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Abstract. We are concerned with the existence of ground state solutions to

the nonhomogeneous perturbed Choquard equation

−∆p(x)u+ V (x)|u|p(x)−2u

=

(∫
RN

r(y)−1|u(y)|r(y)|x− y|−λ(x,y)dy

)
|u|r(x)−2u+ g(x, u) in RN ,

where the exponent r(·) is critical with respect to the Hardy-Littlewood-Sobolev

inequality for variable exponents. We first consider the case where the pertur-
bation g(·, ·) is subcritical and we distinguish between the superlinear and

sublinear cases. In both situations we establish the existence of solutions and
we prove the asymptotic behavior of low-energy solutions in the case of high
perturbations. Next, we study the case where the nonlinearity g(·, ·) is critical.
We prove the existence of solutions both for low and high perturbations and

we establish asymptotic properties of low-energy solutions.
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1. Introduction. This paper is devoted to the qualitative and asymptotic analysis
of solutions for the Choquard equation with variable exponents. The features of
this paper are the following:

(i) the analysis is developed in the anisotropic case, corresponding to a differential
operator with nonstandard growth;

(ii) the exponent associated to the nonlocal term is critical with respect to the
anisotropic Hardy-Littlewood-Sobolev inequality;

(iii) the main results are concerned both with subcritical and critical perturba-
tions of the nonlocal term;

(iv) the analysis in the subcritical setting corresponds to the non-autonomous
case (for instance, coercive and bounded from below positive potentials V ), while
the critical case is analyzed in the autonomous framework;

(v) we establish sufficient conditions for the existence of solutions in the case of
low or high perturbations.

To the best of our knowledge, this is the first paper dealing with Choquard
equations with variable exponents and critical anisotropic reaction.

1.1. Historical comments. The Choquard equation

−∆u+ u =

(
1

|x|
∗ |u|2

)
u in R3. (1)

was first introduced in the pioneering work of Fröhlich [10] and Pekar [22] for the
modeling of a quantum polaron at rest. This model corresponds to the study of
free electrons in an ionic lattice interact with phonons associated to deformations
of the lattice or with the polarisation that it creates on the medium (interaction of
an electron with its own hole). In the approximation to Hartree-Fock theory of one
component plasma, Choquard used equation (1) to describe an electron trapped in
its own hole, see Lieb [17].

The Choquard equation is also known as the Schrödinger-Newton equation in
models coupling the Schrödinger equation of quantum physics together with non-
relativistic Newtonian gravity. The equation can also be derived from the Einstein-
Klein-Gordon and Einstein-Dirac system. Such a model was proposed for boson
stars and for the collapse of galaxy fluctuations of scalar field dark matter. We
refer for details to Elgart and Schlein [9], Giulini and Großardt [13], Jones [14],
and Schunck and Mielke [27]. Penrose [23, 24] proposed equation (1) as a model
of self-gravitating matter in which quantum state reduction was understood as a
gravitational phenomenon. Beyond physical motivations, ground state solutions of
problem (1) are of particular interest because of connections with stochastic analy-
sis, see Donsker and Varadhan [7].

As pointed out by Lieb [17], Choquard used equation (1) to study steady states
of the one component plasma approximation in the Hartree-Fock theory. Classifica-
tion of solutions of (1) was first studied by Ma and Zhao [19]. Pointwise bounds and
blow-up for Choquard-Pekar inequalities at isolated singularities have been stud-
ied by Ghergu and Taliaferro [12]. For the Choquard-type equation and related
problems, we refer to [5, 19, 25, 29] for the existence of solutions and multiplic-
ity properties, to [6, 33] for existence of sign-changing solutions, and to [4, 30] for
semiclassical solutions.

If the reaction of problem (1) is perturbed, then we obtain the Choquard equation

−∆u+ V u =

(∫
RN

|u(y)|r

|x− y|λ
dy

)
|u|r−2u+ g(u) in RN (N ≥ 3), (2)
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where λ ∈ (0, N), V is a positive potential, and g is a suitable perturbation.

The Hardy-Littlewood-Sobolev inequality implies that

∫
RN

∫
RN

|u(x)|r|u(y)|r

|x− y|λ
dxdy

is well defined for u ∈ H1(RN ) if r ∈
[
2N − λ

N
,
2N − λ

N − 2

]
. Usually,

2N − λ

N
is

called the lower critical exponent and
2N − λ

N − 2
is the upper critical exponent of the

Choquard equation. The upper critical exponent plays a similar role as the Sobolev
critical exponent in the local semilinear equations, while the lower critical exponent
is related to the bubbling at infinity phenomenon. Several existence and nonex-
istence properties of solutions have been established for various values of r. For
instance, in view of the Pohozaev identity, the autonomous Choquard equation

(2) (with V = 1 and g = 0) has no nontrivial solutions is either r ≤ 2N − λ

N
or

r ≥ 2N − λ

N − 2
. For more details we refer to Li and Ma [16] and the references therein.

1.2. Related notions and properties. In the sequel, we set

C+(RN ) := {h ∈ C(RN ) : 1 < h− ≤ h+ < +∞},
where

h− := inf
x∈RN

h(x) and h+ := sup
x∈RN

h(x).

For p ∈ C+(RN ), we define the following anisotropic Lebesgue space

Lp(x)(RN ) :=

{
u : RN 7→ R; u is a measurable and

∫
RN

|u(x)|p(x)dx < +∞
}
.

We equip this function space with the following “Luxembourg norm”

∥u∥Lp(x)(RN ) = inf

{
η > 0 :

∫
RN

∣∣∣∣uη
∣∣∣∣p(x) dx ≤ 1

}
.

We also consider the following Sobolev spaceW 1,p(x)(RN ) with variable exponent

W 1,p(x)(RN ) :=
{
u ∈ Lp(x)(RN ) : |∇u| ∈ Lp(x)(RN )

}
equipped with the norm

∥u∥W 1,p(x)(RN ) = ∥∇u∥Lp(x)(RN ) + ∥u∥Lp(x)(RN ).

We refer to the monograph by Rădulescu and Repovš [26] for more details on
Lebesgue and Sobolev spaces with variable exponent. We refer to Mingione and
Rădulescu [20] for a survey on recent developments in problems with nonstandard
growth and nonuniform ellipticity.

Throughout this paper, we are concerned with the anisotropic counterpart of
problem (2), namely we study problems of the type

−∆p(x)u+ V (x)|u|p(x)−2u

=

(∫
RN

r(y)−1|u(y)|r(y)

|x− y|λ(x,y)
dy

)
|u|r(x)−2u+ g(x, u) in RN (N ≥ 3).

(3)

The main results will be described in the next section of the present paper. At
this stage, we point out that an important role in our analysis will be played by
the following Hardy-Littlewood-Sobolev inequality for variable exponents, see Alves
and Tavares [2, Proposition 2.4].
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Theorem 1.1. Let ζ, q ∈ C+(RN ), ζ ∈ Lξ+(RN ) ∩ Lξ−(RN ) and υ ∈ Lq+(RN ) ∩
Lq−(RN ). Assume that λ : RN × RN 7→ R is a continuous function satisfying

0 < λ− := inf
x,y∈RN

λ(x, y) ≤ λ+ := sup
x,y∈RN

λ(x, y) < N

and
1

ξ(x)
+
λ(x, y)

N
+

1

q(y)
= 2 for every x, y ∈ RN .

Then the following inequality∣∣∣∣∫
RN

∫
RN

ζ(x)υ(y)

|x− y|λ(x,y)
dxdy

∣∣∣∣ ≤ C
(
∥ζ∥Lξ+ (RN )∥υ∥Lq+ (RN ) + ∥ζ∥Lξ− (RN )∥υ∥Lq− (RN )

)
holds, where C > 0 is a constant not depending on ζ and υ.

2. Main results. In the first part of this paper we are interested in the existence
of solutions to the following Choquard problem with variable exponents and critical
growth:

−∆p(x)u+ V (x)|u|p(x)−2u =

(∫
RN

r(y)−1|u(y)|r(y)

|x− y|λ(x,y)
dy

)
|u|r(x)−2u

+µf(x, u),

u ∈W
1,p(x)
V (RN ),

(Pµ)

where µ is a positive parameter, V : RN 7→ R is a scalar potential, and p : RN 7→ R
is Lipschitz continuous function satisfying

1 < p− := inf
x∈RN

p(x) ≤ p(x) ≤ p+ := sup
x∈RN

p(x) < N.

We denote by ∆p(x)u := div (|∇u|p(x)−2∇u) the p(x)-Laplace operator with vari-

able exponent. We also assume that λ : RN × RN 7→ R is a continuous function
verifying

0 < λ− ≤ λ+ < N.

Let p∗(x) := Np(x)/(N − p(x)) be the critical Sobolev exponent associated to
p(x). Throughout this paper we assume that r ∈ C+(RN ) is the critical exponent
in the sense of the Hardy-Littlewood-Sobolev inequality for variable exponent (see
Theorem 1.1), that is,

r(x) :=
2N − λ+

2N
p∗(x) for all x ∈ RN . (4)

In view of [2, Corollary 2.1], we additionally impose the restriction

r(x) ≥ 2N − λ−

2N
p(x) for all x ∈ RN . (5)

Relations (4) and (5) provide a relationship between the requested growth of the
variable exponents p(x) and λ(x, y), namely

p(x) ≥ N
λ+ − λ−

2N − λ−
for all x ∈ RN .

This relation is automatically fulfilled if λ is a constant function. We also point
out that in the semilinear isotropic case corresponding to p(x) = 2 for all x ∈ RN

and λ(x, y) ≡ λ for all x, y ∈ RN , relations (4) and (5) assert that our framework
corresponds to the critical case (in relationship with the Hardy-Littlewood-Sobolev
inequality), see [16].



CHOQUARD EQUATIONS WITH CRITICAL REACTION AND VARIABLE GROWTH 1975

For problem (Pµ), the appropriate Sobolev space is W
1,p(x)
V (RN ), defined as the

completion of C∞
0 (RN ) with respect to the norm

∥u∥
W

1,p(x)
V (RN )

= ∥∇u∥Lp(x)(RN ) + ∥u∥
L

p(x)
V (RN )

,

where

∥u∥
L

p(x)
V (RN )

= inf

{
η > 0 :

∫
RN

V (x)

∣∣∣∣uη
∣∣∣∣p(x) dx ≤ 1

}
.

We assume that the potential V satisfies the following hypotheses:

(V0) V ∈ C(RN ,R+) and inf
x∈RN

V (x) := V0 > 0.

(V1) V (x) → +∞ as |x| → +∞.

By Alves [1, Lemma 4.2], condition (V1) implies that the Sobolev embedding

W
1,p(x)
V (RN ) ↪→ Ls(x)(RN )

is compact for all s ∈ C+(RN ) and p≪ s≪ p∗. The notation h1 ≪ h2 means that
inf{h2(x)− h1(x) : x ∈ RN} > 0.

Throughout this paper we assume that the nonlinear term f : RN × R → R is a
Carathéodory function satisfying f(x, t)t ≥ 0 for all (x, t) ∈ RN ×R. The following
hypotheses are required in the superlinear case.

(H1) For any ε > 0, there exists Cε > 0 such that

|f(x, t)| ≤ ε|t|p(x)−1 + Cε|t|τ(x)−1

for all (x, t) ∈ RN × R and p≪ τ ≪ p∗, where τ ∈ C+(RN ) and τ− > p+.
(H2) There exists 2r− > σ > p+ with p−r− > p+ such that

0 < F (x, t) :=

∫ t

0

f(x, s)ds ≤ 1

σ
f(x, t)t for all (x, t) ∈ RN × R \ {0}.

