ E(0) ⊕ H+, 0 < ||u|| ≤ ρ2. (58)

Then (52) and (58) imply that

⎧⎨
⎩

ϕ has a local linking at u = 0
(for the decomposition H− ⊕ [E(0) ⊕ H+])
u = 0 is a strict minimizer of ϕ|E(0)⊕H+

⎫⎬
⎭

Then by Motreanu, Motreanu and Papageorgiou [18, pp. 169, 171], we have

Cd−(ϕ,0) �= 0.

Now assume that hypothesis H(f )1(iii) [b] holds. We consider the following orthogonal di-
rect sum decomposition

H 1(�) = Z ⊕ H+ with Z = H− ⊕ E(0).

Then for u ∈ H+ we have

ϕ(u) = 1

2
γ (u) −

∫
�

F(z,u)dz

� 1

2

[
γ (u) − ε||u||22

]
− c14||u||2∗

for some c14 > 0

(see (49)).

Choosing ε > 0 small, we have

ϕ(u) � c15||u||2 − c14||u||2∗
for some c15 > 0

(recall that u ∈ H+).
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Since 2 < 2∗, we can find ρ1 ∈ (0, 1) small such that

u ∈ H+, 0 < ||u|| ≤ ρ1 ⇒ ϕ(0) = 0 < ϕ(u). (59)

Now suppose that u ∈ Z = H− ⊕E(0). The space Z is finite dimensional and so all norms are 
equivalent. Therefore we can find ρ2 > 0 such that

u ∈ Z, ||u|| ≤ ρ2 ⇒ |u(z)| ≤ δ for almost all z ∈ �. (60)

Here, δ > 0 is as postulated in hypothesis H(f )(iii). Every u ∈ Z can be written in a unique way 
as

u = u + u0 with u ∈ H−, u0 ∈ E(0).

Exploiting the orthogonality of the component spaces, for u ∈ Z with ||u|| ≤ ρ2, we have

ϕ(u) = 1

2
γ (u) −

∫
�

F(z,u)dz

= 1

2
γ (u) −

∫
�

F(z,u)dz (since u0 ∈ E(0))

≤ λ̂m−
2

||u||22 (see (60) and use hypothesis H(f )1(iii) [b]).

Since λ̂m− < 0, it follows that

ϕ(u) ≤ 0 for all u ∈ Z = H ⊕ E(0) with ||u|| ≤ ρ2. (61)

Then (59) and (61) imply that

⎧⎨
⎩

ϕ has a local linking at u = 0
(now for the decomposition Z ⊕ H+),
0 is as strict local minimizer of ϕ|H+

⎫⎬
⎭

As before, by Motreanu, Motreanu and Papageorgiou [18, pp. 169, 171], we have

Cd0−(ϕ,0) �= 0 (recall d0− = dimZ). �
Now we are ready for our first existence theorem.

Theorem 8. If hypotheses H(ξ), H(β), H(f )1 hold, then problem (1) admits a nontrivial solu-
tion ũ ∈ C1(�).



3264 N.S. Papageorgiou et al. / J. Differential Equations 263 (2017) 3244–3290
Proof. From Proposition 6, we have that

Ck(ϕ,∞) = 0 for all k ∈ N0. (62)

Also, Proposition 7 says that

Cd−(ϕ,0) �= 0 or Cd0−(ϕ,0) �= 0. (63)

Then (62), (63) and Corollary 6.92 of Motreanu, Motreanu and Papageorgiou [18, p. 173]
imply that we can find ũ ∈ Kϕ\{0}. From Papageorgiou and Rădulescu [22], we have

⎧⎨
⎩

−�ũ(z) + ξ(z)ũ(z) = f (z, ũ(z)) for almost all z ∈ �
∂ũ

∂n
+ β(z)ũ = 0 on ∂�.

⎫⎬
⎭ (64)

We define the following functions

a(z) =
⎧⎨
⎩

0 if |ũ(z)| ≤ 1
f (z, ũ(z))

ũ(z)
if 1 < |ũ(z)| and b(z) =

{
f (z, ũ(z)) if |ũ(z)| ≤ 1

0 if 1 < |ũ(z)| (65)

Hypotheses H(f )1, imply that given ε > 0, we can find c16 = c16(ε) > 0 such that

|f (z, x)| ≤ ε|x|2∗−1 + c16|x| for almost all z ∈ �, all x ∈ R. (66)

Then from (65), (66) and the Sobolev embedding theorem, we have

a ∈ L
N
2 (�).

Also, it is clear from (64) and hypothesis H(f )1(i) that

b ∈ L∞(�).

We rewrite (64) as follows⎧⎨
⎩

−�ũ(z) = (a(z) − ξ(z))ũ(z) + b(z) for almost all z ∈ �,

∂ũ

∂n
+ β(z)ũ = 0 on ∂�.

⎫⎬
⎭

Invoking Lemma 5.1 of Wang [33], we have

ũ ∈ L∞(�).

Then hypotheses H(ξ), H(f )1(i) imply that

f (·, ũ(·)) − ξ(·)ũ(·) ∈ Ls(�), s > N.

Invoking Lemma 5.2 of Wang [33] (the Calderon–Zygmund estimates), we have
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ũ ∈ W 2,s(�),

⇒ ũ ∈ C1,α(�) with α = 1 − N

s
> 0

(by the Sobolev embedding theorem). �
In Theorem 8, the reaction term f (z, ·) is strictly sublinear near zero (see hypothesis 

H(f )1(iii)). In the next existence theorem, we change the geometry near zero and assume that 
f (z, ·) is linear near zero. In fact we permit double resonance with respect to any nonprincipal 
spectral interval.

The new hypotheses on the reaction term f (z, x) are the following:

H(f )2 : f : � ×R →R is a Carathéodory function such that hypotheses H(f )2(i), (ii) are the 
same as the corresponding hypotheses H(f )1(i), (ii) and
(iii) there exist m ∈ N, m ≥ 2 and δ > 0 such that

λ̂mx2 ≤ f (z, x)x ≤ λ̂m+1x
2 for almost all z ∈ �, all |x| ≤ δ.

Remark 3. The behaviour of f (z, ·) near ±∞ remains the same. However, near zero, the growth 
of f (z, ·) has changed. In fact the new condition for f (z, ·) near zero implies linear growth. Also, 
permits resonance with respect to both endpoints of the nonprincipal spectral interval [λ̂m, ̂λm+1], 
m ≥ 2 (double resonance). This means that the computation of the critical groups of ϕ at the 
origin changes.

Proposition 9. If hypotheses H(ξ), H(β), H(f )2 hold, then Ck(ϕ, 0) = δk,dmZ for all k ∈ N0

with dm = dim 
m⊕

i=1
E(λ̂i).

Proof. Let ϑ ∈ (λ̂m, ̂λm+1) and consider the C2-functional � : H 1(�) → R defined by

�(u) = 1

2
γ (u) − ϑ

2
||u||22 for all u ∈ H 1(�).

In this case we consider the following orthogonal direct sum decomposition of the Hilbert 
space H 1(�):

H 1(�) = Hm ⊕ Ĥm with Hm = m⊕
i=1

E(λ̂i), Ĥm = Ĥ⊥
m = ⊕

i�m+1
E(λ̂i). (67)

The choice of ϑ and (5) imply that

�|Hm
≤ 0 and �|

Ĥm\{0} > 0.

Then Proposition 2.3 of Su [32] implies that

Ck(�,0) = δk,dmZ for all k ∈ N0. (68)

Consider the homotopy h∗ : [0, 1] × H 1(�) → R defined by
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h∗(t, u) = (1 − t)ϕ(u) + t�(u) for all t ∈ [0,1], all u ∈ H 1(�).

As in the proof of Theorem 8, using the regularity theorem of Wang [33], we have that

Kh∗(t,·) ⊆ C1(�) for all t ∈ [0,1].

