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Coercive and noncoercive nonlinear Neumann problems
with indefinite potential
Abstract:We consider nonlinear Neumann problems driven by a nonhomogeneous di�erential operator and
an indefinite potential. In this paperweare concernedwith twodistinct cases.Wefirst consider the casewhere
the reaction is (p − 1)-sublinear near ±∞ and (p − 1)-superlinear near zero. In this setting the energy func-
tional of the problem is coercive. In the second case, the reaction is (p − 1)-superlinear near ±∞ (without
satisfying the Ambrosetti–Rabinowitz condition) and has a (p − 1)-sublinear growth near zero. Now, the
energy functional is indefinite. For both cases we prove “three solutions theorems” and in the coercive set-
tingwe provide sign information for all of them. Our approach combines variationalmethods, truncation and
perturbation techniques, and Morse theory (critical groups).
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1 Introduction
Let Ω ⊆ ℝN be a bounded domain with a C2-boundary àΩ. In this paper we study the following nonlinear
Neumann problem:

− div a(Du(z)) + â(z)|u(z)|p−2u(z) = f(z, u(z)) inΩ,

àu
àn

= 0 on àΩ.
(1.1)

Here n( ⋅ ) stands for the outward unit normal on àΩ. Also, a : ℝN → ℝN is a continuous strictly monotone
map that satisfies certain other regularity conditions. The precise conditions on the map a( ⋅ ) are listed in
Hypothesis H(a)1. These assumptions are general enough to include some important classes of nonlinear
di�erential operators. In particular, they incorporate the p-Laplace di�erential operator. However, we stress
that in contrast to the p-Laplacian, the di�erential operator in (1.1) is not necessarily homogeneous and
this is a source of di�culties, especially when we look for nodal (that is, sign changing) solutions. The
potential (weight) function â( ⋅ ) belongs to L∞(Ω) and may change sign (indefinite potential). Finally, the
reaction f(z, x) is a Carathéodory function (that is, for all x ∈ ℝ, the mapping z Ü→ f(z, x) is measurable and
for a.a. z ∈ Ω, x Ü→ f(z, x) is continuous).

Our aim is to prove a “three solutions theorem” for problem (1.1) providing, if possible, sign information
for all the solutions. We present two such multiplicity theorems under complementary conditions on the
reaction f(z, x). In the first multiplicity theorem, we assume that f(z, ⋅ ) is (p − 1)-linear near ±∞, while near
zero it exhibits a “concave” term (that is, a (p − 1)-superlinear term). In the second multiplicity theorem,
f(z, ⋅ ) is (p − 1)-superlinear near±∞,while near zero it is (p − 1)-linear. In thefirst case, the energy functional
of the problem is coercive, while in the second case it is indefinite.
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In the past, suchmultiplicity results were proved for equations driven by the p-Laplacian. We refer to the
works of Liu [25], Liu and Liu [24] (Dirichlet problems) and Aizicovici, Papageorgiou and Staicu [3], Kyritsi
and Papageorgiou [21] (Neumann problems) for the coercive case and by Bartsch and Liu [4], Bartsch, Liu and
Weth [5], Filippakis, Kristaly and Papageorgiou [13], Liu [26], Sun [36] (Dirichlet problems) and Aizicovici,
Papageorgiou and Staicu [1, 2] (Neumann equations) for the noncoercive case with superlinear reaction. In
the aforementioned works, the hypotheses on the reaction f(z, x) are in general more restrictive and they
do not always provide sign information for all the solutions produced. We mention that another class of
coercive Dirichlet equations with a nonlinear nonhomogeneous di�erential operator was studied recently
by the authors in [32]. Finally, resonant semilinear equations with an indefinite and unbounded potential
were investigated by Papageorgiou and Rădulescu [31].

Our approach combines variational methods based on the critical point theory, together with truncation
and perturbation techniques, and Morse theory (critical groups). In the next section, for the convenience of
the reader, we recall the main mathematical tools which will be used in the sequel.

2 Mathematical background. Auxiliary results
Let X be a Banach space and let X∗ be its topological dual. By ⟨ ⋅ , ⋅ ⟩ we denote the duality brackets for the
pair (X∗, X). Given ÿ ∈ C1(X), we say that it satisfies the “Cerami condition” (the “C-condition” for short) if
the following is true (see [7]):

Condition. Every sequence {xn}n≥1 ⊆ X such that
(1) {ÿ(xn)}n≥1 ⊆ ℝ is bounded,
(2) (1 + ‖xn‖)ÿ

�(xn) → 0 inX∗ as n → ∞
admits a strongly convergent subsequence.

This compactness-type condition is more general than the usual Palais–Smale condition. Nevertheless, the
C-condition su�ces to prove a deformation theorem that develops the minimax theory for certain critical
values of ÿ. In particular, we can have the following version of the well-known “mountain pass theorem”
(see, for example, Gasinski and Papageorgiou [15], Kristaly, Rădulescu and Varga [20], and Rădulescu [35]).

Theorem 2.1. LetX be a Banach space, ÿ ∈ C1(X) satisfies the C-condition, x0, x1 ∈ X with ‖x1 − x0‖ > r,

max{ÿ(x0), ÿ(x1)} < inf{ÿ(x) : ‖x − x0‖ = r} = çr,

and c = infã∈Γ max0≤t≤1 ÿ(ã(t)) with Γ = {ã ∈ C([0, 1], X) : ã(0) = x0, ã(1) = x1}. Then c ≥ çr and c is a critical
value of ÿ.

The analysis of problem (1.1) will use the Sobolev space W1,p(Ω) and the Banach space C1(Ω). The latter
function space is an ordered Banach space with positive cone C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}. This
cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

We will also use in the following some facts about the spectrum of (−Δp + â̂I,W1,p(Ω)) with â̂ ∈ Lq(Ω)
for 1 < q ≤ ∞. So, we consider the following nonlinear Neumann eigenvalue problem:

−Δpu(z) + â̂(z)|u(z)|p−2u(z) = ë|u(z)|p−2u(z) inΩ,

àu
àn

= 0 on àΩ.
(2.1)

This eigenvalue problem was studied recently by Mugnai and Papageorgiou [29]. Among other qualitative
properties, theyproved that if â̂ ∈ Lq(Ω)with q > Np� (1/p + 1/p� = 1), thenproblem (2.1) has a smallest eigen-
value ë̂1(p, â̂) which is simple, isolated and admits the following characterization:

ë̂1(p, â̂) = inf{
E(u)
‖u‖pp

: u ∈ W1,p(Ω), u ̸= 0}, (2.2)
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where
E(u) = ‖Du‖pp + ∫

Ω

â̂(z)(z)|u(z)|p dz for all u ∈ W1,p(Ω).

The infimum in (2.2) is realized on the one-dimensional eigenspace corresponding to ë̂1(p, â̂). From (2.2) it
is clear that the elements of this eigenspace have constant sign. By û1(p, â̂) ∈ W1,p(Ω)we denote the positive
Lp-normalized (that is, ‖û1(p, â̂)‖p = 1) eigenfunction corresponding to ë̂1(p, â̂). The interior regularity theory
implies that û1(p, â̂) ∈ C1,á(Ω) with á ∈ (0, 1). If â̂ ∈ L∞(Ω), then û1(p, â̂) ∈ intC+ (see [29]).

Let ç ∈ C1(0,∞) and assume that

0 < ĉ ≤
tç�(t)
ç(t)

≤ c0 for all t > 0,

c1t
p−1 ≤ ç(t) ≤ c2(1 + tp−1) for all t > 0, with c1, c2 > 0.

(2.3)

Hypothesis H(a)1. The hypotheses on the map a( ⋅ ) are the following:

a(y) = a0(‖y‖)y for all y ∈ ℝN

with a0(t) > 0 for all t > 0 and
(i) a0 ∈ C1(0,∞), t Ü→ ta0(t), is strictly increasing, ta0(t) → 0 as t → 0+ and limt→0+

ta�0(t)
a0(t)

> −1,
(ii) ‖∇a(y)‖ ≤ c3

ç(‖y‖)
‖y‖ for all y ∈ ℝN\{0} and some c3 > 0,

(iii) ç(‖y‖)
‖y‖ ‖î‖2 ≤ (∇a(y)î, î)ℝN for all y ∈ ℝN\{0} and all î ∈ ℝN,

(iv) if G0(t) = ∫
t

0
sa0(s) ds (t > 0), then there exists ó ∈ (1, p) such that t Ü→ G0(t

1/ó) is convex on (0,+∞),

lim
t→0+

óG0(t)
tó

< +∞

and t2a0(t) − óG0(t) ≥ ̃c tp for all t > 0 and some ̃c > 0.

Remark 2.2. Let G(y) = G0(‖y‖), y ∈ ℝN. Then for all y ∈ ℝN\{0}, we have

∇G(y) = G�
0(‖y‖)

y
‖y‖

= a0(‖y‖)y = a(y).

Hence, G( ⋅ ) is primitive of a( ⋅ ). Hypotheses H(a)1 have some interesting consequences, which we present
below. We first observe that a( ⋅ ) is strictly monotone. Indeed, for all y, y� ∈ ℝN,

(a(y) − a(y�), y − y�)ℝN =
1

∫
0

(
d
dt

a(y� + t(y − y�)), y − y�)
ℝN

dt

=
1

∫
0

(∇a(y� + t(y − y�))(y − y�), y − y�)ℝN dt

≥ c1‖y
� + t(y − y�)‖p−2‖y − y�‖2 (see Hypothesis H(a)1 (iii) and (2.3)).

It follows that the primitives G( ⋅ ) and G0( ⋅ ) are strictly convex functions and G0( ⋅ ) is strictly increasing, too.
In addition, we have for all y ∈ ℝN and some c4 > 0,

a(y) =
1

∫
0

d
dt

a(ty) dt =
1

∫
0

∇a(ty)y dt â⇒ ‖a(y)‖ ≤
1

∫
0

‖∇a(ty)‖‖y‖ dt ≤ c4(1 + ‖y‖p−1). (2.4)

Moreover, using Hypothesis H(a)1 (iii) and (2.3), we obtain for all y ∈ ℝN,

(a(y), y) =
1

∫
0

(
d
dt

a(ty), y)
ℝN

dt =
1

∫
0

(∇a(ty)y, y)ℝN dt ≥
c1

p − 1
‖y‖p. (2.5)
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Since ∇G(y) = a(y) for all y ∈ ℝN (recall a(0) = 0, G(0) = 0), we have

G(y) =
1

∫
0

d
dt

G(ty) dt =
1

∫
0

(a(ty), y)ℝN dt.

Then using (2.4) and (2.5), we have for all y ∈ ℝN and some c5 > 0,
c1

p(p − 1)
‖y‖p ≤ G(y) ≤ c5(1 + ‖y‖p). (2.6)

Hypothesis H(a)1 are general enough to incorporate in our framework di�erential operators of interest.

Example 2.3. The following maps satisfy Hypothesis H(a)1:
(i) a(y) = ‖y‖p−2y for all y ∈ ℝN with 1 < p < ∞,
(ii) a(y) = ‖y‖p−2y + ì‖y‖q−2y with 1 < q < p, ì ≥ 0,
(iii) a(y) = (1 + ‖y‖2)(p−2)/2y with 1 < p < ∞.

In case (i) we take

G0(t) =
tp

p
for all t ≥ 0

and the corresponding di�erential operator is the p-Laplacian defined by

Δpu = div(‖Du‖p−2Du) for all u ∈ W1,p(Ω).

For this operator we take ç(t) = (p − 1)tp−1 for all t > 0 if 1 < p ≤ 2 and ç(t) = tp−1 for all t > 0 if 2 < p and
1 < ó < p (see Hypothesis H(a)1 (iv)).

In case (ii) we take

G0(t) =
tp

p
+
ìtq

q
for all t ≥ 0

and the corresponding di�erential operator is the (p, q)-Laplacian defined by

Δpu + ìΔ qu for all u ∈ W1,p(Ω).

For this operator we have for all t ≥ 0,

ç(t) = (p − 1)tp−1 + ì(q − 1)tq−1 when 1 < q < p < 2,

ç(t) = tp−1 + ì(q − 1)tq−1 when 1 < q < 2 ≤ p,

ç(t) = tp−1 + ìtq−1 when 2 ≤ q < p.

