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Abstract

This article is concerned with the existence, uniqueness and numerical approximation of
boundary blow up solutions for elliptic PDE’s ∆u = f(u), where f satisfies the so-called
Keller-Osserman condition. We characterize existence of such solutions for non-monotone
f . As an example, we construct an infinite family of boundary blow up solutions for
the equation ∆u = u2(1 + cos u) on a ball. We prove uniqueness (on balls) when f is
increasing and convex in a neighborhood of infinity and we discuss and perform some
numerical computations to approximate such boundary blow-up solutions.
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( In memory of Thomas Lachand-Robert )

1 Introduction

1.1 Setting of the problem

Let f be a nonnegative function defined on [0, +∞) such that f(0) = 0. We assume, for
the sake of simplicity, that f is a C1 function. Considering Ω a smooth bounded domain of
RD, D ≥ 1, we seek u > 0 a smooth function such that

{
∆u = f(u) in Ω,

u = +∞ on ∂Ω,
(1.1)

where the boundary condition is to be understood as :

lim
x→x0

u(x) = +∞ ∀x0 ∈ ∂Ω.

To prove existence of such a boundary blow-up solution, it is classically assumed that f is a
nondecreasing function with suitable growth rate at infinity, as demonstrated independently
by Keller [10] and Osserman [14].

In this article, we study existence, asymptotic behaviour, uniqueness and numerical
approximation of solutions of (1.1), when f may exhibit non monotone behaviour.

1.1.1 Existence results

Existence of solutions of (1.1) is closely related to the following growth conditions :
for s ∈ [0,+∞), let F (s) =

∫ s

0
f(t) dt and define Φ : (0, +∞) → (0,+∞] by

Φ(α) =
1√
2

∫ ∞

α

ds√
F (s)− F (α)

,

where we let by convention Φ(α) = +∞, whenever the integral is divergent or
F (s) = F (α) on a set of positive measure.

Definition 1.1 We say that f satisfies the Keller-Osserman condition whenever

∃α > 0 Φ(α) < ∞. (1.2)

We say that f satisfies the Sharpened Keller-Osserman condition whenever

lim inf
α→∞

Φ(α) = 0. (1.3)

Clearly, the Sharpened Keller-Osserman condition implies the classical one. It
turns out that both conditions are equivalent (see the Appendix for a proof) :

Proposition 1.2 Assume (1.2) holds for some α > 0. Then (1.3) holds.
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We point out that in general, limα→∞ Φ(α) may not exist : for example if f(u) =
u2(1+cos u), lim supα→∞Φ(α) = +∞. However, (1.3) still holds. See the Appendix
for a proof.

With these definitions in mind, our main result concerning existence reads as
follows :

Theorem 1.3 The following statements are equivalent

• f satisfies the Keller-Osserman condition (1.2)

• f satisfies the Sharpened Keller-Osserman condition (1.3)

• There exists a ball Ω = BR such that (1.1) admits (at least) a positive boundary
blow-up solution.

• Given any (smooth bounded) domain Ω, (1.1) admits (at least) a positive
boundary blow-up solution.

Theorem 1.3 is a straightforward consequence of Proposition 1.2 and the follow-
ing two theorems :

Theorem 1.1 f satisfies the Keller-Osserman condition if and only if (1.1) admits
(at least) a positive boundary blow-up solution on some ball.

Theorem 1.4 f satisfies the Sharpened Keller-Osserman condition if and only if
(1.1) admits (at least) a positive boundary blow-up solution on any (smooth bounded)
domain Ω.

In particular, Theorem 1.4 implies existence of boundary blow-up solutions for
functions such as f(u) = u2(1 + cos u).

1.1.2 Asymptotic behaviour

The blow-up rate of solutions of (1.1) is determined implicitly by the following
theorem :

Theorem 1.5 Assume Ω satisfies uniform interior and exterior sphere conditions
on its boundary. Assume (1.3) holds and let u denote any positive solution of (1.1).
Then,

lim
x→x0

∫ ∞

u(x)

dt√
2F (t)

δ(x)
= 1,

where δ(x) = dist(x, ∂Ω).
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1.1.3 Uniqueness results

In view of the maximum principle, it seems natural to only assume that f is nonde-
creasing in order to obtain uniqueness. To the best of our knowledge, no proof (or
counter-example) of such a statement has been given yet. Extra requirements such
as the convexity of f or the monotony of f(u)/u are needed in the proofs found in
the literature (see e.g. [13]). When the domain is a ball, we relax such assumptions
as follows:

Theorem 1.6 Assume that f is nondecreasing and that f is convex in a neigh-
borhood of +∞. Assume also that f satisfies the Keller-Osserman condition (1.2).
Then on any ball B(0, R), there exists a unique boundary blow up solution of (1.1).

Remark 1.7 The same result also holds if f is nondecreasing, f(u)/u is nonde-
creasing in a neighbourhood of +∞ and (1.2) holds.

In dimension D = 1, a necessary and sufficient condition for uniqueness can be
derived. Namely, we have the following

Proposition 1.8 Assume that f satisfies the Sharpened Keller-Osserman condi-
tion. Then (1.1) admits a unique solution on Ω =] − R, R[ if and only if the
equation

Φ(α) = R

admits exactly one solution.

As a straightforward consequence, we obtain

Corollary 1.9 Assume that f satisfies the Sharpened Keller-Osserman condition.
(1.1) admits a unique solution on any domain Ω =] − R, R[ if and only if Φ :
(0,∞) → (0,∞) is one-to-one.

Remark 1.10 In particular, if f is nondecreasing, one can easily show that Φ is
one-to-one.

2 Existence of boundary blow-up solutions

2.1 Minimality principle

We restate the well-known sub and supersolution method (see [5] and [6]) and derive
elementary but important corollaries.

Proposition 2.1 Consider Ω a bounded domain of RD such that all boundary
points are regular, f ∈ C(R) and g ∈ C(∂Ω). Assume there exist two functions
u, u ∈ C(Ω̄) such that u ≤ u and

{
∆u ≥ f(u) in D′(Ω), (resp. ∆u ≤ f(u) in D′(Ω))

u ≤ g on ∂Ω, (resp. u ≥ g on ∂Ω).
(2.4)
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Then problem {
∆u = f(u) in D′(Ω),

u = g on ∂Ω.
(2.5)

possesses at least one solution u ∈ C(Ω̄,R) such that u ≤ u ≤ u.

Corollary 2.2 (Minimality Principle) Make the same assumptions as in Proposi-
tion 2.1. Then there exists a unique solution u ∈ C(Ω̄) of (2.5) such that u ≤ u
and u|ω ≤ v for any open subset ω of Ω and any function v ∈ C(ω̄) satisfying





∆v ≤ f(v) in D′(ω),
v ≥ u in ω,

v ≥ u on ∂ω.

