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POSITIVE SOLUTIONS FOR SUPERLINEAR
RIEMANN-LIOUVILLE FRACTIONAL

BOUNDARY-VALUE PROBLEMS

IMED BACHAR, HABIB MÂAGLI, VICENŢIU D. RĂDULESCU

Communicated by Marco Squassina

Abstract. Using a perturbation argument, we establish the existence and

uniqueness of a positive continuous solution for the following superlinear Riemann-

Liouville fractional boundary-value problem

Dαu(x)− u(x)ϕ(x, u(x)) = 0, 0 < x < 1,

u(0) = u′(0) = lim
x→0+

x4−αu′′(x) = 0, u′′(1) = a > 0,

where 3 < α ≤ 4 and ϕ(x, t) satisfies a suitable integrability condition.

1. Introduction

Fractional differential equations have been of great interest recently. They can
be used to model many phenomena in control theory of dynamic systems, fluid
flow, electrochemistry of corrosion, rheology etc. For more applications, we refer to
[5, 6, 7, 9, 11, 12, 13, 17, 18, 20, 23, 25, 26, 27, 28] and references therein.

By means of the lower and upper solution method and fixed-point theorems,
Liang and Zhang established in [14] the existence of positive solutions for the fol-
lowing Riemann-Liouville fractional problem

Dαu(x) + f(x, u(x)) = 0, 0 < x < 1,

u(0) = u′(0) = u′′(0) = u′′(1) = 0,
(1.1)

where 3 < α ≤ 4 and f is a nonnegative continuous function satisfying some
adequate conditions.

Recently, Zhai et al. [29], studied problem (1.1) with f(x, u(x)) = g(x, u(x)) +
h(x, u(x)). They proved the existence and uniqueness of positive solutions by using
a fixed point theorem for a sum of operators.

For further existence results related to (1.1), we refer to [1, 2, 3, 4, 14, 21, 22,
24, 29] and the references therein.
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In this paper, we are concerned with the following superlinear Riemann-Liouville
fractional boundary value problem

Dαu(x)− u(x)ϕ(x, u(x)) = 0, 0 < x < 1,

u(0) = u′(0) = lim
x→0+

x4−αu′′(x) = 0, u′′(1) = a > 0, (1.2)

where 3 < α ≤ 4 and ϕ(x, t) is a nonnegative continuous function in (0, 1)× [0,∞)
that is required to satisfy some appropriate integrability condition.

We emphasize that the condition a > 0 on the boundary is crucial to obtain a
positive solution. Our approach is based on a perturbation argument.

Notation:

(i) C(X) (resp.C+(X)) is the set of continuous (resp. nonnegative continuous)
functions in a metric space X;

(ii) B((0, 1)) (resp. B+((0, 1))) is the set of Borel (resp., nonnegative Borel)
measurable functions in (0, 1);

(iii) L1((0, 1)) := {q ∈ B((0, 1)),
∫ 1

0
|q(r)|dr <∞};

(iv) C1
+([0,∞)) is the set of nonnegative continuously differentiable functions

on [0,∞);
(v) for 3 < α ≤ 4,

Kα := {q ∈ B+((0, 1)),
∫ 1

0

rα−1(1− r)α−3q(r)dr <∞}; (1.3)

(vi) for 3 < α ≤ 4 and a > 0, we let

ω(x) =
a

(α− 1)(α− 2)
xα−1, 0 ≤ x ≤ 1. (1.4)

Observe that ω(x) is the unique solution of the problem

Dαu(x) = 0, 0 < x < 1,

u(0) = u′(0) = lim
x→0+

x4−αu′′(x) = 0, u′′(1) = a > 0. (1.5)

(vii) For 3 < α ≤ 4, we denote by G(x, t) the Green’s function of the operator
u→ Dαu, with boundary conditions u(0) = u′(0) = limx→0+ x4−αu′′(x) =
u′′(1) = 0. We have (see Lemma 2.4)

G(x, t) =
1

Γ(α)

{
xα−1(1− t)α−3 − (x− t)α−1, 0 ≤ t ≤ x ≤ 1;
xα−1(1− t)α−3, 0 ≤ x ≤ t ≤ 1.

(1.6)

(viii) For each q ∈ Kα, we let

αq := sup
x,t∈(0,1)

∫ 1

0

G(x, r)G(r, t)
G(x, t)

q(r)dr. (1.7)

It will be showed that if q ∈ Kα, then αq <∞.

To state our main results, we need a combination of the following assumptions.

(H1) ϕ ∈ C+((0, 1)× [0,∞)).
(H2) There exists a function q ∈ Kα∩C((0, 1)) with αq ≤ 1/2 such that for each

x ∈ (0, 1), the map t 7→ t(q(x)− ϕ(x, tω(x))) is nondecreasing on [0, 1].
(H3) For each x ∈ (0, 1), the function t 7→ tϕ(x, t) is nondecreasing on [0,∞).