In the sublinear case we assume that the following hypotheses are fulfilled:

(H3) |f(x, t)| ≤ β(x)|t|α(x)−1 for all (x, t) ∈ RN × R, where α ∈ C+(RN ), α ≪ p
and

0 ≤ β ∈ Lp∗(x)/(p∗(x)−α(x))(RN ).

(H4) There exist κ ∈ C+(RN ) with κ+ < p−, a > 0, b > 0 and open set ∅ ≠ U ⊂ RN

such that

F (x, t) ≥ atκ(x), ∀ (x, t) ∈ U × (0, b).

(H5) min
{
2r−, p−r−

}
> p+.

The main results of the first part of this paper provide existence properties both
for high and low perturbations, as well as an asymptotic energy decay of solutions
in the first case.

Theorem 2.1. Assume that hypotheses (H1)− (H2) and (V0)− (V1) are fulfilled.
Then there exists µ∗ > 0 such that for all µ ∈ [µ∗,+∞) problem (Pµ) has a non-

trivial solution uµ ∈W
1,p(x)
V (RN ) with ∥uµ∥W 1,p(x)

V (RN )
→ 0 as µ→ +∞.

Theorem 2.2. Assume that hypotheses (H3) − (H5) and (V0) are fulfilled. Then
there exists µ∗ > 0 such that for all µ ∈ (0, µ∗] problem (Pµ) has a nontrivial

solution uµ ∈W
1,p(x)
V (RN ).
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In the last part of this paper we deal with the following critical version of problem
(Pµ):

−∆p(x)u+ |u|p(x)−2u =

(∫
RN

g(y)r(y)−1|u(y)|r(y)

|x− y|λ(x,y)
dy

)
g(x)|u|r(x)−2u

+K(x)|u|p
∗(x)−2u+ µf(x, u),

u ∈W 1,p(x)(RN ),

(Qµ)

where p : RN 7→ R is a Lipschitz continuous and radially symmetric function satis-
fying

1 < p− := inf
x∈RN

p(x) ≤ p(x) ≤ p+ := sup
x∈RN

p(x) < N.

To achieve our aim, we require that the following hypotheses are fulfilled.

(H6) There exists min
{
2r−, p∗−

}
> σ > p+ with p−r− > p+ such that

0 < σF (x, t) ≤ f(x, t)t for all (x, t) ∈ RN × R \ {0}.
(H7) f(x, t) = f(|x|, t) for all (x, t) ∈ RN × R.
(H8) g, K ∈ L∞(RN ), K ∈ C(RN ), g(x) = g(|x|), K(x) = K(|x|) for any x ∈ RN ,

g(x), K(x) ≥ 0, K(0) = 0 and

lim
|x|→0

g(x) = lim
|x|→+∞

g(x) = lim
|x|→+∞

K(x) = 0.

(H9) min
{
2r−, p−r−, p∗−

}
> p+.

In the critical case our main results can be stated as follows.

Theorem 2.3. Assume that hypotheses (H1) and (H6)− (H8) are fulfilled. Then
there exists µ∗∗ > 0 such that for all µ ∈ [µ∗∗,+∞) problem (Qµ) has a nontrivial

solution uµ ∈W
1,p(x)
rad (RN ) with ∥uµ∥W 1,p(x)(RN ) → 0 as µ→ +∞.

Theorem 2.4. Assume that hypotheses (H3)− (H4) and (H7)− (H9) are fulfilled.
Then there exists µ∗∗ > 0 such that for all µ ∈ (0, µ∗∗] problem (Qµ) has a nontrivial

solution uµ ∈W
1,p(x)
rad (RN ).

3. Auxiliary properties. Let Cc(RN ) be the subspace of functions in C(RN ) with
compact support and denote by C0(RN ) the closure of Cc(RN ) with respect to the
norm |φ|∞ = sup

{
|φ(x)| : x ∈ RN

}
. A finite measure on RN is a continuous linear

functional on C0(RN ). For any finite measure ν we define ∥ν∥ := sup{|(ν, φ)| : φ ∈

C0(RN ), |φ|∞ = 1}, where (ν, φ) =

∫
RN

φdν.

Let M(RN ) be the space of finite non-negative Borel measures on RN . We

say that νn
w∗

−−→ ν in M(RN ) as n → ∞, provided that (νn, φ) → (ν, φ) for all
φ ∈ C0(RN ) as n→ ∞.

Lemma 3.1. Let {un} be a bounded sequence in Lp∗(x)(RN ) ∩ L
2Nr(x)

2N−λ− (RN ) such
that un → u a.e. in RN as n→ ∞. Then, the following relation

lim
n→∞

∫
RN

∫
RN

|un(x)|r(x)|un(y)|r(y) − |un(x)− u(x)|r(x)|un(y)− u(y)|r(y)

|x− y|λ(x,y)
dxdy

=

∫
RN

∫
RN

|u(x)|r(x)|u(y)|r(y)

|x− y|λ(x,y)
dxdy



CHOQUARD EQUATIONS WITH CRITICAL REACTION AND VARIABLE GROWTH 1977

holds true.

Proof. Note that∫
RN

∫
RN

|un(y)|r(y)|un(x)|r(x) − |un(y)− u(y)|r(y)|un(x)− u(x)|r(x)

|x− y|λ(x,y)
dydx

=

∫
RN

∫
RN

(
|un(y)|r(y) − |un(y)− u(y)|r(y)

) (
|un(x)|r(x) − |un(x)− u(x)|r(x)

)
|x− y|λ(x,y)

dydx

+ 2

∫
RN

∫
RN

(
|un(y)|r(y) − |un(y)− u(y)|r(y)

)
|un(x)− u(x)|r(x)

|x− y|λ(x,y)
dydx =: In1 + In2 .

(6)

We claim that

lim
n→∞

In1 =

∫
RN

∫
RN

|u(y)|r(y)|u(x)|r(x)

|x− y|λ(x,y)
dydx (7)

and

lim
n→∞

In2 = 0. (8)

Since {un} is a bounded sequence in Lp∗(x)(RN ) ∩ L
2Nr(x)

2N−λ− (RN ), there exists a
positive constant C1 such that for all n ∈ N

∥u∥Lp∗(x) , ∥un∥Lp∗(x)(RN ), ∥u∥
L

2Nr(x)

2N−λ− (RN )
, ∥un∥

L
2Nr(x)

2N−λ− (RN )
≤ C1.

The above relations imply that

sup
n∈N

{
∥|un − u|r(·)∥

L
2N

2N−λ+ (RN )
, ∥|un − u|r(·)∥

L
2N

2N−λ− (RN )

}
≤ C2

for some constant C2 > 0. Moreover, un → u a.e. in RN as n→ ∞. It follows from

Proposition 5.4.7 of Willem [32, p. 106] that |un − u|r(x) w−→ 0 in L
2N

2N−λ+ (RN ) and

|un − u|r(x) w−→ 0 in L
2N

2N−λ− (RN ) as n→ ∞.
Next, we show that∫

RN

∣∣∣|un(y)|r(y) − |un(y)− u(y)|r(y) − |u(y)|r(y)
∣∣∣ 2N

2N−λ+

dy = 0 (9)

and ∫
RN

∣∣∣|un(y)|r(y) − |un(y)− u(y)|r(y) − |u(y)|r(y)
∣∣∣ 2N

2N−λ−
dy = 0. (10)

In order to prove relations (9) and (10), we first show that the following inequality.
(i) For any ε > 0, there exists a constant Cε > 0 such that∣∣∣|un(y)|r(y) − |un(y)− u(y)|r(y)

∣∣∣ ≤ ε|un(y)− u(y)|r(y) + Cε|u(y)|r(y), ∀ y ∈ RN .

It is obvious to get the above inequality when 0 < r(y) ≤ 1.
Now, it remains to examine the case r(y) > 1. For any fixed y ∈ RN , by

Taylor’s formula, we have

|un(y)|r(y) = |un(y)− u(y)|r(y) + r(y)ξr(y)−1 (|un(y)| − |un(y)− u(y)|) ,
where ξ is a measurable function with values between |un(y)| and |un(y)−u(y)|. It
follows that ∣∣∣|un(y)|r(y) − |un(y)− u(y)|r(y)

∣∣∣
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= r(y)ξr(y)−1 ||un(y)| − |un(y)− u(y)||

≤ r(y)2r(y)−1
(
|u(y)|r(y)−1 + |2 (un(y)− u(y)) |r(y)−1

)
|u(y)|.

By Young’s inequality, for some fixed ε1 ∈ (0, 1) we have

|un(y)− u(y)|r(y)−1|u(y)| ≤ (r(y)− 1) ε1
r(y)

|un(y)− u(y)|r(y)

+
1

r(y)
(ε1)

1−r(y)|u(y)|r(y)

≤ ε1|un(y)− u(y)|r(y) + (ε1)
1−r+ |u(y)|r(y).

Thus, we derive that∣∣∣|un(y)|r(y) − |un(y)− u(y)|r(y)
∣∣∣

≤ r+2r
+−1

(
ε12

r+−1|un(y)− u(y)|r(y) +
(
1 + 2r

+−1(ε1)
1−r+

)
|u(y)|r(y)

)
.

Choosing ε = r+22r
+−2ε1, we obtain∣∣∣|un(y)|r(y) − |un(y)− u(y)|r(y)

∣∣∣ ≤ ε|un(y)− u(y)|r(y) + Cε|u(y)|r(y).

The proof of (i) is now complete.
Let us denote

wε,n(y) =
(∣∣∣|un(y)|r(y) − |un(y)− u(y)|r(y) − |u(y)|r(y)

∣∣∣− ε|un(y)− u(y)|r(y)
)+

,

where w+(y) = max{w(y), 0}. Clearly, wε,n(y) → 0 a.e. in RN as n→ ∞.
Additionally, we can deduce from the above information that

|wε,n(·)|
2N

2N−λ+ ≤ (1 + Cε)
2N

2N−λ+ |u(·)|p
∗(·) ∈ L1(RN )

and

|wε,n(·)|
2N

2N−λ− ≤ (1 + Cε)
2N

2N−λ− |u(·)|
2Nr(·)
2N−λ− ∈ L1(RN ).

By the Lebesgue dominated convergence theorem, we obtain∫
RN

|wε,n|
2N

2N−λ+ dy,

∫
RN

|wε,n|
2N

2N−λ− dy → 0 as n→ ∞.

So, we have ∫
RN

∣∣∣|un(y)|r(y) − |un(y)− u(y)|r(y) − |u(y)|r(y)
∣∣∣ 2N

2N−λ+

dy

≤ C3

∫
RN

|wε,n|
2N

2N−λ+ dy + C3ε
2N

2N−λ+

for some constant C3 > 0. We conclude that relation (9) holds. Similarly we obtain
relation (10).

Denote

An =∫
RN

∫
RN

∣∣|un(y)|r(y) − |un(y)− u(y)|r(y) − |u(y)|r(y)
∣∣ ∣∣|un(x)|r(x) − |un(x)− u(x)|r(x)

∣∣
|x− y|λ+

dydx,

Bn =∫
RN

∫
RN

∣∣|un(y)|r(y) − |un(y)− u(y)|r(y) − |u(y)|r(y)
∣∣ ∣∣|un(x)|r(x) − |un(x)− u(x)|r(x)

∣∣
|x− y|λ− dydx,
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Cn =

∫
RN

∫
RN

|u(y)|r(y)
∣∣|un(x)|r(x) − |un(x)− u(x)|r(x) − |u(x)|r(x)

∣∣
|x− y|λ+

dydx,

Dn =

∫
RN

∫
RN

|u(y)|r(y)
∣∣|un(x)|r(x) − |un(x)− u(x)|r(x) − |u(x)|r(x)

∣∣
|x− y|λ− dydx.