(2.6)

We call u the minimal solution of (2.5) relative to u.

A complete proof of Corollary 2.2 is given in the Appendix. We present here a short
proof in the case where f is a locally Lipschitz function.

Proof. Uniqueness : Let u1, u2 be two such solutions. Choosing ω = Ω and v = u2

in the statement of Corollary 2.2, we conclude that u1 ≤ u2. Reversing the roles of
u1 and u2, we conclude that u1 = u2.
Existence : Let Λ = sup

[min u,max u]

|f ′|, u0 = u and for k ≥ 1, define uk ∈ C(Ω̄)

inductively by {
∆uk − Λuk = f(uk−1)− Λuk−1 in D′(Ω),

uk = g on ∂Ω.

Then it is known that the sequence (uk) is nondecreasing and converges to a solution
u ∈ C2(Ω) ∩ C(Ω̄) of (2.5), which satisfies in addition u ≤ u ≤ u.

Let v ∈ C(ω̄) verify (2.6) and assume by contradiction that the set ω1 := {x ∈
ω : v(x) < u(x)} is non empty. Clearly ω1 is open. Working, if necessary, with a
connected component of ω1, we assume that ω1 is connected. We prove by induction
that v ≥ uk in ω1 for all k ∈ N. Passing to the limit as k → ∞, we then obtain a
contradiction with the definition of ω1.

By assumption, v ≥ u = u0 in ω1. Given k ≥ 1, assume that v ≥ uk−1 in ω1. In
particular, we have that v(x) ∈ [min u, maxu] for x ∈ ω1.

Observe that if x ∈ ∂ω1 then either v(x) = u(x), or x ∈ ∂ω, whence v(x) ≥ u(x).
Since u ≥ uk, we conclude that v ≥ u ≥ uk on ∂ω1. Hence,

{
∆(v − uk)− Λ(v − uk) ≤ f(v)− f(uk−1)− Λ(v − uk−1) ≤ 0 in D′(ω1)

v − uk ≥ 0 on ∂ω1.

By the (weak) Maximum Principle, v ≥ uk in ω1.

Remark 2.3 Applying the Minimality Principle to (2.5) with nonlinearity −f , we
also obtain the existence and uniqueness of a maximal solution relative to u, defined
in a straightforward way.
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Remark 2.4 Assume Ω = BR is a ball centered at the origin and g is a positive
constant. If u is radial , one easily sees that the minimal solution u relative to u is
radial : just apply the Minimality Principle 2.2 with v(x) = u(O(x)), where O ∈ OD

is an arbitrary rotation of the Euclidean space. A well-known result of Gidas-Ni-
Nirenberg [9] states that any solution u > g is radially symmetric, provided f is
e.g. locally Lipschitz.

Finally, letting φ(r) = u(x) for r = |x|, it follows from standard ODE theory
that φ′(0) = 0 and φ′(r) > 0 in (0, R).

Corollary 2.5 (Minimality Principle for blow-up solutions) Let Ω be a bounded
domain of RD such that all boundary points are regular, f ∈ C(R). Assume there
exist a function u ∈ C(Ω̄) such that ∆u ≥ f(u) in D′(Ω) and a function v ∈ C(Ω)
such that ∆v ≤ f(v) in D′(Ω), limx→x0 v(x) = +∞ for all x0 ∈ ∂Ω and v ≥ u.
Then there exists a unique solution u ∈ C(Ω) of (1.1) such that u ≤ u and u|ω ≤ v
for any open subset ω ⊂ Ω and any v ∈ C(ω) satisfying





∆v ≤ f(v) in D′(ω),
v ≥ u in ω,

lim
x→x0

v(x) = +∞ for all x0 ∈ ∂ω.

(2.7)

We call u the minimal solution of (1.1) relative to u.

For a proof, see the Appendix.

Remark 2.6 In contrast to Remark 2.3, there does not exist in general a maxi-
mal boundary blow-up solution of (1.1). See Section 6.3 for enlightening counter-
examples.

2.2 Existence of solutions on some ball

In this section, we prove that (1.2) implies the existence of a boundary blow-up
solution on some ball. First, we state and prove a useful technical lemma

Lemma 2.7 Let φ ∈ C2(0, R) be a nondecreasing function solving

φ′′ +
D − 1

r
φ′ = f(φ) in (0, R). (2.8)

Then, given 0 < r1 < r2 < R,

1√
2

∫ φ(r2)

φ(r1)

1√
F (s)− F (φ(r1))

ds ≥ 1
D − 2

r1

(
1−

(
r1

r2

)D−2
)

if D 6= 2, and
1√
2

∫ φ(r2)

φ(r1)

1√
F (s)− F (φ(r1))

ds ≥ r1 ln
r2

r1

if D = 2.
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Proof. For r ∈ (r1, r2), (2.8) is equivalent to

d

dr

(
rD−1φ′

)
= rD−1f(φ). (2.9)

Multiplying the above equation by rD−1φ′ and integrating between r1 and r, we
obtain

1
2
r2D−2 (φ′(r))2 ≥ 1

2

(
r2D−2 (φ′(r))2 − r2D−2

1 (φ′(r1))
2
)

=
∫ r

r1

t2D−2f(φ(t))φ′(t) dt

≥ r2D−2
1 (F (φ(r))− F (φ(r1))) .

So,
1√
2

φ′(r)√
F (φ(r))− F (φ(r1))

≥
(r1

r

)D−1

.

Integrating the above equation between r1 and r2, we obtain the desired result. 2

Now assume that (1.2) holds for some α > 0. If D 6= 2, assume temporarily
that Φ(α) < 1

|D−2| . Applying Proposition 2.1 with u = 0 and u = α, let u be the
minimal solution relative to u of

{
∆u = f(u) in B1,

u = α on ∂B1.

Using Remark 2.4 and letting α̃ = u(0), φ(r) := u(x) for r = |x| solves (2.8),
subject to the initial conditions φ(0) = α̃ and φ′(0) = 0. φ can thus be extended
on some maximal interval (0, R). Assume temporarily that R < ∞. Then u is a
boundary blow-up solution on BR. Indeed, by the definition of R, we must have
either φ(R) = +∞ or φ′(R) = +∞. In the latter case, multiply (2.8) by φ′ and
integrate between 0 and r to obtain that 1

2 (φ′)2 ≤ F (φ). Hence F (φ(R)) = +∞,
φ(R) = +∞ and u is a boundary blow-up solution. It remains to prove that R < ∞.