Let t > 0 and suppose that u ∈ C1(�) satisfies 0 < ||u||C1(�) ≤ δ, with δ > 0 as postulated by 
hypothesis H(f )2(iii). Then

〈(h∗)′u(t, u), v〉 = (1 − t)〈ϕ′(u), v〉 + t〈� ′(u), v〉 for all v ∈ H 1(�). (69)

Using the orthogonal direct sum decomposition (67), we can write u in a unique way as

u = u + û with u ∈ Hm, û ∈ Ĥm.

Exploiting the orthogonality of the component spaces, we have

〈ϕ′(u), û − u〉 = γ (û) − γ (u) −
∫
�

f (z,u)(û − u)dz.

Recall the choice of u ∈ C1(�) and use hypothesis H(f )2(iii). Then

f (z,u(z))(û − u)(z) ≤ λ̂m+1û(z)2 − λ̂mu(z) for almost all z ∈ �.

Therefore

〈ϕ′(u), û − u〉� γ (û) − λ̂m+1||û||22 −
[
γ (u) − λ̂m||u||22

]
� 0 (70)

(see (5)).
Also, again via the orthogonality of the component spaces, we have

〈� ′(u), û − u〉 = γ (û) − ϑ ||û||22 −
[
γ (u) − ϑ ||u||22

]
� c17||u||2 (71)

for some c17 > 0 (recall that θ ∈ (λ̂m, ̂λm+1)).
Returning to (69) and using v = û − u ∈ H 1(�) and relations (70), (71), we obtain

〈(h∗)′u(t, u), û − u〉 ≥ tc17||u||2 > 0 for all 0 < t ≤ 1.

For t = 0, we have h∗(0, ·) = ϕ(·) and 0 ∈ Kϕ is isolated (recall that we assumed that Kϕ

is finite or otherwise we already have an infinity of nontrivial solutions). Therefore from the 
homotopy invariance property of critical groups (see Gasinski and Papageorgiou [10, Theorem 
5.125, p. 836]), we have

Ck(h∗(0, ·),0) = Ck(h∗(1, ·),0) for all k ∈ N0,

⇒ Ck(ϕ,0) = Ck(�,0) for all k ∈N0,

⇒ Ck(ϕ,0) = δk,dmZ for all k ∈N0 (see (68)). �
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Using this Proposition and reasoning as in the proof of Theorem 8, we obtain the following 
existence theorem.

Theorem 10. If hypotheses H(ξ), H(β), H(f2) hold, then problem (1) admits a nontrivial 
smooth solution

ũ ∈ C1(�).

4. Equations with concave terms

In this section we examine what happens when the reaction function exhibits a concave term 
(that is, a term which is strictly superlinear near zero). So, the geometry is different from both 
cases considered in Section 3. To deal with this new problem, we introduce a parameter λ > 0 in 
the concave term and for all λ > 0 small we prove multiplicity results for the equation.

So, now the problem under consideration, is:

⎧⎨
⎩

−�u(z) + ξ(z)u(z) = λ|u(z)|q−2u(z) + f (z,u(z)) in �,

∂u

∂n
+ β(z)u = 0 on ∂�, λ > 0, 1 < q < 2.

⎫⎬
⎭ (Pλ)

The hypotheses on the perturbation f (z, x) are the following:

H(f )3: f : � × R → R is a Carathéodory function such that hypotheses H(f )3(i), (ii) are 
the same as the corresponding hypotheses H(f )1(i), (ii) and
(iii) there exist functions η, η0 ∈ L∞(�) such that

η(z) ≤ λ̂1 for almost all z ∈ �, η �≡ λ̂1,

η0(z) ≤ lim
x→0

f (z, x)

x
≤ lim sup

x→0

f (z, x)

x
≤ η(z) uniformly for almost all z ∈ �.

For every λ > 0, let ϕλ : H 1(�) → R be the energy (Euler) functional for problem (Pλ)
defined by

ϕλ(u) = 1

2
γ (u) − λ

q
||u||qq −

∫
�

F(z,u)dz for all u ∈ H 1(�).

Evidently, ϕλ ∈ C1(H 1(�)).
Also, we consider the following truncations–perturbations of the reaction in problem (Pλ):

f̂ +
λ (z, x) =

{
0 if x ≤ 0
λxq−1 + f (z, x) + μx if 0 < x,

(72)

f̂ −
λ (z, x) =

{
λ|x|q−2x + f (z, x) + μx if x ≤ 0,

0 if 0 < x.
(73)
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Here μ > 0 is as in (3). Both f̂ +
λ and f̂ −

λ are Carathéodory functions. We set F̂±
λ (z, x) =

x∫
0

f̂ ±
λ (z, s)ds and consider the C1-functionals ϕ̂±

λ : H 1(�) → R defined by

ϕ̂±
λ (u) = 1

2
γ (u) + μ

2
||u||22 −

∫
�

F̂±
λ (z,u)dz for all u ∈ H 1(�).

Since hypotheses H(f )3(i), (ii) are the same as H(f )1(i), (ii) and the concave term λ|x|q−2x

does not affect the behaviour of the reaction near ±∞, from Proposition 5, we have:

Proposition 11. If hypotheses H(ξ), H(β), H(f )3 hold and λ > 0, then the functional ϕλ sat-
isfies the C-condition.

Using similar arguments, we can also prove the following result:

Proposition 12. If hypotheses H(ξ), H(β), H(f )3 hold and λ > 0, then the functionals ϕ̂±
λ sat-

isfy the C-condition.

Proof. As we already indicated, the proof is basically the same as that of Proposition 5. So, we 
only present the first part of the proof, which differs a little due to the unilateral nature of the 
functionals ϕ̂±

λ (see (72) and (73)).
So, let {un}n≥1 ⊆ H 1(�) be a sequence such that

|ϕ̂+
λ (un)| ≤ M5 for some M5 > 0, all n ∈N, (74)

(1 + ||un||)(ϕ̂+
λ )′(un) → 0 in H 1(�)∗ as n → ∞ . (75)

From (75) we have

∣∣∣∣∣∣〈A(un),h〉 +
∫
�

(ξ(z) + μ)unhdz +
∫
∂�

β(z)unhdσ −
∫
�

f̂ +
λ (z,un)hdz

∣∣∣∣∣∣ ≤ εn||h||
1 + ||un|| (76)

for all h ∈ H 1(�), with εn → 0+.

In (76) we choose h = −u−
n ∈ H 1(�). Then

γ (u−
n ) + μ||u−

n ||22 ≤ εn for all n ∈ N (see (72)),

⇒ c0||u−
n ||2 ≤ εn for all n ∈ N (see (3)),

⇒ u−
n → 0 in H 1(�). (77)

Using (72) and reasoning as in the proof of Proposition 5, we show that

{u+}n≥1 ⊆ H 1(�) is bounded. (78)
n
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From (77) and (78) it follows that

{un}n≥1 ⊆ H 1(�) is bounded.

From this via the Kadec–Klee property, as in the proof of Proposition 5, we establish that

ϕ̂+
λ satisfies the C-condition.

In a similar fashion, using this time (73), we show that ϕ̂−
λ satisfies the C-condition. �

Hypothesis H(f )3(ii) (the superlinearity condition) implies that the functionals ϕ̂±
λ are un-

bounded below.

Proposition 13. If hypotheses H(ξ), H(β), H(f )3 hold, λ > 0 and u ∈ D+ then ϕ̂±
λ (tu) → −∞

as t → ±∞.

The next result will help us to verify the mountain pass geometry (see Theorem 1) for the 
functionals ϕ̂±

λ when λ > 0 is small.

Proposition 14. If hypotheses H(ξ), H(β), H(f )3 hold, then we can find λ±∗ > 0 such that for 
every λ ∈ (0, λ±∗ ) we can find ρ±

λ > 0 for which we have

inf[ϕ̂±
λ (u) : ||u|| = ρ±

λ ] = m̂±
λ > 0.