EJDE-2017/240 SUPERLINEAR FRACTIONAL BOUNDARY VALUE PROBLEMS 3

We first prove that if q belongs to Kα∩C((0, 1)) with αq ≤ 1/2 and f belongs to
B+((0, 1)), then the fractional problem

Dαu(x)− q(x)u(x) = −f(x), 0 < x < 1, 3 < α ≤ 4,

u(0) = u′(0) = lim
x→0+

x4−αu′′(x) = u′′(1) = 0, (1.8)

admits a positive Green’s function G(x, t).
Exploiting properties of the Green’s function G(x, t) and by using a perturbation

argument, we establish the following result.

Theorem 1.1. Under assumptions (H1), (H2), problem (1.2) admits a positive
solution u in C([0, 1]) satisfying

c0ω(x) ≤ u(x) ≤ ω(x), x ∈ [0, 1], (1.9)

where c0 is a constant in (0, 1).
Moreover, the uniqueness of such solution is proved if, further, hypothesis (H3)

is satisfied.

From Theorem 1.1, we deduce the following property.

Corollary 1.2. Let f ∈ C1
+([0,∞)) be such that the map r 7→ θ(r) = rf(r) is

nondecreasing on [0,∞). Let p ∈ C+((0, 1)) be such that the function x 7→ p̃(x) :=
p(x) max

0≤ξ≤ω(x)
θ′(ξ) ∈ Kα. Then for λ ∈ [0, 1

2αep ), the problem

Dαu(x)− λp(x)u(x)f(u(x)) = 0, x ∈ (0, 1),

u(0) = u′(0) = lim
x→0+

x4−αu′′(x) = 0, u′′(1) = a > 0, (1.10)

has a unique positive solution u in C([0, 1]) satisfying

(1− λαep)ω(x) ≤ u(x) ≤ ω(x), x ∈ [0, 1].

Note that hypotheses (H1)–(H3), are satisfied with ϕ(x, t) = λp(x)tσ, for σ ≥ 0,
p ∈ C+((0, 1)) such that∫ 1

0

r(α−1)(1+σ)(1− r)α−3p(r)dr <∞.

This article is organized as follows. In section 2, some estimates on the Green’s
function G(x, t) are obtained. In particular, we prove that for all x, r, t ∈ (0, 1),

G(x, r)G(r, t)
G(x, t)

≤ 4(α− 1)2

(Γ(α)
rα−1(1− r)α−3.

This implies that for each q ∈ Kα, we have αq < ∞. In section 3, we start
by deriving the Green’s function G(x, t) associated to the boundary value problem
(1.8). We also establish some basic estimates of this function. In particular, we
show that for (x, t) ∈ [0, 1]× [0, 1], we have

(1− αq)G(x, t) ≤ G(x, t) ≤ G(x, t).

We also prove the resolvent equation

V f = Vqf + Vq(qV f) = Vqf + V (qVqf), for f ∈ B+((0, 1)),

where the kernels V and Vq are defined on B+((0, 1)) by

V f(x) :=
∫ 1

0

G(x, t)f(t)dt and Vqf(x) :=
∫ 1

0

G(x, t)f(t)dt, x ∈ [0, 1].
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By using the above results and a perturbation argument, we prove Theorem 1.1.

2. Fractional calculus and estimates on the Green’s function

2.1. Fractional calculus. We recall the following basic definitions and properties
on fractional calculus (see [11, 23, 25]).

Definition 2.1. Let β > 0 and Γ(β) be the Euler Gamma function. For a mea-
surable function f : (0,∞)→ R, the integral (provided that it exists)

Iβf(x) =
1

Γ(β)

∫ x

0

(x− t)β−1f(t)dt, x > 0,

is called the Riemann-Liouville fractional integral of order β.

Definition 2.2. Let β > 0 and [β] be its integer part. For a measurable function
f : (0,∞)→ R, the expression (provided that it exists)

Dβf(x) =
1

Γ(n− β)
(
d

dx
)n
∫ x

0

(x− t)n−β−1f(t)dt = (
d

dx
)nIn−βf(x),

where n = [β] + 1, is called the Riemann-Liouville fractional derivative of order β.

Lemma 2.3. Let β > 0 and u ∈ C((0, 1)) ∩ L1((0, 1)). Then we have

(i) For 0 < γ < β, DγIβu = Iβ−γu and DβIβu = u.
(ii) Dβu(x) = 0 if and only if u(x) = c1x

β−1 + c2x
β−2 + · · ·+ cmx

β−m, ci ∈ R,
i = 1, . . . ,m, where m is the smallest integer greater than or equal to β.

(iii) Assume that Dβu ∈ C((0, 1)) ∩ L1((0, 1)). Then

IβDβu(x) = u(x) + c1x
β−1 + c2x

β−2 + · · ·+ cmx
β−m,

ci ∈ R, i = 1, . . . ,m, where m is the smallest integer greater than or equal
to β.

2.2. Estimates on the Green’s function. In the next lemma, we give the ex-
plicit expression of the Green’s function G(x, t).