Assume by contradiction that R = ∞. Apply Lemma 2.7 between r1 = 1 and
r2 > 1 :

Φ(α) ≥ 1
D − 2

(
1−

(
1
r2

)D−2
)

if D ≥ 3 and
Φ(α) ≥ ln r2

if D = 2. Letting r2 converge to ∞, we obtain a contradiction if either D = 2 or
Φ(α) < 1

|D−2| .
If D 6= 2 and Φ(α) ≥ 1

|D−2| , choose K > 0 so large that 1
K Φ(α) < 1

|D−2| . The
above proof provides a boundary blow-up solution u of (1.1) on some ball BR, when
f is replaced by K2f . ũ(x) := u(x/K) is then a boundary blow-up solution of (1.1)
with nonlinearity f on BRK . 2
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Remark 2.8 Let B be a ball of radius R and assume u ∈ C(B̄) is such that
∆u ≥ f(u) in B. Assume (1.2) holds for some α ≥ supB u and let u = α. Using
Proposition 2.1, let u be the minimal solution relative to u of

{
∆u = f(u) in B,

u = α on ∂B.

Repeating the above proof, we conclude that u can be extended to a radially sym-
metric boundary blow-up solution on some ball B̃ of radius R̃ > R, satisfying u ≥ u
in B.

2.3 Existence of solutions on small balls

Assume (1.3) holds. By Theorem 1.1, (1.1) has a solution on some ball, and we
may define

R0 := inf{R > 0 : (1.1) has a solution in BR}
We assume by contradiction that R0 > 0. Let (βn) be a sequence of real numbers
increasing to infinity and satisfying

lim
βn→∞

Φ(βn) = 0.

Applying Proposition 2.1 with u = 0 and u = βn, let un be the minimal solution
relative to u of {

∆un = f(un) in BR0/2,

un = βn on ∂BR0/2.

By Remark 2.4, letting αn = un(0), φn(r) := un(x) for r = |x| solves (2.8) with
initial conditions φn(0) = αn and φ′n(0) = 0. By definition of R0, φn can be
extended so that φn remains a solution of (2.8) in (0, R0). Now apply Lemma 2.7
with r1 = R0/2 and r2 = R0 :

Φ(βn) ≥ 1
D − 2

R0

2

(
1−

(
1
2

)D−2
)

if D ≥ 3, and

Φ(βn) ≥ R0

2
ln(2)

if D = 2. Passing to the limit as n → ∞, we obtain a contradiction in both cases.
We have just proved that

inf{R > 0 : (1.1) has a solution in BR} = 0. (2.10)

Remark 2.9 Let B be a ball of radius R and assume u ∈ C(B̄) is such that
∆u ≥ f(u) in B. Using Remark 2.8 and working as above, one can show that
inf{R̃ > R : (1.1) has a solution u in BR̃ such that u ≥ u in B} = R.
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2.4 Existence of solutions on smooth domains

We assume here that (1.3) is valid. Applying Proposition 2.1 with u = 0 and u = N ,
N ∈ N, let uN be the minimal solution relative to u of (2.5) with g ≡ N . For x ∈ Ω,
choose a ball B(x, r) ⊂ Ω such that there exists a boundary blow-up solution ur

on B(x, r). This is always possible since (2.10) holds. Applying the Minimality
Principle 2.2 with v̄ = ur, we conclude that 0 ≤ uN ≤ ur in B(x, r). In particular,
the sequence (uN ) is uniformly bounded in B(x, r/2).

Let K denote an arbitrary compact subset of Ω. Covering K by finitely many
balls B(xi, ri/2), we conclude that (uN ) is uniformly bounded on K by a constant
depending only on K and f . Applying the Minimality Principle 2.2 with v̄ = uN+1,
we can also infer that (uN ) is a nondecreasing sequence. Using these two facts
and elliptic regularity, we conclude that (uN ) converges to a function u solving
∆u = f(u) in Ω.

Fix a point x0 ∈ ∂Ω and an arbitrary sequence (xk) in Ω converging to x0.
Then, since u ≥ uN ,

lim inf
k→∞

u(xk) ≥ lim inf
k→∞

uN (xk) = N.

Letting N converge to infinity, we conclude that u is a boundary blow-up solution
of (1.1) in Ω.

2.5 Proof of Theorem 1.1 completed.

By Section 2.2, we know that if (1.2) holds, there exists a blow-up solution on
some ball. Conversely, assume that u > 0 solves (1.1) on some ball B of radius
R centered at the origin. By Corollary 2.5, we may always assume that u is the
minimal solution relative to u = 0 of (1.1). In particular u is radial and we define
φ(r) = u(x) for r = |x|, so that φ solves (2.9) in (0, R). Multiplying (2.9) by rD−1φ′

and integrating between 0 and r, we obtain

1
2
r2D−2φ′(r)2 =

∫ r

0

t2D−2f(φ(t))φ′(t) dt ≤ r2D−2 [F (φ(r))− F (φ(0))] .

Integrating once more between 0 and R,

0 ≤
∫ R

0

φ′(r)√
2 [F (φ(r))− F (φ(0))]

dr ≤ R, (2.11)

which implies (1.2) with α = φ(0).

2.6 Proof of Theorem 1.4 completed.

By Section 2.4, we know that if (1.3) holds, there exists a blow-up solution on any
domain. Conversely, given n ∈ N, assume that un > 0 solves (1.1) on the ball B
of radius 1/n centered at the origin. By Corollary 2.5, we may always assume that
un is the minimal solution relative to u = 0. In particular un is radial. Let now
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βn = un(0). We claim that (βn) is unbounded. Taking a subsequence if necessary,
we then have that limn βn = ∞ and (1.3) follows from (2.11) applied with R = 1/n.

It remains to prove that (βn) is unbounded. If not, up to a subsequence, (βn)
converges to some β ≥ 0. By (2.11) applied with R = 1/n, we have

0 ≤
∫ ∞

βn

dt√
2 [F (t)− F (βn)]

dr ≤ 1/n.

By Fatou’s lemma, we conclude that
∫ ∞

β

dt√
2 [F (t)− F (β)]

dr = 0,

which is not possible.

3 Asymptotic behaviour of solutions

3.1 Blow-up rate of radially symmetric solutions

Proposition 3.1 Assume that f satisfies the Keller-Osserman condition (1.2). As-
sume φ is a radially symmetric and monotone boundary blow-up solution on the unit
ball. Then, for r ∼ 1, ∫ +∞

φ(r)

dt√
F (t)

∼
√

2(1− r) (3.12)

Proof. Multiplying (2.9) by rD−1φ′ and integrating by parts, we easily obtain that
given r ∈ (0, 1),

(φ′)2 (r)
2

= F (φ(r))−Gφ(r), (3.13)

where

Gφ(r) =
2D − 2

r

∫ r

0

(s

r

)2D−1

F (φ(s))ds.

We claim that
Gφ(r) = o(F (φ(r))), as r → 1. (3.14)

Indeed, let ε > 0. Then, since F is nondecreasing,

Gφ(r)
F (φ(r))

=
2D − 2

r

∫ 1−ε

0

(s

r

)2D−1 F (φ(s))
F (φ(r))

ds

+
2D − 2

r

∫ r

1−ε

(s

r

)2D−1 F (φ(s))
F (φ(r))

ds.