Proof. Hypotheses Hf (3)(i), (iii) imply that given ε > 0, we can find cε > 0 such that

F(z, x) ≤ 1

2
(η(z) + ε)x2 + cε |x|2∗

for almost all z ∈ �, all x ∈R. (79)

For every u ∈ H 1(�), we have

ϕ̂+
λ (u) ≥ 1

2
γ (u) + μ

2
||u−||22 − 1

2

∫
�

η(z)(u+)2dz − ε

2
||u+||2 − c18(λ||u||q + ||u||2∗

)

for some c18 > 0 (see (72), (79))

= 1

2

⎡
⎣γ (u+) −

∫
�

η(z)(u+)2dz − ε||u+||2
⎤
⎦ + 1

2
[γ (u−) + μ||u−||22] −

c18(λ||u||q + ||u||2∗
)

≥ 1

2
(c19 − ε)||u+||2 + c0

2
||u−||2 − c18(λ||u||q + ||u||2∗

)

for some c19 > 0 (see Lemma 4.11 of Mugnai and Papageorgiou [19] and (3)).
So, choosing ε ∈ (0, c19), we have

ϕ̂±
λ (u) ≥

[
c20 − c18(λ||u||q−2 + ||u||2∗−2)

]
||u||2 for some c20 > 0. (80)
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Consider the function

�λ(t) = λtq−2 + t2∗−2 for all t > 0, λ > 0.

Since q < 2 < 2∗, we see that

�λ(t) → +∞ as t → 0+ and as t → +∞.

So, we can find t0 = t0(λ) ∈ (0, +∞) such that

�λ(t0) = min[�λ(t) : t > 0].
We have

�′
λ(t0) = 0,

⇒ λ(2 − q)t
q−3
0 = (2∗ − 2)t2∗−3

0 ,

⇒ t0 = t0(λ) =
[
λ(2 − q)

2∗ − 2

] 1
2∗−q

.

Hence it follows that

�λ(t0) → 0+ as λ → 0+.

So, we can find λ+∗ > 0 such that

�λ(t0) <
c20

c18
for all λ ∈ (0, λ+∗ ).

Returning to (80) and using this fact we obtain

ϕ̂+
λ (u) ≥ m̂+

λ > 0 for all u ∈ H 1(�), ||u|| = ρ+
λ = t0(λ).

Similarly for the functional ϕ̂−
λ . �

To produce multiple solutions of constant sign, we need to strengthen the condition on the 
potential function. The new hypothesis on ξ(·) is:

H(ξ)′: ξ ∈ Ls(�) with s > N and ξ+ ∈ L∞(�).

Proposition 15. If hypotheses H(ξ)′, H(β), H(f )3 hold, then

(a) for every λ ∈ (0, λ+∗ ) problem (Pλ) has two positive solutions

u0, û ∈ D+ with u0 being a local minimizer of ϕλ;
(b) for every λ ∈ (0, λ−∗ ) problem (Pλ) has two negative solutions

v0, v̂ ∈ −D+ with v0 being a local minimizer of ϕλ;



N.S. Papageorgiou et al. / J. Differential Equations 263 (2017) 3244–3290 3271
(c) for every λ ∈ (0, λ∗) (here λ∗ = min{λ+∗ , λ−∗ }) problem (Pλ) has at least four nontrivial 
solutions of constant sign

u0, û ∈ D+, v0, v̂ ∈ −D+,

u0 and v0 are local minimizers of ϕλ.

Proof. (a) Let λ ∈ (0, λ+∗ ) and let ρ+
λ > 0 be as postulated by Proposition 14. We consider the 

set

B̄+
λ = {u ∈ H 1(�) : ||u|| ≤ ρ+

λ }.

This set is weakly compact. Also, using the Sobolev embedding theorem and the compact-
ness of the trace map, we see that ϕ̂+

λ is sequentially weakly lower semicontinuous. So, by the 
Weierstrass–Tonelli theorem, we can find u0 ∈ H 1(�) such that

ϕ̂+
λ (u0) = inf[ϕ̂+

λ (u) : u ∈ H 1(�)]. (81)

Since q < 2, for t ∈ (0, 1) small we have

ϕ̂+
λ (tû1) < 0,

⇒ ϕ̂+
λ (u0) < 0 = ϕ̂+

λ (0) (see (81)),

⇒ u0 �= 0 and ||u0|| < ρ+
λ (see Proposition 14).

This fact and (81) imply that

(ϕ̂+
λ )′(u0) = 0,

⇒ 〈A(u0), h〉 +
∫
�

(ξ(z) + μ)u0hdz +
∫
∂�

β(z)u0hdσ =
∫
�

f̂ +
λ (z,u0)hdz (82)

for all h ∈ H 1(�).

In (82) we choose h = −u−
0 ∈ H 1(�). Using (72) we obtain

γ (u−
0 ) + μ||u−

0 ||22 = 0,

⇒ c0||u−
0 ||2 ≤ 0 (see (3)),

⇒ u0 ≥ 0, u0 �= 0.

Then because of (72), equation (82) becomes

〈A(u0), h〉 +
∫
�

ξ(z)u0hdz +
∫
∂�

β(z)u0hdσ =
∫
�

[λu
q−1
0 + f (z,u0)]hdz

for all h ∈ H 1(�),
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⇒ −�u0(z) + ξ(z)u0(z) = λu0(z)
q−1 + f (z,u0(z)) for almost all z ∈ �, (83)

∂u0

∂n
+ β(z)u0 = 0 on ∂� (see Papageorgiou and Rădulescu [22]).

As in the proof of Theorem 8, from the regularity theory of Wang [33], we have

u0 ∈ C+\{0}.

Hypotheses H(f )3(i), (iii), imply that

|f (z, x)| ≤ c21|x| for almost all z ∈ �, all |x| ≤ ||u0||∞, some c21 > 0.

Then from (83) and hypothesis H(ξ)′, we have

�u0(z) ≤ [||ξ+||∞ + c21]u0(z) for almost all z ∈ �,

⇒ u0 ∈ D+ (by the strong maximum principle). (84)

From (72) it is clear that

ϕλ|C+ = ϕ̂+
λ

∣∣
C+ .

So, from (84) it follows that

u0 is a local C1(�) − minimizer of ϕλ,

⇒ u0 is a local H 1(�) − minimizer of ϕλ (see Proposition 4).

Next we will produce a second positive smooth solution.
We know that

ϕ̂+
λ (u0) < 0 < m̂+

λ = inf[ϕ̂+
λ (u) : ||u|| = ρ+

λ ] (see Proposition 14). (85)

Also, from Propositions 12 and 13, we have

ϕ̂+
λ satisfies the C-condition, (86)

ϕ̂+
λ (tû1) → −∞ as t → +∞ . (87)

Then (85), (86) and (87) permit the use of Theorem 1 (the mountain pass theorem). So, we 
can find û ∈ H 1(�) such that

û ∈ Kϕ̂+
λ

and m̂+
λ ≤ ϕ̂+

λ (u). (88)

From (85) and (88) we have that

û �= u0, û �= 0,

⇒ û ∈ D+ is a solution of (Pλ) (as before).
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(b) Reasoning in a similar fashion, this time using the functional ϕ̂−
λ and (73), we produce 

two negative smooth solutions

v0, v̂ ∈ −D, v0 �= v̂,

with v0 being a local minimizer of ϕλ.
(c) Follows from (a) and (b). �
In fact we can show that problem (Pλ) has extremal constant sign solutions. So, for all λ ∈

(0, λ+∗ ) there exists a smallest positive solution u∗
λ ∈ D+ and for all λ ∈ (0, λ−∗ ) there is a biggest 

negative solution v∗
λ ∈ −D+.

