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Abstract: We study the following Kirchhoff equation:

− 1 + b
ð
R

3
j∇uj2dx

� �
Δu+VðxÞu= f ðx, uÞ, x 2 R

3.

A feature of this paper is that the nonlinearity f and the
potential V are indefinite, hence sign-changing. Under
some appropriate assumptions on V and f , we prove
the existence of two different solutions of the equation
via the Ekeland variational principle and the mountain
pass theorem.
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1 Introduction

In this paper we consider the following Kirchhoff equation

− 1 + b
ð
R

3
j∇uj2dx

� �
Δu+VðxÞu= f ðx, uÞ, x 2 R

3, ðKÞ

where b is a positive constant, the potential V and the
nonlinearity f are allowed to be sign-changing.

Equation (K) is a modified version of the classical
Kirchhoff equation, which has a strong physical meaning.
Problem (K) is related to the stationary analogue of the
Kirchhoff equation

utt − 1 + b
ð
Ω
j∇xuj2dx

� �
Δxu= gðx, uÞ ð1Þ

which was proposed by Kirchhoff [1]. The early classical
studies of the Kirchhoff equation were made by Bernstein
[2] and Pohozaev [3]. However, eq. (1) received great
attention only after Lions [4] proposed an abstract frame-
work for the problem.

The Kirchhoff equation is a generalization of the
d’Alembert wave equation

ρ
∂2u
∂t2

−
P0

h
+

E
2L

ðL
0

∂u
∂x

����
����
2

dx

 !
∂2u
∂x2

= gðx, uÞ

for free vibrations of the elastic string. Kirchhoff’s model
takes into account the changes in the length of the string
produced by transverse vibrations. Here, L is the length
of the string, h is the area of its cross section, E is the
Young modulus of the material, ρ is the mass density and
P0 is the initial tension. It was pointed out in ref. [5] that
eq. (1) models various physical phenomena, where u
describes a process that depends on the average of itself.
Nonlocal effects also arise in the description of biological
systems. A parabolic version of problem (1) can be used
to describe the growth and movement of some species. In
this case, the integral term models the movement, which
is assumed to be dependent on the energy of the entire
system with the unknown u being its population density.

We focus on the Euclidean space 3-space with lack of
compactness, since the Sobolev embedding is not compact
for the whole space. A natural idea is study this equation on
the radial space. Interested reader can consult the refs
[6–11]. Recently, Wu [12] has studied this type of equations
with positive coercive potential V . Four new existence
results for nontrivial solutions and a sequence of high
energy solutions for problem (K) were obtained by using a
symmetric mountain pass theorem. Actually, coercive
potential V was introduced by Rabinowitz [13] (see also
[14]) to overcome the lack of compact Sobolev embedding.
Later, many authors [15–26] used this type of potential. Very
recently, the case when the potential V vanishes at some
points has also been considered [27–31]. We also refer to the
related papers [32–36] and the monograph [37], which deals
with variational methods for nonlocal fractional equations.

In some of the aforementioned references, the poten-
tial V is always assumed to be positive or vanishing at
infinity. The following technical Ambrosetti–Rabinowitz
condition ((AR) for short) is usually required.
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(AR) There exists μ > 4 such that

0 < μFðx, uÞ ≤ uf ðx, uÞ, u≠0.

The role of (AR) is to ensure the boundedness of the
Palais–Smale (PS) sequences of the energy functional,
which is crucial in applying the critical point theory.

Motivated by the works [38, 39], we consider in this
paper another case, namely that of f being superlinear,
that is, f ðx, uÞ=u ! +∞ as u ! ∞. Furthermore, the
potential V and the primitive of f are also allowed to be
sign-changing, which is quite different from the previous
results. Before stating our main results, we list the follow-
ing assumption on VðxÞ.

(V1) V 2 CðR3,RÞ and infx2R3 VðxÞ > −∞. Moreover,
there exists a constant d0 > 0 such that for any M > 0,

lim
jyj!∞

meas x 2 R
3 :jx − yj ≤ d0,VðxÞ ≤M

� �
=0,

where meas ð�Þ denotes the Lebesgue measure in R
3.