Lemma 2.4. If f ∈ C+([0, 1]), then the fractional boundary value problem

Dαu(x) = −f(x), 0 < x < 1, 3 < α ≤ 4,

u(0) = u′(0) = lim
x→0+

x4−αu′′(x) = u′′(1) = 0, (2.1)

has a unique nonnegative solution

u(x) =
∫ 1

0

G(x, t)f(t)dt, (2.2)

where for x, t ∈ [0, 1],

G(x, t) =
1

Γ(α)

{
xα−1(1− t)α−3 − (x− t)α−1, 0 ≤ t ≤ x ≤ 1;
xα−1(1− t)α−3, 0 ≤ x ≤ t ≤ 1.

Proof. Since f ∈ C([0, 1]), by Lemma 2.3 and Definition 2.1, we have

u(x) = c1x
α−1 + c2x

α−2 + c3x
α−3 + c4x

α−4 − Iαf(x).
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Using the fact that u(0) = u′(0) = limx→0+ x4−αu′′(x) = u′′(1) = 0, we obtain
c2 = c3 = c4 = 0 and c1 = 1

Γ(α)

∫ 1

0
(1 − t)α−3f(t)dt. Then the unique solution of

problem (2.1) is

u(x) =
1

Γ(α)

∫ 1

0

xα−1(1− t)α−3f(t)dt− 1
Γ(α)

∫ x

0

(x− t)α−1f(t)dt

=
∫ 1

0

G(x, t)f(t)dt.

This completes the proof. �

Next, we establish sharp estimates on the Green’s function G(x, t).

Proposition 2.5. The following properties hold:
(i) For x, t ∈ [0, 1],

1
Γ(α)

H0(x, t) ≤ G(x, t) ≤ 2(α− 1)
Γ(α)

H0(x, t),

where H0(x, t) = xα−2(1− t)α−3 min(x, t).
(ii) For x, t ∈ [0, 1],

1
Γ(α)

xα−1t(1− t)α−3 ≤ G(x, t) ≤ 2(α− 1)
Γ(α)

xα−2t(1− t)α−3.

(iii) For x ∈ (0, 1] and t ∈ [0, 1),

(α− 1)
Γ(α)

H(x, t) ≤ ∂

∂x
G(x, t) ≤ (α− 1)(α− 2)

Γ(α)
H(x, t),

where H(x, t) = xα−3(1− t)α−3 min(x, t).
(iv) For x ∈ (0, 1] and t ∈ [0, 1),

(α− 1)(α− 2)(α− 3)
Γ(α)

H̃(x, t) ≤ ∂2

∂x2
G(x, t) ≤ (α− 1)(α− 2)

Γ(α)
H̃(x, t),

where H̃(x, t) = xα−4(1− t)α−4 min(x, t)(1−max(x, t)).

Proof. We first observe that for λ, µ ∈ (0,∞) and c, t ∈ [0, 1], we have

min(1,
µ

λ
)(1− ctλ) ≤ 1− ctµ ≤ max(1,

µ

λ
)(1− ctλ). (2.3)

(i) By Lemma 2.4, for x, t ∈ [0, 1], we have

G(x, t) =
1

Γ(α)

{
xα−1(1− t)α−3 − (x− t)α−1, 0 ≤ t ≤ x ≤ 1;
xα−1(1− t)α−3, 0 ≤ x ≤ t ≤ 1,

=
1

Γ(α)
xα−1(1− t)α−3 − (max(x− t, 0))α−1,

=
1

Γ(α)
xα−1(1− t)α−3

[
1− (1− t)2

(max(x− t, 0)
x(1− t)

)α−1]
.

Since max(x−t,0)
x(1−t) ∈ [0, 1], for x ∈ (0, 1] and t ∈ [0, 1), the required result follows

from (2.3) with µ = α− 1, λ = 1 and c = (1− t)2.
(ii) The assertion follows from (i) and the elementary inequalities

xt ≤ min(x, t) ≤ t, for x, t ∈ [0, 1].
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(iii) For all x, t ∈ [0, 1] we have

∂

∂x
G(x, t) =

α− 1
Γ(α)

{
xα−2(1− t)α−3 − (x− t)α−2, 0 ≤ t ≤ x ≤ 1;
xα−2(1− t)α−3, 0 ≤ x ≤ t ≤ 1,

=
α− 1
Γ(α)

xα−2(1− t)α−3
[
1− (1− t)

(max(x− t, 0)
x(1− t)

)α−2]
.

Then the required result follows from (2.3) with µ = α− 2, λ = 1 and c = (1− t).
(iv) For all x ∈ (0, 1] and t ∈ [0, 1) we have

∂2

∂x2
G(x, t) =

(α− 1)(α− 2)
Γ(α)

{
xα−3(1− t)α−3 − (x− t)α−3, 0 ≤ t ≤ x ≤ 1;
xα−3(1− t)α−3, 0 ≤ x ≤ t ≤ 1,

=
(α− 1)(α− 2)

Γ(α)
xα−3(1− t)α−3

[
1−

(max(x− t, 0)
x(1− t)

)α−3]
.

Then the required result follows again from (2.3) with µ = α− 3, λ = 1 and c = 1.
This completes the proof. �

From Proposition 2.5 (ii), we deduce the following characterization property.

Corollary 2.6. Let f ∈ B+((0, 1)). Then

x 7→ V f(x) ∈ C([0, 1])⇔
∫ 1

0

t(1− t)α−3f(t)dt <∞.

