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Existence and non-existence results are established for quasilinear elliptic problems
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different growths of the nonlinearities.
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1. Introduction and the Main Results

Let � be a smooth exterior domain in �N , that is, � is the complement of a
bounded domain with C1�� boundary (0 < � < 1). Assume that p is a real number
satisfying 1 < p < N , a ∈ L���� ∩ C0����� is a positive function, and b ∈ L���� ∩
C��� is non-negative. Let p∗ �= Np/�N − p� denote the critical Sobolev exponent.
In Yu (1992) it is studied the following quasilinear problem


−div�a�x��Du�p−2Du�+ b�x��u�p−2u = g�x��u�r−2u in ��

u = 0 on ��� lim
�x�→�

u�x� = 0�
(1)
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Quasilinear Elliptic Exterior Problems 707

where p < r < p∗ and g ∈ L���� ∩ Lp0���, with p0 �= p∗/�p∗ − r�, is a non-trivial
potential which is positive on some non-empty open subset of �. Under these
assumptions, Yu (1992) proved that problem (1) has a weak positive solution
u of class C1���� ∩ BR�0�� for any R > 0 and some � = ��R� ∈ �0� 1�. Problems
of this type are motivated by mathematical physics (see, e.g., Reed and Simon,
1978; Strauss, 1977), where certain stationary waves in nonlinear Klein–Gordon or
Schrödinger equations can be reduced to this form.

Actually, a weak solution of (1) satisfies for all 	 ∈ E the identity

∫
�
�a�x��Du�p−2Du ·D	+ b�x��u�p−2u	�dx =

∫
�
g�x��u�r−2u	dx� (2)

where E is the completion of C�
0 ��� under the underlying norm

�u�a�b�� =
( ∫

�

a�x��Du�p + b�x��u�p�dx

)1/p
�

By Lemma 2 of Yu (1992) every weak solution u of (1) is in Lq��� for every q ∈

p∗��� and approaches 0 as �x� → �. Of course E ∼ H

1�p
0 ��� whenever 0 < b0 ≤

b�x� ∈ L����. Taking 	 = u in (2) we get �u�pa�b = �u�rLr ��g�, so that (1) does not
admit nontrivial weak solutions whenever g ≤ 0 a.e. in �.

We consider a related problem involving a mixed nonlinear boundary condition
and show that the above result does not remain true in certain circumstances.
The main features of the paper are the following: (i) the quasilinear differential
operator −div�a�x��Du�p−2Du� in the left-hand side of (1) is affected by a different
perturbation which behaves like �u�q−2u, where first p < r < q < p∗ and then p <

q < r < p∗; (ii) the Dirichlet boundary condition of (1) is replaced by a mixed
nonlinear boundary condition. With the same hypotheses on �, a, g, p, and r, we
consider the problem

{−div�a�x��Du�p−2Du�+ �u�q−2u = �g�x��u�r−2u in ��

a�x��Du�p−2��u+ b�x��u�p−2u = 0 on ���
(3)

where � is a real parameter and � is the unit vector of the outward normal on ��.
More precisely, we first assume

(H1) g ∈ L���� ∩ Lp0���, with p0 �= p∗/�p∗ − r�, p < r < q < p∗, is a non-negative
function which is positive on a non-empty open subset of �;

(H2) b is a continuous positive function on � = ��.

Without altering the proof arguments below, the coefficient 1 of the dominating
term �u�p−2u can be replaced by any function f ∈ L����, with inf ess�f > 0. Hence
equation (3) is the renormalized form.

Problem (3) may be viewed as a prototype of pattern formation in biology
and is related to the steady-state problem for a chemotactic aggregation model
introduced by Keller and Segel (1970). Problem (3) also plays an important role in
the study of activator-inhibitor systems modeling biological pattern formation, as
proposed by Gierer and Meihardt (1972).
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708 Filippucci et al.