Inspired by Zhang and Xu [40], we can find a con-
stant V0 > 0 such that ~VðxÞ : =VðxÞ +V0 ≥ 1 for all x 2 R

3

and let ~f ðx, uÞ : = f ðx, uÞ+V0u, ∀ðx, uÞ 2 R
3 ×R . Then it is

easy to verify the following lemma.

Lemma 1.1: Equation (K) is equivalent to the following
problem

− 1 + b
ð
R

3
j∇uj2dx

� �
Δu+ ~VðxÞu=~f ðx, uÞ, x 2 R

3. ðK’Þ

In what follows, we let μ > 4 and impose some
assumptions on ~f and its primitive ~F as follows:

(S1) ~f 2 CðR3 ×R ,RÞ, and there exist constants c1,
c2 > 0 and q 2 ð4, 6Þ such that

j~f ðx, uÞj ≤ c1juj3 + c2jujq− 1.

(S2) limjuj!∞
j~Fðx, uÞj
juj4 =∞ a.e. x 2 R

3 and there exist
constants c3 ≥0, r0 ≥0 and τ 2 ð0, 2Þ such that

inf
x2R3

~Fðx, uÞ ≥ c3jujτ ≥0, ∀ðx, uÞ 2 R
3 ×R , juj ≥ r0,

where (and in the sequel) ~Fðx, uÞ= Ð u0 ~f ðx, sÞds.
(S3) ~F ðx, uÞ : = 1

4 u
~f ðx, uÞ− ~Fðx, uÞ ≥0, and there exist

c4 > 0 and κ > 1 such that

j~Fðx, uÞjκ ≤ c4juj2κ ~F ðx, uÞ, ∀ðx, uÞ 2 R
3 ×R , juj ≥ r0.

Now we state our main result as follows.

Theorem 1.2: Suppose that conditions (V1), (S1), (S2) and
(S3) are satisfied. Then problem (K) has at least two
different solutions.

Remark 1.3: There are some functions not satisfying the
condition (AR). For example, the superlinear function
f ðx, uÞ= sin x lnð1 + jujÞu2 does not satisfy condition
(AR). In our theorems, ~Fðx, uÞ is allowed to be sign-
changing. Even if ~Fðx, uÞ ≥0, the assumptions (S2) and
(S3) seem to be weaker than the superlinear conditions
obtained in the aforementioned references. By straight-
forward computation we check that the following non-
linearity ~f satisfies (S2) and (S3):

~f ðx, uÞ= aðxÞð4u4 + 2u2 sin u− 4u cos uÞ
where a 2 ðR3,RÞ and 0 < inf

R
3 aðxÞ ≤ sup

R
3 aðxÞ <∞.

Remark 1.4: To the best of our knowledge, the condition
(V1) was first stated in ref. [41], but infx2R3 VðxÞ > 0 was
required. From (V1), one can see that the potential VðxÞ is
allowed to be sign-changing. Therefore, the condition
(V1) is weaker than those in [15–31, 42].

Remark 1.5: It is not difficult to find the functions V
satisfying the above conditions. For example, let VðxÞ
be a zigzag function with respect to jxj defined by

VðxÞ= 2njxj− 2nðn− 1Þ+ a0, n− 1 ≤ jxj ≤ ð2n− 1Þ=2,
− 2njxj+ 2n2 + a0, ð2n− 1Þ=2 ≤ jxj ≤ n,

(

where n 2 N and a0 2 R .

Remark 1.6: Zhang et al. [26] studied eq. (K) with sign-
changing potential V. They obtained multiple solutions
in the case of odd nonlinearity. Here we do not need that
the nonlinearity is odd and we also get two solutions for
problem (K). Bahrouni [43] obtained infinitely many solu-
tions for eq. (K) with the potential and nonlinearity both
sign-changing. However, he studied the sublinear case
and with odd nonlinearity. Here our results can be
regarded as an extension of the results of [43, 26].

2 Preliminaries and variational
setting

Hereafter, we use the following notation:
– H1ðR3Þ denotes the usual Sobolev spaces endowed

with the standard scalar product and norm

ðu, vÞ =
ð
R

3
ð∇u �∇v + uvÞdx, k u k = ðu, uÞ1=2.