Proposition 2.7. Let 3 < α < 4 and assume that the map t 7→ t(1− t)α−3f(t) ∈
C((0, 1)) ∩ L1((0, 1)). Then V f is the unique solution in C([0, 1]) of the problem

Dαu(x) = −f(x), 0 < x < 1,

u(0) = u′(0) = lim
x→0+

x4−αu′′(x) = u′′(1) = 0. (2.4)

Proof. Using Corollary 2.6 we deduce that V f ∈ C([0, 1]). This implies that
I4−α(V |f |) is finite on [0, 1]. So, by Fubini’s theorem,

I4−α(V f)(x) =
1

Γ(4− α)

∫ x

0

(x− t)3−αV f(t)dt

=
1

Γ(4− α)

∫ 1

0

(
∫ x

0

(x− t)3−αG(t, s)dt)f(s)ds

=
∫ 1

0

K(x, s)f(s)ds,

where K(x, s) := 1
Γ(4−α)

∫ x
0

(x− t)3−αG(t, s)dt.
Next, we aim to give an explicit expression of the kernel K(x, s). To this end,

observe that by making the substitution t = s+ (x− s)θ, we obtain for γ, ν > −1,∫ x

s

(x− t)γ(t− s)νdt =
Γ(γ + 1)Γ(ν + 1)

Γ(γ + ν + 2)
(x− s)γ+ν+1. (2.5)

Using this fact and (1.6), we deduce that

K(x, s) =
(1− s)α−3

Γ(4− α)Γ(α)

∫ x

0

(x− t)3−αtα−1dt

− 1
Γ(4− α)Γ(α)

∫ x

0

(x− t)3−α(max(t− s, 0))α−1dt
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=
1
6
x3(1− s)α−3 − 1

Γ(4− α)Γ(α)

∫ x

0

(x− t)3−α(max(t− s, 0))α−1dt

Now, assume that s ≤ x. Then by (2.5) we have∫ x

0

(x− t)3−α(max(t− s, 0))α−1dt =
∫ x

s

(x− t)3−α(t− s)α−1dt|

=
Γ(α)Γ(4− α)

6
(x− s)3.

(2.6)

On the other hand, if x ≤ s and t ∈ (0, x), we have∫ x

0

(x− t)3−α(max(t− s, 0))α−1dt = 0. (2.7)

So, combining (2.6) and (2.7), we obtain

K(x, s) =
1
6
x3(1− s)α−3 − 1

6
(max(x− s, 0))3.

Hence for x ∈ (0, 1), we have

6I4−α(V f)(x) = 6
∫ 1

0

K(x, s)f(s)ds

= x3

∫ x

0

[(1− s)α−3 − 1]f(s)ds+ 3x2

∫ x

0

sf(s)ds

− 3x
∫ x

0

s2f(s)ds+
∫ x

0

s3f(s)ds+ x3

∫ 1

x

(1− s)α−3f(s)ds

=: J1(x) + J2(x) + J3(x) + J4(x) + J5(x).

We claim that

Dα(V f)(x) :=
d4

dx4
(I4−α(V f))(x) = −f(x), for x ∈ (0, 1).

Since the function s 7→ sf(s) is continuous and integrable near 0 and the func-
tion s 7→ (1 − s)α−3f(s) is continuous and integrable near 1, then the functions
J2(x), J3(x), J4(x) and J5(x) are differentiable.

On the other hand, since (1 − s)α−3 − 1 = O(s) near 0, it follows that J1(x) is
differentiable. By simple computation, we obtain

d

dx
(6I4−α(V f))(x) = 3x2

∫ x

0

[(1− s)α−3 − 1]f(s)ds+ 6x
∫ x

0

sf(s)ds

− 3x
∫ x

0

s2f(s)ds+ 3x2

∫ 1

x

(1− s)α−3f(s)ds.

Using similar arguments as above, we obtain

d4

dx4
(I4−α(V f))(x) = −f(x), for x ∈ (0, 1).

Next, we need to verify the boundary conditions. Since G(0, t) = 0 and V f(x) ∈
C([0, 1]), then it follows that V f(0) = 0.

On the other hand, by Proposition 2.5 (iii), there exists a constant c > 0 such
that for all x, t ∈ [0, 1], we have

| ∂
∂x
G(x, t)| ≤ cmin(x, t)(1− t)α−3 ≤ ct(1− t)α−3.

This implies, by Lebesgue’s theorem, that (V f)′(0) = 0.
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By Proposition 2.5 (iv), there exists c > 0 such that each x, t ∈ [0, 1], we have

x4−α∣∣ ∂2

∂x2
G(x, t)

∣∣ ≤ cmin(x, t)(1− t)α−3 ≤ ct(1− t)α−3.

Hence, by Lebesgue’s theorem, we deduce that lim
x→0+

x4−α(V f)′′(x) = 0.

Let η ∈ (0, 1). Again by Proposition 2.5 (iv), there exists a constant c > 0, such
that for x ∈ [η, 1] and t ∈ (0, 1), we have∣∣ ∂2

∂x2
G(x, t)

∣∣ ≤ cηα−4t(1− t)α−4(1−max(x, t)) ≤ cηα−4t(1− t)α−3.