≤ C
F (φ(1− ε))

F (φ(r))
+ Cε.
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Letting r → 1 and then ε → 0, we obtain the desired result. Returning to (3.13),
we obtain

1− φ′√
2F (φ)

= 1−
[
1− Gφ

F (φ)

]1/2

.

Combining this with (3.14), it follows that for r ∼ 1,

1− φ′√
2F (φ)

∼ Gφ

2F (φ)

and, integrating between r and 1,

(1− r)−
∫ ∞

φ(r)

dt√
2F (t)

∼
∫ 1

r

Gφ(s)
2F (φ(s))

ds= o(1),

which implies (3.12).

3.2 Blow-up rate of solutions on smooth domains

Let u be a blow-up solution on a domain Ω, which satisfies an interior and an
exterior sphere condition at any boundary point. Fix x0 ∈ ∂Ω and let BR ⊂ Ω
denote a small ball which is tangent to ∂Ω at x0. Fix η ∈ (0, 1). Let u := u|BηR

.
By Remark 2.8, there exists a radial boundary blow-up solution v defined on some
ball B̃ ⊃ BηR, such that v ≥ u in BηR. Let K > 0 such that KB̃ = BR and let
vK(x) := v((x− x1)/K + x1), where x1 is the center of BR. Then vK solves

∆vK =
1

K2
f(vK) in BR,

vK = +∞ on ∂BR.

Since u(x1) ≤ v(x1) = vK(x1), Proposition 3.1 implies that

K

∫ +∞

u(x1)

dt√
F (t)

≥ K

∫ +∞

vK(x1)

dt√
F (t)

∼
√

2R.

Letting R → 0, we then have

K lim inf
x→x0

∫ +∞
u(x)

dt√
F (t)

δ(x)
≥
√

2.

By Remark 2.9, we may take K arbitrarily close to 1/η. Also, 0 < η < 1 was chosen
arbitrarily. So, letting K, η → 1, we finally obtain

lim inf
x→x0

∫ +∞
u(x)

dt√
F (t)

δ(x)
≥
√

2.

Choose another ball BR′ ⊂ RN \ Ω̄ which is tangent to ∂Ω at x0 and a concentric
ball BR′′ with R′′ > R′ so large that Ω ⊂ BR′′ . Finally, let A = BR′′ \ BR′ . Let
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v denote the minimal boundary blow-up solution (relative to u = 0) on A. By the
Minimality Principle 2.5, we deduce that u ≥ v in Ω. Applying Proposition 3.1
(which still holds on an annulus) with v, we conclude that

lim sup
x→x0

∫ +∞
u(x)

dt√
F (t)

δ(x)
≤ lim sup

x→x0

∫ +∞
v(x)

dt√
F (t)

δ(x)
≤
√

2.

This finishes the proof of Theorem 1.5. More can be said about the asymptotic
behaviour of solutions provided F satisfies some extra growth assumption :

Lemma 3.2 Let u, v denote two radially symmetric boundary blow-up solutions
defined on the unit ball B. Assume there exist β > 0 and M > 0 such that F (v)

v2 ≥
β2 F (u)

u2 whenever M ≤ u ≤ v. Then u(r) ∼ v(r) on ∂B.

Proof. We recall from the proof of of Proposition 3.1 that for φ a radially symmetric
boundary blow up solution and for r ∼ 1,

(1− r)−
∫ ∞

φ(r)

dt√
2F (t)

≤ C

∫ 1

r

Gφ(s)
F (φ(s))

ds ≤ C

∫ 1

r

φ(s)√
F (φ(s))

ds.

Using
˙φ(s)√

2F (φ(s))
∼ 1, we then obtain that, introducing K(r) such that 1 − r =

∫∞
K(r)

dt√
2F (t)

,

∫ φ(r)

K(r)

dt√
2F (t)

≤ C

∫ ∞

φ(r)

t

F (t)
dt. (3.15)

Since F is increasing, we thus obtain

(
1− K(r)

φ(r)

)
≤ C

√
F (φ(r))
φ(r)

∫ ∞

φ(r)

t

F (t)
dt. (3.16)

Since F (v)
v2 ≥ β2 F (u)

u2 for u ≤ v large enough, (3.16) implies that
(

1− K(r)
φ(r)

)
≤ C

β

∫ ∞

φ(r)

dt√
F (t)

.

The classical Keller-Osserman (1.2) condition gives the result. 2

Corollary 3.3 Assume either that f is convex on some interval [a,+∞) or that
f(t)/t is nondecreasing on [a, +∞). Then the result of the previous lemma holds.

Proof. Assume f is convex in [a,+∞) and let G(t) = F (t+a)−F (a)−f(a)t. Then
G(0) = G′(0) = 0 and G′ is convex in R+. So G(t)/t2 is nondecreasing, i.e.

t → F (t + a)− L(t)
t2
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is nondecreasing, where L(t) = F (a)+f(a)t is affine. Observe that limt→∞ F (t)/t2 =
+∞ since the Keller-Osserman condition (1.2) implies

u

2
√

F (u)
≤

∫ u

u/2

dt√
F (t)

= o(1) as u →∞.

It follows that there exists β > 0 such that F (v)
v2 ≥ β2 F (u)

u2 for u ≤ v large enough
and we may apply Lemma 3.2. The case where f(t)/t is nondecreasing on [a,+∞)
is similar, so we skip it.

4 The uniqueness result

Lemma 4.1 Assume that f is nondecreasing on [0, +∞) and convex in a neigh-
borhood of +∞ (say [a, +∞)). Consider two radially symmetric boundary blow-up
solutions such that u(r) ≤ v(r) on B(0, R). Then, in fact, u = v everywhere.

Proof. Set R = 1 for the sake of simplicity. Since f is nondecreasing, either u(0) =
v(0) (and then u = v everywhere) or u(r) < v(r) everywhere since ∂(rD−1(v̇− u̇)) =
rD−1(f(v) − f(u)), so the map r → v(r) − u(r) is nondecreasing. Assume then
u(0) < v(0).

Let ε > 0. Consider the set ωε = {r ∈ [0, 1);∀s < r, (1 + ε)u(s) < v(s)}. If ε
is small enough, 0 ∈ ωε. Due to lemma 3.2, R = 1 6∈ ωε since u ∼ v close to the
boundary. Then introduce r0

ε = sup ωε, which satisfies 0 < r0
ε < 1. We now have

v(0)− u(0) ≤ v(r0
ε)− u(r0

ε) = εu(r0
ε). (4.17)

Then either r0
ε converges to R = 1 when ε → 0 or, letting ε → 0, u(0) = v(0) and

the proof is over.
Now introduce a such that f is convex on [a,+∞). Introduce R0 such that

u(r) ≥ a for r ≥ R0. Then for ε small enough, r0
ε > R0. Set w(r) = (1 + ε)u(r).