By a weak (non-trivial) solution of problem (3) we mean a non-trivial function
u ∈ X = E ∩ Lq��� verifying for all 	 ∈ X the identity∫

�
a�x��Du�p−2Du ·D	dx +

∫
�
b�x��u�p−2u	d� +

∫
�
�u�q−2u	dx

= �
∫
�
g�x��u�r−2u	dx� (4)

where now E is the completion of the restriction on � of functions of C�
0 ��

N � with
respect to the norm

�u�a�b =
( ∫

�
a�x��Du�p dx +

∫
�
b�x��u�pd�

)1/p
�

and X is the reflexive Banach space endowed with the norm

�u� = {�u�pa�b + �u�pLq���

}1/p
�

Hence, by (H1)–(H2), all the integrals in (4) are well defined and converge.
The loss of compactness of the Sobolev imbeddings on unbounded domains

renders variational techniques more delicate. Some of the papers treating problems
on unbounded domains use special function spaces where the compactness is
preserved, such as spaces of radially symmetric functions. We point out that even if
� is unbounded, standard compact imbeddings still remain true, e.g., if � is thin at
infinity, in the sense that

lim
R→�

sup���� ∩ B�x� 1�� � x ∈ �N � �x� = R� = 0�

where � denotes the Lebesgue measure and B�x� 1� is the unit ball centered at x.
Such arguments cannot be applied to our general unbounded domain �. In this
case, since � is not “thin” and it looks like �N at infinity (because � is an exterior
domain), the analysis of the compactness failure shows that a Palais–Smale sequence
of the associated energy functional (see Bahri and Lions, 1997) differs from its weak
limit by “waves” that go to infinity. However, the definition of X, combined with
the main assumption p < r < p∗, ensures that

the function space X is compactly embedded into the weighted
Lebesgue space Lr�� g�� (5)

Taking 	 = u in (4), we have that any weak solution u of (3) satisfies the
equality

�u�pa�b + �u�qLq��� = ��u�rLr ��g�� (6)

so that problem (3) does not have any nontrivial solution whenever � ≤ 0. We first
prove that the result still remains true for sufficiently small values of � > 0 when
p < r < q < p∗, that is, the term �u�q−2u “dominates” the right-hand side and makes
impossible the existence of a solution to our problem (3). On the other hand, if � > 0
is sufficiently large, then (3) admits weak solutions. The precise statement of this
result is the following.
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Quasilinear Elliptic Exterior Problems 709

Theorem 1.1 (The Case p < r < q < p∗). Under the assumptions (H1) and (H2)
there exists �∗ > 0 such that

(i) if � < �∗, then problem (3) does not have any weak solution;
(ii) if � ≥ �∗, then problem (3) has at least one weak solution u, with the properties

(a) u ∈ L�
loc���;

(b) u ∈ C1���� ∩ BR�, � = ��R� ∈ �0� 1�;
(c) u > 0 in �;
(d) u ∈ Lm��� for all p∗ ≤ m < � and lim�x�→� u�x� = 0.

In the second part of the paper we consider condition (H1)′, which is
exactly assumption (H1), with the only exception that condition p < r < q < p∗ is
replaced by

p < q < r < p∗�

Theorem 1.2. Under the assumptions (H1)′ and (H2)

(i) problem (3) does not have any weak solution for any � ≤ 0;
(ii) problem (3) has at least one weak solution u, with the properties (a)–(d) of

Theorem 1.1 for all � > 0.

2. Proof of Theorem 1.1

We point out in what follows the main ideas of the proof:

(a) There is some �∗ > 0 such that problem (3) does not have any solution for
any � < �∗. This means that if a solution exists then � must be sufficiently large. One
of the key arguments in this proof is based on the assumption q > r. In particular,
this proof yields an energy lower bound of solutions in term of � which will be useful
to conclude that problem (3) has a non-trivial solution if � = �∗.

(b) There exists �∗∗ > 0 such that problem (3) has at least one solution for
any � > �∗∗. Next, by the properties of �∗ and �∗∗ we deduce that �∗∗ = �∗. The
proof uses variational arguments and is based on the coercivity of the corresponding
energy functional defined on X by

J��u� =
1
p
�u�pa�b +

1
q
�u�qLq��� −

�

r
�u�rLr ��g��

We show that the minimum of J is achieved by a weak solution of (3). In order
to obtain that this global minimizer is not trivial, we prove that the corresponding
energy level is negative provided � is sufficiently large.