Using the Hardy-Littlewood-Sobolev inequality (see Lieb and Loss [18, Theorem

4.3]), the boundedness of {un} in Lp∗(x)(RN )∩L
2Nr(x)

2N−λ− (RN ) and relations (9)−(10),
we deduce that

lim
n→∞

An = lim
n→∞

Bn = lim
n→∞

Cn = lim
n→∞

Dn = 0. (11)

Relation (11) yields that relation (7) holds.

Since |un − u|r(x) w−→ 0 in L
2N

2N−λ+ (RN ) and |un − u|r(x) w−→ 0 in L
2N

2N−λ− (RN ) as
n → ∞, together with relation (11), we can conclude that relation (8) is fulfilled.
The proof is now completed.

Corollary 1. Let {un} be a bounded sequence in Lp∗(x)(RN ) such that un → u a.e.
in RN as n→ ∞. Then, the following relation

lim
n→∞

∫
RN

(
|un|p

∗(x) − |un − u|p
∗(x)
)
dx =

∫
RN

|u|p
∗(x)dx

holds.

Proof. Similar to the proof of relation (9) or (10), we can get the result. So, we
omit the details of the proof of Corollary 1.

4. Proof of Theorem 2.1. To establish the existence of nontrivial solutions to
problem (Pµ), we define the functional Υµ :W

1,p(x)
V (RN ) 7→ R as follows

Υµ(u) =

∫
RN

1

p(x)

(
|∇u|p(x) + V (x)|u|p(x)

)
dx− µ

∫
RN

F (x, u)dx

− 1

2

∫
RN

∫
RN

|u(x)|r(x)|u(y)|r(y)

r(x)|x− y|λ(x,y)r(y)
dxdy, ∀ u ∈W

1,p(x)
V (RN ).

Similar to the proof of Lemma 3.2 in Alves and Tavares [2], using hypothesis

(H1) we deduce that Υµ ∈ C1
(
W

1,p(x)
V (RN ),R

)
with

⟨Υ′
µ(u), v⟩ =

∫
RN

(
|∇u|p(x)−2∇u∇v + V (x)|u|p(x)−2uv

)
dx− µ

∫
RN

f(x, u)vdx

−
∫
RN

∫
RN

r(y)−1|u(y)|r(y)|u(x)|r(x)−2u(x)v(x)

|x− y|λ(x,y)
dxdy

for all u, v ∈W
1,p(x)
V (RN ).

We first establish the mountain pass geometry.

Lemma 4.1. The functional Υµ satisfies the following properties.

(i) There exists ρ > 0 small enough such that Υµ(u) ≥ η for all u ∈W
1,p(x)
V (RN )

with ∥u∥
W

1,p(x)
V (RN )

= ρ for some η > 0.

(ii) There exists e ∈W
1,p(x)
V (RN ) such that ∥e∥

W
1,p(x)
V (RN )

> ρ and Υµ(e) < 0.
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Proof. (i) By Theorem 1.1, we obtain for all u ∈W
1,p(x)
V (RN )∫

RN

∫
RN

|u(x)|r(x)|u(y)|r(y)

r(x)|x− y|λ(x,y)r(y)
dxdy

≤ c1

(
∥|u(·)|r(·)∥2

L
2N

2N−λ+ (RN )
+ ∥|u(·)|r(·)∥2

L
2N

2N−λ− (RN )

)
≤ c1 max

{
∥u∥2r

+

Lp∗(x)(RN ), ∥u∥
2r−

Lp∗(x)(RN )

}
+ c1 max

{
∥u∥2r

+

L
2Nr(x)

2N−λ− (RN )

, ∥u∥2r
−

L
2Nr(x)

2N−λ− (RN )

}
,

where c1 is a positive constant which is independent of u ∈ W
1,p(x)
V (RN ). By

hypothesis (H1) we deduce that∣∣∣∣∫
RN

F (x, u)dx

∣∣∣∣ ≤ ε

p−

∫
RN

|u|p(x)dx+
Cε

p−

∫
RN

|u|τ(x)dx

≤ ε

p−

∫
RN

|u|p(x)dx+
Cε

p−
max

{
∥u∥τ

+

Lτ(x)(RN ), ∥u∥
τ−

Lτ(x)(RN )

}
for all x ∈ RN and u ∈W

1,p(x)
V (RN ).

Due to (V0), r(x) ≥ (Np(x) − p(x)λ−/2)/N and p ≪ τ ≪ p∗, combining the

continuous embeddings W
1,p(x)
V (RN ) ↪→ W 1,p(x)(RN ) and W 1,p(x)(RN ) ↪→ Ls(x)

(p(x) ≤ s(x) ≤ p∗(x)), there exist positive constants c2, c3 (c2 and c3 are indepen-

dent of u ∈W
1,p(x)
V (RN )) such that

∥u∥W 1,p(x)(RN ) ≤ c2∥u∥W 1,p(x)
V (RN )

,

∥u∥Lp(x)(RN ), ∥u∥Lp∗(x)(RN ), ∥u∥
L

2Nr(x)

2N−λ− (RN )
, ∥u∥Lτ(x)(RN ) ≤ c3∥u∥W 1,p(x)(RN ).

Also, we need the following elementary inequality

(a+ b)θ ≤ 2θ−1aθ + 2θ−1bθ for all a, b > 0 and θ ≥ 1.

Taking ε =
V0p

−

2µp+
, for ∥u∥

W
1,p(x)
V (RN )

<
1

c2
we obtain

Υµ(u) ≥
∫
RN

(
1

p+
|∇u|p(x) + V0

2p+
|u|p(x)

)
dx

− c4 max
{
∥u∥2r

+

W 1,p(x)(RN ), ∥u∥
2r−

W 1,p(x)(RN )

}
− µCε

p−
max

{
∥u∥τ

+

Lτ(x)(RN ), ∥u∥
τ−

Lτ(x)(RN )

}
≥ c5

(
∥∇u∥p

+

Lp(x)(RN )
+ ∥u∥p

+

Lp(x)(RN )

)
− c6

(
∥∇u∥2r

−

Lp(x)(RN ) + ∥u∥2r
−

Lp(x)(RN )

)
− c6

(
∥∇u∥τ

−

Lp(x)(RN ) + ∥u∥τ
−

Lp(x)(RN )

)
,

where ci (i = 4, 5, 6) are some positive constants that do not depend on u. Since
2r−, τ− > p+ and ∥u∥W 1,p(x)(RN ) ≤ c2∥u∥W 1,p(x)

V (RN )
, the result of (i) follows by

fixing ∥u∥
W

1,p(x)
V (RN )

= ρ with ρ sufficiently small.
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(ii) For each t > 1 and e′ ∈ W
1,p(x)
V (RN ) \ {0} with ∥e′∥

W
1,p(x)
V (RN )

< 1, by

hypothesis (H2), we have

Υµ(te
′) ≤ 2tp

+

p−
∥e′∥p

−

W
1,p(x)
V (RN )

− t2r
−

2(r+)2

∫
RN

∫
RN

|e′(x)|r(x)|e′(y)|r(y)

|x− y|λ(x,y)
dxdy.

Since 2r− > p+, we can get the conclusion for t > 1 sufficiently large.
The proof is now complete.

Now we discuss the compactness property for the functional Υµ, given by the
(PS) condition at a suitable level. For this goal, we fix µ > 0 and define

cµ := inf
γ∈Γ

max
t∈[0,1]

Υµ(γ(t)), (12)

where

Γ =
{
γ ∈ C

(
[0, 1],W

1,p(x)
V (RN )

)
: γ(0) = 0, γ(1) = e

}
.

Clearly, using Lemma 4.1 we know that cµ > 0. Furthermore, we have the
following result.

Lemma 4.2. Assume that (V0), (H1) and (H2) hold. Then we have

lim
µ→+∞

cµ = 0,

where cµ is given in (12).

Proof. For e given in Lemma 4.1, there exists tµ > 0 satisfying

Υµ(tµe) = max
t≥0

Υµ(te)

and∫
RN

(tµ)
p(x)

(
|∇e|p(x) + V (x)|e|p(x)

)
dx = µ

∫
RN

f(x, tµe)tµedx

+

∫
RN

∫
RN

|e(x)|r(x)|e(y)|r(y)(tµ)r(x)+r(y)

r(y)|x− y|λ(x,y)
dxdy.

Using this equality, hypothesis (H2) and 2r− > p+ we conclude that {tµ} is bounded.
Let {µn} be a sequence such that µn → +∞ as n→ ∞. Since {tµn} is bounded,

passing to a subsequence, still denoted by {tµn}, we may assume that there exists
t0 ≥ 0 such that tµn

→ t0 as n→ ∞. Thus, there exists a positive constant c7 such
that ∫

RN

(tµn)
p(x)

(
|∇e|p(x) + V (x)|e|p(x)

)
dx ≤ c7

for all n ∈ N.
We assert that t0 = 0. Indeed, if t0 > 0, then by hypotheses (H1)− (H2) and the

boundedness of {tµn
} we obtain

0 < f(x, tµne)tµne ≤ c8

(
|e|p(x) + |e|τ(x)

)
∈ L1(RN )

for some constant c8 > 0. Clearly, f(x, tµn
e)tµn

e → f(x, t0e)t0e as n → ∞ by
the continuity of f(x, ·). So, using Lebesgue’s dominated convergence theorem and
hypothesis (H2) we obtain

lim
n→∞

∫
RN

f(x, tµne)tµnedx =

∫
RN

f(x, t0e)t0edx > 0.
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By this equality we deduce that

µn

∫
RN

f(x, tµn
e)tµn

edx+

∫
RN

∫
RN

|e(x)|r(x)|e(y)|r(y)(tµn
)r(x)+r(y)

r(y)|x− y|λ(x,y)
dxdy

→ +∞ as n→ ∞,

which is a contradiction. So, t0 = 0.
Hence, we have tµ → 0 as µ→ +∞. Since

0 ≤ cµ ≤ Υµ(tµe) ≤ 2(tµ)
p−
(
∥e∥p

+

W
1,p(x)
V (RN )

+ ∥e∥p
−

W
1,p(x)
V (RN )

)
for sufficiently large µ > 0, it follows that cµ → 0 as µ→ +∞.

The proof is now complete.

Lemma 4.3. There exists µ∗ > 0 such that Υµ satisfies the (PS)cµ condition on

W
1,p(x)
V (RN ) for all µ ≥ µ∗.

Proof. Let {un} ⊂W
1,p(x)
V (RN ) be a (PS)cµ sequence of the functional Υµ, that is,

Υµ(un) → cµ and Υ′
µ(un) → 0 as n → ∞. We first prove that {un} is bounded in

W
1,p(x)
V (RN ). Using hypothesis (H2), for large enough n ∈ N we obtain

cµ +O(1)∥un∥W 1,p(x)
V (RN )

+ on(1)

= Υµ(un)−
1

σ
⟨Υ′

µ(un), un⟩

=

∫
RN

(
1

p(x)
− 1

σ

)(
|∇un|p(x) + V (x)|un|p(x)

)
dx

+ µ

∫
RN

(
1

σ
f(x, un)un − F (x, un)

)
dx

+

∫
RN

∫
RN

(
1

σ
− 1

2r(x)

)
|un(x)|r(x)|un(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy

≥
∫
RN

(
1

p+
− 1

σ

)(
|∇un|p(x) + V (x)|un|p(x)

)
dx

+

∫
RN

∫
RN

(
1

σ
− 1

2r−

)
|un(x)|r(x)|un(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy

≥
∫
RN

(
1

p+
− 1

σ

)(
|∇un|p(x) + V (x)|un|p(x)

)
dx. (13)

The above inequality implies that {un} is bounded in W
1,p(x)
V (RN ). Using the

boundedness of {un} inW
1,p(x)
V (RN ) and Sobolev embeddings we can find a positive

constant c9 such that∫
RN

||un|r(x)−2un|
p∗(x)
r(x)−1 dx =

∫
RN

||un|r(x)|
2N

2N−λ+ dx =

∫
RN

|un|p
∗(x)dx ≤ c9.