Let S+
λ (respectively S−

λ ) be the set of positive (respectively negative) solutions of problem. 
From Proposition 15 we know that

∅ �= S+
λ ⊆ D+ for all λ ∈ (0, λ+∗ ),

∅ �= S−
λ ⊆ D+ for all λ ∈ (0, λ−∗ ).

Moreover, from Filippakis and Papageorgiou [8] (see Lemmata 4.1 and 4.2), we have that

• S+
λ is downward directed (that is, if u1, u2 ∈ S+

λ , then there exists u ∈ S+
λ such that u ≤ u1

and u ≤ u2).
• S−

λ is upward directed (that is, if v1, v2 ∈ S−
λ , then there exists v ∈ S−

λ such that 
v1 ≤ v, v2 ≤ v).

Note that hypotheses H(f )3(i), (iii) imply that

f (z, x)x ≥ −c22x
2 − c23|x|2∗

for almost all z ∈ �, all x ∈ R, some c22, c23 > 0. (89)

We may always assume that c22 ≥ μ (see (3)). This unilateral growth condition on f (z, ·), 
leads to the following auxiliary Robin problem:

⎧⎨
⎩

−�u(z) + ξ(z)u(z) = λ|u(z)|q−2u(z) − c22u(z) − c23|u(z)|2∗−2u(z) in �,
∂u

∂n
+ β(z)u = 0 on ∂� .

⎫⎬
⎭ (Auλ)

Proposition 16. If hypotheses H(ξ)′, H(β), H(f )3 hold and λ > 0, then problem (Auλ) has a 
unique positive solution

ũλ ∈ D+

and because problem (Auλ) is odd it follows that

ṽλ = −ũλ ∈ −D+

is the unique negative solution of (Auλ).
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Proof. First, we show the existence of a positive solution.
To this end, let ψ+

λ : H 1(�) → R be the C1-functional defined by

ψ+
λ (u) = 1

2
γ (u) + μ

2
||u−||22 + c22

2
||u+||22 + c23

2
||u+||2∗

2∗ − λc24||u||q

for some c24 > 0,

≥ c0

2
||u||2 − λc24||u||q (recall that c22 ≥ μ and see (3)),

⇒ ψ+
λ (·) is coercive (recall that q < 2).

Also, ψ+
λ is sequentially weakly lower semicontinuous.

So, we can find ũλ ∈ H 1(�) such that

ψ+
λ (ũλ) = inf[ψ+

λ (u) : u ∈ H 1(�)]. (90)

Since q < 2 < 2∗, for t ∈ (0, 1) small we have

ψ+
λ (tũ1) < 0 = ψ+

λ (0),

⇒ ψ+
λ (ũλ) < 0 = ψ+

λ (0) (see (90)),

⇒ ũλ �= 0. (91)

From (90) we have

(ψ+
λ )′(ũλ) = 0,

⇒ 〈A(ũλ), h〉 +
∫
�

ξ(z)ũ+
λ hdz −

∫
�

(ξ(z) + μ)ũ−
λ hdz +

∫
∂�

β(z)ũλhdσ

= λc24

∫
�

(ũ+
λ )q−1hdz − c23

∫
�

(ũ+
λ )2∗−1hdz for all h ∈ H 1(�). (92)

In (92) we choose h = −ũ−
λ ∈ H 1(�). Then

γ (ũ−
λ ) + μ||ũ−

λ ||22 = 0,

⇒ c0||ũ−
λ ||2 ≤ 0 (see (3)),

⇒ ũλ ≥ 0, ũλ �= 0 (see (91)).

Therefore equation (92) becomes

〈A(ũλ), h〉 +
∫
�

ξ(z)ũλhdz +
∫
∂�

β(z)ũλhdσ

= λ

∫
ũ

q−1
λ hdz − c22

∫
ũλhdz − c23

∫
ũ2∗−1

λ hdz for all h ∈ H 1(�),
� � �
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⇒ −�ũλ(z) + ξ(z)ũλ(z) = λũλ(z)
q−1 − c22ũλ(z) − c23ũλ(z)

2∗−1 for a.a. z ∈ �, (93)

∂ũλ

∂n
+ β(z)ũλ = 0 on ∂� (see Papageorgiou and Rădulescu [22]),

⇒ ũλ ∈ C+\{0}
(as before using the regularity theory of Wang [33]).

From (93) we have

�ũλ(z) ≤ [||ξ+||∞ + c23||ũλ||2∗−2∞ + c22]ũλ(z) for almost all z ∈ �,

⇒ ũλ ∈ D+ (by the strong maximum principle).

Next we show the uniqueness of this positive solution. So, suppose that ũλ, ūλ ∈ D+ are two 
solutions of (Auλ). The solution set of (Auλ) is downward directed (see [8]). So, we may assume 
that ūλ ≤ ũλ,∫

�

(Dũλ,Dūλ)RN dz +
∫
�

ξ(z)ũλūλdz +
∫
∂�

β(z)ũλūλdσ = λ

∫
�

ũ
q−1
λ ūλdz

− c22

∫
�

ũλūλdz − c23

∫
�

ũ2∗−1
λ ūλdz (94)

∫
�

(Dūλ,Dũλ)RN dz +
∫
�

ξ(z)ūλũλdz +
∫
�

β(z)ūλũλdσ = λ

∫
�

ū
q−1
λ ũλdz

− c22

∫
�

ūλũλdz − c23

∫
�

ū2∗−1
λ ũλdz. (95)

We subtract (95) from (94) and obtain

λ

∫
�

ũλūλ

[
1

ũ
2−q
λ

− 1

ū
2−q
λ

]
= c23

∫
�

ũλūλ

(
ũ2∗−2

λ − ū2∗−2
λ

)
dz

⇒ ũλ = ūλ (recall q < 2 < 2∗ and ūλ ≤ ũλ).

This proves the uniqueness of the positive solution ũλ ∈ D+ of (Auλ).
Problem (Auλ) is odd. So, it follows that

ũλ = −ũλ ∈ −D+

is the unique negative solution of (Auλ). �
Remark 4. We present an alternative way of proving the uniqueness of the positive solution 
ũλ ∈ D+ of (Auλ). So, let ũλ, ūλ ∈ D+ be two positive solutions of (Auλ). Let t > 0 be the 
biggest positive real such that

t ūλ ≤ ũλ (96)
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(see Filippakis and Papageorgiou [8, Lemma 3.6]). Suppose that t ∈ (0, 1). Since q < 2 < 2∗, we 
can find ϑ̂ > 0 such that the function

x �→ λxq−1 + (ϑ − c22)x − c23x
2∗−1

is increasing on [0, max{||ũλ||∞, ||ūλ||∞}].
We have

−�ũλ(z) + (ξ(z) + ϑ̂)ũλ(z)

= λũλ(z)
q−1 + (ϑ̂ − c22)ũλ(z) − c23ũλ(z)

2∗−1

≥ λ(tūλ(z))
q−1 + (ϑ̂ − c22)(t ūλ(z)) − c23(t ūλ(z))

2∗−1 (see (96))

≥ t
[
λūλ(z)

q−1 + (ϑ̂ − c22)ūλ(z) − c23ūλ(z)
2∗−1

]
(since q < 2 < 2∗ and t ∈ (0,1))

= t
[
−�ūλ(z) + (ξ(z) + ϑ̂)ūλ(z)

]
= −�(tūλ)(z) + (ξ(z) + ϑ̂)(t ūλ)(z) for almost all z ∈ �,

⇒ �(ũλ − t ūλ)(z) ≤ (||ξ+||∞ + ϑ̂)(ũλ − t ūλ)(z) for almost all z ∈ � (97)

(see hypothesis H(ξ)′).