So by the Lebesgue’s theorem, we deduce that (V f)′′(1) = 0.
Finally, we need to prove the uniqueness. Let u, v ∈ C([0, 1]) be two solutions of

(2.4) and put z = u − v. Then z ∈ C([0, 1]) and Dαz = 0. Hence, by Lemma 2.3
(iii), we deduce that z(x) = c1x

α−1 + c2x
α−2 + c3x

α−3 + c4x
α−4. Using the fact

that z(0) = z′(0) = limx→0+ x4−αz′′(x) = z′′(1) = 0, we deduce that z = 0 and
therefore u = v. This completes the proof. �

Remark 2.8. Note that the conclusion of Proposition 2.7 is also valid for α = 4.

Proposition 2.9. For each x, r, t ∈ (0, 1), we have

G(x, r)G(r, t)
G(x, t)

≤ 4(α− 1)2

Γ(α)
rα−1(1− r)α−3. (2.8)

Proof. Using Proposition 2.5 (i), for each x, r, t ∈ (0, 1), we have

G(x, r)G(r, t)
G(x, t)

≤ 4(α− 1)2

Γ(α)
rα−2(1− r)α−3 min(x, r) min(r, t)

min(x, t)
.

So the result follows from this fact and that
min(x, r) min(r, t)

min(x, t)
≤ r.

This completes the proof. �

Proposition 2.10. Let q ∈ Kα. Then
(i)

αq ≤
4(α− 1)2

Γ(α)

∫ 1

0

rα−1(1− r)α−3q(r)dr <∞. (2.9)

(ii) For x ∈ [0, 1], we have∫ 1

0

G(x, t)ω(t)q(t)dt ≤ αqω(x), (2.10)

where ω(x) = a
(α−1)(α−2)x

α−1.

Proof. Let q ∈ Kα.
(i) Using (1.7) and (2.8), we obtain inequality (2.9).
(ii) For all x, t ∈ (0, 1], we have limr→1

G(t,r)
G(x,r) = tα−1

xα−1 . Thus, by Fatou’s lemma
and (1.7), we deduce that∫ 1

0

G(x, t)
ω(t)
ω(x)

q(t)dt ≤ lim inf
r→1

∫ 1

0

G(x, t)
G(t, r)
G(x, r)

q(t)dt ≤ αq.
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This implies that for x ∈ [0, 1],∫ 1

0

G(x, t)ω(t)q(t)dt ≤ αqω(x),

which completes the proof. �

3. Proof of main results

Let q ∈ Kα with αq < 1. Define the function G(x, t) on [0, 1]× [0, 1] by

G(x, t) =
∞∑
n=0

(−1)nGn(x, t), (3.1)

where G0(x, t) = G(x, t) and

Gn(x, t) =
∫ 1

0

G(x, r)Gn−1(r, t)q(r)dr, n ≥ 1. (3.2)

Lemma 3.1. Let q ∈ Kα with αq < 1. For all n ≥ 0 and (x, t) ∈ [0, 1]× [0, 1], we
have

(i) Gn(x, t) ≤ αnqG(x, t). In particular, G(x, t) is well defined in [0, 1]× [0, 1].
(ii) The following inequalities hold:

Lnx
α−1t(1− t)α−3 ≤ Gn(x, t) ≤ Rnxα−2t(1− t)α−3, (3.3)

where

Ln =
1

(Γ(α))n+1
(
∫ 1

0

rα(1− r)α−3q(r)dr)n,

Rn = (
2α− 2
Γ(α)

)n+1(
∫ 1

0

rα−1(1− r)α−3q(r)dr)n.

(iii)

Gn+1(x, t) =
∫ 1

0

Gn(x, r)G(r, t)q(r)dr.

(iv) ∫ 1

0

G(x, r)G(r, t)q(r)dr =
∫ 1

0

G(x, r)G(r, t)q(r)dr.

Proof. (i) Clearly, inequality in (i) holds for n = 0. Assume that inequality in (i)
is valid for some n ≥ 0, then by using (3.2) and (1.7), we obtain

Gn+1(x, t) ≤ αnq
∫ 1

0

G(x, r)G(r, t)q(r)dr ≤ αn+1
q G(x, t).

Since Gn(x, t) ≤ αnqG(x, t), it follows that G(x, t) is well defined in [0, 1]× [0, 1].
(ii) We can prove (3.3) by using Proposition 2.5 (ii), (3.2) and using a standard

induction argument.
(iii) We proceed by induction. The equality is true for n = 0. Assume that for

a given integer n ≥ 1 and (x, t) ∈ [0, 1]× [0, 1], we have

Gn(x, t) =
∫ 1

0

Gn−1(x, r)G(r, t)q(r)dr. (3.4)
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Using (3.2) and the Fubini-Tonelli theorem, we obtain

Gn+1(x, t) =
∫ 1

0

G(x, r)(
∫ 1

0

Gn−1(r, ξ)G(ξ, t)q(ξ)dξ)q(r)dr

=
∫ 1

0

(
∫ 1

0

G(x, r)Gn−1(r, ξ)q(r)dr)G(ξ, t)q(ξ)dξ

=
∫ 1

0

Gn(x, ξ)G(ξ, t)q(ξ)dξ.