Step 1. Non-existence for � > 0 small. It is enough to show that, if there is a
weak solution of problem (3), then � must be sufficiently large. Assume that u is a
weak solution of (3), then by (4) we get (6). Since r < q and gq/�q−r� is in L1��� by
(H1), applying the Young inequality we deduce that

��u�rLr ��g� ≤
�q − r��q/�q−r�

q

∫
�
g�x�q/�q−r�dx + r

q
�u�qLq���� (7)
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710 Filippucci et al.

Next, by (6), (7) and the fact that u is non-trivial,

0 < �u�pa�b ≤
q − r

q
�q/�q−r�

∫
�
g�x�q/�q−r�dx + r − q

q
�u�qLq���

≤ q − r

q
�q/�q−r�

∫
�
g�x�q/�q−r�dx �= �q/�q−r�A < �� (8)

The continuity of the imbedding X ↪→ Lr�� g� implies that there exists C =
C��� g� p� q� r� > 0 such that

C�v�pLr ��g� ≤ �v�pa�b (9)

for any v ∈ X. Thus, by (6) and (9), we have C�u�pLr ��g� ≤ ��u�rLr ��g�� Since
p < r < q, � > 0 and �u�Lr ��g� > 0 by (6), we deduce that

� ≥ C�u�p−r
Lr ��g� ≥ CC�−1+r/p��u�p−r

a�b ≥ Cr/p�q�p−r�/p�q−r�A�p−r�/p�

It follows that � ≥ �Ap−rCr��q−r�/r�q−p�� which also implies that �∗ ≤
�Ap−rCr��q−r�/r�q−p�. This concludes the proof of (i).

In particular, Step 1 shows that if for some � > 0 problem (3) has a weak
solution u, then

�Cr/�p�1/�r−p� ≤ �u�pa�b ≤ �q/�q−r�A� (10)

where C = C��� g� p� q� r� > 0 is the constant given in (9).

Step 2. Coercivity of J . It follows by (H1). Indeed, for any u ∈ X and all � > 0

J��u� =
1
p
�u�pa�b +

1
2q

�u�qLq��� +
1
2q

�u�qLq��� −
�

r
�u�rLr ��g��

By Hölder inequality and (H1) we have

J��u� ≥
1
p
�u�pa�b +

1
2q

�u�qLq��� +
1
2q

�u�qLq��� −
�

r
�g�Lq/�q−r�����u�rLq���� (11)

Now, since for any positive numbers �, �, q and r, with r < q, the function � �
�+

0 → � defined by ��t� = �tr − �tq, achieves its positive global maximum

��t0� =
q − r

q

(
r

q

)r/�q−r�

�q/�q−r��r/�r−q� > 0

at point t0 = ��r/�q�1/�q−r� > 0� we immediately have �tr − �tq ≤
C�q� r��q/�q−r��r/�r−q�, where C�q� r� = �q − r��rr/qq�1/�q−r�� Returning to (11) and
using the above inequality, with t = �u�Lq���, � = ��g�Lq/�q−r����/r and � = 1/2q, we
deduce that

J��u� ≥
1
p
�u�pa�b +

1
2q

�u�qLq��� − C��� q� r� g��

where C��� q� r� g� = 2r/�q−r��q − r�
(
��g�Lq/�q−r����

)q/�q−r�
/qr. This implies the claim.
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Quasilinear Elliptic Exterior Problems 711

Let n �→ un be a minimizing sequence of J� in X, which is bounded in X
by Step 2. Without loss of generality, we may assume that �un�n is non-negative,
converges weakly to some u in X and converges also pointwise.

Step 3. The non-negative weak limit u ∈ X is a weak solution of �3�. To prove
this, we shall show that

J��u� ≤ lim inf
n→� J��un��

By the weak lower semicontinuity of the norm � · � we have

1
p
�u�pa�b +

1
q
�u�qLq��� ≤ lim inf

n→�

(
1
p
�un�pa�b +

1
q
�un�qLq���

)
�

Next, the boundedness of �un�n in X implies with the same argument that

�u�Lr ��g� = lim
n→��un�Lr ��g�

by (5). Hence u is a global minimizer of J� in X.