As L
2N

2N−λ+ (RN ) and L
2N

2N−λ− (RN ) are uniformly convex, the Banach space(
L

2N

2N−λ+ (RN ) ∩ L
2N

2N−λ− (RN ),max

{
∥ · ∥

L
2N

2N−λ+ (RN )
, ∥ · ∥

L
2N

2N−λ− (RN )

})
is also uniformly convex, hence reflexive. The boundedness of {un} in W

1,p(·)
V (RN )

yields that the sequence
{
|un|r(·)

}
is bounded in L

2N

2N−λ+ (RN ) ∩ L
2N

2N−λ− (RN ).
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Next, we claim that there exists uµ ∈W
1,p(·)
V (RN ) such that, up to a subsequence,

still denoted by {un}, un → uµ a.e. in RN and |un|r(·)
w−→ |uµ|r(·) in L

2N

2N−λ+ (RN )∩
L

2N

2N−λ− (RN ) as n → ∞. Indeed, since
{
|un|r(·)

}
is bounded in L

2N

2N−λ+ (RN ) ∩

L
2N

2N−λ− (RN ), so there exists T ∈ L
2N

2N−λ+ (RN )∩L
2N

2N−λ− (RN ) such that |un|r(·)
w−→

T in L
2N

2N−λ+ (RN ) ∩ L
2N

2N−λ− (RN ) as n → ∞. Fix v ∈ C∞
0 (RN ) and consider the

continuous linear functional

Iv(w) =

∫
RN

wvdy, w ∈ L
2N

2N−λ+ (RN ) ∩ L
2N

2N−λ− (RN ).

Then, we obtain

Iv(|un|r(·)) →
∫
RN

T (y)v(y)dy as n→ ∞. (14)

Using Proposition 5.4.7 of Willem [32, p. 106], we obtain

|un|r(·)
w−→ |uµ|r(·) in L

2N

2N−λ+ (RN ) as n→ ∞,

hence

Iv(|un|r(·)) =
∫
RN

|un|r(y)v(y)dy →
∫
RN

|uµ|r(y)v(y)dy as n→ ∞. (15)

It follows from relations (14) and (15) that |uµ|r(·) = T (·) a.e. in RN . Thus, we
get the claim. Moreover, by Theorem 1.1, we know that the functional

G(w) :=

∫
RN

∫
RN

w(y)|uµ|r(x)

|x− y|λ(x,y)
dxdy, w ∈ L

2N

2N−λ+ (RN ) ∩ L
2N

2N−λ− (RN )

is linear and continuous. Due to |un|r(y)
w−→ |uµ|r(y) in L

2N

2N−λ+ (RN )∩L
2N

2N−λ− (RN )
as n→ ∞, we obtain∫

RN

∫
RN

|un(y)|r(y)|uµ(x)|r(x)

|x− y|λ(x,y)
dxdy

→
∫
RN

∫
RN

|uµ(y)|r(y)|uµ(x)|r(x)

|x− y|λ(x,y)
dxdy as n→ ∞.

Now, we can assume that there exist uµ ∈ W
1,p(x)
V (RN ) and δµ, ϱµ ≥ 0 such

that, passing to a subsequence, still denoted by {un},

un
w−→ uµ in W

1,p(x)
V (RN ), ∥un∥W 1,p(x)

V (RN )
→ δµ,∫

RN

∫
RN

|un(x)− uµ(x)|r(x)|un(y)− uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy → ϱµ,

un → uµ a.e. in RN , |un|r(x)
w−→ |uµ|r(x) in L

2N

2N−λ+ (RN ) ∩ L
2N

2N−λ− (RN ),

|un|r(x)−2un
w−→ |uµ|r(x)−2uµ in L

p∗(x)
r(x)−1 (RN ),

(16)

as n→ ∞.
Note that for any Ω ⊂ RN , using Hölder’s inequality (see Musielak [21]) and the

Sobolev inequality we have∫
Ω

||un|r(x)−2unuµ|
2N

2N−λ+ dx

=

∫
Ω

|un|
2N(r(x)−1)

2N−λ+ |uµ|
2N

2N−λ+ dx
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≤ c10∥|un|
2N(r(·)−1)

2N−λ+ ∥
L

r(x)
r(x)−1 (Ω)

∥|uµ|
2N

2N−λ+ ∥Lr(x)(Ω)

≤ c11 max

{(∫
RN

|uµ|p
∗(x)dx

)1/r+

,

(∫
RN

|uµ|p
∗(x)dx

)1/r−
}

≤ c11 max

{
∥uµ∥

2N

2N−λ+

Lp∗(x)(Ω)
, ∥uµ∥

p∗−

r+

Lp∗(x)(Ω)
, ∥uµ∥

p∗+

r−

Lp∗(x)(Ω)

}
(17)

for some constants c10, c11 > 0. Similarly, there exists a constants c12 > 0 such
that ∫

Ω

||un|r(x)−2unuµ|
2N

2N−λ− dx

=

∫
Ω

|un|
2N(r(x)−1)

2N−λ− |uµ|
2N

2N−λ− dx

≤ c12 max

{
∥uµ∥

2N

2N−λ−

L
2Nr(x)

2N−λ− (Ω)

, ∥uµ∥
2Nr−

(2N−λ−)r+

L
2Nr(x)

2N−λ− (Ω)

, ∥uµ∥
2Nr+

(2N−λ−)r−

L
2Nr(x)

2N−λ− (Ω)

}
. (18)

Combining inequalities (17)−(18), uµ ∈ Lp∗(x)(RN ) and uµ ∈ L
2Nr(x)

2N−λ− (RN ), we

know that the two sequences

{
||un|r(x)−2unuµ|

2N
2N−λ+

}
and

{
||un|r(x)−2unuµ|

2N
2N−λ−

}
are equi-integrable in L1(RN ). Additionally, |un|r(x)−2unuµ → |uµ|r(x) a.e. in RN

as n→ ∞. Therefore, by Vitali’s convergence theorem (see, Bogachev [3, Corollary
4.5.5]),

|un|r(x)−2unuµ → |uµ|r(x) in L
2N

2N−λ+ (RN ) ∩ L
2N

2N−λ− (RN ) as n→ ∞.

So, combining the above information, Theorem 1.1, the boundedness of {un} in

W
1,p(x)
V (RN ) and Sobolev embeddings, we have

lim
n→∞

∫
RN

∫
RN

|un(y)|r(y)|un(x)|r(x)−2un(x)uµ(x)

|x− y|λ(x,y)
dxdy

=

∫
RN

∫
RN

|uµ(y)|r(y)|uµ(x)|r(x)

|x− y|λ(x,y)
dxdy. (19)

Similarly we have

lim
n→∞

∫
RN

∫
RN

|uµ(y)|r(y)|uµ(x)|r(x)−2uµ(x)un(x)

|x− y|λ(x,y)
dxdy

=

∫
RN

∫
RN

|uµ(y)|r(y)|uµ(x)|r(x)

|x− y|λ(x,y)
dxdy. (20)

Fix ε > 0. Using hypothesis (H1), Hölder’s inequality (see Musielak [21]), the

boundedness of {un} in W
1,p(x)
V (RN ) and Sobolev inequalities we obtain∣∣∣∣∫

RN

f(x, un)(un − uµ)dx

∣∣∣∣
≤ ε

∫
RN

|un|p(x)−1|un − uµ|dx+ Cε

∫
RN

|un|τ(x)−1|un − uµ|dx

≤ εc13∥|un|p(·)−1∥
L

p(x)
p(x)−1 (RN )

∥un − uµ∥Lp(x)(RN )

+Cεc13∥|un|τ(·)−1∥
L

τ(x)
τ(x)−1 (RN )

∥un − uµ∥Lτ(x)(RN )
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≤ εc14 + Cεc14∥un − uµ∥Lτ(x)(RN )

for some constants c13, c14 > 0.
Thanks to p≪ τ ≪ p∗, hypothesis (V1) implies that ∥un − uµ∥Lτ(x)(RN ) → 0 as

n→ ∞. Since ε > 0 is arbitrary, we have

lim
n→∞

∫
RN

f(x, un)(un − uµ)dx = 0. (21)

Similar to the proofs of relations (17) and (21), we also have

lim
n→∞

∫
RN

f(x, uµ)(un − uµ)dx = 0 (22)

and

lim
n→∞

∫
RN

f(x, un)uµdx =

∫
RN

f(x, uµ)uµdx. (23)

Let us define the following linear continuous functional

⟨L(u), v⟩ =
∫
RN

(
|∇u|p(x)−2∇u∇v + V (x)|u|p(x)−2uv

)
dx

for u, v ∈W
1,p(x)
V (RN ). Thus, by un

w−→ uµ in W
1,p(x)
V (RN ) as n→ ∞, we have

lim
n→∞

⟨L(uµ), un − uµ⟩ = 0. (24)

On the other hand, since {un} is bounded inW
1,p(x)
V (RN ), it follows that {L(un)}

is bounded in
(
W

1,p(x)
V (RN )

)′
. Passing to a subsequence, still denoted by {L(un)},

we may assume that there exists an element ω ∈
(
W

1,p(x)
V (RN )

)′
such that

lim
n→∞

⟨L(un), v⟩ = ⟨ω, v⟩ (25)

for all v ∈ W
1,p(x)
V (RN ). Using ⟨Υ′

µ(un), uµ⟩ → 0 as n → ∞ and relations (16),
(19), (23), (25), we deduce that

⟨ω, uµ⟩ = µ

∫
RN

f(x, uµ)uµdx+

∫
RN

∫
RN

|uµ(y)|r(y)|uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy. (26)

From relation (26) and hypothesis (H2) we have that ⟨ω, uµ⟩ ≥ 0.
Since {un} is a (PS)cµ sequence, combining Lemma 3.1 and relations (16),

(19)−(25), for large enough n ∈ N we obtain

on(1) = ⟨Υ′
µ(un)−Υ′

µ(u), un − uµ⟩
= ⟨L(un), un⟩ − ⟨L(un), uµ⟩ − ⟨L(uµ), un − uµ⟩

− µ

∫
RN

(f(x, un)− f(x, uµ)) (un − uµ)dx

−
∫
RN

∫
RN

|un(y)|r(y)|un(x)|r(x)−2un(x)(un(x)− uµ(x))

r(y)|x− y|λ(x,y)
dxdy

+

∫
RN

∫
RN

|uµ(y)|r(y)|uµ(x)|r(x)−2uµ(x)(un(x)− uµ(x))

r(y)|x− y|λ(x,y)
dxdy

= ⟨L(un), un⟩ − ⟨ω, uµ⟩

−
∫
RN

∫
RN

|un(y)− uµ(y)|r(y)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy + on(1)
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= ⟨L(un)− L(uµ), un − uµ⟩

−
∫
RN

∫
RN

|un(y)− uµ(y)|r(y)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy + on(1). (27)

Relation (27) implies that

lim
n→∞

⟨L(un)− L(uµ), un − uµ⟩

= lim
n→∞

∫
RN

∫
RN

|un(y)− uµ(y)|r(y)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy. (28)

By Theorem 1.1 and Sobolev embedding inequalities, there exists c15 > 0 such
that ∫

RN

∫
RN

|un(y)− uµ(y)|r(y)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy

≤ c15 max
{
∥un − uµ∥2r

+

W
1,p(x)
V (RN )

, ∥un − uµ∥2r
−

W
1,p(x)
V (RN )

}
. (29)

Also, we can deduce that there exist two positive constants c16, c17 such that

c16 min

{
∥un − uµ∥p

+

W
1,p(x)
V (RN )

, ∥un − uµ∥p
−

W
1,p(x)
V (RN )

}
≤
∫
RN

(
|∇un −∇uµ|p(x) + V (x)|un − uµ|p(x)

)
dx

≤ c17 max

{
∥un − uµ∥p

+

W
1,p(x)
V (RN )

, ∥un − uµ∥p
−

W
1,p(x)
V (RN )

}
. (30)

Denoting

Ω1 =
{
x ∈ RN : 1 < p(x) < 2

}
and Ω2 =

{
x ∈ RN : p(x) ≥ 2

}
,

we allow the case that one of these sets is empty. Then it is clear that RN = Ω1∪Ω2.
From Kim-Kim [15, Proposition 3.3], we see that the following estimate

(|ξ|p(x)−2ξ − |ζ|p(x)−2ζ, ξ − ζ)RN ≥

{
(|ξ|+ |ζ|)p(x)−2|ξ − ζ|2 if x ∈ Ω1,

41−p+

|ξ − ζ|p(x) if x ∈ Ω2

(31)

holds for all ξ, ζ ∈ RN .
We distinguish the following three cases.