Indeed, for all y ∈ ℝN\{0},

∇a(y) = ‖y‖p−2(I + (p − 2)
y ⊗ y
‖y‖2

) + ì‖y‖q−2(I + (q − 2)
y ⊗ y
‖y‖2

).

First assume that 1 < q < p < 2. Then

‖∇a(y)‖ ≤ (p − 1)‖y‖p−2 + ì(q − 1)‖y‖q−2.

Also, for all î ∈ ℝN, we have

(∇a(y)î, î)ℝN ≥ ((p − 1)‖y‖p−2 + ì(q − 1)‖y‖q−2) ‖î‖2.

Therefore with ç(t) = (p − 1)tp−1 + ì(q − 1)tq−1 for t ≥ 0, Hypotheses H(a)1 (ii)–(iii) are fulfilled.
Next, we assume that 1 < q < 2 ≤ p. Then for all y ∈ ℝN\{0} and all î ∈ ℝN,

‖∇a(y)‖ ≤ (p − 1)‖y‖p−2 + ì(q − 1)‖y‖q−2 ≤ (p − 1)[‖y‖p−2 + ì(q − 1)‖y‖q−2]

and
(∇a(y)î, î)ℝN ≥ (‖y‖p−2 + ì(q − 1)‖y‖q−2) ‖î‖2.

Therefore with ç(t) = tp−1 + ì(q − 1)tq−1 for t ≥ 0, Hypotheses H(a)1 (ii)–(iii) are satisfied.
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Finally, assume that 2 ≤ q < p. Then for all y ∈ ℝN\{0} and all î ∈ ℝN,

‖∇a(y)‖ ≤ (p − 1)‖y‖p−2 + ì(q − 1)‖y‖q−1 ≤ (p − 1)[‖y‖p−2 + ì‖y‖q−2]

and
(∇a(y)î, î)ℝN ≥ (‖y‖p−2 + ì‖y‖q−2) ‖î‖2.

Therefore with ç(t) = tp−1 + ìtq−1 for t ≥ 0, we see that Hypotheses H(a)1 (ii)–(iii) are fulfilled. Moreover, in
Hypothesis H(a)1 (iv), we have ó = q.

In case (iii) we take
G0(t) =

1
p
[(1 + t2)

p
2 − 1] for all t ≥ 0

and the corresponding di�erential operator is the generalized p-mean curvature di�erential operator

(1 + ‖Du‖2)
p−2
2 Du for all u ∈ W1,p(Ω).

Note that
∇a(y) = (1 + ‖y‖2)

p−4
2 [(p − 2)y ⊗ y + (1 + ‖y‖2)I] for all y ∈ ℝN\{0}.

We first assume that 1 < p < 2. Then for all y ∈ ℝN\{0} and for all î ∈ ℝN,

‖∇a(y)‖ ≤ (1 + ‖y‖2)
p−4
2 [(2 − p)‖y‖2 + 1 + ‖y‖2] ≤ c∗(1 + (p − 1)‖y‖2)

p−2
2 for some c∗ > 0

and
(∇a(y)î, î)ℝN ≥ (1 + ‖y‖2)

p−4
2 [(1 + ‖y‖2)‖î‖2 + (p − 2)‖y‖2‖î‖2] ≥ (1 + (p − 1)‖y‖2)

p−2
2 ‖î‖2.

Therefore with ç(t) = (1 + (p − 1)t2)
p−2
2 t for t ≥ 0, Hypotheses H(a)1 (ii)–(iii) are satisfied.

Next, assume that 2 ≤ p. Then for all y ∈ ℝN\{0} and for all î ∈ ℝN,

‖∇a(y)‖ ≤ c∗(1 + ‖y‖2)
p−2
2 ,

(∇a(y)î, î)ℝN ≥ (1 + ‖y‖2)
p−2
2 ‖î‖2.

Therefore with ç(t) = (1 + t2)
p−2
2 t, Hypotheses H(a)1 (ii)–(iii) are fulfilled. Moreover, in Hypothesis H(a)1 (iv),

we have 1 < ó < p.

Let A : W1,p(Ω) → W1,p(Ω)∗ be the nonlinear map defined by

⟨A(u), y⟩ = ∫
Ω

(a(Du), Dy)ℝN dz for all u, y ∈ W1,p(Ω). (2.7)

From Gasinski and Papageorgiou [16], we have:

Proposition 2.4. Assume that Hypotheses H(a)1 (i)–(iii) are fulfilled. Then the map A : W1,p(Ω) → W1,p(Ω)∗

defined by (2.7) is bounded (that is, it maps bounded sets into bounded sets), continuous, maximal monotone,
and of type (S)+, that is, if un

w
→ u inW1,p(Ω) and lim supn→∞⟨A(un), un − u⟩ ≤ 0, then un → u inW1,p(Ω).

Let f0 : Ω × ℝ → ℝ be a Carathéodory function with subcritical growth in x ∈ ℝ, that is,

|f0(z, x)| ≤ a(z)(1 + |x|r−1) for a.a. z ∈ Ω and all x ∈ ℝ

with a ∈ L∞(Ω)+, 1 < r < p∗, where

p∗ =
{
{
{

Np
N−p if p < N,

+∞ ifN ≤ p.

Let

F0(z, x) =
x

∫
0

f0(z, s) ds

and let ÿ0 : W
1,p(Ω) → ℝ be the C1-functional defined by

ÿ0(u) = ∫
Ω

G(Du(z)) dz − ∫
Ω

F0(z, u(z)) dz for all u ∈ W1,p(Ω).
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The following result relates Hölder and Sobolev local minimizers of a C1-functional.

Proposition 2.5. Assume that HypothesesH(a)1 (i)–(iii) hold and u0 ∈ W1,p(Ω) is a localC1(Ω̄)-minimizer ofÿ0,
that is, there exists some ñ0 > 0 such that

ÿ0(u0) ≤ ÿ0(u0 + ℎ) for all ℎ ∈ C1(Ω̄), ‖ℎ‖C1(Ω̄) ≤ ñ0.

Then u0 ∈ C1,â(Ω̄) with â ∈ (0, 1) and u0 is also a localW1,p(Ω)-minimizer of ÿ0, that is, there exists some ñ1 > 0
such that

ÿ0(u0) ≤ ÿ0(u0 + ℎ) for all ℎ ∈ W1,p(Ω), ‖ℎ‖ ≤ ñ1.

Remark 2.6. In the above result and in the sequel, ‖ ⋅ ‖ denotes the norm of the Sobolev spaceW1,p(Ω), that
is,

‖u‖ = (‖u‖pp + ‖Du‖pp)
1
p for all u ∈ W1,p(Ω).

Proposition 2.5 was first proved for the Dirichlet Sobolev space H1
0 (Ω) and for G(y) = 1

2 ‖y‖
2 (y ∈ ℝN) by

Brezis and Nirenberg [6] and it was extended to the Dirichlet Sobolev space W1,p
0 (Ω) (1 < p < ∞) and for

G(y) = 1
p ‖y‖

p (y ∈ ℝN) by Garcia Azorero, Manfredi and Peral Alonso [14]. Proposition 2.5 can be found in
Motreanu and Papageorgiou [28].

Another mathematical tool that we will use in the sequel is the Morse theory and in particular critical
groups. So, let us recall some basic definitions and facts from that theory.

LetX be a Banach space and Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0we denote byHk(Y1, Y2) the kth relative
singular homology group for the pair (Y1, Y2) with integer coe�cients. We recall that Hk(Y1, Y2) = 0 for all
integers k < 0.

Given ÿ ∈ C1(X) and c ∈ ℝ, we introduce the following sets:

ÿc = {x ∈ X : ÿ(x) ≤ c}, ÿ̇c = {x ∈ X : ÿ(x) < c},

Kÿ = {x ∈ X : ÿ�(x) = 0}, Kc
ÿ = {x ∈ Kÿ : ÿ(x) = c}.

The critical groups of ÿ at an isolated critical point x0 ∈ X with ÿ(x0) = c (that is, x0 ∈ Kc
ÿ) are defined by

Ck(ÿ, x0) = Hk(ÿ
c ∩ U, ÿc ∩ U\{0}) for all k ≥ 0.

HereU is a neighborhood of x0 ∈ X such thatKÿ ∩ ÿc ∩ U = {x0}. The excision property of singular homology
theory implies that the above definition of critical groups is independent of the choice of the neighborhoodU.

Suppose that ÿ ∈ C1(X) satisfies the C-condition and inf ÿ(Kÿ) > −∞. Let c < inf ÿ(Kÿ). Then the critical
groups of ÿ at infinity are defined by

Ck(ÿ,∞) = Hk(X, ÿc) for all k ≥ 0.

The second deformation theorem (see, e.g., Gasinski and Papageorgiou [15, p. 628]) implies that the above
definition of critical groups of ÿ at infinity is independent of the particular choice of the level c < inf ÿ(Kÿ).

Suppose thatKÿ is finite. We introduce the following polynomials in t ∈ ℝ:

M(t, x) = ∑
k≥0

rankCk(ÿ, x)t
k for all x ∈ Kÿ,

P(t,∞) = ∑
k≥0

rankCk(ÿ,∞)tk.

The Morse relation says that
∑
x∈Kÿ

M(t, x) = P(t,∞) + (1 + t)Q(t), (2.8)

where Q(t) = ∑k≥0 âkt
k is a formal series with nonnegative integer coe�cients âk.

As we already mentioned, by ‖ ⋅ ‖ we denote the norm of the Sobolev space W1,p(Ω). The same notation
will also be used to denote the norm of ℝN. However, no confusion is possible, since it will always be
clear from the context which norm is used. For x ∈ ℝ, we set x± = max{±x, 0} and for u ∈ W1,p(Ω) we define
u±( ⋅ ) = u( ⋅ )±. We know that

u±( ⋅ ) ∈ W1,p(Ω), u = u+ − u−, |u| = u+ = u−.
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Given a measurable function ℎ : Ω × ℝ → ℝ, we introduce the map

Nℎ(u)( ⋅ ) = ℎ( ⋅ , u( ⋅ )) for all u ∈ W1,p(Ω)

(the Nemytskii map corresponding to ℎ). Finally, by | ⋅ |N we denote the Lebesgue measure onℝN.

3 Coercive problems
In this section, we examine problem (1.1) under hypotheses on f(z, x) that make the energy functional
coercive. We prove a “three solutions theorem” providing sign information for all the solutions. First we fix
the hypotheses on the potential â( ⋅ ):

Hypothesis H0. We have â ∈ L∞(Ω).

Set â̂(z) = p−1
c1

â(z).

Hypothesis H1. We assume that the reaction term f(z, x) is a Carathéodory function such that f(z, 0) = 0 a.e.
inΩ and
(i) |f(z, x)| ≤ a(z)(1 + |x|p−1) a.e. inΩ, for all x ∈ ℝ with a ∈ L∞(Ω)+,
(ii) there exists a function ú ∈ L∞(Ω) such that ú(z) ≤ c1

p−1 ë̂1(p, â̂) a.e. inΩ, ú ̸= c1
p−1 ë̂1(p, â̂) and

lim sup
x→±∞

f(z, x)
|x|p−2x

≤ ú(z)

uniformly for a.a. z ∈ Ω,
(iii) there exist q ∈ (1, ó) (see Hypothesis H(a)1 (iv)), ̃c0 > 0 and ä > 0 such that ̃c0|x|

q ≤ f(z, x)x ≤ qF(z, x) for
a.a. z ∈ Ω, all 0 < |x| ≤ ä,

(iv) for every ñ < 0, there exists åñ > 0 such that for a.a. z ∈ Ω, the mapping x Ü→ f(z, x) + åñ|x|
p−2x is

nondecreasing on [−ñ, ñ].

Remark 3.1. HypothesisH1 (i) implies that asymptotically at±∞f(z, ⋅ ) is (p − 1)-sublinear.HypothesisH1 (ii)
willmake the energy functional coercive. HypothesisH1 (iii) implies the existence of a concave termnear zero.
Finally, Hypothesis H1 (iv) is weaker than assuming the monotonicity of f(z, ⋅ ) and is a one-sided Lipschitz
condition on f(z, ⋅ ).