Step 4. The weak limit u is a non-negative weak solution of �3� if � > 0 is
sufficiently large. Clearly J��0� = 0. Thus, by Step 3 it is enough to show that there
exists � > 0 such that

inf
u∈X

J��u� < 0 for all � > ��

Consider the constrained minimization problem

� �= inf
{
1
p
�w�pa�b +

1
q
�w�qLq��� � w ∈ X and �w�rLr ��g� = r

}
� (12)

Let n �→ vn ∈ X be a minimizing sequence of (12), which is clearly bounded in X,
so that we can assume, without loss of generality, that it converges weakly to some
v ∈ X, with �v�rLr ��g� = r and

� = 1
p
�v�pa�b +

1
q
�v�qLq���

by the weak lower semicontinuity of � · �. Thus, J��v� = �− � < 0 for any � > �.
Now put

�∗ �= sup�� > 0 � problem (3) does not admit any weak solution��

�∗∗ �= inf�� > 0 � problem (3) admits a weak solution��

Of course � ≥ �∗∗ ≥ �∗ > 0. To complete the proof of Theorem 1.1 it is enough to
argue the following essential facts: (a) problem (3) has a weak solution for any � >
�∗∗; (b) �∗∗ = �∗ and problem (3) admits a weak solution when � = �∗.

Step 5. Problem �3� has a weak solution for any � > �∗∗ and �∗∗ = �∗. Fix
� > �∗∗. By the definition of �∗∗, there exists � ∈ ��∗∗� �� such that that J� has a non-
trivial critical point u� ∈ X. Of course, u� is a sub-solution of (3). In order to find a
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712 Filippucci et al.

super-solution of (3) which dominates u�, we consider the constrained minimization
problem

inf
{
1
p
�w�pa�b +

1
q
�w�qLq��� −

�

r
�w�rLr ��g� � w ∈ X and w ≥ u�

}
�

Arguments similar to those used in Step 4 show that the above minimization
problem has a solution u� ≥ u� which is also a weak solution of problem (3),
provided � > �∗∗.

We already know that �∗∗ ≥ �∗. But, by the definition of �∗∗ and the above
remark, problem (3) has no solutions for any � < �∗∗. Passing to the supremum, this
forces �∗∗ = �∗ and completes the proof.

Step 6. Problem �3� admits a non-negative weak solution when � = �∗. Let n �→
�n be a decreasing sequence converging to �∗ and let n �→ un be a corresponding
sequence of non-negative weak solutions of (3). As noted in Step 2, the sequence
�un�n is bounded in X, so that, without loss of generality, we may assume that it
converges weakly in X, strongly in Lr�� g�, and pointwise to some u∗ ∈ X, with
u∗ ≥ 0. By (4), for all 	 ∈ X,

∫
�
a�x��Dun�p−2Dun ·D	dx +

∫
�
b�x��un�p−2un	 d� +

∫
�
�un�q−2un	 dx

= �n

∫
�
g�x��un�r−2un	 dx�

and passing to the limit as n → � we deduce that u∗ verifies (4) for � = �∗, as
claimed.

It remains to argue that u∗ = 0. A key ingredient in this argument is the lower
bound energy given in (10). Hence, since un is a non-trivial weak solution of problem
(3) corresponding to �n, we have �un�pa�b ≥ �Cr/�p�1/�r−p� by (10), where C > 0 is the
constant given in (9) and not depending on �n. Next, since �n ↘ �∗ as n → � and
�∗ > 0, it is enough to show that

�un − u∗�a�b → 0 as n → �� (13)

Since un and u∗ are weak solutions of (3) corresponding to �n and �∗, we have
by (4), with 	 = un − u∗,

∫
�
a�x�

(�Dun�p−2Dun − �Du∗�p−2Du∗) ·D�un − u∗�dx

+
∫
�
b�x�

(�un�p−2un − �u∗�p−2u∗)�un − u∗�d� +
∫
�

(�un�q−2un − �u∗�q−2u∗)�un − u∗�dx

=
∫
�
g�x�

(
�n �un�r−2un − �∗�u∗�r−2u∗)�un − u∗�dx� (14)

Elementary monotonicity properties imply that

∫
�
��un�q−2un − �u∗�q−2u∗��un − u∗�dx ≥ 0 and �I ′�u∗

n�− I ′�u∗�� un − u∗� ≥ 0�
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Quasilinear Elliptic Exterior Problems 713

where

I�u� �= �u�pa�b/p�

Since �n ↘ �∗ as n → � and X is compactly embedded in Lr�� g�, for all p > 1
relation (14) implies