Then, on the annulus R0 < s < r0
ε , using the convexity

∆(v − w) = f(v)− (1 + ε)f(u)

≥ f(v)− (1 + ε)(f(w)− f(a)
u− a

w − a
− (1 + ε)f(a)

≥ f(v)− f(w) +
ε

w − a
(af(w)− wf(a)).

(4.18)

Observe now that the map X → Xf(a)−af(X)
X−a is majorized by some constant C for

X ≥ a. Then introducing χ that satisfies −∆χ = 1 with homogeneous Dirichlet
condition at R = 1 (χ(1) = 0)

∆(v − w − Cεχ) ≥ 0 (4.19)

and by the maximum principle, for any r, R0 < r < r0
ε ,
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v(r)− w(r)− Cεχ(r) ≤ max(−Cεχ(r0
ε), v(R0)− w(R0)− Cεχ(R0)). (4.20)

Then letting ε → 0 we obtain that for any fixed r such that R0 < r < 1,

v(r)− u(r) ≤ v(R0)− u(R0). (4.21)

Since the map r → v(r) − u(r) is nondecreasing, this implies that v(r) − u(r) is
constant on [R0, 1). By standard ODE theory, this implies that v and u coincide
everywhere on [0, 1]. 2

Remark 4.2 Since f is nondecreasing, there exists U, U the minimal and the max-
imal boundary blow-up solutions of the problem (the latter can be obtained e.g. as
the monotone limit of u(R) as R → 1−, where u(R) denotes the minimal boundary
blow-up solution on BR). Clearly both U and U are radial and they coincide by the
previous lemma. Since any solution u of the problem must stay between U and U ,
Theorem 1.6 follows. Alternatively, according to a result of Poretta-Veron [15], any
boundary blow-up solution is radially symmetric if f is convex in a neighborhood
of +∞, whence again Theorem 1.6 follows from the previous lemma.

Remark 4.3 The previous lemma is still valid if we substitute the assumption
f(u)

u increasing in a neighborhood of infinity to the convexity assumption. Since the
proofs are easier they are left as an exercise to the reader.

5 Discrete equations

We are concerned with finite difference approximations of (1.1) when D = 1 or
D = 2 on a cube or a ball. After introducing some notation, we observe that
both the maximum principle and the minimality principle extend to the case of
finite difference operators. We conclude this section with some theoretical error
estimates, assuming that f is a nondecreasing function.

5.1 Finite differences

To begin with, consider the interval [−1, 1] or the unit square [−1, 1]2. Consider a
uniform grid Ωh which mesh size is h = 1

L for some integer L. The nodes on the grid
are respectively jh if D=1, −L ≤ j ≤ L, or (ih, jh) if D = 2, with −L ≤ i, j ≤ L.

The discrete Laplace operator is then defined on each point/node of the grid
respectively by

(∆hU)j =
1
h2

(−2Uj + Uj+1 + Uj−1) (5.22)

if D = 1, and

(∆hU)i,j =
1
h2

(−4Ui,j + Ui,j+1 + Ui,j−1 + Ui+1,j + Ui−1,j) (5.23)
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if D = 2. In the above, U is a vector in R2L+1 (or R(2L+1)2 in 2D) with components
Uj ' u(jh) (or Ui,j ' u(ih, jh)). If D = 2, we then solve ∆hU = f(U), i.e.
(∆hU)i,j = f(Ui,j) for all interior nodes (i, j) and set U±L,j = Ui,±L = N at all
boundary nodes, where N is a fixed large constant. We work accordingly when
D = 1.

It is standard to prove that the matrix ∆h has positive inverse, i.e. the entries
of the inverse matrix are positive. Therefore, the maximum principle is valid (see
[4]). Actually, if U satisfies ∆hU ≤ 0 on the interior nodes of the grid and U ≥ 0 on
the boundary, then U ≥ 0 everywhere. Here and throughout this section we write
U ≥ 0 iff Ui,j ≥ 0 for all (i, j) nodes of the grid. We shall use the same notation for
B a matrix: B ≥ 0 iff the entries of B are all non negative.

When working on the unit ball, we use a slightly modified scheme. Focusing on
radially symmetric functions, we approximate the equation

1
r

∂

∂r
(r

∂u

∂r
) = f for r ∈ (0, 1). (5.24)

Discretize [0, 1] by setting Lh = 1, 0 ≤ j ≤ L. At j = L set UL = N (boundary
condition). For 0 < j < L solve

1
r
∂(r∂u) ' 1

jh
D+(jhD−U) =

−2Uj + Uj+1 + Uj−1

h2
+

Uj+1 − Uj

jh2
= Fj , (5.25)

where (D+U)j = Uj+1−Uj

h , (D−U)j = Uj−Uj−1
h . It remains to define the equation

at j = 0. For that purpose, we use the symmetry property u(h) = u(−h) and the
approximation u̇(0)

0 = ü(0) to set

4
h2

(−U0 + U1) = F0.

This approximation of the Laplace operator satisfies the maximum principle. In-
deed, it can be easily checked that if Fj ≥ 0 then j → Uj is increasing. The
maximum principle follows promptly.

5.2 Computing an approximation

We aim to solve the following problem

∆huh = f(uh) in Ω,

uh = N on ∂Ω,
(5.26)

for N large enough.
We expect that uh is an approximation for u, the minimal boundary blow up

solution corresponding to u = 0. As in Proposition 2.1, uh is obtained by monotone
iteration, starting from the discrete subsolution 0. We claim that Proposition 2.1
and Corollary 2.2 are valid for the finite difference approximation. The proof follows
the guidelines of the continuous case and is left as an exercise to the reader.
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An approximation of the solution to problem (5.26) is recursively obtained by
the following discrete iterative scheme:

Consider uk ∈ R(2L+1)D, where L = 1
h , recursively defined by

u0 = 0 and for k ≥ 0,

{
(∆h − ΛNId)uk+1 = f(uk)− ΛNuk in Ωh

uk+1 = N on ∂Ωh

(5.27)

where ΛN = sup[0,N ] f
′.

Therefore the error between u, the minimal boundary blow up solution, and uk

the kth iterate of (5.27) can be split as follows:

Ih(u)− uk = Ih(u− uN ) + (Ih(uN )− uh) + (uh − uk) (5.28)

where Ih is the interpolation operator defined by Ih(u)i = u(xi) when D = 1
(respectively by Ih(u)a = u(a) when D = 2 for a node a = (ih, jh) on the grid),
and uN is the solution of {

∆u = f(u) in Ω,

u = N on ∂Ω.
(5.29)

5.3 Error estimate

Throughout this section, we assume that f is a convex increasing function and that
Ω = [−1, 1]D. We first bound from above the rate of convergence of the algorithm
(5.27).