Example 3.2. The following functions satisfy Hypothesis H1. For the sake of simplicity, we drop the z-depen-
dence:

f1(x) = ú|x|p−2x + |x|q−2x with ú <
c1

p − 1
ë̂1(p, â̂), 1 < q < p,

f2(x) =
{
{
{

ú(|x|q−2x − |x|r−2x) if |x| ≤ 1,

ú(|x|p−2x − |x|ì−2x) if |x| > 1,
with ú <

c1
p − 1

ë̂1(p, â̂), 1 < q, ì < p, r.

The next auxiliary result is useful to establish the coercivity of the energy functional of problem (1.1). This
property can be found in Mugnai and Papageorgiou [29, Lemma 4.11].

Lemma 3.3. Assume that ̃â, ̃ú ∈ L∞(Ω) and ̃ú(z) ≤ ë̂1(p, ̃â) a.e. inΩ, ̃ú ̸= ë̂1(p, ̃â). Then there exists some c6 > 0
such that

̃å(u) − ∫
Ω

̃ú(z)|u(z)|p dz ≥ c6‖u‖
p for all u ∈ W1,p(Ω),

where ̃å(u) = ‖Du‖pp + ∫
Ω

̃â(z)|u(z)|p dz for all u ∈ W1,p(Ω).

Let ÿ : W1,p(Ω) → ℝ be the energy functional associated to problem (1.1), namely

ÿ(u) = ∫
Ω

G(Du(z)) dz − ∫
Ω

F(z, u(z)) dz for all u ∈ W1,p(Ω).

Evidently, ÿ ∈ C1(W1,p(Ω)).

Authenticated | vicentiu.radulescu@math.cnrs.fr author's copy
Download Date | 5/2/16 1:42 PM



552 | N. S. Papageorgiou and V. D. Rădulescu, Nonlinear Neumann problems

Let ë > ‖â−‖∞ and consider the following truncations-perturbations of f(z, ⋅ ):

f̂+(z, x) = f(z, x+) + ë(x+)p−1 and f̂−(z, x) = f(z,−x−) − ë(x−)p−1.

We set

F̂±(z, x) =
x

∫
0

f̂±(z, s) ds

and consider the C1-functional ÿ̂± : W1,p(Ω) → ℝ defined by

ÿ̂±(u) = ∫
Ω

G(Du(z)) dz +
1
p
∫
Ω

(â(z) + ë)|u(z)|p dz − ∫
Ω

F̂±(z, u(z)) dz for all u ∈ W1,p(Ω).

Proposition 3.4. Assume that Hypotheses H(a)1, H0 and H1 are fulfilled. Then problem (1.1) has at least two
nontrivial constant sign solutions u0 ∈ intC+ and v0 ∈ − intC+, both local minimizers of the energy functional ÿ.

Proof. By virtue of Hypotheses H1 (i)–(ii), given å > 0, we can find c+ = c+(å) > 0 such that

F(z, x) ≤
1
p
(ú(z) + å)|x|p + c7 for a.a. z ∈ Ω and all x ∈ ℝ. (3.1)

Thus, for all u ∈ W1,p(Ω),

ÿ̂+(u) = ∫
Ω

G(Du) dz +
1
p
∫
Ω

(â(z) + ë)|u|p dz + ∫
Ω

F̂±(z, u) dz

≥
c1

p(p − 1)
‖Du‖pp +

1
p
∫
Ω

â(z)|u|p dz −
1
p
∫
Ω

(ú(z) + å)|u|p dz + c7|Ω|N (see [10])

=
c1

p(p − 1)
[‖Du‖pp + ∫

Ω

â̂(z)|u|p dz +
p − 1
c1

∫
Ω

ú(z)|u|p dz] −
å
p
‖u‖p + c7|Ω|N

≥
1
p
[

c1c6
p − 1

− å]‖u‖p + c7|Ω|N (see Lemma 3.3). (3.2)

Choosing å ∈ (0, c1c6
p−1 ), we deduce from (3.2) that ÿ̂+ is coercive. Also, via the Sobolev embedding theorem,

we see that ÿ̂+ is sequentially weakly lower semi-continuous. So, by the Weierstrass theorem, we can find
u0 ∈ W1,p(Ω) such that

ÿ̂+(u0) = inf{ÿ̂+(u) : u ∈ W1,p(Ω)} = m̂+. (3.3)

By virtue of Hypothesis H(a)1 (iv), we can find c8 > 0 and ä0 ∈ (0, ä] such that

G(y) ≤
c8
ó
‖y‖ó for all ‖y‖ ≤ ä0. (3.4)

Hypothesis H1 (iii) yields
̃c0
q
|x|q ≤ F(z, x) for all z ∈ Ω, all |x| ≤ ä. (3.5)

Recall that û1(p, â) ∈ intC+. So, we can find ç ∈ (0, 1) small such that

ç|û1(p, â)(z)|, ç‖Dû1(p, â)(z)‖ ∈ (0, ä0] for all z ∈ Ω̄. (3.6)

Therefore

ÿ̂+(ç û1(p, â)) = ∫
Ω

G(çDû1(p, â)) dz +
çp

p
∫
Ω

â(z)|û1(p, â)|
p dz − ∫

Ω

F(z, ç û1(p, â)) dz

≤
c8
ó
çó‖Dû1(p, â)‖

ó
ó +

çp

p
‖â‖∞ −

̃c0
q
çq‖û1(p, â)‖

q
q , (3.7)

see (3.4)–(3.6) and recall ‖û1(p, â)‖p = 1. Since 1 < q < ó < p, by choosing ç ∈ (0, 1) even smaller if necessary,
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relation (3.7) yields

ÿ̂+(ç û1(p, â)) < 0 â⇒ ÿ̂+(u0) = m̂+ < 0 = ÿ̂+(0) (see (3.3)), hence u0 ̸= 0.

From (3.3) we have

ÿ̂�
+(u0) = 0 â⇒ A(u0) + (â + ë)|u0|

p−2u0 = Nf̂+
(u0). (3.8)

On (3.8) we act with −u−0 ∈ W1,p(Ω) and using (2.5), we obtain

c1
p − 1

‖Du−0 ‖
p
p + ∫

Ω

(â(z) + ë)u−0 (z)
p dz ≤ 0.

Since ë > ‖â−‖∞, we infer that u0 ≥ 0, u0 ̸= 0. Therefore relation (3.8) becomes

A(u0) + âup−10 = Nf(u0) â⇒
{{
{{
{

− div a(Du0(z)) + â(z)u0(z)
p−1 = f(z, u0(z)) a.e. inΩ,

àu0
àn

= 0 on àΩ,
(see [2]).

From Hu and Papageorgiou [18], we know that u0 ∈ L∞(Ω) and so we can apply the regularity result of
Lieberman [23, p. 320] and deduce that u0 ∈ C+\{0}. Let ñ = ‖u0‖∞ and let åñ > 0 be as postulated by Hypo-
thesis H1 (iv). Then

− div a(Du0(z)) + åñ(u0)(z)
p−1 = f(z, u0(z)) + åñu0(z)

p−1 ≥ 0 a.e. inΩ. (3.9)

Let ã0(t) = ta0(t). Hypothesis H(a)1 (iii) implies the one-dimensional estimate

tã�0(t) = t2a�0(t) + ta0(t) ≥ c9t
p−1 for all t > 0, some c9 > 0,

and so
t

∫
0

sã�0(s) ds = tã0(t) −
t

∫
0

ã0(s) ds = t2a0(t) − G0(t) ≥
c9
p
tp for all t > 0.

This estimate and (3.9) permit the use of the strong maximum principle of Pucci and Serrin [34, p. 111] and so
we have u0(z) > 0 for all z ∈ Ω. Finally, we apply the boundary point theorem of Pucci and Serrin [34, p. 120]
and conclude that u0 ∈ intC+. Note that ÿ̂+|C+

= ÿ|C+
. So, u0 ∈ intC+ is a local C1(Ω̄)-minimizer of ÿ. Invoking

Proposition 2.5, we conclude that u0 ∈ intC+ is a localW1,p(Ω) -minimizer of ÿ.
Similarly, working this time with ÿ̂−, we produce a nontrivial negative solution v0 ∈ − intC+ of prob-

lem (1.1), which is a local minimizer of ÿ.

In fact, we can show the existence of extremal nontrivial constant sign solutions for problem (1.1). Namely,
we show that there exists a smallest nontrivial positive solution and a biggest nontrivial negative solution.
Our argument follows closely the reasoning of Papageorgiou and Rădulescu [32], where the authors deal with
Dirichlet (p, q)-equations. For the convenience of the reader, we present the proofs in detail.

Note that Hypotheses H1 (i), (iii) imply that we can find c10 > ‖â‖∞ and ë such that

f(z, x)x ≥ ̃c|x|q − c10|x|
p for a.a. z ∈ Ω and all x ∈ ℝ. (3.10)

This unilateral growth condition on f(z, ⋅ ) leads to the following auxiliary Neumann problem:

− div a(Du(z)) = ̃c|u(z)|q−2u(z) − c10|u(z)|
p−2u(z) inΩ,

àu
àn

= 0 on àΩ.
(3.11)

Proposition 3.5. Assume that Hypothesis H(a)1 hold. Then problem (3.11) has a unique nontrivial positive
solution ũ ∈ intC+ and since (3.11) is add ̃v = −ũ ∈ − intC+ is unique nontrivial negative solution of (3.11).
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Proof. First we show that problem (3.11) admits a nontrivial positive solution. To this end, let

Ψ+ : W1,p(Ω) → ℝ

be the C1-functional defined by

Ψ+(u) = ∫
Ω

G(Du(z)) dz +
1
p
∫
Ω

(â(z) + ë)|u(z)|p dz −
̃c

q
‖u+‖qq +

c10 − ë
p

‖u+‖pp for all u ∈ W1,p(Ω).

Recall that ë > ‖â−‖∞. From this fact and since q < p, we infer that Ψ̂+ is coercive. Also, it is sequentially
weakly lower semi-continuous. Therefore, we can find ũ ∈ W1,p(Ω) such that

Ψ+(ũ) = inf{Ψ+(u) : u ∈ W1,p(Ω)}.

As before (see the proof of Proposition 3.4), using Hypothesis H(a)1 (iv), we show that Ψ+(ũ) < 0 = Ψ+(0),
hence ũ ̸= 0. Also, we have

Ψ�
+(ũ) = 0 â⇒ A(ũ) + (â + ë)|ũ|p−2ũ = ̃c(ũ+)q−1 − (c10 − ë)(ũ+)p−1. (3.12)

On (3.12) we act with −ũ− ∈ W1,p(Ω). Since ë > ‖â−‖∞, we see that ũ ≥ 0, ũ ̸= 0. Hence (3.12) becomes

A(ũ) + âũp−1 = ̃cũq−1 − c10ũ
p−1,

which shows that ũ is a nontrivial positive solution of problem (3.11). Moreover, as before using the nonlinear
regularity theory, we obtain ũ ∈ C+\{0}. Also, we have

div a(Dũ(z)) ≤ (‖â‖∞ + c10)ũ(z)
p−1 a.e. inΩ,

hence ũ ∈ intC+ (see Pucci and Serrin [34, p. 120]).
Next, we show the uniqueness of this positive solution. For this purpose, we consider the integral func-

tional ò+ : L1(Ω) → ℝ̄ = ℝ ∪ {+∞} defined by

ò+(u) =
{{{
{{{
{

∫
Ω

G(Du
1
ó ) dz if u ≥ 0, u

1
ó ∈ W1,p(Ω),

+∞ otherwise.
(3.13)

Let u1, u2 ∈ dom ò+ and let y = (tu1 + (1 − t)u2)
1
ó with t ∈ [0, 1]. From Diaz and Saa [9, Lemma 1], we have

‖Dy(z)‖ ≤ (t‖Du1(z)
1
ó ‖ó + (1 − t)‖Du2(z)

1
ó ‖ó)

1
ó .