0 ≤ �I ′�u∗
n�− I ′�u∗�� un − u∗� ≤

∫
�
g�x�

[
�nu

r−1
n − �∗�u∗�r−1

]
�un − u∗�dx → 0 (15)

as n → �.
Now, we distinguish the cases p ≥ 2 and 1 < p < 2 and we use the following

elementary inequalities (see Simon, 1978, formula (2.2)): for all �, � ∈ �N

��− ��p ≤
{
c����p−2�− ���p−2����− �� for p ≥ 2

c����p−2�− ���p−2�� �− ��p/2����p + ���p��2−p�/2 for 1 < p < 2�
(16)

where c is a positive constant.

Case 1: p ≥ 2. By (16) and (15), we immediately conclude that

�un − u∗�pa�b ≤ c�I ′�u∗
n�− I ′�u∗�� un − u∗� = o�1� as n → ��

Case 2: 1 < p < 2. Since by convexity for all � ≥ 1

�v+ w�� ≤ 2�−1�v� + w�� for all v� w ∈ �+
0 � (17)

then, for � = 2/p, we have

�un − u∗�2a�b ≤ 2�2−p�/p

[( ∫
�
a�x��D�un − u∗��p dx

)2/p +
( ∫

�
b�x��un − u∗�p d�

)2/p
]
�

Thus, in order to conclude that (13) holds, it is enough to show that

∫
�
a�x��D�un − u∗��p dx → 0 and

∫
�
b�x��un − u∗�p d� → 0

as n → �. Indeed, combining (16) and (17), we have

∫
�
a�x��D�un − u∗��p dx

≤ c
∫
�
a�x�

{
��Dun�p−2Dun − �Du∗�p−2Du∗� ·D�un − u∗�

}p/2
· (�Dun�p + �Du∗�p)�2−p�/2

dx

≤ c
( ∫

�
a�x���Dun�p−2Dun − �Du∗�p−2Du∗� ·D�un − u∗�dx

)p/2

· (�un�pa�b + �u∗�pa�b
)�2−p�/2
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714 Filippucci et al.

≤ c
( ∫

�
a�x���Dun�p−2Dun − �Du∗�p−2Du∗� ·D�un − u∗�dx

)p/2

· (�un��2−p�p/2
a�b + �u∗��2−p�p/2

a�b

)
≤ C1

( ∫
�
a�x���Dun�p−2Dun − �Du∗�p−2Du∗� ·D�un − u∗�dx

)p/2
�

where C1 = 2c��q/�q−r�A��2−p�/2 by (10) and C1 is independent of n by (8). Similar
arguments yield

∫
�
b�x��un − u∗�p d� ≤ C2

( ∫
�
b�x�

[
up−1
n − �u∗�p−1

]
�un − u∗�dx

)p/2
�

with an appropriate positive constant C2 independent of n. Combining the above
two inequalities with (15) we conclude that �un − u∗�a�b = o�1� as n → �, that
is (13) holds and u∗ is a non-trivial non-negative weak solution of problem (3)
corresponding to � = �∗.

Theorem 2.2 in Pucci and Servadei (2007), based on the Moser iteration,
shows that u satisfies (a), since u ∈ W

1�p
loc ���, being u ∈ X, A�x� u� �� = −a�x����p−2�

and B�x� u� �� = �g�x��u�r−2u− �u�q−2u clearly verifies inequality (2.18) of Pucci and
Servadei (2007) by (H1); for other applications see also Pucci and Servadei (to
appear). Next, again by the main assumptions on the coefficient a = a�x�, an
application of DiBenedetto (1983, Corollary on p. 830) due to DiBenedetto shows
that the weak solution u verifies also property (b). Finally, (c) follows immediately
by the strong maximum principle since u is a C1 non-negative weak solution of the
differential inequality div�a�x��Du�p−2Du�− �u�q−2u ≤ 0 in �, with q > p, see, for
instance, Section 4.8 of Pucci and Serrin (2007) and the comments thereby. Property
(d) follows using similar arguments as in the proof of Lemma 2 of Yu (1992), which
is based on Theorem 1 of Serrin (1964).