Lemma 5.1 Let uk ∈ R(2L+1)D be given by (5.27) and uh = limk→∞ uk. Then,
there exist constants C = C(D), µ = µ(D) > 0 and λ = λ(f) < ΛN such that

‖uk − uh‖`∞ ≤ C

(
1− λ

ΛN

)k

min

(
1,

1
hD/2

[
1− µ

ΛN
+

µ2

Λ2
N

]k
)
‖u0 − uh‖`∞ .

(5.30)

Proof. In the sequel let us denote by a a node of the grid (that is a = ih in 1D or
a = (ih, jh) in 2D). (uk) is a nondecreasing sequence in R(2L+1)D (i.e. uk

a ≤ uk+1
a

for each node a). By the mean value theorem, there exists θa ∈ (uk
a, (uh)a) such

that
f(uk

a)− f((uh)a) = f ′(θa)(uk
a − (uh)a). (5.31)

Therefore

∣∣∣∣
(

(uh)a − f((uh)a)
ΛN

)
−

(
(uk)a − f((uk)a)

ΛN

)∣∣∣∣ ≤ (1− λ

ΛN
)((uh)a − uk

a), (5.32)

where λ = inf f ′.
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On the other hand,

uh − uk =
(

Id− ∆h

ΛN

)−1 ((
uh − f(uh)

ΛN

)
−

(
uk − f(uk)

ΛN

))
, (5.33)

where f(u) denotes the vector with components f(u)a = f(ua). The key argument
is to observe that the matrix Id− ∆h

ΛN
satisfies the maximum principle. Therefore,

0 ≤ uh − uk+1 ≤
(

1− λ

ΛN

)(
Id− ∆h

ΛN

)−1

(uh − uk), (5.34)

where inequalities hold component by component. We thus obtain that

‖uh − uk‖`∞ ≤
(

1− λ

ΛN

)k
∥∥∥∥∥
(

Id− ∆h

ΛN

)−k
∥∥∥∥∥
L(`∞)

‖uh − u0‖`∞ . (5.35)

On the one hand, the maximum principle implies that
∥∥∥∥∥
(

Id− ∆h

ΛN

)−k
∥∥∥∥∥
L(`∞)

≤ C (5.36)

for some constant C depending only on the dimension D.
Also, since the spectrum of−∆h lies in a segment [µ, µ

h2 ] (see [4]) and 1√
(2/h+1)D

‖·
‖`2 ≤ ‖ · ‖`∞ ≤ ‖ · ‖`2 in R(2L+1)D, we get

||(Id− ∆h

ΛN
)−k||L(`∞) ≤ Ch−D/2||(Id− ∆h

ΛN
)−k||L(`2) = Ch−D/2

(
1

1 + µ
ΛN

)k

.

(5.37)
Using that 1

1+ µ
ΛN

≤ 1− µ
ΛN

+ µ2

Λ2
N

and collecting (5.35), (5.36) and (5.37), the proof

is over. 2

We now provide an upper bound for uh − Ih(uN ).

Lemma 5.2 Assume f is convex. Let uh be the solution of (5.26) and uN be the
solution of (5.29). Then,

‖uh − Ih(uN )‖`∞ ≤ Ch2α(N, f) (5.38)

where α(N, f) = ‖u(4)
N ‖L∞ is a constant depending only on N and f .

Proof. For the sake of simplicity we will denote Ih(uN ) by uN , this introduces no
confusion.
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We write down the proof for the 2D problem, leaving the 1D case as an exercise
to the reader. Let a = (ih, jh) be a node on the grid. By the mean value theorem,
for each node a, there exist ξ, η in R2 such that

|ξ − a| < h and |η − a| < h, (5.39)

and

∆h(uN )a − (∆uN )a = ch2(
∂4u

∂x4
(ξ) +

∂4u

∂y4
(η)). (5.40)

Therefore
{

∆h(uh − uN )a = f(uh)a − f(uN )a − ch2(∂4u
∂x4 (ξ) + ∂4u

∂y4 (η)) in Ωh

(uh − uN )a = 0 on ∂Ωh.
(5.41)

Consider ω = uh − uN . Then working as in the previous lemma, we obtain

wa =
[
(∆h + ΛN )−1

(
Id−D

(
f ′(θ)
ΛN

))
ΛN

]
ch2

(
∂4u

∂x4
(ξ) +

∂4u

∂y4
(η)

)
(5.42)

where θa ∈ (uN (a), (uh)a).
We therefore obtain

‖wa‖`∞ ≤ 1
ΛN

4
1 + 4

ΛN

‖∆−1
h ‖L(`∞)Ch2‖u(4)

N ‖L∞ , (5.43)

where ‖u(4)
N ‖L∞ = max|α|≤4(‖∂αuN‖L∞). 2

Remark 5.3 When D = 1 and f(u) = up with p ≥ 2, the constant α(N, f) is given
by

α(N, f) = ‖u(4)
N ‖L∞ =

p(3p− 1)
p + 1

N2p−1.

5.4 Error estimate for‖u− uN‖
Assume here that the Sharpened Keller-Osserman condition (1.3) is valid. Consider
then a sequence (αN ) such that Φ(αN ) converges towards 0. Consider the minimal
solution uN of

∆uN = f(uN ) in Ω = B(0, 1),
uN = αN on ∂Ω.

(5.44)

Then one may wonder how uN approximates the minimal boundary blow up solution
u defined on the unit ball. We first state a qualitative result
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Proposition 5.4 There exists RN such that uN is a boundary blow up solution on
B(0, RN ). Moreover

RN − 1 ∼ 1√
2

∫ +∞

αN

dt√
F (t)

. (5.45)

Remark 5.5 This proposition shows that when we plot the approximation uN , we
plot in fact a boundary blow-up solution on a ball that is close to the unit ball.

Let us proceed to the proof in the case where D ≥ 3. The cases D = 1, 2 are
very similar and then omitted. Assume that uN extends to RD. Then by Lemma
2.7

1√
2

∫ uN (r)

uN (1)

dt√
F (t)− F (uN (1))

≥ 1
D − 2

(1− (
1
r
)D−2). (5.46)

Here we have used that uN is radially symmetric. Therefore since uN (1) = αN ,
Φ(αN ) ≥ 1

D−2 (1 − ( 1
r )D−2). N → +∞ leads to a contradiction. The estimate

(5.45) comes from Proposition 3.1. 2

Remark 5.6 Observe that if f(u) = up, then uN (r) = R
− 2

p−1
N u(rRN ). In that

case, 0 ≤ u(r)− uN (r) ≤ C(RN − 1)(u̇(r) + u(r)).The inequality is sharp for some
numerical constant C. To prove the estimate in a more general context, we need
extra hypotheses.