Recall that G0( ⋅ ) is increasing. Hence

G0(‖Dy(z)‖) ≤ G0((t‖Du1(z)
1
ó ‖ó + (1 − t)‖Du2(z)

1
ó ‖ó)

1
ó )

≤ tG0(‖Du1(z)
1
ó ‖) + (1 − t)G0(‖Du2(z)

1
ó ‖) a.e. inΩ (see Hypothesis H(a)1 (iv)),

which implies
G(Dy(z)) ≤ tG(Du1(z)

1
ó ) + (1 − t)G(Du2(z)

1
ó ) a.e. inΩ

and hence ò+ is convex. Moreover, via Fatou’s lemma, we see that ò+ is lower semi-continuous.
Suppose that u, v ∈ W1,p(Ω) are two nontrivial positive solutions of (3.11). From the first part of the

proof, we have u, v ∈ intC+. Therefore uó, vó ∈ dom ò+. Let ℎ ∈ C1(Ω̄). Then for t ∈ [−1, 1] with |t| small, we
have uó + tℎ, vó + tℎ ∈ dom ò+ and so the Gâteaux derivatives of ò+ at uó and at vó in the direction ℎ exist.
Moreover, via the chain rule, we have

ò�
+(u

ó)(ℎ) =
1
ó
∫
Ω

− div a(Du)
uó−1

ℎ dz, ò�
+(v

ó)(ℎ) =
1
ó
∫
Ω

− div a(Dv)
vó−1

ℎ dz.
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The convexity of ò+ implies the monotonicity of ò1
+. Therefore

0 ≤ ∫
Ω

(
− div a(Du)

uó−1
+
div a(Dv)

vó−1
)(uó − vó) dz

≤ ∫
Ω

(
̃cuq−1 − ̂c10u

p−1

uó−1
−

̃cvq−1 − ̂c10v
p−1

vó−1
)(uó − vó) dz, ̂c10 = c10 − ‖â‖∞ > 0,

= ∫
Ω

[ ̃c(
1

uó−q
−

1
vó−q

) − ̂c10(u
p−ó − vp−ó)](uó − vó) dz. (3.14)

Since q < ó < p, the function x Ü→ ̃c
xó−q − ̂c10x

p−ó is strictly decreasing on (0,+∞). So, from (3.14) it follows that
u = v and this proves the uniqueness of the nontrivial positive solution ũ ∈ intC+. Evidently, ̃v = −ũ ∈ − intC+

is the unique nontrivial negative solution of problem (3.11).

Using these unique constant sign solutions of (3.11), we can generate extremal constant sign solutions of (1.1).

Proposition 3.6. Assume that Hypotheses H(a)1 and H1 hold. Then problem (1.1) has a smallest nontrivial
positive solution u∗ ∈ intC+ and a biggest nontrivial negative solution v∗ ∈ − intC+.

Proof. Let S+ be the set of nontrivial positive solutions of (1.1). From Proposition 3.4 we know that S+ ̸= 0
and S+ ⊆ intC+.Moreover, as inAizicovici, Papageorgiou andStaicu [1],wehave that S+ is downwarddirected,
that is, if u1, u2 ∈ S+, then we can find u ∈ S+ such that u ≤ u1, u ≤ u2. So, without any loss of generality, we
may assume that there existsM > 0 such that

‖u‖∞ ≤ M for all u ∈ S+. (3.15)

Claim. We have ũ ≤ u for all u ∈ S+.

Let u ∈ S+ and consider the Carathéodory function

ℎ+(z, x) =
{{{
{{{
{

0 if x < 0,

̃cxq−1 − (c10 − ë)xp−1 if 0 ≤ x ≤ u(z),

̃cu(z)q−1 − (c10 − ë)u(z)p−1 if u(z) < x.

(3.16)

As before, ë > ‖â−‖∞. We set

H+(z, x) =
x

∫
0

ℎ+(z, s) ds

and consider the C1-functional ã+ : W1,p(Ω) → ℝ defined by

ã+(u) = ∫
Ω

G(Du(z)) dz +
1
p
∫
Ω

[â(z) + ë]|u(z)|p dz − ∫
Ω

H+(z1u(z)) dz for all u ∈ W1,p(Ω).

Relation (3.16) implies that ã+ is coercive. Also, it is sequentially weakly lower semi-continuous. So, we can
find ũ0 ∈ W1,p(Ω) such that

ã+(ũ0) = inf{ã+(u) : u ∈ W1,p(Ω)}. (3.17)

As before (see Proposition 3.5) and since u ∈ intC+, we have

ã+(ũ0) < 0 = ã+(0),

hence ũ0 ̸= 0. From (3.11) we have

ã�+(ũ0) = 0 â⇒ A(ũ0) + (â + ë)|ũ0|
p−2ũ0 = Nℎ+ (ũ0). (3.18)

On (3.18) we first act with −ũ−0 ∈ W1,p(Ω). Since ë > ‖â−‖∞, we obtain

ũ0 ≥ 0, ũ0 ̸= 0.
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Then on (3.18) we act with (ũ0 − u)+ ∈ W1,p(Ω). We have

⟨A(ũ0), (ũ0 − u)+⟩ + ∫
Ω

(â(z) + ë)ũp−10 (ũ0 − u)+ dz = ∫
Ω

ℎ+(z, ũ0)(ũ0 − u)+ dz

= ∫
Ω

[ ̃cuq−1 − c10u
p−1](ũ0 − u)+ dz (see (3.16))

≤ ∫
Ω

f(z, u)(ũ0 − u)+ dz (see (3.10))

= ⟨A(u), (ũ0 − u)+⟩ + ∫
Ω

(â(z) + ë)up−1(ũ0 − u)+ dz,

which implies
⟨A(ũ0) − A(u), (ũ0 − u)+⟩ + ∫

Ω

(â(z) + ë)(ũp−10 − up−1)(ũ0 − u)+ dz ≤ 0,

and so
|{ũ0 > u}|N = 0 (since ë > ‖â−‖∞),

hence ũ0 ≤ u. So, we have proved that

ũ0 ∈ [0, u] = {v ∈ W1,p(Ω) : 0 ≤ v(z) ≤ u(z) a.e. inΩ}, ũ0 ̸= 0.

Then relation (3.18) becomes

A(ũ0) + âũp−10 = ̃cũq−10 − c10ũ
p−1
0 (see (3.16)) â⇒ ũ0 is a nontrivial positive solution of (3.11),

â⇒ ũ0 = ũ ∈ intC+ (see Proposition 3.5).

Therefore ũ ≤ u for all u ∈ S+ and this proves the claim.
Now, let C ⊆ S+ be a chain (that is, a totally ordered subset of S+). We know that we can find {un}n≥1 ⊆ C

such that intC = infn≥1 un (see Dunford and Schwartz [11, p. 336]). We have

A(un) + âup−1n = Nf(un), u∗ ≤ un ≤ M for all n ≥ 1 (see (3.15)). (3.19)

So, {un}n≥1 ⊆ W1,p(Ω) is bounded and we may assume that

un
w
→ u inW1,p(Ω) and un → u in Lp(Ω) as n → ∞. (3.20)

On (3.19) we act with un − u ∈ W1,p(Ω), pass to the limit as n → ∞ and use (3.20). Then

lim
n→∞

⟨A(un), un − u⟩ = 0 â⇒ un → u inW1,p(Ω) (see Proposition 2.4). (3.21)

Passing to the limit as n → ∞ in (3.19) and using (3.21), we obtain

A(u) + âup−1 = Nf(u), ũ ≤ u ≤ M â⇒ u ∈ S+, u = inf C.

Since C is an arbitrary chain of S+, from the Kuratowski–Zorn lemma we infer that we can find u∗ ∈ S+ a min-
imal element. Since S+ is downward directed, we conclude that u∗ ∈ intC+ is the smallest nontrivial positive
solution of (1.1).

Similarly, let S− be the set of nontrivial negative solutions of problem (1.1). From Proposition 3.4 we know
that S− ̸= 0 and S− ⊆ − intC+. Also, S− is upward directed, that is, if v1, v2 ∈ S−, then we can find v ∈ S− such
that v1 ≤ v1, v2 ≤ v (see [1]). Reasoning as above, via the Kuratowski–Zorn lemma, we produce v∗ ∈ − intC+

the biggest nontrivial negative solution of (1.1).

Using these extremal constant sign solutions of (1.1), we can produce a nodal solution. Via suitable truncation
and perturbation techniques, we focus on the order interval [v∗, u∗] = {u ∈ W1,p(Ω) : v∗ ≤ u ≤ u∗ a.e. inΩ}.
Then using variational methods coupled with Morse theory, we show that problem (1.1) admits a solution
in [v∗, u∗] distinct from 0, u∗, v∗. Evidently, this a nodal solution.

To execute this solution plan, we need to compute the critical groups of ÿ at the origin.
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Proposition 3.7. Assume that Hypotheses H(a)1, H0 and H1 hold. Then Ck(ÿ, 0) = 0 for all k ≥ 0.

Proof. Recall that Hypotheses H1 (i), (iii) imply that

F(z, x) ≥ ̃c0|x|
q − c11|x|

r for a.a. z ∈ Ω, all x ∈ ℝ, with c11 > 0, r > p. (3.22)

Also, from Hypothesis H(a)1 (iv) and (2.6), we have

G(y) ≤ c12(‖y‖
ó + ‖y‖p) for all y ∈ ℝN and some c12 > 0. (3.23)

Then for all u ∈ W1,p(Ω) and all t > 0, we have

ÿ(tu) = ∫
Ω

G(tDu) dz +
tp

p
∫
Ω

â(z)|u|p dz − ∫
Ω

F(z, tu) dz

≤ c12(t
ó‖Du‖óó + tp‖Du‖pp) +

tp

p
‖â‖∞‖u‖pp + c11t

r‖u‖rr − ̃c0t
q‖u‖qq (see (3.22)–(3.23)). (3.24)

Since q < ó < p < r, from (3.24) it is clear that we can find t∗ = t∗(u) ∈ (0, 1) such that

ÿ(tu) < 0 for all t ∈ (0, t∗). (3.25)

Let u ∈ W1,p(Ω), 0 < ‖u‖ ≤ 1 and ÿ(u) = 0. We have

d
dt

ÿ(tu)
!!!!!!t=1

= ⟨ÿ�(u), u⟩

= ⟨A(u), u⟩ + ∫
Ω

â|u|p dz − ∫
Ω

f(z, u)u dz

= ∫
Ω

((a(Du), Du)ℝN − óG(Du)) dz + (1 −
ó
p
)∫

Ω

â(z)|u|p dz

+ (ó − q)∫
Ω

F(z, u) dz + ∫
Ω

[qF(z, u) − f(z, u)u] dz (since ÿ(u) = 0). (3.26)

By virtue of Hypothesis H(a)1 (iv), we have

(a(Du(z)), Du(z))ℝN − óG(Du(z)) ≥ ̃c‖Du(z)‖p for a.a. z ∈ Ω. (3.27)

Hypothesis H1 (iii) implies that for a.a. z ∈ Ω and all |x| ≤ ä1 with ä1 ∈ (0, ä],

F(z, x) ≥
̃c0
q
|x|q ≥

̃c0
äp−q1

|x|p. (3.28)

On the other hand, Hypothesis H1 (i) implies that we can find c13 = c13(ä1, r) > 0 such that

F(z, x) ≥ −c13|x|
r for a.a. z ∈ Ω and all |x| > ä1. (3.29)

Combining (3.28) and (3.29), we find c14 = c14(ä1, r) > 0 such that

F(z, x) ≥
̃c0

äp−q1

|x|p − c14|x|
r for a.a. z ∈ Ω and all x ∈ ℝ. (3.30)

Moreover, from Hypotheses H1 (i), (iii) we have

qF(z, x) − f(z, x)x ≥ −c15|x|
r for a.a. z ∈ Ω, all x ∈ ℝ and some c15 > 0. (3.31)

Returning to (3.26) and using (3.27), (3.30), and (3.31), we obtain

d
dt

ÿ(tu)
!!!!!!t=1

≥ ̃c‖Du‖pp + [
̃c0

äp−q1

− (1 −
ó
p
)‖â‖∞]‖u‖pp − c16‖u‖

r for some c16 > 0. (3.32)

We choose ä1 ∈ (0, ä] small such that
̃c0

äp−q1

> (1 −
ó
p
)‖â‖∞.
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Then from (3.32) we see that

d
dt

ÿ(tu)
!!!!!!t=1

≥ c17‖u‖
p − c16‖u‖

r for some c17 > 0.