– D1, 2ðR3Þ denotes the completion of C∞
0 ðR3Þ with

respect to the norm
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k u k2D1, 2ðR3Þ =
ð
R

3
j∇uj2dx.

– H = u 2 H1ðR3Þ : Ð
R

3ðj∇uj2 + ~VðxÞjuj2Þdx <∞
n o

is the

Sobolev space endowed with the norm

k u k2H ðR3Þ=
ð
R

3
ðj∇uj2 + ~VðxÞjuj2Þdx.

– H* denotes the dual space of H.
– LsðR3Þ, 1 ≤ s < +∞ denotes a Lebesgue space with the

usual norm k uks =
Ð
R

3 jujsdx� �1=s.
– For any ρ > 0 and for any z 2 R

3, BρðzÞ denotes the
ball of radius ρ centered at z.

– C and Ci denote various positive constants, which
may vary from line to line.

– Si denote the Sobolev constant for the embedding.
– ! denotes the strong convergence and * denotes

the weak convergence.

Throughout this section, we make the following assump-
tion instead of (V1):

(V2) ~V 2 CðR3,RÞ and infx2R3 ~VðxÞ > 0. Moreover,
there exists a constant d0 > 0 such that for any M > 0,

lim
jyj!∞

meas x 2 R
3 :jx − yj ≤ d0,VðxÞ ≤M

� �
=0.

Remark 2.1: Under assumptions (V2), we know by
Lemma 3.1 in [41] that the embedding HLsðR3Þ is compact
for s 2 ½2, 6Þ.

Let I :H ! R denote the energy functional defined by

IðuÞ= 1
2

ð
R

3
ðj∇uj2 + ~VðxÞu2Þdx

+
b
4

ð
R

3
j∇uj2dx

� �2

−

ð
R

3

~Fðx, uÞdx,
ð2Þ

for all u 2 H. By condition (S1), we have

j~Fðx, uÞj ≤ c1
4
juj4 + c2

q
jujq, ∀ðx, uÞ 2 R

3 ×R . ð3Þ

Consequently, similar to the discussion in [12], under
assumptions (V2) and eq. (3), the functional I is of class
C1ðH,RÞ. Moreover,

hI′ðuÞ, vi= 1 + b
ð
R

3
j∇uj2dx

� �ð
R

3
∇u �∇vdx

+
ð
R

3

~VðxÞuvdx −
ð
R

3

~f ðx, uÞvdx.
ð4Þ

Hence, if u 2 H is a critical point of I, then u is a solution
of eq. (K’).

We now recall the mountain pass theorem of
Ambrosetti and Rabinowitz [44] without the Palais–Smale
condition (see also [45]). We also refer to Brezis and
Nirenberg [46] for a simple proof of this result which
uses the Ekeland variational principle in combination
with a pseudo-gradient argument.

Lemma 2.2: Let E be a real Banach space with its dual
space E*, and suppose that I 2 C1ðE,RÞ satisfies

maxfIð0Þ, IðeÞg ≤ μ < η ≤ inf
kuk= ρ

IðuÞ,

for some μ, η, ρ > 0 and e 2 E with k e k > ρ. Let c ≥ η be
characterized by

c= inf
γ2Γ

max
0 ≤ τ ≤ 1

IðγðτÞÞ,

where Γ= fγ 2 Cð½0, 1�,EÞ : γð0Þ=0, γð1Þ= eg is the set of
all continuous paths joining 0 and e. Then there exists a
sequence fung � E such that

IðunÞ ! c ≥ η and ð1 + k un kÞ k I′ðunÞkE* ! 0, as n ! ∞.

This kind of sequence is usually called a Cerami
sequence. Recall that a C1 functional I satisfies the Cerami
compactness condition at level c (ðCÞc condition for short)
if any sequence fung � H such that IðunÞ ! c and
ð1 + k un kÞk I′ðunÞkE* ! 0 has a convergent subsequence.