Case 1. Ω2 = RN . By relations (29), (30) and (31), we have

⟨L(un)− L(uµ), un − uµ⟩

≥ 41−p+

∫
RN

(
|∇un −∇uµ|p(x) + V (x)|un − uµ|p(x)

)
dx

≥ c18 min

{
∥un − uµ∥p

+

W
1,p(x)
V (RN )

, ∥un − uµ∥p
−

W
1,p(x)
V (RN )

}

≥ c19 min

{(∫
RN

∫
RN

|un(y)− uµ(y)|r(y)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy

) p−

2r+

,

(∫
RN

∫
RN

|un(y)− uµ(y)|r(y)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy

) p+

2r−
}

(32)
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for some positive constants c18 and c19. By relations (28) and (32), for ϱµ > 0 the
following estimate

max

{
(ϱµ)

1− p+

2r− , (ϱµ)
1− p−

2r+

}
≥ c19 (33)

holds true. By a similar argument as in relation (13) and Lemma 4.2, we can deduce
that

lim
µ→+∞

δµ = 0. (34)

Since un
w−→ uµ in W

1,p(x)
V (RN ) as n→ ∞, combining relation (34) we have

lim
µ→+∞

∥uµ∥W 1,p(x)
V (RN )

≤ lim
µ→+∞

lim
n→∞

∥un∥W 1,p(x)
V (RN )

= lim
µ→+∞

δµ = 0. (35)

Denote

µ∗ = sup {µ > 0 : ϱµ > 0} , (36)

where ϱµ is given in (16).
Next, we show that µ∗ < +∞. Indeed, if µ∗ = +∞, we can assume that there

exists a subsequence {µk} ⊂ R with µk → +∞ as k → ∞, such that ϱµk
> 0 for all

k. Without loss of generality, using relation (34) we can assume that 0 < δµk
< 1

for all k.
Using relations (27), (33) and ⟨ω, uµ⟩ ≥ 0, we obtain

(δµk
)
p−

(
1− p+

2r−

)
≥ max

{
(ϱµk

)1−
p+

2r− , (ϱµk
)1−

p−

2r+

}
≥ c20 > 0 (37)

for some constant c20 > 0. This inequality and relation (34) imply that 0 > 0, since
2r− > p+. This is a contradiction. So, µ∗ < +∞. Therefore, for all µ ≥ µ∗

lim
n→∞

∫
RN

∫
RN

|un(x)− uµ(x)|r(x)|un(y)− uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy = 0. (38)

Relations (28) and (38) yield that

lim
n→∞

⟨L(un)− L(uµ), un − uµ⟩ = 0. (39)

Using relations (32) and (39) we conclude that

lim
n→∞

∥un − uµ∥W 1,p(x)
V (RN )

= 0.

Case 2. Ω1 = RN . Using relation (31), Hölder’s inequality (see Musielak [21]),

Sobolev’s inequality and the boundedness of {un} in W
1,p(x)
V (RN ), we have∫

RN

(
|∇un −∇uµ|p(x) + V (x)|un − uµ|p(x)

)
dx

≤ c21

∫
RN

(
(|∇un|p(x)−2∇un − |∇uµ|p(x)−2∇uµ)(∇un −∇uµ)

)p(x)/2
×
(
|∇un|p(x) + |∇uµ|p(x)

)(2−p(x))/2

dx

+ c21

∫
RN

V (x)
(
(|un|p(x)−2un − |uµ|p(x)−2uµ)(un − uµ)

)p(x)/2
×
(
|un|p(x) + |uµ|p(x)

)(2−p(x))/2

dx
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≤ 2c21

∥∥∥∥((|∇un|p(x)−2∇un − |∇uµ|p(x)−2∇uµ)(∇un −∇uµ)
)p(x)/2∥∥∥∥

L2/p(x)(RN )

×
∥∥∥∥(|∇un|p(x) + |∇uµ|p(x)

)(2−p(x))/2
∥∥∥∥
L2/(2−p(x))(RN )

+ 2c21

∥∥∥∥(V (x)(|un|p(x)−2un − |uµ|p(x)−2uµ)(un − uµ)
)p(x)/2∥∥∥∥

L2/p(x)(RN )

×
∥∥∥∥(V (x)|un|p(x) + V (x)|uµ|p(x)

)(2−p(x))/2
∥∥∥∥
L2/(2−p(x))(RN )

≤ c22 max
{
⟨L(un)− L(uµ), un − uµ⟩p

+/2, ⟨L(un)− L(uµ), un − uµ⟩p
−/2
}

(40)

for some constants c21, c22 > 0.
By relations (29), (30) and (40), we obtain

max
{
⟨L(un)− L(uµ), un − uµ⟩p

+/2, ⟨L(un)− L(uµ), un − uµ⟩p
−/2
}

≥ 1

c22

∫
RN

(
|∇un −∇uµ|p(x) + V (x)|un − uµ|p(x)

)
dx

≥ c23 min

{
∥un − uµ∥p

+

W
1,p(x)
V (RN )

, ∥un − uµ∥p
−

W
1,p(x)
V (RN )

}

≥ c24 min

{(∫
RN

∫
RN

|un(y)− uµ(y)|r(y)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy

) p−

2r+

,

(∫
RN

∫
RN

|un(y)− uµ(y)|r(y)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy

) p+

2r−
}

(41)

for some positive constants c23 and c24.
Using relations (28) and (41), we get

max
{
(ϱµ)

p+/2, (ϱµ)
p−/2

}
≥ c23 min

{
(ϱµ)

p+/(2r−), (ϱµ)
p−/(2r+)

}
.

This relation implies that

max
{
(ϱµ)

p+/2−p−/(2r+), (ϱµ)
p−/2−p+/(2r−)

}
≥ c24 > 0 (42)

for ϱµ > 0.
Similarly we prove that µ∗ < +∞ (µ∗ is given in (36)). Otherwise, if µ∗ = +∞,

we can assume that there exists a subsequence {µk} ⊂ R with µk → +∞ as k → ∞,
such that ϱµk

> 0 for all k. Without loss of generality, by relation (34), we also can
assume that 0 < δµk

< 1 for all k.
By relation (27) and ⟨ω, uµ⟩ ≥ 0 again, together with relation (42), we deduce

that

(δµk
)
p−

(
p−
2 − p+

2r−

)
≥ max

{
(ϱµk

)p
+/2−p−/(2r+), (ϱµk

)p
−/2−p+/(2r−)

}
≥ c25 > 0

(43)

for some constant c25 > 0. Since p−r− > p+, using relations (34), (43) we arrive at
a contradiction. Hence, µ∗ < +∞. Similar to the case Ω2 = RN , for µ ≥ µ∗ we can
obtain

lim
n→∞

∥un − uµ∥W 1,p(x)
V (RN )

= 0.
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Case 3. Ω1 ̸= ∅ and Ω2 ̸= ∅.
Denote

p+1 = sup
x∈Ω1

p(x) and p−1 = inf
x∈Ω1

p(x).

Arguing as in the discussions of relations (32) and (41), together with relations
(29) and (30), we can conclude that there exist some constants c26, c27, c28 > 0
such that

max

{
⟨L(un)− L(uµ), un − uµ⟩, ⟨L(un)− L(uµ), un − uµ⟩p

+
1 /2,

⟨L(un)− L(uµ), un − uµ⟩p
−
1 /2

}

≥ c26

∫
RN

(
|∇un −∇uµ|p(x) + V (x)|un − uµ|p(x)

)
dx

≥ c27 min

{
∥un − uµ∥p

+

W
1,p(x)
V (RN )

, ∥un − uµ∥p
−

W
1,p(x)
V (RN )

}

≥ c28 min

{(∫
RN

∫
RN

|un(y)− uµ(y)|r(y)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy

) p−

2r+

,

(∫
RN

∫
RN

|un(y)− uµ(y)|r(y)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy

) p+

2r−
}
. (44)

Using the main formula (28) and relation (44), we get

max
{
ϱµ, (ϱµ)

p+
1 /2, (ϱµ)

p−
1 /2
}
≥ c28 min

{
(ϱµ)

p+/(2r−), (ϱµ)
p−/(2r+)

}
.

This relation yields that

max

{
(ϱµ)

1− p−

2r+ , (ϱµ)
p−
2 − p+

2r−

}
≥ c28 > 0 (45)

for ϱµ > 0. Arguing as in the above cases, we obtain that µ∗ < +∞ (µ∗ is given in
(36)). So, for µ ≥ µ∗ we deduce that

lim
n→∞

∥un − uµ∥W 1,p(x)
V (RN )

= 0.

In conclusion, we deduce that there exists some constant µ∗ > 0 such that Υµ

satisfies the (PS)cµ condition on W
1,p(x)
V (RN ) for all µ ≥ µ∗.

The proof is now complete.

Proof of Theorem 2.1. Using Lemmas 4.1 and 4.3, there exists µ∗ > 0 such that

for all µ ≥ µ∗ the functional Υµ has a nontrivial critical point uµ ∈ W
1,p(x)
V (RN ).

More precisely, the critical point uµ is a mountain pass solution of problem (Pµ).
Moreover, relation (34) implies that ∥uµ∥W 1,p(x)

V (RN )
→ 0 as µ→ +∞.

The proof of Theorem 2.1 is now complete.
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5. Proof of Theorem 2.2. We first establish some auxiliary properties.

Lemma 5.1. Assume that hypotheses (H3) and (H5) hold. Then there exist 0 <

ρ0 < 1 and µ0 = µ0(ρ0) > 0, η0 > 0, such that Υµ(u) ≥ η0 for all u ∈W
1,p(x)
V (RN )

with ∥u∥
W

1,p(x)
V (RN )

= ρ0 and for all µ ≤ µ0.