Since p < r, there exists some ñ ∈ (0, 1) small such that

d
dt

ÿ(tu)
!!!!!!t=1

> 0 for all u ∈ W1,p(Ω) with 0 < ‖u‖ ≤ ñ, ÿ(u) = 0. (3.33)

Now, let u ∈ W1,p(Ω), with 0 < ‖u‖ ≤ ñ and ÿ(u) = 0. We show in what follows that

ÿ(tu) ≤ 0 for all t ∈ [0, 1]. (3.34)

Weargue by contradiction. So, suppose that there is some t0 ∈ (0, 1) such thatÿ(t0u) > 0. Sinceÿ is continuous
and ÿ(u) = 0, by Bolzano’s theorem, we can find t1 ∈ (t0, 1] such that ÿ(t1u) = 0. Let

t∗ = min{t ∈ [t0, 1] : ÿ(tu) = 0} > t0 > 0.

Then
ÿ(tu) > 0 for all t ∈ [t0, t∗). (3.35)

Let y = t∗u. We have 0 < ‖y‖ ≤ ‖u‖ ≤ ñ and ÿ(y) = 0. Therefore, from (3.33) it follows that

d
dt

ÿ(ty)
!!!!!!t=1

> 0 (3.36)

Also, from (3.35) we have

ÿ(y) = ÿ(t∗u) = 0 < ÿ(tu) for all t ∈ [t0, t∗) â⇒
d
dt

ÿ(ty)
!!!!!!t=1

= t∗
d
dt

ÿ(tu)
!!!!!!t=t∗

= t∗ lim
t→t−∗

ÿ(tu)
t − t∗

≤ 0. (3.37)

Comparing (3.36) and (3.37), we reach a contradiction. This proves (3.34).
By taking ñ ∈ (0, 1) even smaller if necessary, we may assume thatKÿ ∩ B̄ñ = {0}, where

̄Bñ = {u ∈ W1,p(Ω) : ‖u‖ ≤ ñ}.

Let ℎ : [0, 1] × (ÿ0 ∩ B̄ñ) → ÿ0 ∩ B̄ñ be the continuous function defined by

ℎ(t, u) = (1 − t)u for all (t, u) ∈ [0, 1] × (ÿ0 ∩ B̄ñ).

From (3.34) we see that ℎ( ⋅ , ⋅ ) is well-defined. This deformation shows that ÿ0 ∩ B̄ñ is contractible in itself.
Fix u ∈ B̄ñ with ÿ(u) > 0. We show that there exists a unique t(u) ∈ (0, 1) such that

ÿ(t(u)u) = 0. (3.38)

Note that ÿ(u) > 0 and t Ü→ ÿ(tu) is continuous. So, the existence of some t(u) ∈ (0, 1) follows from Bolzano’s
theorem. We need to show the uniqueness of t(u). Suppose there are 0 < t̂1 = t(u)1 < t̂2 = t(u)2 < 1 such that
ÿ(t̂1, u) = ÿ(t̂2u) = 0. Then from (3.34), we have

k(t) = ÿ(tt̂2u) ≤ 0 for all t ∈ [0, 1].

Hence t̂1
t̂2
∈ (0, 1) is a maximizer of k( ⋅ ) and so

d
dt

k(t)
!!!!!!t= t̂1

t̂2

= 0 â⇒
t̂1
t̂2

d
dt

ÿ(tt̂2u)
!!!!!!t= t̂1

t̂2

=
d
dt

ÿ(tt̂1u)
!!!!!!t=1

= 0,

which contradicts (3.33). This proves the uniqueness of t(u).
From the uniqueness of t(u) ∈ (0, 1) and (3.34), we have

ÿ(tu) < 0 if t ∈ (0, t(u)),

ÿ(tu) > 0 if t ∈ (t(u), 1].
(3.39)
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Now, let å̂1 : B̄ñ\{0} → (0, 1] be defined by

å̂1(u) =
{
{
{

1 if u ∈ B̄ñ\{0}, ÿ(u) ≤ 0,

t(u) if u ∈ B̄ñ\{0}, ÿ(u) > 0.
(3.40)

We claim that å̂1 is continuous. Evidently, we need to check the continuity at u ∈ B̄ñ\{0} with ÿ(u) = 0. Let
un → u with ÿ(un) > 0 for all n ≥ 1. Arguing by contradiction, suppose that by passing to a subsequence if
necessary, we have t(un) ≤ t̂ < 1 for all n ≥ 1. From (3.39) we have

ÿ(tun) > 0 for all t ∈ ( ̃t, 1] and all n ≥ 1 â⇒ ÿ(tu) ≥ 0 for all t ∈ ( ̃t, 1]

â⇒ ÿ(tu) = 0 for all t ∈ ( ̃t, 1] (see (3.34))

â⇒
d
dt

ÿ(tu)
!!!!!!t=1

= 0,

which contradicts (3.33). This proves the continuity of å̂1.
Next, consider the map å̂1 : B̄ñ\{0} → (B̄ñ ∩ ÿ0)\{0} defined by

å̂2(u) =
{
{
{

u if u ∈ B̄ñ\{0}, ÿ(u) ≤ 0,

å̂1(u)u if u ∈ B̄ñ\{0}, ÿ(u) > 0.

Evidently, å̂2 is continuous and
å̂2|(B̄ñ∩ÿ0)\{0} = id|(B̄ñ∩ÿ0)\{0}.

Therefore å̂2 is a retraction of B̄ñ\{0} onto (B̄ñ ∩ ÿ0)\{0}. But B̄ñ\{0} is contractible in itself. Hence the same
holds for (B̄ñ ∩ ÿ0)\{0}. Recall that we have seen that B̄ñ ∩ ÿ0 is contractible in itself. So, from Granas and
Dugundji [17, p. 389], we deduce that

H1(B̄ñ ∩ ÿ0, (B̄ñ ∩ ÿ0)\{0}) = 0 for all k ≥ 0,

hence Ck(ÿ, 0) = 0 for all k ≥ 0 (see Section 2).

Remark 3.8. The first such computation of the critical groups of ÿ for equations with concave nonlinearities
near the originwas conducted byMoroz [27] for Dirichlet problems driven by the Laplace operator (semilinear
equations) with â ≡ 0. The conditions on f(z, x) in Moroz [27] were more restrictive. The result of Moroz [27]
was extended to Dirichlet problems driven by the p-Laplacian with â ≡ 0, by Jiu and Su [19]. Our proof here
was inspired by these two works.

Now, we are ready to produce a nodal solution for problem (1.1).

Proposition 3.9. Assume that Hypotheses H(a)1, H0 and H1 hold. Then problem (1.1) admits a nodal solution
y0 ∈ [v∗, u∗] ∩ C1(Ω̄) (here v∗ ∈ − intC+ and u∗ ∈ intC+ are the two extremal nontrivial constant sign solutions
of (1.1) produced in Proposition 3.6).

Proof. As before, let ë > ‖â−‖∞ and consider the following truncation-perturbation of the reaction f(z, ⋅ ):

f̂(z, x) =
{{{
{{{
{

f(z, v∗(z)) + ë|v∗(z)|
p−2v∗(z) if x < v∗(z),

f(z, x) + ë|x|p−2x if v∗(z) ≤ x ≤ u∗(z),

f(z, u∗(z)) + ëu∗(z)
p−1 if u∗(z) < x.

(3.41)

This is a Carathéodory function. We set

F̂(z, x) =
x

∫
0

f̂(z, s) ds

and consider the C1-functional Ψ̂ : W1,p(Ω) → ℝ defined by

Ψ̂(u) = ∫
Ω

G(Du(z)) dz +
1
p
∫
Ω

[â(z) + ë]|u(z)|p dz − ∫
Ω

F̂(z, u(z)) dz for all u ∈ W1,p(Ω).

Authenticated | vicentiu.radulescu@math.cnrs.fr author's copy
Download Date | 5/2/16 1:42 PM



560 | N. S. Papageorgiou and V. D. Rădulescu, Nonlinear Neumann problems

Also, we introduce the Carathéodory functions f̂±(z, x) = f̂(z,±x±), we set

F̂±(z, x) =
x

∫
0

f̂±(z, s) ds

and consider the C1-functionals Ψ̂± : W1,p(Ω) → ℝ defined by

Ψ̂±(u) = ∫
Ω

G(Du(z)) dz +
1
p
∫
Ω

[â(z) + ë]|u(z)|p dz − ∫
Ω

F̂±(z, u(z)) dz for all u ∈ W1,p(Ω).

We can easily check that
KΨ̂ ⊆ [v∗, u∗], KΨ̂+

⊆ [0, u∗], KΨ̂−
⊆ [v∗, 0].

The extremality of v∗ ∈ − intC+ and of u∗ ∈ intC+ implies that

KΨ̂ ⊆ [v∗, u∗], KΨ̂+
= {0, u∗}, KΨ̂−

= {v∗, 0}. (3.42)

Claim. Both u∗ ∈ intC+ and v∗ ∈ − intC+ are local minimizers of Ψ̂.

Evidently, Ψ̂+ is coercive (see (3.41) and recall that ë > ‖â−‖∞). Also, it is sequentially weakly lower semi-
continuous. Therefore, we can find û∗ ∈ W1,p(Ω) such that

Ψ̂+(û∗) = inf{Ψ̂+(u) : u ∈ W1,p(Ω)}. (3.43)

As before (see the proof of Proposition 3.4), using Hypotheses H(a)1 (iv) and H1 (iii), we show that

Ψ̂+(û∗) < 0 = Ψ̂+(0),

hence û∗ ̸= 0. From (3.43) we have

Ψ̂�
+(û∗) = 0 â⇒ A(û∗) + (â + ë)|û∗|

p−2û∗ = Nf̂+
(û∗). (3.44)

On (3.44) we act with −u− ∈ W1,p(Ω) and since ë > ‖â−‖∞, we obtain that û∗ ≥ 0, û∗ ̸= 0 (see (3.41)). Next
on (3.44) we act with (û∗ − u∗)

+ ∈ W1,p(Ω) and we have

⟨A(û∗), (û∗ − u∗)
+⟩ + ∫

Ω

(â(z) + ë)ûp−1∗ (û∗ − u∗)
+ dz = ∫

Ω

f̂+(z, û∗)(û∗ − u∗)
+ dz

= ∫
Ω

[f(z, u∗) + ëup−1∗ ](û∗ − u∗)
+ dz (see (3.41))

= ⟨A(u∗), (û∗ − u∗)
+⟩ + ∫

Ω

[â(z) + ë]up−1∗ (û∗ − u∗)
+ dz,

which implies

∫
{û∗>u∗}

(a(Dû∗) − a(Du∗), Dû∗ − Du∗)ℝN dz + ∫
{û∗>u∗}

(â(z) + ë)(ûp−1∗ − up−1∗ )(û∗ − u∗) dz = 0

and so
!!!!{û∗ > u∗}

!!!!N = 0,

hence û∗ ≤ u∗. Hence we have proved that û∗ ∈ KΨ̂+
and û∗ ∈ [0, u∗], û∗ ̸= 0, hence û∗ = u∗ (see (3.42)). But

Ψ̂|C+
= Ψ̂+|C+

.