Here, we give the sketch of how to look for two
distinct critical points of the functional I. First, we con-
sider a minimization of I constrained to a neighborhood
of zero via the Ekeland variational principle (see [47, 48])
and we can find a critical point of I which achieves the
local minimum of I and the level of this local minimum is
negative (see Step 1 of the proof of Theorem 1.2). Next,
around the “zero” point, by using mountain pass theorem
(see [44]), we obtain a second critical point of I with its
positive level (see Step 2 of the proof of Theorem 1.2).
Obviously, these two critical points do not coincide since
they have different energy levels.

To prove Theorem 1.2, we cite the following auxiliary
result, see [39].

Lemma 2.3: Assume that p1, p2 > 1, r, q ≥ 1 and Ω � R
3. Let

gðx, tÞ be a Carathéodory function on Ω ×R satisfying

jgðx, tÞj ≤ a1jtjðp1 − 1Þ=r + a2jtjðp2 − 1Þ=r, ∀ðx, tÞ 2 Ω ×R ,

where a1, a2 ≥0. If un ! u in Lp1ðΩÞ∩ Lp2ðΩÞ, and un ! u
a.e. x 2 Ω, then for any v 2 Lp1qðΩÞ∩ Lp2qðΩÞ,

lim
n!∞

ð
Ω
jgðx, unÞ− gðx, uÞjrjvjqdx ! 0. ð5Þ
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3 Proof of the main result

Lemma 3.1: Assume that the conditions (V2) and (S1)
hold. Then there exist ρ, η > 0 such that inffIðuÞ :u 2 H
with k ukH = ρg > η.

Proof: By eq. (3) and the Sobolev inequality, we haveð
R

3

~Fðx, uÞdx
����

���� ≤
ð
R

3

c1
4
juj4 + c2

q
jujq

����
����dx

=
c1
4
k u k44 +

c2
q
k u kqq

≤ S4
c1
4
k u k4H + Sq

c2
q
k u kqH ,

ð6Þ

for any u 2 H. Combining eq. (2) with eq. (6), we obtain

IðuÞ= 1
2

ð
R

3
ðj∇uj2 + ~VðxÞu2Þdx + b

4

ð
R

3
j∇uj2dx

� �2

−

ð
R

3

~Fðx, uÞdx ≥
1
2
k u k2H −

ð
R

3
j~Fðx, uÞjdx

≥
1
2
k u k2H − S4

c1
4
k u k4H − Sq

c2
q
k u kqH

=
1
2
k u k2H −C14 k u k4H −C2 k u kqH .

ð7Þ

Since q 2 ð4, 6Þ, we deduce that there exists η > 0 such that
this lemma holds if we let k ukH = ρ > 0 be small enough.

Lemma 3.2: Assume that the conditions (V2) and (S2)
hold. Then there exists v 2 H with k vkH = ρ such that
IðvÞ < 0, where ρ is given in Lemma 3.1.

Proof: By eq. (2), we have

IðtuÞ
t4

=
1
2t2

k u k2H +
b
4

ð
R

3
j∇uj2dx

� �2

−
1
t4

ð
R

3

~Fðx, tuÞdx.

Then, by (S2) and Fatou’s lemma we can deduce that

lim
t!∞

IðtuÞ
t4

= lim
t!∞

"
1
2t2

k u k2H +
b
4

ð
R

3
j∇uj2dx

� �2

−
1
t4

ð
R

3

~Fðx, tuÞdx
#
= lim sup

t!∞

"
b
4

ð
R

3
j∇uj2dx

� �2

−
1
t4

ð
R

3

~Fðx, tuÞdx
#
≤
b
4

ð
R

3
j∇uj2dx

� �2

− lim inf
t!∞

ð
R

3

~Fðx, tuÞ
t4u4

u4dx

≤C3 k u k4H −

ð
R

3
lim inf
t!∞

~Fðx, tuÞ
t4u4

u4dx

= −∞ as t ! ∞.

Thus the lemma is proved by taking v = t0u with large
enough t0. □

Based on Lemmata 3.1 and 3.2, Lemma 2.2 implies
that there is a sequence fung � H such that

IðunÞ ! c > 0 andð1 + k unkHÞ k I′ðunÞkH* ! 0, as n ! ∞.