Proof. For all u ∈W
1,p(x)
V (RN ) with ∥u∥Lp∗(x)(RN ) ≤ c29∥u∥W 1,p(x)

V (RN )
≤ 1 (c29 > 1

does not depend on u), we deduce from hypothesis (H3), Theorem 1.1, Hölder’s
inequality (see Musielak [21]) and the Young inequality that there exists c30 > 0
such that for any ε > 0

Υµ(u) ≥
1

2p+−1p+
∥u∥p

+

W
1,p(x)
V (RN )

− c30∥u∥2r
−

W
1,p(x)
V (RN )

− µ

∫
RN

β(x)

α(x)
|u|α(x)dx

≥ 1

2p+−1p+
∥u∥p

+

W
1,p(x)
V (RN )

− c30∥u∥2r
−

W
1,p(x)
V (RN )

− 2µc
α−p∗−

p∗+

29 ∥β∥
L

p∗(x)
p∗(x)−α(x) (RN )

∥u∥
α−p∗−

p∗+

W
1,p(x)
V (RN )

≥
(

1

2p+−1p+
− ε

)
∥u∥p

+

W
1,p(x)
V (RN )

− c30∥u∥2r
−

W
1,p(x)
V (RN )

− ε
− α−p∗−

p+p∗+−α−p∗−

(
2µc

α−p∗−

p∗+

29 ∥β∥
L

p∗(x)
p∗(x)−α(x) (RN )

) p+p∗+

p+p∗+−α−p∗−

, (46)

since α− < p+. Taking ε = 2−p+

p+
−1

, relation (46) yields that

Υµ(u) ≥ 2−p+

p+
−1∥u∥p

+

W
1,p(x)
V (RN )

− c30∥u∥2r
−

W
1,p(x)
V (RN )

−
(
2p

+

p+
) α−p∗−

p+p∗+−α−p∗−

(
2µc

α−p∗−

p∗+

29 ∥β∥
L

p∗(x)
p∗(x)−α(x) (RN )

) p+p∗+

p+p∗+−α−p∗−

.

Set

ℓ(t) = 2−p+

p+
−1
tp

+

− c30t
2r− , 0 ≤ t ≤ 1

c29
.

Since 2r− > p+, we have

ℓ(ρ0) = max
0≤t≤ 1

c29

ℓ(t) > 0, with ρ0 = min

{
1

c29
,

(
1

2p++1c30r−

)1/(2r−−p+)
}
.

Denote

µ0 =

(
ℓ(ρ0)

2

) p+p∗+−α−p∗−

p+p∗+ (
2−p+

p+
−1
)α−p∗−

p+p∗+

(
2c

α−p∗−

p∗+

29 ∥β∥
L

p∗(x)
p∗(x)−α(x) (RN )

)−1

.

Thus, for all u ∈ W
1,p(x)
V (RN ) with ∥u∥

W
1,p(x)
V (RN )

= ρ0 and for all µ ≤ µ0, we

have

Υµ(u) ≥ ℓ(ρ0)−
(
2p

+

p+
) α−p∗−

p+p∗+−α−p∗−

(
2µc

α−p∗−

p∗+

29 ∥β∥
L

p∗(x)
p∗(x)−α(x) (RN )

) p+p∗+

p+p∗+−α−p∗−
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≥ ℓ(ρ0)−
(
2p

+

p+
) α−p∗−

p+p∗+−α−p∗−

(
2µ0c

α−p∗−

p∗+

29 ∥β∥
L

p∗(x)
p∗(x)−α(x) (RN )

) p+p∗+

p+p∗+−α−p∗−

=
ℓ(ρ0)

2
=: η0 > 0,

being α− < p+.
The proof is now complete.

Lemma 5.2. Assume that hypotheses (H3) − (H5) are fulfilled, then cµ < 0 for

any µ ∈ (0, µ0], where cµ = inf
{
Υµ(u) : u ∈ Bρ0

}
, Bρ0

=
{
u ∈W

1,p(x)
V (RN ) :

∥u∥
W

1,p(x)
V (RN )

< ρ0

}
and the numbers ρ0 and µ0 are given in Lemma 5.1.

Proof. For a fixed x0 ∈ U , let R be so small such that B2R(x0) ⊂ U , where U is
given in (H4). Then, we choose a function ψ ∈ C∞

0 (B2R(x0)) such that 0 ≤ ψ ≤ 1,

0 < ∥ψ∥
W

1,p(x)
V (RN )

≤ ρ0

and ∫
B2R(x0)

ψκ(x)dx > 0.

For each fixed µ ∈ (0, µ0], by hypothesis (H4), we obtain for all 0 < t < min{b, 1}

Υµ(tψ) ≤
2ρp

−

0 tp
−

p−
− µa

(∫
B2R(x0)

ψκ(x)dx

)
tκ

+

.

Since κ+ < p−, we can find a fixed t0 > 0 even small such that

t0 < min

b, 1,
(
µap−

2ρp
−

0

∫
B2R(x0)

ψκ(x)dx

)1/(p−−k+)
 ,

consequently, t0ψ ∈ Bρ0
and Υµ(t0ψ) < 0. This implies that cµ < 0 for all µ ∈

(0, µ0]. The proof is now complete.

By Lemmas 5.1 and 5.2 and the Ekeland variational principle (see Ekeland [8,
Theorem 1]), applied in Bρ0 , there exists a sequence {un} ⊂ Bρ0 such that cµ ≤
Υµ(un) ≤ cµ +

1

n
and

Υµ(w) ≥ Υµ(un) +
∥un − w∥

W
1,p(x)
V (RN )

n

for all w ∈ Bρ0 .
Then, similarly with the proof of Corollary I.5.3 in Struwe [28] (see also Willem

[31, Corollary 2.5]), we can deduce that {un} is a (PS)cµ sequence of the functional

Υµ.

Lemma 5.3. There exists µ∗ > 0 such that {un} admits a strongly convergent

subsequence in W
1,p(x)
V (RN ) for all 0 < µ ≤ µ∗.
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Proof. Thanks to {un} ⊂ Bρ0 , similarly to the proof of relation (16), we may

assume that there exist uµ ∈ W
1,p(x)
V (RN ) and δµ, ϱµ ≥ 0 such that, passing to a

subsequence, still denoted by {un},

un
w−→ uµ in W

1,p(x)
V (RN ), ∥un∥W 1,p(x)

V (RN )
→ δµ,∫

RN

∫
RN

|un(x)− uµ(x)|r(x)|un(y)− uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy → ϱµ,

un → uµ a.e. in RN , |un|r(x)
w−→ |uµ|r(x) in L

2N

2N−λ+ (RN ) ∩ L
2N

2N−λ− (RN ),

|un|r(x)−2un
w−→ |uµ|r(x)−2uµ in L

p∗(x)
r(x)−1 (RN )

(47)

as n→ ∞.
Note that {un} ⊂ Bρ0 . For any Ω ⊂ RN , it follows from hypothesis (H3), Hölder’s

inequality (see Musielak [21]) and Sobolev inequality that∫
Ω

|f(x, un)(un − uµ)|dx

≤ 2∥β∥
L

p∗(x)
p∗(x)−α(x) (Ω)

∥|un|α(·)−1(un − uµ)∥
L

p∗(x)
α(x) (RN )

≤ 2∥β∥
L

p∗(x)
p∗(x)−α(x) (Ω)

max

{(∫
RN

|un|
(α(x)−1)p∗(x)

α(x) |un − uµ|
p∗(x)
α(x) dx

) α+

p∗−

,

(∫
RN

|un|
(α(x)−1)p∗(x)

α(x) |un − uµ|
p∗(x)
α(x) dx

) α−
p∗+

}

≤ 2∥β∥
L

p∗(x)
p∗(x)−α(x) (Ω)

max

{(
2∥|un|

(α(·)−1)p∗(·)
α(·) ∥

L
α(x)

α(x)−1
∥|un − uµ|

p∗(x)
α(x) ∥Lα(x)

) α+

p∗−

,

(
2∥|un|

(α(·)−1)p∗(·)
α(·) ∥

L
α(x)

α(x)−1
∥|un − uµ|

p∗(x)
α(x) ∥Lα(x)

) α−
p∗+

}
≤ c31∥β∥

L
p∗(x)

p∗(x)−α(x) (Ω)

for some constant c31 > 0. By β ∈ L
p∗(x)

p∗(x)−α(x) (RN ) we see that the sequence
{f(x, un)(un − uµ)} is equi-integrable in L1(RN ).

Additionally, f(x, un)(un − uµ) → 0 a.e. in RN as n → ∞. So, it follows from
Vitali’s convergence theorem (see, Bogachev [3, Corollary 4.5.5]) that

lim
n→∞

∫
RN

f(x, un)(un − uµ)dx = 0. (48)

Similarly we can conclude that relations (22)−(23) also hold true in this section.
Furthermore, we also can use the argument produced in the proof of Lemma 4.3 to
show that relations (19)−(20) also hold true for this setting.

Let L be defined as in the proof of Lemma 4.3, then relation (24) continues
to remain unchanged, and we also can deduce that there is a functional ω ∈(
W

1,p(x)
V (RN )

)′
such that relation (25) holds for all v ∈ W

1,p(x)
V (RN ). Conse-

quently, on account of the fact that {un} is a (PS)cµ sequence, we can derive that
relations (26), (27) and (28) are fulfilled.
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Similar to relation (48), we deduce that

lim
n→∞

∫
RN

F (x, un)dx =

∫
RN

F (x, uµ)dx. (49)

Since {un} is a minimizing (PS)cµ sequence, using relations (24), (25), (26), (28),
(49) and Lemma 3.1, for sufficiently large n ∈ N we have

cµ =

∫
RN

1

p(x)

(
|∇un|p(x) + V (x)|un|p(x)

)
dx− µ

∫
RN

F (x, un)dx

−
∫
RN

∫
RN

|un(x)|r(x)|un(y)|r(y)

2r(x)|x− y|λ(x,y)r(y)
dxdy + on(1)

≥ 1

p+

∫
RN

(
|∇un|p(x) + V (x)|un|p(x)

)
dx− µ

∫
RN

F (x, un)dx

− 1

2r−

∫
RN

∫
RN

|un(x)|r(x)|un(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy + on(1).

It follows that

cµ ≥ 1

p+
⟨L(un)− L(uµ), un − uµ⟩+

1

p+
⟨L(un), uµ⟩ − µ

∫
RN

F (x, un)dx

− 1

2r−

∫
RN

∫
RN

|un(x)|r(x)|un(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy + on(1)

=
1

p+

∫
RN

∫
RN

|un(x)− uµ(x)|r(x)|un(y)− uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy

− 1

2r−

∫
RN

∫
RN

|un|r(x)|un(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy +

µ

p+

∫
RN

f(x, uµ)uµdx

+
1

p+

∫
RN

∫
RN

|uµ(x)|r(x)|uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy − µ

∫
RN

F (x, un)dx+ on(1)

≥
(

1

p+
− 1

2r−

)∫
RN

∫
RN

|un(x)− uµ(x)|r(x)|un(y)− uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy

+
µ

p+

∫
RN

f(x, uµ)uµdx− µ

∫
RN

F (x, uµ)dx+ on(1), (50)

since 2r− > p+.
On account of the fact that ∥un∥W 1,p(x)

V (RN )
< ρ0 (where ρ0 is independent of

µ), hence, ∥uµ∥W 1,p(x)
V (RN )

≤ ρ0, and there exists some positive constant c32 (which

does not depend on µ) such that∫
RN

F (x, uµ)dx ≤ c32 and

∫
RN

f(x, uµ)uµdx ≤ c32.

So, this relation together with relation (50) yields that(
1

p+
− 1

2r−

)∫
RN

∫
RN

|un(x)− uµ(x)|r(x)|un(y)− uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy

≤ cµ + 2µc32 + on(1).

Combining this relation and Lemma 5.2, we deduce that

lim
µ→0

lim
n→∞

∫
RN

∫
RN

|un(x)− uµ(x)|r(x)|un(y)− uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy = lim

µ→0
ϱµ = 0. (51)
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Denote

µ∗ =

{
inf {µ ∈ (0, µ0] : ϱµ > 0} if ϱµ ̸≡ 0,

µ0 if ϱµ ≡ 0,

where ϱµ is given in (47).

According to the division of RN and relation (31), we also can divide the discus-
sion into three cases.