Note that ũλ �≡ t ūλ. Indeed, if ũλ ≡ t ūλ, then

λ(tūλ)(z)
q−1 − c22(t ūλ)(z) − c23(t ūλ)(z)

2∗−1

> t [−�ūλ(z) + ξ(z)ūλ(z)] (since q < 2 < 2∗ and t ∈ (0,1))

= −�ũλ(z) + ξ(z)ũλ(z) (since ũλ ≡ t ūλ)

= λũλ(z)
q−1 − c22ũλ(z) − c23ũλ(z)

2∗−1

= λ(tūλ)(z)
q−1 − c22(t ūλ)(z) − c23(t ūλ)(z)

2∗−1,

a contradiction.
Then from (97) and the strong maximum principle, we have

ũλ − t ūλ ∈ D+,

which contradicts the maximality of t > 0. Hence t ≥ 1 and we have

ūλ ≤ ũλ (see (96)).

Interchanging the roles of ũλ and ūλ in the above argument, we also have

ũλ ≤ ūλ,

⇒ ũλ = ūλ.

This proves the uniqueness of the positive solution of (Auλ).
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Next we show that ũλ ∈ D+ (respectively ṽλ ∈ −D+) is a lower bound (upper bound) for the 
elements of S+

λ (respectively S−
λ ).

Proposition 17. If hypotheses H(ξ)′, H(β), H(f )3 hold, then

(a) ũλ ≤ u for all u ∈ S+
λ , λ ∈ (0, λ+∗ );

(b) v ≤ ṽλ for all v ∈ S−
λ , λ ∈ (0, λ−∗ ).

Proof. (a) Let u ∈ S+
λ and let g+

λ : � ×R →R be the Carathéodory function defined by

g+
λ (z, x) =

⎧⎨
⎩

0 if x < 0
λxq−1 + (μ − c22)x − c23x

2∗−1 if 0 ≤ x ≤ u(z)

λu(z)q−1 + (μ − c22)u(z) − c23u(z)2∗−1 if u(z) < x.

(98)

We set G+
λ (z, x) =

x∫
0

g+
λ (z, s)ds and consider the C1-functional ψ̂+

λ : H 1(�) → R defined 

by

ψ̂+
λ (y) = 1

2
γ (y) + μ

2
||y||22 −

∫
�

G+
λ (z, y)dz for all y ∈ H 1(�).

From (3) and (98) it is clear that ψ̂+
λ is coercive. Also, it is sequentially weakly lower semi-

continuous. So, we can find ūλ ∈ H 1(�) such that

ψ̂+
λ (ūλ) = inf[ψ̂+

λ (u) : u ∈ H 1(�)]. (99)

As before, since q < 2 < 2∗, we have

ψ̂+
λ (ūλ) < 0 = ψ̂+

λ (0),

⇒ ūλ �= 0. (100)

From (99), we have

(ψ̂+
λ )′(ūλ) = 0,

⇒ 〈A(ūλ), h〉 +
∫
�

(ξ(z) + μ)ūλhdz +
∫
∂�

β(z)ūλhdσ =
∫
�

g+
λ (z, ūλ)hdz (101)

for all h ∈ H 1(�).

In (101) first we choose h = −ū− ∈ H 1(�). Then
λ
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γ (ū−
λ ) + μ||ū−

λ ||22 = 0 (see (98)),

⇒ c0||ū−
λ ||2 ≤ 0 (see (3)),

⇒ ūλ ≥ 0, ūλ �= 0 (see (100)).

Also in (101) we choose h = (ūλ − u)+ ∈ H 1(�). Then

〈
A(ūλ), (ūλ − u)+

〉 + ∫
�

(ξ(z) + μ)ūλ(ūλ − u)+dz +
∫
∂�

β(z)ūλ(ūλ − u)+dσ

=
∫
�

[
λuq−1 + (μ − c22)u − c23u

2∗−1
]
(ūλ − u)+dz (see (98))

≤
∫
�

[λuq−1 + f (z,u) + μu](ūλ − u)+dz (see (89))

= 〈
A(u), (ūλ − u)+

〉 + ∫
�

(ξ(z) + μ)u(ūλ − u)+dz +
∫
∂�

β(z)u(ūλ − u)+dσ

(since u ∈ S+
λ ),

⇒ γ ((ūλ − u)+) + μ||(ūλ − u)+||22 ≤ 0,

⇒ c0||(ūλ − u)||2 ≤ 0 (see (3)),

⇒ ūλ ≤ u.

So, we have proved that

ūλ ∈ [0, u], ūλ �= 0. (102)

On account of (98) and (102), equation (101) becomes

〈A(ūλ), h〉 +
∫
�

ξ(z)ūλhdz +
∫
∂�

β(z)ūλhdσ =
∫
�

[
λū

q−1
λ − c22ūλ − c23ū

2∗−1
λ

]
hdz

for all h ∈ H 1(�),

⇒ ūλ is a positive solutions of (Auλ),

⇒ ūλ = ũλ ∈ D+ (see Proposition 16).

From (102) we conclude that

ũλ ≤ u for all u ∈ S+
λ .

(b) In a similar fashion we show that

v ≤ ṽλ for all v ∈ S−
λ . �
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Now we are ready to produce extremal constant sign solutions for problem (Pλ), that is, a 
smallest element for the set S+

λ (λ ∈ (0, λ+∗ )) and a biggest element for the set S−
λ (λ ∈ (0, λ−∗ )).

Theorem 18. If hypotheses H(ξ)′, H(β), H(f )3 hold, then

(a) for every λ ∈ (0, λ+∗ ) problem S+
λ has a smallest element u∗

λ ∈ D+;
(b) for every λ ∈ (0, λ−∗ ) problem S−

λ has a biggest element v∗
λ ∈ −D+.

Proof. (a) Recall that S+
λ (λ ∈ (0, λ+∗ )) is downward directed. So, invoking Lemma 3.10 of Hu 

and Papageorgiou [12, p. 178], we can find a decreasing sequence {un}n≥1 ⊆ S+
λ such that

infS+
λ = inf

n≥1
un.

Evidently, {un}n≥1 ⊆ H 1(�) is bounded. So, we may assume that

un
w→ u∗

λ in H 1(�) and un → u∗
λ in L

2s
s−1 (�) and in L2(∂�). (103)

We have

〈A(un),h〉 +
∫
�

ξ(z)unhdz +
∫
∂�

β(z)unhdσ = λ

∫
�

u
q−1
n hdz +

∫
�

f (z,un)hdz (104)

for all h ∈ H 1(�), all n ∈ N.

In (104) we pass to the limit as n → ∞ and use (103). We obtain

〈
A(u∗

λ), h
〉 + ∫

�

ξ(z)u∗
λhdz +

∫
∂�

β(z)u∗
λhdσ = λ

∫
�

(u∗
λ)

q−1hdz +
∫
�

f (z,u∗
λ)hdz (105)

for all h ∈ H 1(�).

Also we have

ũλ ≤ un for all n ∈ N (see Proposition 17),

⇒ ũλ ≤ u∗
λ (see (103)). (106)

Then from (105) and (106) we infer that

u∗
λ ∈ S+

λ and u∗
λ = infS+

λ .

(b) Similarly we produce v∗
λ ∈ −D+ the biggest element of S−

λ . �
Using these extremal constant sign solutions of (Pλ), we can generate nodal (that is, sign 

changing) solutions.
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Proposition 19. If hypotheses H(ξ)′, H(β), H(f )3 hold and λ ∈ (0, λ∗) (recall λ∗ = min{λ+
λ ,

λ−∗ }), then problem (Pλ) admits a nodal solution ŷ ∈ C1(�)\{0}.