ð8Þ

Lemma 3.3: Assume that the conditions (V2), (S1), (S2)
and (S3) hold. Then the sequence fung defined in eq. (8) is
bounded in H.

Proof: Arguing by contradiction, we can assume k unkH
! ∞. Define vn : = un

kunkH . Clearly, k vnkH = 1 and k vnks ≤
Ss k vnkH = Ss, for 2 ≤ s < 6. Observe that for large enough n,
we can get from eq. (8) and (S3) that

c+ 1 ≥ IðunÞ− 1
4
hI′ðunÞ, uni

=
1
4
k un k2H +

ð
R

3

1
4
~f ðx, unÞun − ~Fðx, unÞ

� �
dx

≥

ð
R

3

~Fðx, unÞdx.

ð9Þ

In view of eqs (2) and (8), we have

1
2
=

IðunÞ
k un k2H

+
1

k un k2H

ð
R

3

~Fðx, unÞdx

−
b

4 k un k2H

ð
R

3
j∇uj2dx

� �2

≤
IðunÞ
k un k2H

+
1

k un k2H

ð
R

3
j~Fðx, unÞjdx

≤ lim sup
n!∞

IðunÞ
k un k2H

+
1

k un k2H

ð
R

3
j~Fðx, unÞjdx

	 


≤ lim sup
n!∞

ð
R

3

j~Fðx, unÞj
k un k2H

dx.

ð10Þ

For 0 ≤ a < b, let Ωnða, bÞ : = fx 2 R
3 :a ≤ junðxÞj < bg. Going

if necessary to a subsequence, we may assume that
vn * v in H. Then by Remark 2.1, we have vn ! v in

LsðR3Þ for 2 ≤ s < 6, and vn ! v a.e. on R
3.

We now consider the following two possible cases
concerning v.

Case 1: If v =0, then vn ! 0 in LsðR3Þ for 2 ≤ s < 6, and

vn ! 0 a.e. on R
3. Hence it follows from eq. (3) and

vn : = un
kunk2H

thatð
Ωnð0, r0Þ

j~Fðx, unÞj
k un k2H

dx =
ð
Ωnð0, r0Þ

j~Fðx, unÞj
junj2

jvnj2dx

≤
c1
4
r20 +

c2
q
rq− 20

� �ð
Ωnð0, r0Þ

jvnj2dx

≤C4

ð
R

3
jvnj2dx ! 0, as n ! ∞.

ð11Þ
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By(S3), we know that κ > 1. Thus, if we set κ′= κ=ðκ − 1Þ,
then 2κ′ 2 ð2, 6Þ. Hence it follows from (S3) and eq. (9)
that

ð
Ωnðr0,∞Þ

j~Fðx, unÞj
k un k2H

dx =
ð
Ωnðr0,∞Þ

j~Fðx, unÞj
junj2

jvnj2dx

≤

ð
Ωnðr0,∞Þ

j~Fðx, unÞj
junj2

 !κ

dx

" #1=κ ð
Ωnðr0,∞Þ

jvnj2κ′dx
" #1=κ′

≤ c1=κ4

ð
Ωnðr0,∞Þ

~F ðx, unÞdx
" #1=κ ð

Ωnðr0,∞Þ
jvnj2κ′dx

" #1=κ′

≤ c1=κ4 ðc+ 1Þ1=κ
ð
Ωnðr0,∞Þ

jvnj2κ′dx
" #1=κ′

≤C5

ð
Ωnðr0,∞Þ

jvnj2κ′dx
" #1=κ′

! 0, as n ! ∞.

ð12Þ
Combining eq. (11) with eq. (12), we have

ð
R

3

j~Fðx, unÞj
k un k2H

dx

=
ð
Ωnð0, r0Þ

j~Fðx, unÞj
k un k2H

dx

+
ð
Ωnðr0,∞Þ

j~Fðx, unÞj
k un k2H

dx ! 0 as n ! ∞,

which contradicts eq. (10).