Case Ω2 = RN . As in the proof of Lemma 4.3, i.e., similar to the proof of relation
(33), we can get

max

{
(ϱµ)

1− p+

2r− , (ϱµ)
1− p−

2r+

}
≥ c19 (52)

for ϱµ > 0. If ϱµ ̸≡ 0, relations (51) and (52) imply that µ∗ = inf {µ ∈ (0, µ0] : ϱµ >
0} > 0. Otherwise, we can deduce that there exists a sequence {µk} ⊂ R with
ϱµk

> 0 such that µk → 0 as k → ∞. By relations (51) and (52) we have

0 = lim
k→∞

max

{
(ϱµk

)1−
p+

2r− , (ϱµk
)1−

p−

2r+

}
≥ c19.

This is a contradiction. Hence, ϱµ = 0 for all µ ∈ (0, µ∗], i.e.,

lim
n→∞

∫
RN

∫
RN

|un(x)− uµ(x)|r(x)|un(y)− uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy = 0 (53)

for all µ ∈ (0, µ∗]. Therefore, by relations (28), (31) and (53) we get

lim
n→∞

∥un − uµ∥W 1,p(x)
V (RN )

= 0.

As for the cases Ω1 = RN and Ω1 ̸= ∅ ≠ Ω2, it follows as above and as in the
proof of Lemma 4.3 that there exists µ∗ > 0 such that ∥un − uµ∥W 1,p(x)

V (RN )
→ 0 as

n→ ∞ for all µ ∈ (0, µ∗].
This proof is now complete.

Proof of Theorem 2.2. Using Lemmas 5.1 and 5.2, we can deduce that there is a
(PS)cµ sequence {un} of the functional Υµ at the level cµ < 0 given in Lemma 5.2.

Additionally, by Lemma 5.3, there exists µ∗ > 0 such that un → uµ ∈W
1,p(x)
V (RN )

(up to a subsequence) as n→ ∞ for all µ ∈ (0, µ∗]. Furthermore, Υµ(uµ) = cµ < 0

and Υ′
µ(uµ) = 0, that is, problem (Pµ) has a nontrivial solution uµ ∈W

1,p(x)
V (RN ).

This proof of Theorem 2.2 is now complete.

6. Proof of Theorem 2.3. In this section, we use Jµ : W
1,p(x)
rad (RN ) 7→ R to

denote the energy functional related to problem (Qµ) defined by

Jµ(u) =

∫
RN

1

p(x)

(
|∇u|p(x) + |u|p(x)

)
dx− µ

∫
RN

F (x, u)dx−
∫
RN

K(x)

p∗(x)
|u|p

∗(x)dx

− 1

2

∫
RN

∫
RN

g(x)|u(x)|r(x)g(y)|u(y)|r(y)

r(x)|x− y|λ(x,y)r(y)
dxdy.

By hypothesis (H1), we can demonstrate as Lemma 3.2 in Alves and Tavares [2]
to infer that

Jµ ∈ C1
(
W

1,p(x)
rad (RN ),R

)
,
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with

⟨J ′
µ(u), v⟩ =

∫
RN

(
|∇u|p(x)−2∇u∇v + |u|p(x)−2uv

)
dx− µ

∫
RN

f(x, u)vdx

−
∫
RN

K(x)|u|p
∗(x)−2uvdx−

∫
RN

∫
RN

g(y)|u(y)|r(y)g(x)|u(x)|r(x)−2u(x)v(x)

r(y)|x− y|λ(x,y)
dxdy

for all u, v ∈W
1,p(x)
rad (RN ).

Our first result establishes the mountain pass geometry.

Lemma 6.1. The functional Jµ satisfies the following properties.

(i) There exists ρ1 > 0 small enough such that Jµ(u) ≥ η1 for all u ∈W
1,p(x)
rad (RN )

with ∥u∥W 1,p(x)(RN ) = ρ1 for some η1 > 0.

(ii) There exists e ∈W
1,p(x)
rad (RN ) such that ∥e∥W 1,p(x)(RN ) > ρ1 and Jµ(e) < 0.

Proof. The proof of this lemma is similar to that of Lemma 4.1. So, we omit it
here.

For some fixed µ > 0, let us define

cµ := inf
γ∈Γ

max
t∈[0,1]

Jµ(γ(t)), (54)

where

Γ =
{
γ ∈ C

(
[0, 1],W

1,p(x)
rad (RN )

)
: γ(0) = 0, γ(1) = e

}
.

By Lemma 6.1, we obtain that cµ > 0. Furthermore, we have the following
asymptotic behavior of these levels.

Lemma 6.2. Assume that (H1) and (H6) are fulfilled. Then we have

lim
µ→+∞

cµ = 0,

where cµ is given in (54).

Proof. The proof of this property is similar to that of Lemma 4.2. Therefore, we
omit it here.

Lemma 6.3. There exists µ∗∗ > 0 such that Jµ satisfies the (PS)cµ condition on

W
1,p(x)
rad (RN ) for all µ ≥ µ∗∗.

Proof. Let {un} ⊂W
1,p(x)
rad (RN ) be a (PS)cµ sequence of the functional Jµ, that is,

Jµ(un) → cµ and J ′
µ(un) → 0 as n → ∞. In a similar fashion to relation (13), by

(H6) we are able to conclude that the sequence {un} is bounded in W
1,p(x)
rad (RN ).

So, we may assume that there is an element uµ ∈W
1,p(x)
rad (RN ) and δµ, ϱµ ≥ 0 such

that, up to a subsequence, still denoted by {un},

un
w−→ uµ in W

1,p(x)
rad (RN ), ∥un∥W 1,p(x)(RN ) → δµ,

|∇un|p(x) + |un|p(x)
w∗

−−→ υ in M(RN ), |un|p
∗(x) w∗

−−→ ν in M(RN ),∫
RN

∫
RN

g(x)|un(x)− uµ(x)|r(x)g(y)|un(y)− uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy → ϱµ,

un → uµ a.e. in RN , |un|r(x)
w−→ |uµ|r(x) in L

2N

2N−λ+ (RN ) ∩ L
2N

2N−λ− (RN ),

|un|r(x)−2un
w−→ |uµ|r(x)−2uµ in L

p∗(x)
r(x)−1 (RN ),

(55)
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as n→ ∞.
It follows from the concentration-compactness principle for variable exponents

(see Fu and Zhang [11, Theorem 2.2] that

υ = |∇uµ|p(x) + |uµ|p(x) +
∑
j∈J

υjδxj + υ̃ and ν = |uµ|p
∗(x) +

∑
j∈J

νjδxj ,

where J is a countable set, {υj}, {νj} ⊂ [0,+∞), {xj} ⊂ RN , δxj is the Dirac mass

centered at xj , υ̃ ∈ M(RN ) is a non-atomic non-negative measure. Applying the
concentration-compactness principle for variable exponents, we get

lim sup
n→∞

∫
RN

|un|p
∗(x)dx =

∫
RN

dν + ν∞ =

∫
RN

|uµ|p
∗(x)dx+

∑
j∈J

νj + ν∞.

Next, we show that ∫
RN

|un − uµ|p
∗(x)dx = 0. (56)

According to the above discussion, we divide the proof into two parts, that is, νj = 0
and ν∞ = 0.

(i) We first show that νj = 0. For any ε > 0, there exists a radially symmetric
function φ ∈ C∞

0 (B2ε(0)) such that 0 ≤ φ ≤ 1, |∇φ| ≤ 2/ε; φ = 1 on Bε(0). Since

{unφ} is bounded in W
1,p(x)
rad (RN ), we obtain ⟨J ′

µ(un), unφ⟩ → 0 as n → ∞. By
straightforward computation we obtain

⟨J ′
µ(un), unφ⟩ =

∫
RN

(
|∇un|p(x) + |un|p(x)

)
φdx− µ

∫
RN

f(x, un)unφ dx

−
∫
RN

K(x)|un|p
∗(x)φdx+

∫
RN

|∇un|p(x)−2∇un∇φundx

−
∫
RN

∫
RN

g(y)|un(y)|r(y)g(x)|un(x)|r(x)φ(x)
r(y)|x− y|λ(x,y)

dxdy.

Similar to the proof of relation (17), we can get

lim
n→∞

∫
RN

f(x, un)unφdx =

∫
RN

f(x, uµ)uµφdx.

So, it follows that

lim
n→∞

(∫
RN

|∇un|p(x)−2∇un∇φundx

−
∫
RN

∫
RN

g(y)|un(y)|r(y)g(x)|un(x)|r(x)φ(x)
r(y)|x− y|λ(x,y)

dxdy

)

=

∫
RN

−φdυ + µ

∫
RN

f(x, uµ)uµφdx+

∫
RN

K(x)φdν. (57)

Clearly, there exists some constant c33 > 0 such that∫
RN

|∇φuµ|p(x)dx

=

∫
B2ε(0)

|∇φuµ|p(x)dx
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≤c33 max


(
4NwN

N

) p+

N

,

(
4NwN

N

) p−
N

 ∥|uµ|p(x)∥
L

p∗(x)
p(x) (B2ε(0))

=oε(1), as ε→ 0, (58)

where wN is the surface area of the unit sphere in RN . On account of the fact
that un → uµ in Lp(x)(B2ε(0)) as n → ∞, we can derive that ∥∇φun∥Lp(x)(RN ) →
∥∇φuµ∥Lp(x)(RN ) in R as n → ∞. Hence, relation (58), Hölder’s inequality (see

Musielak [21]), the Sobolev inequality and the boundedness of {un} yield that

lim
ε→0

lim sup
n→∞

∣∣∣∣∫
RN

|∇un|p(x)−2∇un∇φundx
∣∣∣∣

≤ lim
ε→0

lim sup
n→∞

∫
RN

|∇un|p(x)−1||∇φun|dx

≤ 2 lim
ε→0

lim sup
n→∞

∥|∇un|p(x)−1∥
L

p(x)
p(x)−1 (RN )

∥∇φun∥Lp(x)(RN )

≤ c34 lim
ε→0

∥∇φuµ∥Lp(x)(RN )

= 0 (59)

for some constant c34 > 0.
Note that lim

|x|→0
g(x) = 0, for any η > 0, there exists δ = δ(η) > 0 such that

2ε < δ, we get∫
B2ε(0)

g(x)
2N

2N−λ+ |un|p
∗(x)dx ≤ η

2N

2N−λ+

∫
RN

|un|p
∗(x)dx ≤ c35η

2N

2N−λ+

for some constant c35 > 0. Thus we have

lim
ε→0

lim sup
n→∞

∫
B2ε(0)

g(x)
2N

2N−λ+ |un|p
∗(x)dx = 0. (60)

Similarly we have

lim
ε→0

lim sup
n→∞

∫
B2ε(0)

g(x)
2N

2N−λ− |un|
2Nr(x)

2N−λ− dx = 0. (61)

Relations (60)−(61) together with Theorem 1.1 imply that

lim
ε→0

lim sup
n→∞

∫
RN

∫
RN

g(y)|un(y)|r(y)g(x)|un(x)|r(x)φ(x)
r(y)|x− y|λ(x,y)

dxdy = 0. (62)

Using (H1) we can easily see that

lim
ε→0

∫
RN

f(x, uµ)uµφdx = 0. (63)

Note that K(0) = 0, then it follows from relations (57), (59), (62) and (63) that
υ({0}) = 0. This implies that 0 is not an atom of υ.

We now prove that νj = 0 for any j ∈ J . We deduce from the above discussion
that there exists xj0 ̸= 0 (j0 ∈ J) such that νj0 = νj0({xj0}) > 0. Due to {un} ∈
W

1,p(x)
rad (RN ), the measure ν is O(N)-invariant, where O(N) is the group of orthogo-

nal linear transformations in RN . For any g ∈ O(N), νj0({gxj0}) = νj0({xj0}) > 0.
Additionally, we see that

|O(N)| = inf
x∈RN , x ̸=0

|O(N)x| = +∞,
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where |O(N)x| denotes the cardinality of {gx : g ∈ O(N)}. Therefore, νj0({gxj0 :
g ∈ O(N)}) = +∞. But the measure ν is finite, hence we get a contradiction. So,
for any j ∈ J we deduce that νj = 0.