Thus u∗ is a local C1(Ω̄)-minimizer of Ψ̂, hence it is also a localW1,p(Ω)-minimizer of Ψ̂ (see Proposition 2.5).
Similarly for v∗ ∈ − intC+ using this time the functional Ψ̂−. This proves the claim.
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Without any loss of generality, we may assume that Ψ̂(v∗) ≤ Ψ̂(u∗) (the analysis is similar if the oppo-
site inequality holds). From the claim we know that u∗ ∈ intC+ is a local minimizer of Ψ̂. Hence we can
find ñ ∈ (0, 1) small such that

Ψ̂(v∗) ≤ Ψ̂(u∗) < inf{Ψ̂(u) : ‖u − u∗‖ = ñ} = ç̂ñ, ‖v∗ − u∗‖ > ñ. (3.45)

Recall that Ψ̂ is coercive, hence it satisfies the C-condition. Combining this fact and (3.45), we see that we can
apply Theorem 2.1 (the mountain pass theorem) and find y0 ∈ W1,p(Ω) such that

y0 ∈ KΨ̂ and ç̂ñ ≤ Ψ̂(y0). (3.46)

From (3.42) and (3.46) it follows that y0 ∈ [v∗, u∗], hence y0 is a solution of problem (1.1) (see (3.41)).
Since y0 is a critical point of Ψ̂ of mountain pass type, we have

C1(Ψ̂, y0) ̸= 0. (3.47)

Also because u∗ ∈ intC+, v∗ ∈ − intC+ and Ψ̂|[v∗ ,u∗] = ÿ|[v∗ ,u∗], from the homotopy invariance of critical groups,
we have

Ck(Ψ̂, 0) = Ck(ÿ, 0) = 0 for all k ≥ 0 (see Proposition 3.7). (3.48)

Comparing (3.47) and (3.48), we see that y0 ̸= 0. Hence y0 is a nodal solution of (1.1) and the nonlinear regu-
larity theory implies y0 ∈ C1(Ω̄).

Now, we can state the following multiplicity theorem for problem (1.1).

Theorem 3.10. Assume that Hypotheses H(a)1, H0 and H1 hold. Then problem (1.1) admits at least three non-
trivial solutions u0 ∈ intC+, v0 ∈ − intC+ and y0 ∈ [v0, u0] ∩ C1(Ω̄) nodal.

Remark 3.11. Three solutions theorems for coercive nonlinear equations driven by the p-Laplacian (that is,
we have a(y) = ‖y‖p−2y for all y ∈ ℝN, 1 < p < ∞) were proved by Liu [25], Liu and Liu [24] and Kyritsi and
Papageorgiou [21]. In [25] and [24], the authors dealwithDirichlet problemswithâ ≡ 0 and the reactionf(z, ⋅ )
satisfies a global sign condition. They prove a three solutions theorem, but they do not produce a nodal solu-
tion. In Kyritsi and Papageorgiou [21] the problem is Neumann, with â(z) ≡ â ∈ (0,+∞) for all z ∈ Ω and no
nodal solution is obtained.

4 Noncoercive problems
In the previous section itwas assumed that the reactionf(z, ⋅ ) is (p − 1)-sublinear near±∞ and (p − 1)-super-
linear near zero (see Hypotheses H1 (i), (iii)). In this section, we investigate the complementary situation.
Namely, we consider nonlinearities which are (p − 1)-superlinear near ±∞ and (p − 1)-sublinear near 0. In
this case the energy functional of the problem is indefinite. To express the (p − 1)-superlinearity of f(z, ⋅ )
near ±∞, we do not employ the usual in such cases Ambrosetti–Rabinowitz condition (AR-condition for
short). Instead we use a more general condition which incorporates in our setting “superlinear” reactions
with “slower” growth. These nonlinearities fail to satisfy the AR-condition.

We need to modify a little the conditions on the map a(y):

Hypothesis H(a)2. We have
a(y) = a0(‖y‖)y for all y ∈ ℝN

with a0(t) > 0 for all t > 0, hypotheses (i)–(iii) are the same as the corresponding Hypotheses H(a)1 (i)–(iii)
and
(iv) there exists some q ∈ (1, p) such that themap t Ü→ G0(t

1
q ) is convex in (0,+∞) and there exists some ã ∈ ℝ

such that
ã ≤ pG0(t) − t2a0(t) for all t > 0.

Remark 4.1. The examples presented in Section 2 satisfy Hypotheses H(a)2.
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Hypothesis H2. We assume that the reaction termf(z, x) is a Carathéodory functionf : Ω × ℝ → ℝ such that
f(z, 0) = 0 a.e. inΩ satisfying the following conditions:
(i) |f(z, x)| ≤ a(z)(1 + |x|r−1) a.e. inΩ, for all x ∈ ℝ, with a ∈ L∞(Ω)+ and p < r < p∗,
(ii) if F(z, x) = ∫

x

0
f(z, s) ds, then

lim
x→±∞

F(z, x)
|x|p

= ±∞

uniformly for a.a. z ∈ Ω,
(iii) there exists some ó ∈ ((r − p)max{Np , 1}, p

∗) such that

0 < â0 ≤ lim infx→±∞

f(z, x)x − pF(z, x)
|xó|

uniformly for a.a. z ∈ Ω,
(iv) there exists some ú ∈ L∞(Ω), ú(z) ≤ c1

p−1 ë̂1(p, â̂) a.e. in Ω, ú ̸= c1
p−1 ë̂1(p, â̂) (recall that â̂ = p−1

c1
â ∈ L∞(Ω))

such that
lim sup

x→0

pF(z, x)
|x|p

≤ ú(z)

uniformly for a.a. z ∈ Ω,
(v) for every ñ > 0, there exists åñ > 0 such that for a.a. z ∈ Ω, the mapping x Ü→ f(z, x) + åñ|x|

p−2x is non-
decreasing on [−ñ, ñ].

Remark 4.2. Hypotheses H2 (ii)–(iii) imply that the reaction f(z, ⋅ ) is (p − 1)-superlinear near ±∞. In the
literature, “superlinear” problems are usually treated with the help of the so-called AR-condition. According
to that condition, there exist ç > p andM > 0 such that

0 < çF(z, x) ≤ f(z, x)x for a.a. z ∈ Ω, all |x| ≥ M, and inf
Ω

F( ⋅ ,±M) > 0. (4.1)

A straightforward integration of (4.1) leads to

c18|x|
ç ≤ F(z, x) for a.a. z ∈ Ω, all |x| ≥ M and some c18 > 0. (4.2)

Clearly, (4.2) implies the much weaker condition H2 (ii). Here, we replace (4.1) (the AR-condition) by Hypo-
thesis H2 (iii) which is weaker. Indeed, suppose that (4.1). We may assume that ç > (r − p)max{Np , 1}. Then

f(z, x)x − pF(z, x)
|x|ç

=
f(z, x)x − çF(z, x)

|x|ç
+ (ç − p)

F(z, x)
|x|ç

≥ (ç − p)c18 for a.a. z ∈ Ω and all |x| ≥ M,

hence Hypothesis H2 (iii) holds. Similar superlinearity conditions were used by Costa and Magalhaes [8],
Fei [12] and Li, Wu and Zhou [22].

Example 4.3. The following functions satisfy Hypothesis H2. For the sake of simplicity, we drop the z-depen-
dence:

f1(x) = ú|x|p−2x + |x|r−2x with ú < ë̂1(p, â̂), 1 < p < r < p∗,

f2(x) =
{
{
{

ú|x|p−2x if |x| < 1,

|x|p−2x ln |x| + ú|x|q−2x if |x| ≥ 1,
with ú < ë̂1(p, â̂), 1 < q < p.

Note that f1 satisfies the AR-condition (see (4.1)), but f2 does not.
As before (see Section 3) with ë > ‖â−‖∞, we consider the truncations-perturbations of f(z, ⋅ ), f̂±(z, x)

and the corresponding C1-functionals ÿ̂± : W1,p(Ω) → ℝ. Also ÿ : W1,p(Ω) → ℝ is the C1-energy functional
of problem (1.1) (see Section 3).

Proposition 4.4. Assume that Hypotheses H(a)2, H0, H2 hold. Then the functionals ÿ̂± satisfy the C-condition.

Proof. We do the proof for the functional ÿ̂+, the arguments for ÿ̂− being similar. So, let {un}n≥1 ⊆ W1,p(Ω) be
such that

|ÿ̂+(un)| ≤ M1 for someM1 > 0 and all n ≥ 1 (4.3)

and
(1 + ‖un‖)ÿ̂

�
+(un) → 0 inW1,p(Ω)∗ as n → ∞. (4.4)
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From (4.4), we have for all ℎ ∈ W1,p(Ω) and some ån → 0+,
!!!!!!!!!
⟨A(un), ℎ⟩ + ∫

Ω

(â(z) + ë)|un|
p−2unℎ dz − ∫

Ω

f̂+(z, un)ℎ dz
!!!!!!!!!
≤

ån‖ℎ‖
1 + ‖un‖

. (4.5)

In (4.5) we choose ℎ = −u−n ∈ W1,p(Ω). Then by (2.5) we obtain for all n ≥ 1,

c1
p − 1

‖Du−n ‖
p
p + ∫

Ω

(â(z) + ë)(u−n )
p dz ≤ ån â⇒ u−n → 0 inW1,p(Ω) (recall ë > ‖â−‖∞). (4.6)

Next in (4.5) we choose ℎ = u+n ∈ W1,p(Ω). It follows that

−∫
Ω

(a(Du+n ), Du+n )ℝN dz − ∫
Ω

â(z)(u+n )
p dz + ∫

Ω

f(z, u+n )u
+
n dz ≤ ån for all n ≥ 1. (4.7)

On the other hand, from (4.3) and (4.6) we have for all n ≥ 1,

∫
Ω

pG(Du+n ) dz + ∫
Ω

â(z)(u+n )
p dz − ∫

Ω

pF(z, u+n ) dz ≤ M2 for someM2 > 0. (4.8)

Adding (4.7) and (4.8), we obtain for all n ≥ 1,

∫
Ω

[pG(Du+n ) − (a(Du+n ), Du+n )ℝN] dz + ∫
Ω

[f(z, u+n )u
+
n − pF(z, u+n )] dz ≤ M3 for someM3 > 0,

∫
Ω

[f(z, u+n )u
+
n − pF(z, u+n )] dz ≤ M4 for someM4 > 0

(4.9)

(see Hypothesis H(a)2 (iv)). By virtue of Hypotheses H2 (i), (iii), we can find â1 ∈ (0, â0) and c19 > 0 such that

â1x
ó − c19 ≤ f(z, x)x − pF(z, x) for a.a. z ∈ Ω and all x ≥ 0. (4.10)

Using (4.10) in (4.9), we deduce that there is someM5 > 0 such that for all n ≥ 1,

â1‖u
+
n ‖

ó
ó ≤ M5, (4.11)

hence {u+n }n≥1 ⊆ Ló(Ω) is bounded.
First suppose that N ̸= p. From Hypothesis H2 (iii) it is clear that without any loss of generality we may

assume that ó < r < p∗. Hence, we can find t ∈ (0, 1) such that

1
r
=

1 − t
ó

+
t
p∗ .

Invoking the interpolation inequality (see, for example, Gasinski and Papageorgiou [15, p. 905]), we have

‖u+n ‖r ≤ ‖u+n ‖
1−t
ó ‖u+n ‖

t
p∗ â⇒ ‖u+n ‖

r
r ≤ M6‖u

+
n ‖

tr for someM6 > 0 and all n ≥ 1 (4.12)

(see (3.46) and use the Sobolev embedding theorem). Hypothesis H2 (i) implies that

f(z, x)x ≤ c20(1 + xr) for a.a. z ∈ Ω, all x ≥ 0 with c20 > 0. (4.13)

From (4.5) with ℎ = u+n ∈ W1,p(Ω), we have for all n ≥ 1,

∫
Ω

(a(Du+n ), Du+n )ℝNdz + ∫
Ω

â(u+n )
p dz − ∫

Ω

f(z, u+n )u
+
n dz ≤ ån

â⇒
c1

p − 1
‖Du+n ‖

p
p ≤ c21(1 + ‖u+n ‖

r
r) for some c21 > 0 (4.14)

(see (2.5), (4.13), Hypothesis H0 and recall that r > p). We know that u → ‖u‖ó + ‖Du‖p is on equivalent
norm on W1,p(Ω) (see, for example, Gasinski and Papageorgiou [15, p. 227]). So, from (4.11) and (4.14) and
since ó < r, we have for all n ≥ 1,

‖u+n ‖
p ≤ c22(1 + ‖u+n ‖

r
r) ≤ c23(1 + ‖u+n ‖

tr). (4.15)

Authenticated | vicentiu.radulescu@math.cnrs.fr author's copy
Download Date | 5/2/16 1:42 PM



564 | N. S. Papageorgiou and V. D. Rădulescu, Nonlinear Neumann problems

The hypothesis on ó (see Hypothesis H2 (iii)) implies that tr < p. So, from (4.15) it follows that

{u+n }n≥1 ⊆ W1,p(Ω) is bounded â⇒ {un}n≥1 ⊆ W1,p(Ω) is bounded (see (4.6)). (4.16)

If N = p, then p∗ = +∞ and from the Sobolev embedding theorem, we have that W1,p(Ω) í→ Ls(Ω) for all
1 ≤ s < ∞. Then for the previous argument to work we replace p∗ by ç > r > ó and choose t ∈ (0, 1) such that

1
r
=

1 − t
ó

+
t
ç

â⇒ tr =
ç(r − ó)
ç − ó

.