Case 2: If v ≠0, we set A : = fx 2 R
3 :vðxÞ≠0g. Then

measðAÞ > 0. For a.e. x 2 A, we have limn!∞ junðxÞj=∞.
Hence A � Ωnðr0,∞Þ for large enough n 2 N. It follows
from eqs (2), (3), (8) and Fatou’s lemma that

0 = lim
n!∞

c+ oð1Þ
k un k4H

= lim
n!∞

IðunÞ
k un k4H

= lim
n!∞

"
1

2 k un k2H

+
b

4 k un k4H

ð
R

3
j∇uj2dx

� �2

−

ð
R

3

~Fðx, unÞ
k un k4H

dx

#

=

"
b

4 k un k4H

ð
R

3
j∇uj2dx

� �2

−

ð
Ωnð0, r0Þ

j~Fðx, unÞj
junj4

jvnj4dx

−

ð
Ωnðr0,∞Þ

j~Fðx, unÞj
junj4

jvnj4dx
#

≤
b
4
+ lim sup

n!∞

ð
Ωnð0, r0Þ

c1
4
+
c2
q
junjq− 4

� �
jvnj4dx

− lim inf
n!∞

ð
Ωnðr0,∞Þ

j~Fðx, unÞj
junj4

jvnj4dx
" #

≤
b
4
+

c1
4
+
c2
q
jr0jq − 4

� �
lim sup

n!∞

ð
Ωnð0, r0Þ

jvnj4dx

− lim inf
n!∞

ð
Ωnðr0,∞Þ

j~Fðx, unÞj
junj4

jvnj4dx
" #

≤
b
4
+C8 − lim inf

n!∞

ð
Ωnðr0,∞Þ

j~Fðx, unÞj
junj4

jvnj4dx = b
4
+C8

− lim inf
n!∞

ð
R

3

j~Fðx, unÞj
junj4

½χΩnðr0,∞ÞðxÞ�jvnj4dx

=C9 −

ð
R

3
lim inf
n!∞

j~Fðx, unÞj
junj4

½χΩnðr0,∞ÞðxÞ�jvnj4dx !

−∞ as n ! ∞,

ð13Þ
which is a contradiction. Thus fung is bounded in H. The
proof is completed. □

Lemma 3.4: Assume that the conditions (V2) and (S1)
hold. Then any bounded sequence fung satisfying eq. (8)
has a convergent subsequence in H.

Proof: Going if necessary to a subsequence, we may
assume that un * u in H. Then by Remark 2.1, we have
vn ! v in LsðR3Þ, for 2 ≤ s < 6. Let us take r ≡ 1 in Lemma
2.3 and combine with un ! u in LsðR3Þ for 2 ≤ s < 6, to get

lim
n!∞

j~f ðx, unÞ−~f ðx, uÞjjun − ujdx ! 0, as n ! ∞. ð14Þ

We observe that

hI′ðunÞ− I′ðuÞ, un − ui ! 0, as n ! ∞, ð15Þ
and we have

hI′ðunÞ− I′ðuÞ, un − ui=
ð
R

3

~VðxÞjun − uj2dx

+ 1 + b
ð
R

3
j∇unj2dx

� �ð
R

3
∇un �∇ðun − uÞdx

− 1 + b
ð
R

3
j∇uj2dx

� �ð
R

3
∇u �∇ðun − uÞdx −

ð
R

3
½f ðx, unÞ

− f ðx, uÞ�ðun − uÞdx = k un − u k2H + 1 + b
ð
R

3
j∇unj2dx

� �
ð
R

3
j∇ðun − uÞj2dx −

ð
R

3
j∇uj2dx −

ð
R

3
j∇unj2dx

� �
ð
R

3
∇u �∇ðun − uÞdx −

ð
R

3
½ f ðx, unÞ− f ðx, uÞ�ðun − uÞdx

≥ k un − u k2H − b
ð
R

3
j∇uj2dx −

ð
R

3
j∇unj2dx

� �

−

ð
R

3
∇u �∇ðun − uÞdx −

ð
R

3
½f ðx, unÞ− f ðx, uÞ�ðun − uÞdx.

ð16Þ
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Then eq. (16) implies that

k un − u k2H ≤ hI′ðunÞ− I′ðuÞ, un − ui

+ b
ð
R

3
j∇uj2dx −

ð
R

3
j∇unj2dx

� �ð
R

3
∇u �∇ðun − uÞdx

+
ð
R

3
½ f ðx, unÞ− f ðx, uÞ�ðun − uÞdx.