Definition 5.7 Consider g : [0, +∞) → [0,+∞) a function. We say that g is
strongly increasing if the function

ρ(λ) = inf
u≥0

g(λu)
g(u)

is a C1 increasing function on [1,+∞) that satisfies ρ̇(1) 6= 0.

A strongly increasing function is increasing in the usual sense. g(u) = up, p > 0, is
strongly increasing; g(u) = ln(u + 1) is not.

We now state and prove

Proposition 5.8 Assume that f(u)
u is strongly increasing. Then

0 ≤ u(r)− uN (r) ≤ C(RN − 1)(u̇(r) + u(r)).

Proof. v(r) = λuN (rRN ) is a blow up function on the unit ball. We have

∆v = λR2
Nf

( v

λ

)
≤ R2

N

ρ(λ)
f(v). (5.47)

For N large enough, we choose λN close to 1 such that ρ(λN ) = R2
N . Then v is

a blow-up supersolution to (1.1). Since u is the minimal blow up solution, then
u(r) ≤ v(r). Therefore
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0 ≤ u(r)− uN (r) ≤ u(r)− 1
λN

v(
r

RN
) ≤

(RN − 1)u̇(r) + (1− 1
λN

)u(rR−1
N ) ≤ C(RN − 1)(u̇(r) + u(r)),

(5.48)

since (1− 1
λN

) ≤ 2RN−1
ρ̇(1) . 2

6 Numerical computations

In this section, we present some numerical results obtained with our method of
approximation.

Remark 6.1 At this stage, we would like to point out that our method is self-
contained, and does not use the knowledge of the boundary blow up behavior of the
solution. In fact, as in [11], one can introduce another approximate problem such
as taking Ωε ⊂ Ω where dist(Ω,Ωε) ≤ ε, and solve the problem

{
∆uε = f(uε) in Ωε,

uε(x) = K(x) on ∂Ωε,
(6.49)

where
1√
2

∫ +∞

K(x)

dt√
F (t)

= dist(x, ∂Ω).

We discuss our numerical results successively on three examples:

• f(u) = u2 (i.e. f(u)
u is increasing),

• f(u) = u2(2 + cos u),

• f(u) = u2(1 + cos u).

6.1 f(u) = u2

Since f(u)
u is increasing, on any domain we have a unique boundary blow up solution

(see e.g. [1] and references therein).
We see in Figure 1 that Φ is a strictly decreasing function.
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Figure 1: Φ when f(u) = u2
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Figure 2: Convergence of uh(0) to u(0) versus h

For the sake of completeness, we plot in 1D the values of uh(0) for several values
of h and we compare to theoretical results (see Figure 2 and Proposition 5.8).

Remark 6.2 The value of u(0) is obtained by solving

1√
2

∫ +∞

u(0)

dt√
F (t)− F (u(0))

= 1.

6.2 f(u) = u2(2 + cos u)

This function f satisfies the Sharpened Keller-Osserman condition (1.3) (see the
Appendix for a proof in a similar case).

Figure 3 below shows that Φ(α) tends to 0 when α tends to +∞ (then the
Sharpened Keller-Osserman condition is valid).

But Φ is not a decreasing function ; for instance for c ≈ 0.49 there exist α 6= β
such that Φ(α) = Φ(β) = c. Therefore, at least in 1D, uniqueness does not hold.

Remark : The uniqueness result for f(u) = u2(2 + cos u) in B(0, 1) ⊂ RD is still an
open question for D ≥ 2.

We now plot an approximation of the minimal boundary blow-up radial solution
on B(0, 1) ⊂ R2.
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Figure 3: Φ when f(u) = u2(2 + cos(u))

6.3 f(u) = u2(1 + cos u)

We first state

Proposition 6.3 The function f(u) = u2(1+cos u) satisfies the Sharpened Keller-
Osserman condition (1.3). Moreover,

lim
α→(2k+1)π

Φ(α) = +∞.

For a proof, see the Appendix (Proposition 7.1).

Figure 4 shows that for any domain, there exist an infinite sequence of boundary
blow up solutions.
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Figure 4: Φ when f(u) = u2(1 + cos(u))

When D = 1, this follows from the fact that Φ(α) = R admits an infinite number
of solutions α. When D ≥ 2, fix an integer m and observe that αm = (2m + 1)π
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is a subsolution. Let um denote the minimal boundary blow-up solution relative
to u = αm. Infinitely many um’s must be distinct. Indeed, choose m1 such that
αm1 > u0(0). Then um1(0) ≥ αm1 > u0(0). Repeating this process inductively
yields infinitely many distinct solutions umk

.

We plot in figure 5 approximations of different boundary blow-up solutions on
the interval [−1, 1].
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Figure 5: Some solutions when f(u) = u2(1 + cos u)

Figure 6 shows two radial approximations of different boundary blow up solu-
tions on the unit ball in R2.

Two radial solutions when f(u)=u  (1+cos(u))
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Figure 6: Solutions on the disk when f(u) = u2(1 + cos u)
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7 Appendix

7.1 Regarding the two forms of the Keller-Osserman condi-
tion

We start out by showing that the two forms of the Keller-Osserman condition are
equivalent.

Proof of Proposition 1.2. Assume that f satisfies the Keller-Osserman condition.
Up to translation, we may always assume that

∫ +∞

0

dt√
F (t)

< +∞. (7.50)

Consider the change of variable u = F (t). Then, letting g(u) = (F−1)′(u),
(7.50) reads also

∫ +∞

0

g(u)√
u

du < +∞, (7.51)

whereas (1.3) can be rewritten as

lim inf
β→+∞

∫ +∞

β

g(u)√
u− β

du = 0. (7.52)

First step: we claim that

lim sup
β→+∞

∫ +∞

2β

g(u)√
u− β

du = 0. (7.53)

Observe that u ≤ 2(u− β) and then
∫ +∞

2β

g(u)√
u− β

du ≤
√

2
∫ +∞

2β

g(u)√
u

du.

Second step: it remains to prove that

lim inf
β→+∞

∫ 2β

β

g(u)√
u− β

du = 0. (7.54)

We argue by contradiction. Let us observe that

∫ 2β

β

g(u)√
u− β

du =
1
2

∫ √
β

0

g(u2 + β)du.

Let us assume that there exists C > 0 such that for any β

0 < C ≤
∫ β

0

g(u2 + β2)du. (7.55)
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Integrate this for β between 0 and R

0 < CR ≤
∫ R

0

∫ R

0

g(u2 + β2)χu≤βdudβ. (7.56)

The right hand side of this inequality is bounded by an integral on an half disc
of radius R. By symmetry and using polar coordinates

0 < CR ≤ π

∫ R

0

g(r2)rdr =
π

2

∫ R2

0

g(s)ds. (7.57)

Remember that g is the derivative of F−1. Thus,

0 < CR ≤ π

2
F−1(R2). (7.58)

Setting ξ = F−1(R2) this leads to F (ξ) ≤ Cξ2. This contradicts the Keller-
Osserman condition (1.2). 2

Next, we consider the special case f(u) = u2(1 + cos u)

Proposition 7.1 Let f(u) = u2(1 + cos u). Then,

lim sup
α→∞

Φ(α) = ∞,

lim inf
α→∞

Φ(α) = 0.