(ii) Finally we prove that ν∞ = 0. For any R > 0, we choose a radially symmetric
function ξR ∈ C∞(RN ) such that 0 ≤ ξR ≤ 1, |∇ξR| < 2/R; ξR = 1 in RN \B2R(0),

ξR = 0 in BR(0). Clearly, {unξR} is bounded in W
1,p(x)
rad (RN ). Consequently, it

follows that ⟨J ′
µ(un), unξR⟩ → 0, as n→ ∞. Thus, we have

⟨J ′
µ(un), unξR⟩ =

∫
RN

(
|∇un|p(x) + |un|p(x)

)
ξRdx− µ

∫
RN

f(x, un)unξR dx

−
∫
RN

K(x)|un|p
∗(x)ξRdx+

∫
RN

|∇un|p(x)−2∇un∇ξRundx

−
∫
RN

∫
RN

g(y)|un(y)|r(y)g(x)|un(x)|r(x)ξR(x)
r(y)|x− y|λ(x,y)

dxdy. (64)

Similar to the proofs of relations (17) and (63), we deduce that

lim
R→+∞

lim
n→∞

∫
RN

f(x, un)unξRdx = lim
R→+∞

∫
RN

f(x, uµ)uµξRdx = 0. (65)

By the definition of ξR, we can deduce that

lim
R→+∞

∫
RN

|∇ξRuµ|p(x)dx = 0,

since 1 < p− ≤ p(x) ≤ p+ < N . Due to un → uµ strongly in Lp(x)(B2R(0)\BR(0)),
we observe that

lim
n→∞

∥∇ξRun∥Lp(x)(RN ) = ∥∇ξRuµ∥Lp(x)(RN ).

In a similar fashion to relation (58) we have

lim
R→+∞

lim sup
n→∞

∣∣∣∣∫
RN

|∇un|p(x)−2∇un∇ξRundx
∣∣∣∣ = 0. (66)

Note that lim
|x|→+∞

g(x) = 0. Similar to the proof of relation (62), we also have

lim
R→+∞

lim sup
n→∞

∫
RN

∫
RN

g(y)|un(y)|r(y)g(x)|un(x)|r(x)ξR(x)
r(y)|x− y|λ(x,y)

dxdy = 0. (67)

Also, we observe that

lim
R→+∞

lim sup
n→∞

∫
RN

K(x)|un|p
∗(x)ξRdx = 0, (68)

being lim
|x|→+∞

K(x) = 0.

So, by relations (64)−(68) we derive that

υ∞ = lim
R→+∞

lim sup
n→∞

∫
RN

(
|∇un|p(x) + |un|p(x)

)
ξRdx ≤ 0,

that is, υ∞ = 0. Then, we can easily deduce that

lim
R→+∞

lim sup
n→∞

∫
RN

(
|∇(unξR)|p(x) + |unξR|p(x)

)
dx = 0.

It follows that

ν∞ = lim
R→+∞

lim sup
n→∞

∫
RN

|ξRun|p
∗(x)dx = 0.
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Therefore, we deduce from (i) and (ii) that

lim sup
n→∞

∫
RN

|un|p
∗(x)dx =

∫
RN

|uµ|p
∗(x)dx.

So, combining this relation and Corollary 1, we get

lim
n→∞

∫
RN

|un − uµ|p
∗(x)dx = 0. (69)

Additionally, we also can use the argument produced in the proof of Lemma 4.3
to show that relations (17)−(23) also hold true for this setting.

Let L be defined in W
1,p(x)
rad (RN ) as in the proof of Lemma 4.3, then relation

(24) continues to remain unchanged in this section, and we also can deduce that

there is a functional ω ∈
(
W

1,p(x)
rad (RN )

)′
such that relation (25) holds for all v ∈

W
1,p(x)
rad (RN ). Note that ⟨J ′

µ(un), uµ⟩ → 0 as n → ∞, g, K ≥ 0 and g, K ∈
L∞(RN ), together with relations (19), (23), (25), (55) and (69), we have

⟨ω, uµ⟩ = µ

∫
RN

f(x, uµ)uµdx+

∫
RN

K(x)|uµ|p
∗(x)dx

+

∫
RN

∫
RN

g(y)|uµ(y)|r(y)g(x)|uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy. (70)

Using relation (70) and recalling that hypothesis (H6), we know that ⟨ω, uµ⟩ ≥ 0.
Consequently, on account of the fact that {un} is a (PS)cµ sequence and g, K ≥ 0

and g, K ∈ L∞(RN ), together with relations (19)−(25) and (69), we can conclude
that

lim
n→∞

⟨L(un)− L(uµ), un − uµ⟩

= lim
n→∞

∫
RN

∫
RN

g(y)|un(y)− uµ(y)|r(y)g(x)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy

+ lim
n→∞

∫
RN

K(x)|un − uµ|p
∗(x)dx

= lim
n→∞

∫
RN

∫
RN

g(y)|un(y)− uµ(y)|r(y)g(x)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy (71)

Similar to the proofs of relations (29)−(30), we get∫
RN

∫
RN

g(y)|un(y)− uµ(y)|r(y)g(x)|un(x)− uµ(x)|r(x)

r(y)|x− y|λ(x,y)
dxdy

≤ c36 max
{
∥un − uµ∥2r

+

W 1,p(x)(RN ), ∥un − uµ∥2r
−

W 1,p(x)(RN )

}
(72)

and

c37 min
{
∥un − uµ∥p

+

W 1,p(x)(RN )
, ∥un − uµ∥p

−

W 1,p(x)(RN )

}
≤
∫
RN

(
|∇un −∇uµ|p(x) + |un − uµ|p(x)

)
dx

≤ c38 max
{
∥un − uµ∥p

+

W 1,p(x)(RN )
, ∥un − uµ∥p

−

W 1,p(x)(RN )

}
(73)

for some constants c36, c37, c38 > 0.
Denote

µ∗∗ = sup {µ > 0 : ϱµ > 0} , (74)
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where ϱµ is given in (55).

According to the division of RN and relation (31), we also can divide the discus-
sion into three cases. The rest of the proof is similar to the proof of Lemma 4.3,
that is, using relations (70)−(73), we can use the argument used in the proof of
Lemma 4.3 to show that µ∗∗ < +∞. Thus, for all µ ∈ [µ∗∗,+∞) we can easily get
∥un − uµ∥W 1,p(x)(RN ) → 0 as n→ ∞. Moreover, we also have

lim
µ→+∞

∥uµ∥W 1,p(x)(RN ) = 0. (75)

In conclusion, there exists some constant µ∗∗ > 0 such that Jµ satisfies the (PS)cµ
condition on W

1,p(x)
rad (RN ) for all µ ≥ µ∗∗. The proof is now complete.

Proof of Theorem 2.3. Using Lemmas 6.1 and 6.3, we know that there exists
a constant µ∗∗ > 0 such that for all µ ≥ µ∗ the functional Jµ has a nontrivial

critical point uµ ∈ W
1,p(x)
rad (RN ). That is, the critical point uµ is a mountain pass

solution of problem (Qµ). Moreover, relation (75) implies that ∥uµ∥W 1,p(x)
V (RN )

→ 0

as µ→ +∞. The proof of Theorem 2.3 is now complete.

7. Proof of Theorem 2.4. We first establish some auxiliary results.

Lemma 7.1. Assume that hypotheses (H3), (H8) and (H9) hold. Then there exist
0 < ρ2 < 1 and µ1 = µ1(ρ2) > 0, η2 > 0, such that Jµ(u) ≥ η2 for all u ∈
W

1,p(x)
rad (RN ) with ∥u∥W 1,p(x)(RN ) = ρ2 and for all µ ≤ µ1.

Proof. This follows with similar arguments as in the proof of Lemma 5.1.

Lemma 7.2. Assume that hypotheses (H3) − (H4) and (H8) − (H9) are fulfilled,
then cµ < 0 for any µ ∈ (0, µ1], where cµ = inf

{
Jµ(u) : u ∈ Bρ2

}
,

Bρ2
=
{
u ∈W

1,p(x)
rad (RN ) : ∥u∥W 1,p(x)(RN ) < ρ2

}
and the numbers µ1 and ρ2 are given in Lemma 7.1.

Proof. This follows with similar arguments as in the proof of Lemma 5.2.

By Lemmas 7.1 and 7.2 and the Ekeland variational principle (see Ekeland [8,
Theorem 1]), applied in Bρ2 , there exists a sequence {un} ⊂ Bρ2 such that cµ ≤
Jµ(un) ≤ cµ +

1

n
and

Jµ(w) ≥ Jµ(un) +
∥un − w∥W 1,p(x)(RN )

n

for all w ∈ Bρ2
. Then, as in the proof of Corollary I.5.3 of Struwe [28] (see also [31,

Corollary 2.5]), we deduce that {un} is a (PS)cµ sequence of the functional Jµ.

Lemma 7.3. There exists µ∗∗ > 0 such that {un} possesses a strongly convergent

subsequence in W
1,p(x)
rad (RN ) for all 0 < µ ≤ µ∗∗.

Proof. Since the argument is similar to the proofs Lemmas 5.3 and 6.3, we only give
outline of the proof of Lemma 7.3. Thanks to {un} ⊂ Bρ2 , similar to the proof of
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relation (55), we may assume that there exists an element uµ ∈ W
1,p(x)
rad (RN ) and

δµ, ϱµ ≥ 0 such that, passing to a subsequence, still denoted by {un},

un
w−→ uµ in W

1,p(x)
rad (RN ), ∥un∥W 1,p(x)(RN ) → δµ,

|∇un|p(x) + |un|p(x)
w∗

−−→ υ in M(RN ), |un|p
∗(x) w∗

−−→ ν in M(RN ),∫
RN

∫
RN

g(x)|un(x)− uµ(x)|r(x)g(y)|un(y)− uµ(y)|r(y)

r(y)|x− y|λ(x,y)
dxdy → ϱµ,

un → uµ a.e. in RN , |un|r(x)
w−→ |uµ|r(x) in L

2N

2N−λ+ (RN ) ∩ L
2N

2N−λ− (RN ),

|un|r(x)−2un
w−→ |uµ|r(x)−2uµ in L

p∗(x)
r(x)−1 (RN ),

(76)

as n→ ∞.

µ∗∗ =

{
inf {µ ∈ (0, µ1] : ϱµ > 0} if ϱµ ̸≡ 0,

µ1 if ϱµ ≡ 0,

where ϱµ is given in (76).
As in the proof of relation (69), we can conclude that relation (69) also holds true

for this setting. Then, using the argument produced in the proof of Lemma 5.3, we
can show that µ∗∗ > 0. Eventually, for all µ ∈ (0, µ∗∗] we get ∥un−uµ∥W 1,p(x)(RN ) →
0 as n→ ∞.

In conclusion, there exists some constant µ∗∗ > 0 such that Jµ satisfies the (PS)cµ
condition on W

1,p(x)
rad (RN ) for all 0 < µ ≤ µ∗∗. The proof is now complete.

Proof of Theorem 2.4. By Lemmas 7.1 and 7.2, we deduce that there is a (PS)cµ
sequence {un} of the functional Jµ at the level cµ < 0 given in Lemma 7.1. Addition-

ally, by Lemma 7.3, there exists µ∗∗ > 0 such that un → uµ ∈W
1,p(x)
rad (RN ) (passing

to a subsequence) as n → ∞ for all µ ∈ (0, µ∗∗]. Furthermore, Jµ(uµ) = cµ < 0

and J ′
µ(uµ) = 0, that is, problem (Qµ) has a nontrivial solution uµ ∈W

1,p(x)
rad (RN ).

The proof of Theorem 2.4 is now complete.
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