(iv) Let n ≥ 0 and x, r, t ∈ [0, 1]. By Lemma 3.1 (i) we have

0 ≤ Gn(x, r)G(r, t)q(r) ≤ αnqG(x, r)G(r, t)q(r).

Hence the series
∑
n≥0

∫ 1

0
Gn(x, r)G(r, t)q(r)dr converges. By the dominated con-

vergence theorem and Lemma 3.1 (iii), we deduce that∫ 1

0

G(x, r)G(r, t)q(r)dr =
∞∑
n=0

∫ 1

0

(−1)nGn(x, r)G(r, t)q(r)dr

=
∞∑
n=0

∫ 1

0

(−1)nG(x, r)Gn(r, t)q(r)dr

=
∫ 1

0

G(x, r)G(r, t)q(r)dr.

This completes the proof. �

Proposition 3.2. Let q ∈ Kα with αq < 1. Then the function (x, t) 7→ G(x, t) is
continuous on [0, 1]× [0, 1].

Proof. We claim that for n ≥ 0, the function (x, t) 7→ Gn(x, t) is continuous on
[0, 1]× [0, 1].

Clearly, G0(x, t) is continuous on [0, 1]× [0, 1]. Assume that the function (x, t) 7→
Gn−1(x, t) is continuous on [0, 1] × [0, 1]. So, for each r ∈ [0, 1], the function
(x, t) 7→ G(x, r)Gn−1(r, t) is continuous on [0, 1] × [0, 1]. By using Lemma 3.1 (i)
and Proposition 2.5 (ii), we have for each (x, t, r) ∈ [0, 1]× [0, 1]× [0, 1],

G(x, r)Gn−1(r, t)q(r) ≤ αn−1
q G(x, r)G(r, t)q(r)

≤
(2(α− 1)

Γ(α)
)2
rα−1(1− r)α−3q(r).

We deduce by (3.2) and the dominated convergence theorem, that the function
(x, t) 7→ Gn(x, t) is continuous on [0, 1]× [0, 1]. This proves our claim.

Using again Lemma 3.1 (i) and Proposition 2.5 (ii), we have for all x, t ∈ [0, 1],

Gn(x, t) ≤ αnqG(x, t) ≤ 2(α− 1)
Γ(α)

αnq .

Therefore the series
∑
n≥0

(−1)nGn(x, t) is uniformly convergent on [0, 1]× [0, 1] and

hence the function (x, t) 7→ G(x, t) is continuous on [0, 1] × [0, 1]. This completes
the proof. �

Lemma 3.3. Let q ∈ Kα with αq ≤ 1/2. Then for all (x, t) ∈ [0, 1]× [0, 1], we have

(1− αq)G(x, t) ≤ G(x, t) ≤ G(x, t). (3.5)
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Proof. Since αq ≤ 1/2, we deduce by Lemma 3.1 (i) that

|G(x, t)| ≤
∞∑
n=0

(αq)nG(x, t) =
1

1− αq
G(x, t). (3.6)

Note that

G(x, t) = G(x, t)−
∞∑
n=0

(−1)nGn+1(x, t). (3.7)

Since the series
∑
n≥0

∫ 1

0
G(x, r)Gn(r, t)q(r)dr is convergent, we deduce by (3.7) and

(3.2) that

G(x, t) = G(x, t)−
∞∑
n=0

(−1)n
∫ 1

0

G(x, r)Gn(r, t)q(r)dr

= G(x, t)−
∫ 1

0

G(x, r)(
∞∑
n=0

(−1)nGn(r, t))q(r)dr.

Therefore,
G(x, t) = G(x, t)− V (qG(·, t))(x). (3.8)

Using (3.6) and Lemma 3.1 (i) (with n = 1), we deduce that

V (qG(., t))(x) ≤ 1
1− αq

V (qG(., t))(x) =
1

1− αq
G1(x, t) ≤ αq

1− αq
G(x, t).

This implies by (3.8) that

G(x, t) ≥ G(x, t)− αq
1− αq

G(x, t) =
1− 2αq
1− αq

G(x, t) ≥ 0.

So G(x, t) ≤ G(x, t) and by (3.8) and Lemma 3.1 (i) (with n = 1), we have

G(x, t) ≥ G(x, t)− V (qG(·, t))(x) ≥ (1− αq)G(x, t).

The proof is now complete. �

Using Proposition 3.2, (3.5) and Proposition 2.5 (ii), we obtain the following
property.

Corollary 3.4. Let q ∈ Kα with αq ≤ 1
2 and let f ∈ B+((0, 1)). Then the following

characterization property holds:

x 7→ Vqf(x) ∈ C([0, 1])⇔
∫ 1

0

t(1− t)α−3f(t)dt <∞.