Proof. Let u∗
λ ∈ D+ and v∗

λ ∈ −D+ be the two extremal constant sign solutions of (Pλ) produced 
in Theorem 18. Using them we introduce the following Carathéodory function

kλ(z, x) =

⎧⎪⎨
⎪⎩

λ|v∗
λ(z)|q−2v∗

λ(z) + f (z, v∗
λ(z)) + μv∗

λ(z) if x < v∗
λ(z)

λ|x|q−2x + f (z, x) + μx if v∗
λ(z) ≤ x ≤ u∗

λ(z)

λu∗
λ(z)

q−1 + f (z,u∗
λ(z)) + μu∗

λ(z) if u∗
λ(z) < x.

(107)

Let Kλ(z, x) =
x∫

0

kλ(z, s)ds and consider the C1-functional ηλ : H 1(�) → R defined by

ηλ(u) = 1

2
γ (u) + μ

2
||u||22 −

∫
�

Kλ(z,u)dz for all u ∈ H 1(�).

Also we consider the positive and negative truncations of kλ(z, ·) (that is, k±
λ (z, x) =

kλ(z, ±x±)), set K±
λ (z, x) =

x∫
0

k±
λ (z, s)ds and consider the corresponding C1-functionals η±

λ :

H 1(�) → R defined by

η±
λ (u) = 1

2
γ (u) + μ

2
||u||22 −

∫
�

K±
λ (z,u)dz for all u ∈ H 1(�).

Claim 2. Kηλ ⊆ [v∗
λ, u∗

λ] ∩ C1(�), Kη+
λ

= {0, u∗
λ}, Kη−

λ
= {0, v∗

λ}.

Let u ∈ Kηλ . We have

〈A(u),h〉 +
∫
�

(ξ(z) + μ)uhdz +
∫
∂�

β(z)uhdσ =
∫
�

kλ(z,u)hdz for all h ∈ H 1(�). (108)

In (108) we choose h = (u − u∗
λ)

+ ∈ H 1(�). Then

〈
A(u), (u − u∗

λ)
+〉 + ∫

�

(ξ(z) + μ)u(u − u∗
λ)

+dz +
∫
∂�

β(z)u(u − u∗
λ)

+dσ

=
∫
�

[λ(u∗
λ)

q−1 + f (z,u∗
λ) + μu∗

λ](u − u∗
λ)

+dz (see (107))

= 〈
A(u∗

λ), (u − u∗
λ)

+〉 + ∫
(ξ(z) + μ)u∗

λ(u − u∗
λ)

+dz +
∫

β(z)u∗
λ(u − u∗

λ)
+dσ
� ∂�
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(since u∗
λ ∈ S+

λ ),

⇒ u ≤ u∗
λ.

Similarly, choosing h = (v∗
λ − u)+ ∈ H 1(�) in (108), we show that

v∗
λ ≤ u.

So, from the above and the regularity theory of Wang [33], we have

u ∈ [v∗
λ,u∗

λ] ∩ C1(�),

⇒ Kηλ ⊆ [v∗
λ,u∗

λ] ∩ C1(�).

In a similar fashion, we show that

Kη+
λ

⊆ [0, u∗
λ] and Kη−

λ
⊆ [v∗

λ,0].

The extremality of u∗
λ ∈ D+ and of v∗

λ ∈ −D+, implies that

Kη+
λ

= {0, u∗
λ} and Kη−

λ
= {0, v∗

λ}.

This proves Claim 2.

Claim 3. u∗
λ ∈ D+ and v∗

λ ∈ −D+ are local minimizers of ηλ.

Evidently, η+
λ is coercive (see (107)) and sequentially weakly lower semicontinuous. So, we 

can find ũ∗
λ ∈ H 1(�) such that

η+
λ (ũ∗

λ) = inf[η+
λ (u) : u ∈ H 1(�)]. (109)

As before, since q < 2 < 2∗, we have

η+
λ (ũ∗

λ) < 0 = η+
λ (0)

⇒ ũ∗
λ �= 0. (110)

From (109) we have that

ũ∗
λ ∈ Kη+

λ
. (111)

From (110), (111) and Claim 2 it follows that ũ∗
λ = u∗

λ ∈ D+. Note that

ηλ|C+ = η+
λ

∣∣
C+ (see (107)),

⇒ u∗
λ is a local C1(�) − minimizer of ηλ,

⇒ u∗ is a local H 1(�) − minimizer of ηλ (see Proposition 4).
λ
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Similarly for v∗
λ ∈ −D+, using this time the functional η−

λ . This proves Claim 3.
Without any loss of generality, we may assume that

ηλ(v
∗
λ) ≤ ηλ(u

∗
λ).

The reasoning is similar if the opposite inequality holds. Also, we assume that Kηλ if finite or 
on account of Claim 2 we already have an infinity of smooth nodal solutions and so we are done. 
Then Claim 3 implies that we can find ρ ∈ (0, 1) small such that

ηλ(v
∗
λ) ≤ ηλ(u

∗
λ) < inf[ηλ(u) : ||u − u∗

λ|| = ρ] = mλ, ||v∗
λ − u∗

λ|| > ρ (112)

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).
From (3) and (107) it is clear that ηλ is coercive. Hence

ηλ satisfies the C-condition. (113)

Then (112) and (113) permit the use of Theorem 1 (the mountain pass theorem). So, we can 
find ŷ ∈ H 1(�) such that

ŷ ∈ Kηλ and mλ ≤ ηλ(ŷ). (114)

Claim 2 together with (112) and (114) imply that

ŷ ∈ [v∗
λ,u∗

λ] ∩ C1(�), ŷ /∈ {u∗
λ, v

∗
λ}.

Since ŷ is a critical point of ηλ of mountain pass type, we have

C1(ηλ, ŷ) �= 0 (115)

(see Motreanu, Motreanu and Papageorgiou [18, Corollary 6.81, p. 168]).
On the other hand, the presence of the concave term λ|x|q−2x (q < 2) in the reaction function, 

hypothesis H(f )3(iii) and Lemma 3.4 of D’Agui, Marano and Papageorgiou [5] imply that

Ck(ηλ,0) = 0 for all k ∈N0. (116)

Comparing (115) and (116), we conclude that

ŷ �= 0,

⇒ ŷ ∈ C1(�)\{0} is nodal. �
So, we can state the following multiplicity theorem for problem (Pλ).

Theorem 20. If hypotheses H(ξ)′, H(β), H(f )3 hold, then we can find a parameter value λ∗ >

0 such that for every λ ∈ (0, λ∗) problem (Pλ) has at least five nontrivial smooth solutions

u0, û ∈ D+, v0, v̂ ∈ −D+,

ŷ ∈ C1(�) nodal.
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If we strengthen the regularity of f (z, ·), we can improve Theorem 20 and produce a sixth 
nontrivial smooth solution. However, we do not provide any sign information for this sixth solu-
tion.

The new conditions on the perturbation term f (z, x) are the following:

H(f )4: f : � × R → R is a measurable function such that for almost all z ∈ �, f (z, ·) ∈
C1(R) and

(i) for every ρ > 0, there exists aρ ∈ L∞(�) such that

|f ′
x(z, x)| ≤ aρ(z) for almost all z ∈ �, all |x| ≤ ρ

and lim
x→±∞

f ′
x(z, x)

|x|2∗−2
= 0 uniformly for almost all z ∈ �;

(ii) lim
x→±∞

F(z, x)

x2
= +∞ uniformly for almost all z ∈ � and there exists e ∈ L1(�) such that

τ(z, x) ≤ τ(z, y) + e(z) for almost all z ∈ �, all 0 ≤ x ≤ y and all y ≤ x ≤ 0

(recall that F(z, x) =
x∫

0

f (z, s)ds and τ(z, x) = f (z, x)x − 2F(z, x));

(iii) f (z, 0) = 0 for almost all z ∈ �, f ′
x(z, 0) = lim

x→0

f (z, x)

x
uniformly for almost all z ∈ �

and

f ′
x(·,0) ∈ L∞(�),f ′

x(z,0) ≤ λ̂1 for almost all z ∈ �,f ′
x(·,0) �≡ λ̂1.