Note that ç(r−ó)
ç−ó → r − ó as ç → p∗ = +∞. But r − ó < p (see Hypothesis H2 (iii)). Therefore for ç > r large, we

can have tr < p and so (4.16) holds.
By virtue of (4.16), we may assume that

un
w
→ u inW1,p(Ω) and un → u in Lr(Ω) as n → ∞. (4.17)

In (4.5) we choose ℎ = un − u ∈ W1,p(Ω), pass to the limit as n → ∞ and use (4.17). Thus, by Proposition 2.4,

lim
n→∞

⟨A(un), un − u⟩ = 0 â⇒ un → u inW1,p(Ω) â⇒ ÿ̂+ satisfies the C-condition.

Similarly for the functional ÿ̂−.

With some minor straightforward changes in the above proof, we can also have the following result.

Proposition 4.5. Assume that Hypotheses H(a)2, H0, H2 hold. Then the functional ÿ satisfies the C-condition.

First we will produce two nontrivial constant sign solutions. This will be done by using Theorem 2.1 (the
mountain pass theorem). To this end, we check the mountain pass geometry for the functionals ÿ̂±.

Proposition 4.6. Assume that Hypotheses H(a)2, H0, H1 hold. Then u = 0 is a local minimizer for the three
functionals ÿ̂± and ÿ.

Proof. We do the proof for the functional ÿ̂+, the arguments for the functionals ÿ̂− and ÿ being similar. By
virtue of Hypothesis H2 (iv), given å > 0, we can find ä = ä(å) > 0 such that

F(z, x) ≤
1
p
[ú(z) + å]|x|p for a.a. z ∈ Ω and all |x| ≤ ä. (4.18)

Let u ∈ C1(Ω̄) such that ‖u‖C1(Ω̄) ≤ ä. Then

ÿ̂+(u) = ∫
Ω

G(Du) dz +
1
p
∫
Ω

(â(z) + ë)|u|p dz + ∫
Ω

F̂+(z, u) dz

≥
c1

p(p − 1)
‖Du‖pp +

1
p
∫
Ω

â(z)|u|p dz − ∫
Ω

F(z, u) dz (see (2.6))

≥
c1

p(p − 1)
‖Du‖pp +

1
p
∫
Ω

â(z)|u|p dz −
1
p
∫
Ω

ú(z)|u|p dz −
å
p
‖u‖p

=
c1

p(p − 1)
[‖Du‖pp + ∫

Ω

â̂(z)|u|p dz − ∫
Ω

p − 1
c1

ú(z)|u|p dz] −
å
p
‖u‖p

≥
1
p
[
c1c25
p − 1

− å]‖u‖p for some c25 > 0 (see Lemma 3.3). (4.19)

Choosing å ∈ (0, c1c25p−1 ) from (4.19), we infer that u = 0 is a local C1(Ω̄)-minimizer of ÿ̂+, hence u = 0 is a local
W1,p(Ω)-minimizer of ÿ̂+ (see Proposition 2.5).

Similarly for the functionals ÿ̂− and ÿ.

The superlinearity of F(z, ⋅ ) (see Hypothesis H2 (ii)) leads to the following result.

Proposition 4.7. Assume that HypothesesH(a)2,H0,H2 hold and u ∈ W1,p(Ω), u ≥ 0, u ̸= 0. Then ÿ̂±(tu) → −∞
as t → ±∞.
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Proof. By virtue of Hypotheses H2 (i)–(ii), given any ç > 0, we can find c26 = c26(ç) > 0 such that

F(z, x) ≥ ç|x|p − c26 for a.a. z ∈ Ω and all x ∈ ℝ. (4.20)

Then for all t ≥ 1, we have

ÿ̂+(tu) = ∫
Ω

G(tDu) dz +
tp

p
∫
Ω

â(z)|u|p dz − ∫
Ω

F(z, tu) dz

(see (3.23), (4.20) and recall t ≥ 1 and q < p)

≤ c12t
p(‖Du‖qq + ‖Du‖pp) + c27t

p‖u‖pp − çtp‖u‖pp + c26|Ω|N for some c27 > 0

≤ tp[c28‖u‖
p − ç‖u‖pp] + c26|Ω|N for some c28 > 0. (4.21)

Choosing

ç >
c28‖u‖

p

‖u‖pp
,

from (4.21) we infer that ÿ̂+(tu) → −∞ as t → +∞. In a similar fashion we also show that ÿ̂−(tu) → −∞
as t → −∞.

Now, we have themountain pass geometry for the functionals ÿ̂± andwe can produce two nontrivial constant
sign solutions of (1.1).

Proposition 4.8. Assume that Hypotheses H(a)2, H0, H2 hold. Then problem (1.1) has at least two nontrivial
constant sign solutions u0 ∈ intC+ and v0 ∈ − intC+.

Proof. Proposition 4.6 implies that we can find ñ ∈ (0, 1) small such that

ÿ̂+(0) = 0 < inf{ÿ̂+(u) : ‖u‖ = ñ} = ç̂+.

This fact together with Propositions 4.4 and 4.7 permit the use of Theorem 2.1 (the mountain pass theorem).
So, we can find u0 ∈ W1,p(Ω) such that

u0 ∈ Kÿ̂+
and ç̂+ ≤ ÿ̂+(u0) â⇒ u0 ̸= 0 and A(u0) + (â + ë)|u0|

p−2u0 = Nf̂+
(u0). (4.22)

On (4.22) we act with −u−0 ∈ W1,p(Ω) and since ë > ‖â−‖∞, we obtain u0 ≥ 0, u0 ̸= 0. Therefore (4.22) yields

A(u0) + âup−10 = Nf(u0),

hence u0 is a nontrivial positive solution of (1.1) and u0 ∈ C+\{0} (by the nonlinear regularity theory).
Let ñ = ‖u0‖∞ and let åñ > 0 be as postulated by Hypothesis H2 (iv). Then

− div a(Du0(z)) + (â(z) + åñ)u0(z)
p−1 ≥ f(z, u0(z)) + åñu0(z)

p−1 ≥ 0 a.e. inΩ â⇒ u0 ∈ intC+ (4.23)

(see the proof of Proposition 3.4 and Pucci–Serrin [34, pp. 111, 120]). Similarly, workingwith the functional ÿ̂−,
we produce v0 ∈ − intC+ a nontrivial negative solution of (1.1).

To produce a third nontrivial solution,wewill useMorse theory (critical groups). In the next twopropositions,
we compute the critical groups at infinity for the functionals ÿ and ÿ̂+.

Proposition 4.9. Assume that Hypotheses H(a)2, H0, H2 hold. Then Ck(ÿ,∞) = 0 for all k ≥ 0.

Proof. As in the proof of Proposition 4.7, we show that for every u ∈ W1,p(Ω), u ̸= 0, we have

ÿ(tu) → −∞ as t → +∞. (4.24)

By virtue of Hypotheses H2 (i), (iii), we have for some c29 > 0 and â1 ∈ (0, â0),

pF(z, x) − f(z, x)x ≤ c29 − â1|x|
ó for a.a. z ∈ Ω and all x ∈ ℝ.
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For u ∈ W1,p(Ω) and t > 0, we have
d
dt

ÿ(tu) = ⟨ÿ�(tu), u⟩

=
1
t
⟨ÿ�(tu), tu⟩

=
1
t
[∫

Ω

(a(tDu), tDu)ℝNdz + ∫
Ω

â|tu|p dz − ∫
Ω

f(z, tu)(tu) dz]

≤
1
t
[∫

Ω

pG(tDu) dz + |ã‖Ω|N + ∫
Ω

â|tu|p dz] + c29|Ω|N

− ∫
Ω

pF(z, tu) dz − â1‖tu‖
ó
ó (see Hypothesis H(a)2 (iv) and (4.24))

≤
1
t
[pÿ(tu) + (|ã| + c29)|Ω|N]. (4.25)

From (4.24) and (4.25), we deduce that
d
dt

ÿ(tu) < 0 for all t > 0 big enough. (4.26)

Then by virtue of the implicit function theorem, we can find a unique function å ∈ C(àB1) such that

å > 0 and ÿ(å(u)u) = ñ∗ < −
|ã| + c29

p
(see (4.25)). (4.27)

We extend å onW1,p(Ω)\{0} as

å0(u) =
1
‖u‖

å(
u
‖u‖

) for all u ∈ W1,p(Ω)\{0}.

Clearly, å0 ∈ C(W1,p(Ω)\{0}) and ÿ(å0(u)u) = ñ∗ (see (4.27)). Moreover, if ÿ(u) = ñ∗, then å0(u) = 1. Therefore,
if we set

å∗(u) =
{
{
{

1 if ÿ(u) < ñ∗,

å0(u) if ÿ(u) ≥ ñ∗,
(4.28)

then å∗ ∈ C(W1,p(Ω)\{0}).
We consider the homotopy ℎ : [0, 1] × (W1,p(Ω)\{0}) → W1,p(Ω)\{0} defined by

ℎ(t, u) = (1 − t)u + tå∗(u)u for all (t, u) ∈ [0, 1] × (W1,p(Ω)\{0}).

Note that
ℎ(0, u) = u, ℎ(1, u) = å∗(u)u ∈ ÿñ∗ for all u ∈ W1,p(Ω)\{0},

ℎ(t, ⋅ )|ÿñ∗ = id|ÿñ∗ for all t ∈ [0, 1] (see (4.28)).
This shows that

ÿñ∗ is a strong deformation retract ofW1,p(Ω)\{0}. (4.29)

If we use the radial retraction
r0(u) =

u
‖u‖

for all u ∈ W1,p(Ω)\{0},

we see that àB1 is a retract ofW1,p(Ω)\{0} andW1,p(Ω)\{0} is deformable onto àB1. Therefore, [10, Theorem6.5,
p. 325] implies that

àB1 is a deformation retract ofW1,p(Ω)\{0}. (4.30)

From (4.29) and (4.30) it follows that for all k ≥ 0,

ÿñ∗ and àB1 are homotopically equivalent â⇒ Hk(W
1,p(Ω), ÿñ∗ ) = Hk(W

1,p(Ω), àB1). (4.31)

SinceW1,p(Ω) is infinite dimensional,we know that àB1 is contractible in itself. Thus, byGranas andDugundji
[17, p. 389],

Hk(W
1,p(Ω), àB1) = 0 for all k ≥ 0. (4.32)
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From (4.31) and (4.32) it follows that

Hk(W
1,p(Ω), ÿñ∗ ) = 0 for all k ≥ 0.

Choosing ñ∗ < − |ã|+c29
p with |ñ∗| large enough, we have for all k ≥ 0,

Ck(ÿ,∞) = Hk(W
1,p(Ω), ÿñ∗ ),

hence Ck(ÿ,∞) = 0. This completes the proof.

Remark 4.10. The first computation of the critical groups of the energy functional for problems with super-
linear reaction was developed by Wang [37]. In that case the problem is Dirichlet, driven by the Laplacian,
â ≡ 0, and the superlinear reaction f is autonomous (that is, f(z, ⋅ ) = f( ⋅ )), f ∈ C1(ℝ) and satisfies the
AR-condition (see (4.1)). Our proof uses ideas from the proof of Wang [37].

We can obtain an analogous result for the functionals ÿ̂±.

Proposition 4.11. Assume that Hypotheses H(a)2, H0, H2 hold. Then Ck(ÿ̂±,∞) = 0 for all k ≥ 0.