Lemma 3.5. Let q ∈ Kα with αq ≤ 1
2 and f ∈ B+((0, 1)). Then we have

V f = Vqf + Vq(qV f) = Vqf + V (qVqf). (3.9)

In particular, if V (qf) <∞, we have

(I − Vq(q.))(I + V (q.))f = (I + V (q.))(I − Vq(q.))f = f. (3.10)

Here, V (q.)(f) := V (qf).
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Proof. Let (x, t) ∈ [0, 1]× [0, 1]. Then by (3.8), we have

G(x, t) = G(x, t) + V (qG(·, t))(x),

which implies by the Fubini-Tonelli theorem that for all f ∈ B+((0, 1)),

V f(x) =
∫ 1

0

(G(x, t) + V (qG(·, t))(x))f(t)dt

= Vqf(x) + V (qVqf)(x).

Using Lemma 3.1 (iii) and the Fubini-Tonelli theorem, we obtain that for all f ∈
B+((0, 1)) and x ∈ [0, 1],∫ 1

0

∫ 1

0

G(x, r)G(r, t)q(r)f(t)drdt =
∫ 1

0

∫ 1

0

G(x, r)G(r, t)q(r)f(t)drdt.

It follows that
Vq(qV f)(x) = V (qVqf)(x).

We deduce that

V f = Vqf + V (qVqf) = Vqf + Vq(qV f)(x).

This completes the proof. �

Proposition 3.6. Let q ∈ Kα∩C((0, 1)) such that αq ≤ 1/2 and f ∈ B+((0, 1))
such that t 7→ t(1 − t)α−3f(t) ∈ C((0, 1)) ∩ L1((0, 1)). Then Vqf ∈ C+([0, 1]) and
it is the unique solution of problem (1.8) satisfying

(1− αq)V f ≤ Vqf ≤ V f. (3.11)

Proof. By Corollary 3.4, we deduce that x 7→ Vqf(x) ∈ C+([0, 1]). Therefore, the
function x 7→ q(x)Vqf(x) ∈ C((0, 1)). Using (3.9) and Proposition 2.5 (ii), there
exists a constant c ≥ 0 such that

Vqf(x) ≤ V f(x) ≤ 2(α− 1)
Γ(α)

∫ 1

0

xα−2t(1− t)α−3f(t)dt = cxα−2. (3.12)

So we deduce that∫ 1

0

t(1− t)α−3q(t)Vqf(t)dt ≤ c
∫ 1

0

tα−1(1− t)α−3q(t)dt <∞.

Hence by Proposition 2.7, the function u = Vqf = V f − V (qVqf) satisfies the
equation

Dαu(x) = −f(x) + q(x)u(x), x ∈ (0, 1),

u(0) = u′(0) = lim
x→0+

x4−αu′′(x) = u′′(1) = 0.

By integrating inequalities (3.5), we obtain (3.11).
For the uniqueness, assume that v is another nonnegative solution in C([0, 1]) of

problem (1.8) satisfying (3.11). Since the function t 7→ q(t)v(t) is of class C((0, 1))
and by (3.11), (3.12), the function t 7→ t(1− t)α−3q(t)v(t) is in L1((0, 1)), it follows
by Proposition 2.7 that the function ṽ := v + V (qv) satisfies

Dαṽ(x) + f(x) = 0, x ∈ (0, 1),

ṽ(0) = ṽ′(0) = lim
x→0+

x4−αṽ′′(x) = ṽ′′(1) = 0.
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Using Proposition 2.7, we deduce that

ṽ := v + V (qv) = V f,

hence
(I + V (q.))(v − u) = 0.

Using (3.11), (3.12) and Proposition 2.5 (i) we have

V (q|v − u|)(x) ≤ 4c(α− 1)
Γ(α)

∫ 1

0

tα−2(1− t)α−3 min(x, t)q(t)dt

≤ 4c(α− 1)
Γ(α)

∫ 1

0

tα−1(1− t)α−3q(t)dt <∞.

So by (3.10), we deduce that u = v. This completes the proof. �

3.1. Proof of Theorem 1.1. Let a > 0 and recall that

ω(x) =
a

(α− 1)(α− 2)
xα−1, for 0 ≤ x ≤ 1.

Since ϕ satisfies (H2), there exists a function q in Kα∩C((0, 1)) such that αq ≤ 1/2
and for each x ∈ (0, 1), the map t 7→ t(q(x)−ϕ(x, tω(x))) is nondecreasing on [0, 1].
Let

Λ := {u ∈ B+((0, 1)) : (1− αq)ω ≤ u ≤ ω}.
Define the operator T on Λ by

Tu = ω − Vq(qω) + Vq((q − ϕ(·, u))u).

By (3.9) and (2.10), we have

Vq(qω) ≤ V (qω) ≤ αqω ≤ ω. (3.13)

By (H2), we obtain
0 ≤ ϕ(., u) ≤ q, for all u ∈ Λ. (3.14)

Using (3.14) and (3.13), we have that for all u ∈ Λ,

Tu ≤ ω − Vq(qω) + Vq(qu) ≤ ω,
Tu ≥ ω − Vq(qω) ≥ (1− αq)ω.