Under the above hypotheses, we have ϕλ ∈ C2(H 1(�)\{0}).

Proposition 21. If hypotheses H(ξ)′, H(β), H(f )4 hold and λ ∈ (0, λ∗), then problem (Pλ) ad-
mits a sixth nontrivial smooth solution

ỹ ∈ C1(�).

Proof. From Proposition 15 we know that

Ck(ϕλ,u0) = Ck(ϕλ, v0) = δk,0Z for all k ∈N0. (117)

Also, recall (see the proof of Proposition 15), that û ∈ D+ is a critical point of mountain pass 
type for ϕ̂+

λ and v̂ ∈ −D+ is a critical point of mountain pass type for ϕ̂−
λ . Note that

ϕλ|C+ = ϕ̂+
λ

∣∣
C+ and ϕλ|−C+ = ϕ̂−

λ

∣∣−C+ (see (72), (73)),

⇒ Ck(ϕλ|C1(�) , û) = Ck( ϕ̂
+
λ

∣∣
C1(�)

, û) and Ck(ϕλ|C1(�) , v̂) = Ck( ϕ̂
−
λ

∣∣
C1(�)

, v̂)

for all k ∈N0 (recall that û ∈ D+ and v̂ ∈ −D+)

⇒ Ck(ϕλ, û) = Ck(ϕ̂
+, û) and Ck(ϕλ, v̂) = Ck(ϕ̂

−, v̂) for all k ∈ N0 (see Palais [20])
λ λ
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⇒ Ck(ϕλ, û) = Ck(ϕλ, v̂) = δk,1Z (118)

(see Motreanu, Motreanu and Papageorgiou [18, Corollary 6.102, p. 177]).

Also, as we already pointed out in the proof of Proposition 19 (see (116) and recall 
ηλ|[v∗

λ,u∗
λ] = ϕλ|[v∗

λ,u∗
λ]), we have

Ck(ϕλ,0) = 0 for all k ∈ N0. (119)

From Proposition 6, we have

Ck(ϕλ,∞) = 0 for all k ∈ N0. (120)

Let m̂ = max{||u0||∞, ||û||∞, ||v0||∞, ||v̂||∞}. Hypotheses H(f )4(i), (iii) imply that we can 
find ξ̂ > 0 such that for almost all z ∈ �, the function

x �→ f (z, x) + ξ̂ x

is nondecreasing on [−m̂, m̂]. With ŷ ∈ C1(�)\{0} being the nodal solution we have

−�ŷ(z) + (ξ(z) + ξ̂ )ŷ(z)

= λ|ŷ(z)|q−2ŷ(z) + f (z, ŷ(z)) + ξ̂ ŷ(z)

≤ λu∗
λ(z)

q−1 + f (z,u∗
λ(z)) + ξ̂u∗

λ(z) (since ŷ ≤ u∗
λ, see Proposition 19)

= −�u∗
λ(z) + (ξ(z) + ξ̂ )u∗

λ(z) for almost all z ∈ �,

⇒ �(u∗
λ − ŷ)(z) ≤ [||ξ+||∞ + ξ̂ ](u∗

λ − ŷ)(z) for almost all z ∈ � (see hypothesis H(ξ))

⇒ u∗
λ − ŷ ∈ D+ (by the strong maximum principle).

Similarly we show that

ŷ − v∗
λ ∈ D+.

So, finally we have

ŷ ∈ intC1(�)[v∗
λ,u∗

λ]. (121)

Recall that

ηλ

∣∣∣[v∗
λ,u∗

λ] = ϕλ

∣∣∣[v∗
λ,u∗

λ] see (107),

⇒ Ck(ηλ, ŷ) = Ck(ϕλ, ŷ) for all k ∈ N0

(as before from (121) and Palais [20])

⇒ Ck(ϕλ, ŷ) = δk,1Z for all k ∈ N0 (122)

(since ŷ ∈ Kηλ is of mountain pass type, see [18, p. 177]).
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Suppose that Kϕλ = {0, u0, v0, û, v̂, ŷ}. Then from (117), (118), (119), (120) and (121) and 
using the Morse relation with t = −1 (see (6)), we have

2(−1)0 + 2(−1)1 + (−1)1 = 0,

a contradiction. So, there exists ỹ ∈ H 1(�) such that

ỹ ∈ Kϕλ ⊆ C1(�) and ỹ /∈ {0, u0, v0, û, v̂, ŷ}.

This is the sixth nontrivial smooth solution of problem (Pλ). �
So, we can state the following new multiplicity theorem for problem (Pλ).

Theorem 22. If hypotheses H(ξ)′, H(β), H(f )4 hold, then there exists a parameter value 
λ∗ > 0 such that for every λ ∈ (0, λ∗) problem (Pλ) has at least six nontrivial smooth solutions

u0, û ∈ D+, v0, v̂ ∈ −D+,

ŷ ∈ C1(�) nodal and ỹ ∈ C1(�).

5. Infinitely many solutions

In this section, we generate an infinity of nontrivial smooth solutions by introducing symmetry 
on the reaction term. We prove two such results. The first concerns problem (Pλ) and the solutions 
we produce are nodal. The second result deals with problem (1) and produces an infinity of 
nontrivial smooth solutions but without any sign information.

For the first theorem, the hypotheses on the perturbation term f (z, x) are the following:

H(f )5: f : � ×R → R is a Carathéodory function which satisfies hypotheses H(f )3 and in 
addition for almost all z ∈ �, f (z, ·) is odd.

Theorem 23. If hypotheses H(ξ)′, H(β), H(f )5 hold, then we can find a parameter value 
λ∗ > 0 such that for every λ ∈ (0, λ∗) problem (Pλ) admits a sequence {un}n≥1 ⊆ C1(�) of 
distinct nodal solutions such that

un → 0 in C1(�) as n → ∞.

Proof. Let λ∗ = min{λ+∗ , λ−∗ } be as in Proposition 15(c) and consider the C1-functional ηλ :
H 1(�) → R introduced in the proof of Proposition 19. We have the following properties:

• ηλ is even;
• ηλ is coercive (hence it is bounded below and it satisfies the C-condition);
• ηλ(0) = 0.

Let V be a finite dimensional subspace of H 1(�). So, all norms on V are equivalent. Also, 
from (107) and hypotheses H(f )5(i), (iii) = H(f )3(i), (iii) we see that we can find c24 > 0 such 
that
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|Kλ(z, x)| ≤ c24|x|2 for almost all z ∈ �. (123)

So, for every u ∈ V and recalling that all norms are equivalent, we have

ηλ(u) ≤ c25||u||2 − λc26||u||q for some c25, c26 > 0

(see (123) and hypotheses H(ξ)′,H(β)).

Since q < 2, we can find ρλ ∈ (0, 1) small such that

ηλ(u) < 0 for all u ∈ V with ||u|| = ρλ.

Therefore we can apply Theorem 3 and find {un}n≥1 ⊆ Kηλ ⊆ [v∗
λ, u∗

λ] ∩ C1(�) (see Claim 2
in the proof of Proposition 19) such that

un → 0 in H 1(�). (124)

From the regularity theory of Wang [33] we know that

un ∈ C1,α(�) with α = 1 − N

s
> 0 and ||un||C1,α(�) ≤ c27 (125)

for all n ∈ N and some c27 > 0.

Exploiting the compact embedding of C1,α(�) into C1(�), from (124) and (125) we infer 
that

un → 0 in C1(�) as n → ∞.

Moreover, since un ∈ [v∗
λ, u∗

λ] for all n ∈N, un ∈ C1(�) is nodal. �
The second result of this section is about problem (1). For this result the hypotheses on the 

reaction term f (z, x) are the following:

H(f )6: f : � × R → R is a Carathéodory function such that for almost all z ∈ � f (z, x) is 
odd and hypotheses H(f )6(i), (ii) are the same as the corresponding hypotheses H(f )5(i), (ii).