ð17Þ
Define the functional hu : H ! R by

huðvÞ=
ð
R

3
∇u �∇vdx,∀v 2 H.

Obviously, hu is a linear functional on H. Furthermore,

jhuðvÞj ≤
ð
R

3
j∇u �∇vjdx ≤ k ukH k vkH ,

which implies that hu is bounded on H. Hence hu 2 H*.
Since un * u in H, we have limn!∞ huðunÞ= huðuÞ, that is,ð

R
3
∇u �∇ðun − uÞdx ! 0 as n ! ∞ .

Consequently, by vn ! v in LsðR3Þ, for 2 ≤ s < 6 and the
boundedness of fung, we obtain

b
ð
R

3
j∇uj2dx −

ð
R

3
j∇unj2dx

� �
ð
R

3
∇u �∇ðun − uÞdx ! 0, n ! +∞.

ð18Þ

Consequently, eqs (14), (15), (17), (18) imply that

un ! u inH as n ! ∞.

This completes the proof. □

Proof of Theorem 1.2: To complete the proof of the main
result, we need to consider the following two steps.

Step 1: We first show that there exists a function u0 2 H
such that I′ðu0Þ=0 and Iðu0Þ < 0. Let r0 = 1. For any juj ≥ 1,
from (S2), we have

~Fðx, unÞ ≥ c3jujσ > 0. ð19Þ
By (S1), for a.e. x 2 R

3 and 0 ≤ juj ≤ 1, there exists M > 0
such that

~f ðx, uÞu
u2

�����
����� ≤ ðc1juj3 + c2jujq− 1Þjuj

juj2
�����

����� ≤M,

which implies that

~f ðx, uÞu ≥ −Mjuj2.
Using the equality

~Fðx, uÞ= Ð 10 ~f ðx, tuÞdt, for a.e. x 2 R
3 and 0 ≤ juj ≤ 1, we

obtain

~Fðx, uÞ > −
1
2
Mjuj2. ð20Þ

In view of eqs (19) and (20), we have for a.e. x 2 R
3 and

all u 2 R that

~Fðx, uÞ ≥ −
1
2
Mjuj2 + c3jujσ.

Therefore we have

~Fðx, tψÞ ≥ −
1
2
Mt2jψj2 + tσc3jψjσ. ð21Þ

Combing eq. (2) with eq. (21), we get

IðtuÞ= t2

2
k u k2H +

bt4

4

ð
R

3
j∇uj2dx

� �2

−

ð
R

3

~Fðx, tuÞdx

≤
t2

2
k u k2H +

bt4

4

ð
R

3
j∇uj2dx

� �2

+
t2M
2

ð
R

3
juj2dx

− tσc3

ð
R

3
jujσdx.

Since σ 2 ð0, 2Þ, for small enough t we infer that IðtuÞ < 0.
Thus we obtain

c0 = inffIðuÞ :u 2 �Bρg < 0,
where ρ > 0 is given by Lemma 3.1 and Bρ = fu 2 H :
k ukH < ρg. By the Ekeland variational principle, there
exists a sequence fung � Bρ such that

c0 ≤ IðunÞ ≤ c0 + 1
n
,

and

IðwÞ ≥ IðunÞ− 1
n
k w− unkH ,

for all w 2 Bρ. Then, following the idea of [48], we can
show that fung is a bounded Cerami sequence of I.
Therefore, Lemma 3.4 implies that there exists a function
u0 2 H such that I′ðu0Þ=0 and Iðu0Þ= c0 < 0.

Step 2: We now show that there exists a function ~u0 2 H
such that I′ð~u0Þ=0 and Ið~u0Þ=~c0 > 0. By Lemmata 3.1, 3.2
and 2.2, there is a sequence fung 2 H satisfying eq. (8).
Moreover, Lemma 3.3 and 3.4 shows that this sequence
has a convergent subsequence and is bounded in H. So,
we complete the Step 2.

Therefore, combining the above two steps and
Lemma 1.1, we complete the proof of Theorem 1.2. □
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