Proof. Let ò̂+ = ÿ̂+|C1(Ω̄). From the nonlinear regularity theory (see Lieberman [23]), we have thatKÿ̂+
⊆ C1(Ω̄)

and in factKÿ̂+
⊆ C+. Hence

Kÿ̂+
= Kò̂+ = K ⊆ C+.

Since C1(Ω̄) is dense inW1,p(Ω), from Palais [30] we have for a < infK ÿ̂+ = infK ò̂+,

Hk(W
1,p(Ω), ̇̂ÿa

+) = Hk(C
1(Ω̄), ̇̂òa

+) â⇒ Ck(ÿ̂+,∞) = Ck(ò̂+,∞) for all k ≥ 0. (4.33)

So, by virtue of (4.33), in order to prove the proposition, we need to show that

Hk(C
1(Ω̄), ò̂a

+) = 0 for all k ≥ 0. (4.34)

To this end, let
àBC

1 = {u ∈ C1(Ω̄) : ‖u‖C1(Ω̄) = 1} and àBC
1,+ = {u ∈ àBC

1 : u+ ̸= 0}.

We consider the homotopy ℎ+ : [0, 1] × àBC
1,+ → àBC

1,+ defined by

ℎ+(t, u) =
(1 − t)u + tû1(p, â)

‖(1 − t)u + tû1(p, â)‖C1(Ω̄)
for all (t, u) ∈ [0, 1] ×W1,p(Ω).

We have
ℎ+(1, u) =

û1(p, â)
‖û1(p, â)‖C1(Ω̄)

∈ àBC
1,+,

hence àBC
1,+ is contractible in itself. As a consequence of Hypothesis H2 (ii) for every u ∈ àBC

1,+, we have

ò̂+(tu) → −∞ as t → +∞. (4.35)

For all u ∈ àBC
1,+, we have

d
dt

ò̂+(tu) =
1
t
[∫
Ω

(a(D(tu)), D(tu))ℝNdz + ∫
Ω

(â(z) + ë)|tu|p dz − ∫
Ω

f̂+(z, tu)tu dz]

≤
1
t
[∫
Ω

pG(D(tu)) dz + ∫
Ω

(â(z) + ë)|tu|p dz − ∫
Ω

pF(z, tu) dz + c30] for some c30 > 0

(see Hypothesis H(a)2 (iv) and (4.25))

=
1
t
[ÿ̂+(tu) + c30]

=
1
t
[ò̂+(tu) + c30].

From (4.35) we see that for t > 0 big enough we have ò̂+(tu) < − c30
p . Hence

d
dt

ò̂+(tu) < 0 for all t > 0 large enough. (4.36)
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Let B̄C
1 = {u ∈ C1(Ω̄) : ‖u‖C1(Ω̄) ≤ 1} and choose a ∈ ℝ such that

a < min{−
c30
p
, inf
B̄C
1

ò̂+}. (4.37)

Asbefore (see theproof of Proposition4.9), from (4.37) and the implicit function theorem,wecanfindaunique
ì ∈ C(àBC

1 ), ì ≥ 1, such that

ò̂+(tu)
{{{
{{{
{

> a if t ∈ [0, ì(u)),

= a if t = ì(u),

< a if t > ì(u).

(4.38)

From (4.37) and (4.38), we have
ò̂a
+ = {tu : u ∈ àBC

1,+, t ≥ ì(u)}. (4.39)

LetE+ = {tu : u ∈ àBC
1,+, t ≥ 1}. From (4.39)wehave ò̄a

+ ⊆ E+.We consider the deformation ℎ̂+ : [0, 1] × E+ → E+

defined by

ℎ̂+(s, tu) =
{
{
{

(1 − s)tu + sì(u)u if t ∈ [1, ì(u)],

tu if t > ì(u).

Then we have

ℎ̂+(0, tu) = tu, ℎ̂+(1, tu) ∈ ò̂a
+ (see (4.39)) and ℎ̂+(s, ⋅ )|ò̂a

+
= id|ò̂a

+
for all s ∈ [0, 1].

This means that ò̂a
+ is a strong deformation retract of E+. Hence

Hk(C
1(Ω̄), E+) = Hk(C

1(Ω̄), ò̂a
+) for all k ≥ 0. (4.40)

Let ℎ∗+ : [0, 1] × E+ → E+ be the homotopy defined by

ℎ∗+(s, tu) = (1 − s)tu + s
tu

‖tu‖C1(Ω̄)
.

From Dugundji [10, p. 325], we obtain that àBC
1,+ is a deformation retract of E+. Therefore

Hk(C
1(Ω̄), E+) = Hk(C

1(Ω̄), àBC
1,+) for all k ≥ 0

â⇒ Hk(C
1(Ω̄), ò̂a

+) = Hk(C
1(Ω̄), àBC

1,+) for all k ≥ 0 (see (4.40)). (4.41)

We have seen earlier in the proof that àBC
1,+ is contractible in itself. Thus, by Granas and Dugundji [17, p. 389],

Hk(C
1(Ω̄), àBC

1,+) = 0, henceHk(C
1(Ω̄), ò̂a

+) = 0 for all k ≥ 0 (see (4.41)).
So, we have proved relation (4.34) and from this it follows that for all k ≥ 0, Ck(ÿ̂+,∞) = Ck(ò̂+,∞) = 0.

Similarly, we show that Ck(ÿ̂−,∞) = 0 for all k ≥ 0.

Using this result, we can compute the critical groups of ÿ at u0 ∈ intC+ and v0 ∈ − intC+.

Proposition 4.12. Assume that Hypotheses H(a)2, H0, H2 hold andKÿ = {0, u0, v0}. Then

Ck(ÿ, u0) = Ck(ÿ, v0) = äk,1ℤ for all k ≥ 0.

Proof. Note that ÿ̂�
+|C+

= ÿ�|C+
and soKÿ̂+

= {0, u0}.
Let ç < 0 < ë < ÿ̂+(u0) = ÿ(u0) (since u0 ∈ intC+). We consider the following triple of sets:

ÿ̂ç
+ ⊆ ÿ̂ë

+ ⊆ W1,p(Ω) = W.

For this triple of sets, we consider the corresponding long exact sequence of homology groups

⋅ ⋅ ⋅ Ú→ Hk(W, ÿ̂ç
+)

i∗Ú→ Hk(W, ÿ̂ë
+)

à∗Ú→ Hk−1(ÿ̂
ë
+, ÿ̂

ç
+) Ú→ ⋅ ⋅ ⋅ , (4.42)

where i∗ is the homomorphism induced by the inclusion (W, ÿ̂ç
+) í→ (W, ÿ̂ë

+) and à∗ is the boundary homomor-
phism. From the rank theorem and using the exactness of (4.42), we have

rankHk(W, ÿ̂ë
+) = rank ker à∗ + rank im à∗ = rank im i∗ + rank im à∗. (4.43)
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From the choice of ë, we have
Hk(W, ÿ̂ë

+) = Ck(ÿ̂+, u0) for all k ≥ 0. (4.44)

Also, since ç < 0 = ÿ̂ç
+(0) < ÿ̂ç

+(u0) andKÿ̂+
= {0, u0}, we have for all k ≥ 0,

Hk(W, ÿ̂ç
+) = Ck(ÿ̂+,∞) â⇒ Hk(W, ÿ̂ç

+) = 0 (see Proposition 4.11) â⇒ im i∗ = {0}. (4.45)

Similarly, we have

Hk−1(ÿ̂
ë
+, ÿ̂

ç
+) = Ck−1(ÿ̂+, 0) = äk−1,0ℤ for all k ≥ 0 (see Proposition 4.6). (4.46)

We return to (4.43) and use (4.44), (4.45), (4.46). We obtain

rankCk(ÿ̂+, u0) ≤ 1. (4.47)

But recall that u0 is a critical point of ÿ̂+ of mountain pass type (see the proof of Proposition 4.8). Therefore

C1(ÿ̂+, u0) ̸= 0. (4.48)

From (4.47) and (4.48) and since in (4.42) only the tail (that is, k = 1) is nontrivial, we have

Ck(ÿ̂+, u0) = äk,1ℤ for all k ≥ 0. (4.49)

Claim. We have Ck(ÿ̂+, u0) = Ck(ÿ, u0) for all k ≥ 0.

We consider the homotopy

ℎ(t, u) = (1 − t)ÿ(u) + tÿ̂+(u) for all (t, u) ∈ [0, 1] ×W1,p(Ω).

Suppose that we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W1,p(Ω) such that

tn → t, un → u0 inW1,p(Ω) and ℎ�u(tn, un) = 0 for all n ≥ 1. (4.50)

From (4.50), we have

A(un) + â|un|
p−2un + tnë|un|

p−2un = (1 − tn)Nf(un) + tnNf̂+
(un)

â⇒
{{
{{
{

− div a(Dun(z)) + (â(z) + tnë)|un(z)|
p−2un(z) = (1 − tn)f(z, un(z)) + tnf̂+(z, un(z)) a.e. inΩ,

àun
àn

= 0 on àΩ.

From Hu and Papageorgiou [18], we know that we can findM7 > 0 such that

‖un‖∞ ≤ M7 for all n ≥ 1.

Then from Lieberman [23, p. 320], there are ã ∈ (0, 1) andM8 > 0 such that

un ∈ C1,ã(Ω̄) and ‖un‖C1,ã(Ω̄) ≤ M8 for all n ≥ 1. (4.51)

Recall that C1,ã(Ω̄) is embedded compactly in C1(Ω̄). So, from (4.50) and (4.51) it follows that

un → u0 in C1(Ω̄) â⇒ un ∈ intC+ for all n ≥ n0 (since u0 ∈ intC+). (4.52)

We deduce that {un}n≥n0 ⊆ Kÿ, a contradiction.
Invoking the homotopy invariance property of critical groups, we have

Ck(ÿ̂+, u0) = Ck(ÿ, u0) for all k ≥ 0.

This proves the claim.
From the claim and (4.49), we have

Ck(ÿ, u0) = äk,1ℤ for all k ≥ 0.

In a similar fashion, using this time ÿ̂−, we show that

Ck(ÿ, v0) = äk,1ℤ for all k ≥ 0.

This completes the proof.
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Proposition 4.13. Assume that Hypotheses H(a)2, H0, H2 are fulfilled. Then problem (1.1) admits a third non-
trivial solution y0 ∈ C1(Ω̄).

Proof. Arguing by contradiction, suppose thatKÿ = {0, u0, v0}. From Proposition 4.12, we have

Ck(ÿ, u0) = Ck(ÿ, v0) = äk,1ℤ for all k ≥ 0. (4.53)

Next, Proposition 4.6 yields
Ck(ÿ, 0) = äk,0ℤ for all k ≥ 0. (4.54)

Finally, from Proposition 4.9
Ck(ÿ,∞) = 0 for all k ≥ 0. (4.55)

From (4.53), (4.54), (4.55) and the Morse relation with t = −1 (see (2.8)), we have 2(−1)1 + (−1)0 = 0, a contra-
diction. So, we can find y0 ∈ Kÿ, y0 ∉ {0, u0, v0}. This is the third nontrivial solution of (1.1) and the nonlinear
regularity theory implies that y0 ∈ C1(Ω̄).

Therefore, we can state the following multiplicity theorem (three solutions theorem) for the noncoercive
version of problem (1.1).

Theorem 4.14. Assume that hypotheses H(a)2, H0, H2 hold. Then problem (1.1) has at least three nontrivial
solutions u0 ∈ intC+, v0 ∈ − intC+, and y0 ∈ C1(Ω̄).

Remark 4.15. It is an interesting open question, whether we can have the third nontrivial solution y0 ∈ C1(Ω̄)
to be nodal. Nodal solutions for superlinear Neumann problems driven by the p-Laplacian with â( ⋅ ) ≡ â,
whereâ ∈ (0,+∞), and a reaction satisfying theAR-condition,were obtainedbyAizicovici, Papageorgiou and
Staicu [1], under stronger conditions. Theorem 4.14 extends the multiplicity theorem of Wang [37], where the
problem is semilinear (driven by the Laplacian), with Dirichlet boundary condition, â ≡ 0 and a superlinear
reaction satisfying the AR-condition.

Funding: Vicenţiu D. Rădulescu has been supported by Grant CNCS-PCCA-23/2014.
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