Proof. Set α = (2k + 1)π. For t close to α, F (t) − F (α) ∼ α2(t − α)2. Therefore
Φ(α) = +∞. In particular, lim supα→∞ Φ(α) = ∞.

7.2 Minimality Principle

We present here the proof of Corollary 2.2 and Corollary 2.5.

Proof of Corollary 2.2. Let u, u be the sub and supersolution given in the statement
of Proposition 2.1. Let (I, >) denote the set of all finite families containing u of
supersolutions of (2.5) which stay above u, ordered by inclusion : i ∈ I if there
exist n ∈ N and supersolutions vk ∈ C(Ω̄), 1 ≤ k ≤ n (i.e. (2.4) holds when u is
replaced by vk) with vk ≥ u, such that i = {u, v1, . . . , vn}.

I is non-empty since {u} ∈ I. I is filtrating increasing, i.e. if i1, i2 ∈ I there
exists i3 ∈ I such that i3 > i1, i2 (take e.g. i3 = i1 ∪ i2). We prove that given
i = {u, v1, . . . , vn} ∈ I there exists a solution ui ∈ C(Ω̄) of (2.5) such that ui ≤ v
for all v ∈ i. Let indeed u0 denote the solution given by Proposition 2.1. Following
[6], since u ≤ u0 ≤ u, u0 is also a solution of (2.5), when f is replaced by the
truncation f0 ∈ C(Ω̄× R) defined by

f0(x, u) =





f(u(x)) if u < u(x),
f(u) if u(x) ≤ u ≤ u(x),

f(u(x)) if u > u(x).
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In [6], the authors prove that in fact any solution u of (2.5) with nonlinearity
f0 satisfies u ≤ u ≤ u (and solves the problem with the original nonlinearity
f). For convenience, we reproduce here the argument of Clément and Sweers :
take any solution u of (2.5) with nonlinearity f0. Assume by contradiction that
Ω+ := {x ∈ Ω : u(x) > u(x)} is non-empty. Working, if necessary, on a connected
component of Ω+, we may also assume that Ω+ is connected. For x ∈ ∂Ω+, either
u(x) = u(x) or x ∈ ∂Ω, so that u(x) = g(x) ≤ u(x). Hence,

{
∆(u− u) ≤ f(u)− f0(x, u) = 0 in D′(Ω+),

u− u ≥ 0 on ∂Ω+.

By the (weak) Maximum Principle, u ≥ u in Ω+, which is a contradiction. Hence,
u ≤ u and we can prove similarly that u ≥ u.

Define now the truncation f1 ∈ C(Ω̄× R) of f0 associated to v1 by :

f1(x, u) =





f0(x, u(x)) if u < u(x),

f0(x, u) if u(x) ≤ u ≤ v1(x),

f0(x, v1(x)) if u > v1(x).

Clearly, u and v1 are a sub and a super solution of (2.5) with nonlinearity f1.
Applying Proposition 2.1 (which still holds for non-autonomous nonlinearities, see
[6]), we can thus construct a solution u1 of (2.5) with nonlinearity f1, satisfying
u ≤ u1 ≤ v1. Clearly, u1 is a solution of the problem with nonlinearity f0 and, as
we mentioned earlier, we must have u1 ≤ u. Repeating the process inductively, we
obtain a solution ui := un such that u ≤ ui ≤ u, v1, . . . , vn.

Note that ui may not be unique. Nevertheless, using the Axiom of Choice on
the set of all such solutions, we can construct a well-defined generalized sequence
(ui)i∈I , contained in the set K of all solutions u satisfying u ≤ u ≤ u.

By standard elliptic estimates, K is a compact subset of C(Ω̄); so there exists a
generalized subsequence (uφ(j))j∈J converging to a solution u of (2.5).

Choose now an arbitrary supersolution v ≥ u and let i1 := {v, u} ∈ I. Given
ε > 0, let j0 ∈ J such that j > j0 =⇒ ‖uφ(j) − u‖∞ < ε. Also choose j1 ∈ J such
that j > j1 =⇒ φ(j) > i1. Finally pick j3 > j1, j2. Then, for j > j3,

u ≤ ‖uφ(j) − u‖∞ + uφ(j) ≤ ε + v.

Letting ε → 0, we conclude that u ≤ v for any supersolution v ≥ u. Clearly, u is
the unique such solution.

It remains to prove that given any subdomain ω and any function v ∈ C(ω̄)
satisfying (2.6), u ≤ v. Fix such a function v and define hk ∈ C(Ω̄ × R), k = 0, 1,
by

h0(x, t) =





f(u(x)) if t < u(x),
f(t) if u(x) ≤ t ≤ u(x),

f(u(x)) if t > u(x)
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and

h1(x, t) =





h1(x, u(x)) if t < u(x),

h1(x, t) if x ∈ Ω \ ω or if x ∈ ω and u(x) ≤ t ≤ v(x),

h1(x, v(x)) if x ∈ ω and t > v(x).

Working as before, we may solve (2.5) with nonlinearity h1 and obtain a solution
ũ of (2.5) with nonlinearity f such that u ≤ ũ ≤ u and ũ|ω ≤ v. Since ũ is a
(super)solution of (2.5), we also have u ≤ ũ. Hence u|ω = ũ|ω ≤ v.

Proof of Corollary 2.5. Clearly, there exists at most one such solution. Now, let N
denote any integer larger than ‖u‖L∞(Ω) and let uN denote the minimal solution
relative to u of {

∆uN = f(uN ) in D′(Ω),
uN = N on ∂Ω.

Using the Minimality Principle 2.2, one can easily show that the sequence (uN ) is
nondecreasing and that uN ≤ N . Take any (smooth) open set ω ⊂⊂ Ω such that
v ≥ N on ∂ω. By the Minimality Principle 2.2 again, we conclude that v|ω ≥ uN |ω.
Since this holds for any such ω, we conclude that v ≥ uN in Ω. In particular the
sequence (uN ) is bounded on compact subsets of Ω and using elliptic regularity, we
conclude that (uN ) converges to a blow-up solution u of (1.1) such that u ≤ u ≤ v.

Now take ω ⊂ Ω open and v ∈ C(ω) satisfying (2.7). Take ω̃ ⊂⊂ ω such that
v ≥ N on ∂ω̃. Applying the Minimality Principle 2.2, we have that uN |ω̃ ≤ v|ω̃.
Again, since ω̃ ⊂⊂ ω is arbitrary, we conclude that uN |ω ≤ v. Letting N → ∞
yields the desired inequality. 2
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