3. Proof of Theorem 1.2

Taking 	 = u in (4), we see that any weak solution u of (3) satisfies the equality (6),
and the conclusion (i) of Theorem 1.2 follows at once.

We next show that the C1 energy functional J� � X → � satisfies the
assumptions of the Mountain Pass theorem of Ambrosetti and Rabinowitz (1973).
Fix w ∈ X\�0�. Since p < q < r then

J��tw� =
tp

p
�w�pa�b +

tq

q
�w�qLq��� − �

tr

r
�w�rLr ��g� < 0

provided t is sufficiently large. Next, by (5) and (9) we have

J��u� ≥
1
p
�u�pa�b +

1
q
�u�qLq��� −

�

rCr/p
�u�r for all u ∈ X�

so that, since �u�q ≤ 2q/p−1��u�qa�b + �u�qLq���� being p < q, we get

J��u� ≥
1
p
�u�pa�b −

1
q
�u�qa�b +

2−q/p+1

q
�u�q − �

rCr/p
�u�r for all u ∈ X�
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Consequently, since p < q < r together with the fact that �u�a�b ≤ �u�, it follows
that

J��u� ≥
2−q/p+1

q
�u�q − �

rCr/p
�u�r ≥ � > 0�

whenever �u� = � and � > 0 is sufficiently small. Set

� = �� ∈ C�
0� 1� X� � ��0� = 0� ��1� = 0 and J����1�� ≤ 0��

and put

c = inf
�∈�

max
t∈
0�1�

J����t���

Applying the Mountain Pass theorem without the Palais–Smale condition we find a
sequence n �→ un ∈ X such that

J��un� → c and J ′
��un� → 0 (18)

as n → �. Moreover, since J���u�� ≤ J��u� for all u ∈ X, we can assume that un ≥ 0
for any n ≥ 1. In what follows we prove that �un�n is bounded in X. Indeed, since
J ′
��un� → 0 in X′, then

�un�pa�b + �un�qLq��� = ��un�rLr ��g� + o�1��un�

as n → �. Therefore, as n → �

c + o�1�− J��un� =
(
1
p
− 1

r

)
�un�p −

(
1
p
− 1

r

)
�un�pLq���

+
(
1
q
− 1

r

)
�un�qLq��� + o�1��un�

≥
(
1
p
− 1

r

)
�un�p + o�1��un� − K�

where K > 0 is an appropriate positive constant depending on p, q, and r. Thus,
since q < r , we deduce that the Palais–Smale sequence �un�n is bounded in X. Hence,
up to a subsequence, we can assume that �un�n converges weakly in X and strongly
in Lr�� g� to some element, say u∗ ≥ 0. From now on, with the same arguments as
in the proof of Theorem 1.1, we deduce that u∗ is a weak solution of the problem
(3) such that properties (a)–(d) are fulfilled. Due to the mountain-pass geometry of
our problem (3) generated by the assumption p < q < r < p∗, we are able to give
the following alternative proof in order to show that u∗ is a weak solution of (3).
Fix 	 ∈ C�

0 ��
N �. Since J ′

��un� → 0 in X′, we have

∫
�
a�x��Dun�p−2Dun ·D	dx +

∫
�
b�x�up−1

n 	 d� +
∫
�
uq−1
n 	 dx

− �
∫
�
g�x�ur−1

n 	 dx = o�1�
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as n → �. Letting n → �, we deduce that∫
�
a�x��Du∗�p−2Du∗ ·D	dx +

∫
�
b�x��u∗�p−1	d� +

∫
�
�u∗�q−1	dx

− �
∫
�
g�x��u∗�r−1	dx = 0

and so by density u∗ satisfies relation (4) for any 	 ∈ X. It remains to show that
u∗ = 0. Indeed, by (18) and the fact that �un�n is bounded, as shown above, for n
sufficiently large, we obtain

0 <
c

2
≤ J��un�−

1
p
�J ′

��un�� un�

=
(
1
q
− 1

p

)
�un�qLq��� − �

(
1
r
− 1

p

)
�un�rLr ��g� ≤

��r − p�

r
�un�rLr ��g��

since p < q < r . This implies that �u∗�rLr ��g� > 0 and in turn u∗ = 0, as required.
Finally, u∗ verifies properties (a)–(d), as shown in the proof of Theorem 1.1.
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