Therefore. T (Λ) ⊂ Λ.
Next, we prove that the operator T is nondecreasing on Λ. Indeed, let u, v ∈ Λ

be such that u ≤ v. Since the map t 7→ t(q(x) − ϕ(x, tω(x))) is nondecreasing on
[0, 1], we obtain that for all x ∈ (0, 1),

Tv − Tu = Vq([v(q − ϕ(·, v))− u(q − ϕ(., u))]) ≥ 0.

Now, we consider the sequence {un} defined by u0 = (1 − αq)ω and un+1 = Tun,
for n ∈ N. Since Λ is invariant under T , we have u1 = Tu0 ≥ u0 and by the
monotonicity of T , we deduce that

(1− αq)ω = u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ ω.
Hence by dominated convergence theorem, (H1), and (H2), we conclude that the
sequence {un} converges to a function u ∈ Λ satisfying

u = (I − Vq(q.))ω + Vq((q − ϕ(·, u))u).

It follows that
(I − Vq(q.))u = (I − Vq(q.))ω − Vq(uϕ(., u)).
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On the other hand, by (3.13), we have V (qu) ≤ V (qω) ≤ ω <∞. Then by applying
the operator (I + V (q.)) on both sides of the above equality and using (3.9) and
(3.10), we conclude that u satisfies

u = ω − V (uϕ(·, u)). (3.15)

We claim that u is the required solution. From (3.14), we have

u(t)ϕ(t, u(t)) ≤ q(t)ω(t) =
a

(α− 1)(α− 2)
tα−1q(t). (3.16)

So
∫ 1

0
t(1 − t)α−3u(t)ϕ(t, u(t))dt < ∞. Therefore by Corollary 2.6, the function

x 7→ V (uϕ(., u))(x) ∈ C([0, 1]) and from (3.15), we conclude that u ∈ C([0, 1]).
Since by (H1) and (3.16), the function t 7→ t(1 − t)α−3u(t)ϕ(t, u(t)) belongs to

C((0, 1))∩L1((0, 1)), we deduce by Proposition 2.7 that u is the required solution.
To prove uniqueness, assume (H3) and let v be another nonnegative solution

in C([0, 1]) of problem (1.2) satisfying (1.9). Since v satisfies (1.9), we deduce by
(3.14)) and (3.16) that

0 ≤ v(t)ϕ(t, v(t)) ≤ q(t)ω(t) =
a

(α− 1)(α− 2)
tα−1q(t).

So the function t 7→ t(1 − t)α−3v(t)ϕ(t, v(t)) belongs to C((0, 1)) ∩ L1((0, 1)), and
by Proposition 2.7, we deduce that the function ṽ := v + V (vϕ(·, v)) satisfies

Dαṽ(x) = 0, 0 < x < 1,

ṽ(0) = ṽ′(0) = lim
x→0+

x4−αṽ′′(x) = 0, ṽ′′(1) = a > 0.

Hence
ṽ := v + V (vϕ(·, v)) = ω.

We deduce that
v = ω − V (vϕ(·, v)). (3.17)

Let h be the function defined on (0, 1) by

h(x) =

{v(x)ϕ(x,v(x))−u(x)ϕ(x,u(x))
v(x)−u(x) , if v(x) 6= u(x),

0, if v(x) = u(x).

Then by (H3), h ∈ B+((0, 1)) and by (3.15) and (3.17), we have

(I + V (h.))(v − u) = 0.

On the other hand, by (H2), we remark that h ≤ q and by (2.10) we deduce that

V (h|v − u|) ≤ 2V (qω) ≤ 2αqω <∞.
Hence by (3.10), we conclude that u = v. This completes the proof.

Example 3.7. Let 3 < α ≤ 4 and a > 0. Let σ ≥ 0, and p ∈ C+((0, 1)) such that∫ 1

0

r(α−1)(1+σ)(1− r)α−3p(r)dr <∞.

Let p̃(x) := (σ+ 1)p(x)(ω(x))σ. Since p̃ ∈ Kα, then for λ ∈ [0, 1
2αep ), the problem

Dαu(x)− λp(x)uσ+1(x) = 0, 0 < x < 1,

u(0) = u′(0) = lim
x→0+

x4−αu′′(x) = 0, u′′(1) = a,
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has a unique positive solution u in C([0, 1]) satisfying

(1− λαep)ω(x) ≤ u(x) ≤ ω(x), x ∈ [0, 1].

Example 3.8. Let 3 < α ≤ 4 and a > 0. Let σ ≥ 0, γ > 0 and p ∈ C+((0, 1))
such that ∫ 1

0

r(α−1)+(α−1)(σ+γ)(1− r)α−3p(r)dr <∞.

Let θ(s) = sσ+1 log(1 + sγ) and p̃(t) := p(t) max0≤ξ≤ω(t) θ
′(ξ). Since p̃ ∈ Kα, then

for λ ∈ [0, 1
2αep ), the problem

Dαu(x)− λp(x)uσ+1(x) log(1 + uγ(x)) = 0, 0 < x < 1,

u(0) = u′(0) = lim
x→0+

x4−αu′′(x) = 0, u′′(1) = a,

has a unique positive solution u in C([0, 1]) satisfying

(1− λαep)ω(x) ≤ u(x) ≤ ω(x), x ∈ [0, 1].
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