Remark 5. We point out that in the above hypotheses there are no conditions on f (z, ·) near 
zero.

Theorem 24. If hypotheses H(ξ), H(β), H(f )6 hold, then problem (1) admits an unbounded 
sequence of solutions {un}n≥1 ⊆ C1(�).

Proof. From Proposition 5 we know that the energy (Euler) functional ϕ satisfies the C-condition 
and ϕ(0) = 0.

We consider the following orthogonal direct sum decomposition of H 1(�)

H 1(�) = H− ⊕ E(0) ⊕ H+
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with H− = m−⊕
k=1

E(λ̂k), H+ = ⊕
k≥m+

E(λ̂k) (see Section 2). Then every u ∈ H 1(�) admits a unique 

sum decomposition of the term

u = ū + u0 + û with ū ∈ H−, u◦ ∈ E(0), û ∈ H+ .

Hypothesis H(f )6(i) implies that given ε > 0, we can find c28 = c28(ε) > 0 such that

F(z, x) ≤ ε

2
|x|2∗ + c28|x| for almost all z ∈ �, all x ∈ R. (126)

Let u ∈ H+. We have

ϕ(u) = 1

2
γ (u) −

∫
�

F(z,u)dz

≥ 1

2
γ (u) − ε

2
||u||2∗

2∗ − c28||u||1 (see (128))

≥ 1

2

[
γ (u) − εc29||u||2∗]

− c28||u||1 for some c29 > 0

≥
[
2c30||u||2 − εc29||u||2∗]

− c28||u||1 for some c29 > 0 (recall that u ∈ H+)

=
[
c30||u||2 − εc29||u||2∗]

+
[
c30||u||2 − c28||u||1

]
. (127)

If û ∈ H+ is such that

||û|| = ρ̂ <

(
c30

εc29

) 1
2∗−2

,

then we have

c30||u||2 − εc29||u||2∗
> 0.

Also, for l ≥ m+ and u ∈ ⊕
k≥l

E(λ̂k), we have

c28||u||1 ≤ c31||u||2 ≤ c31√
λ̂l

||u|| for some c31 > 0.

Therefore

c30||u||2 − c28||u||1 ≥ c30||u||2 − c31√
λ̂l

||u|| for u ∈ Vl = ⊕
k≥l

E(λ̂k).

So, if u ∈ Vl with l ≥ m+ big and with ||u|| = ρ̂, we have
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c30ρ̂
2 − c31√

λ̂l

ρ̂ > 0.

Returning to (127), we see that

ϕ|Vl∩∂Bρ̂
> 0. (128)

Next let Z ⊆ H 1(�) be a finite dimensional subspace. From hypotheses H(f )6(i), (ii), we 
know that given any η > 0, we can find c32 = c32(η) > 0 such that

F(z, x) ≥ η

2
x2 − c32 for almost all z ∈ �, all x ∈R. (129)

For u ∈ Z we have

ϕ(u) = 1

2
γ (u) −

∫
�

F(z,u)dz

≤ 1

2
γ (u) − η

2
||u||22 + c32|�|N see (129)

≤ c33||u||2 − ηc34||u||2 + c32|�|N for some c33, c34 > 0 (130)

(since Z is finite dimensional all norms are equivalent).

But η > 0 is arbitrary. So, we choose η >
c33

c34
> 0 and from (130) we infer that

ϕ|Z is anticoercive. (131)

Then (128) and (131) permit the use of Theorem 2 (the symmetric mountain pass theorem). 
So, we can find {un}n≥1 ⊆ H 1(�) such that

un ∈ Kϕ for all n ∈ N and ||un|| → +∞ .

Hence un is a solution of (1) and un ∈ C1(�) with ||un||C1(�) → +∞. �
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J1-7025. V.D. Rădulescu acknowledges the support through a grant of the Romanian National 
Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-III-
P4-ID-PCE-2016-0130.

References

[1] S. Aizicovici, N.S. Papageorgiou, V. Staicu, in: Degree Theory of Operators of Monotone Type and Nonlinear 
Elliptic Equations with Inequality Constraints, in: Mem. Amer. Math. Soc., vol. 196, 2008, No. 915, pp. 70.

[2] G. Autuori, P. Pucci, C. Varga, Existence theorems for quasilinear elliptic eigenvalue problems in unbounded do-
mains, Adv. Differential Equations 18 (1–2) (2013) 1–48.

[3] D.C. Clark, A variant of the Ljusternik–Schnirelmann theory, Indiana Univ. Math. J. 22 (1972) 65–74.

http://refhub.elsevier.com/S0022-0396(17)30243-7/bib31s1
http://refhub.elsevier.com/S0022-0396(17)30243-7/bib31s1
http://refhub.elsevier.com/S0022-0396(17)30243-7/bib6170763133s1
http://refhub.elsevier.com/S0022-0396(17)30243-7/bib6170763133s1
http://refhub.elsevier.com/S0022-0396(17)30243-7/bib32s1


N.S. Papageorgiou et al. / J. Differential Equations 263 (2017) 3244–3290 3289
[4] F. Colasuonno, P. Pucci, C. Varga, Multiple solutions for an eigenvalue problem involving p-Laplacian type opera-
tors, Nonlinear Anal. 75 (12) (2012) 4496–4512.

[5] G. D’Agui, S. Marano, N.S. Papageorgiou, Multiple solutions to a Robin problem with indefinite weight and asym-
metric reaction, J. Math. Anal. Appl. 433 (2016) 1821–2845.

[6] J. Dugundji, Topology, Allyn and Bacon Inc, Boston, 1966.
[7] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete 

(Results in Mathematics and Related Areas (3)), vol. 19, Springer-Verlag, Berlin, 1990.
[8] M. Filippakis, N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with 

the p-Laplacian, J. Differential Equations 245 (2008) 1883–1922.
[9] L. Gasinski, N.S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, Fl, 2006.

[10] L. Gasinski, N.S. Papageorgiou, Exercises in Analysis. Part 2: Nonlinear Analysis, Springer, Heidelberg, 2016.
[11] H.P. Heinz, Free Ljusternik–Schnirelmann theory and the bifurcation diagrams of certain singular nonlinear sys-

tems, J. Differential Equations 66 (1987) 263–300.
[12] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis: Volume I: Theory, Kluwer Academic Publishers, 

Dordrecht, The Netherlands, 1997.
[13] R. Kakijiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic 

equations, J. Funct. Anal. 225 (2005) 352–370.
[14] Y. Lan, C.L. Tang, Existence of solutions to a class of semilinear elliptic equations involving general subcritical 

growth, Proc. Roy. Soc. Edinburgh A 144 (2014) 809–818.
[15] G. Li, C. Wang, The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the 

Ambrosetti–Rabinowitz condition, Ann. Acad. Sci. Fenn. 36 (2011) 461–480.
[16] G. Li, C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of a p-Laplacian 

type without to Ambrosetti–Rabinowitz condition, Nonlinear Anal. 72 (2010) 4602–4613.
[17] O. Miyagaki, M. Souto, Superlinear problem without Ambrosetti–Rabinowitz growth condition, J. Differential 

Equations 245 (2008) 3628–3638.
[18] D. Motreanu, V. Motreanu, N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear 

Boundary Value Problems, Springer, New York, 2014.
[19] D. Mugnai, N.S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. 

Super. Pisa Cl. Sci. (5) X (4) (2012) 729–788.
[20] R. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966) 1–16.
[21] N.S. Papageorgiou, F. Papalini, Seven solutions with sign information for sublinear equations with unbounded and 

indefinite potential and no symmetries, Israel J. Math. 201 (2014) 761–796.
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