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Abstract. In this paper, we study the following coupled nonlocal system{
(−∆)su− λ1u = µ1|u|αu+ β|u|

α−2
2 u|v|

α+2
2 in RN ,

(−∆)sv − λ2v = µ2|v|αv + β|u|
α+2
2 |v|

α−2
2 v in RN ,

satisfying the additional conditions∫
RN

u2dx = b21 and

∫
RN

v2dx = b22,

where (−∆)s is the fractional Laplacian, 0 < s < 1, µ1, µ2 > 0, N > 2s, and
4s
N
< α ≤ 2s

N−2s
. We are concerned with the attractive case, which corresponds

to β > 0. In the case of low perturbations of the coupling parameter, by using

two-dimensional linking arguments, we show that there exists β1 > 0 such that

when 0 < β < β1, then the system has a positive radial solution. Next, in the
case of high perturbations of the coupling parameter, we prove that there exists

β2 > 0 such that the system has a mountain-pass type solution for all β > β2.

These results correspond to low and high perturbations with respect to the
values of the coupling parameter β. This paper extends and complements the

main results established in [2] for the particular case N = 3, s = 1, α = 2.
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1. Introduction and main results. In recent years, the normalized solutions for
various classes of Schrödinger equations or systems have been widely investigated
and there are many results, both for their particular interest from a physical point of
view and for their relevance in models arising in nonlinear optics and Bose-Einstein
condensation.

Consider the following system of coupled cubic Schrödinger equations:{
−∆u− λ1u = µ1u

3 + βuv2 in R3,

−∆v − λ2v = µ2v
3 + βu2v in R3,

(1)

satisfying the additional condition∫
R3

u2dx = a2
1 and

∫
R3

v2dx = a2
2. (2)

This problem was studied by Bartsch, Jeanjean and Soave in [2, 3, 4]. In [2], they
considered the attractive case β > 0 and proved that for arbitrary masses ai and
parameter µi, there exists β2 > β1 > 0 such that for both 0 < β < β1 and β > β2

system (1)–(2) has a positive radial solution. In the case 0 < β < β1 the solution is
obtained based on a two-dimensional linking, while for the case β > β2 this solution
is of mountain pass type. For the repulsive case β < 0, by introducing a natural
constraint, Bartsch and Soave [3] proved the existence of positive radial symmetric
solutions of system (1)–(2). In [4], they considered the symmetric problem of system
(1)–(2) with µ1 = µ2 and a1 = a2 and proved the existence of infinitely many
solutions.

Since λ1 and λ2 are parts of the unknown, the Nehari manifold method is not
available in the framework of normalized solutions. At the same time, the classi-
cal method used to prove the boundedness of any Palais-Smale sequence for the
unconstrained problem does not work. Thus, the main difficulty in dealing with
the normalized solutions is that the existence of bounded Palais-Smale sequence
requires new arguments. However, if we find a bounded Palais-Smale sequence, ac-
cording to the compactness of the embedding Hs

rad(RN ) ↪→ Lα+2(RN ), we just get
a strongly convergent subsequence in Lα+2(RN ), but we cannot deduce the strong
convergence in L2(RN ). Hence we require new arguments to overcome the lack of
compactness of the embedding Hs

rad(RN ) ↪→ L2(RN ).
Compared to the semilinear case that corresponds to the Laplace operator, the

fractional Laplacian problem is nonlocal and more challenging. This type of frac-
tional Schrödinger equations or systems is of particular interest in fractional quan-
tum mechanics for the study of particles on stochastic fields modelled by Lévy
processes. Recently, a great attention has been focused on the study of equations
or systems driven by the fractional Laplacian and with nonlinear reaction, both for
their interesting theoretical structure and their concrete applications; see [1, 7, 15]
and the references therein. This integro-differential operator arises in a quite natural
way in many different contexts, such as, the thin obstacle problem, finance, phase
transitions, anomalous diffusion, flame propagation and many others, see[18, 22]
and references therein.

For fractional Laplacian equations or systems with fixed λi, the existence and
non-degeneracy of solutions has been studied by many researchers; see, e.g., [1, 8,
11, 12, 26, 27, 28]. However, very few papers deal with the normalized solutions for
fractional Laplacian systems or equations. To the best of our knowledge, this paper
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is the first to consider the existence of normalized solutions for fractional Laplacian
systems.

The present paper is concerned with the existence of normalized solutions to the
following class of critical systems driven by the fractional Laplace operator:{

(−∆)su− λ1u = µ1|u|αu+ β|u|α−2
2 u|v|α+2

2 in RN ,
(−∆)sv − λ2v = µ2|v|αv + β|u|α+2

2 |v|α−2
2 v in RN ,

(3)

satisfying the additional condition∫
RN

u2 = b21 and

∫
RN

v2 = b22, (4)

where (−∆)s is the fractional Laplacian, 0 < s < 1, µ1, µ2 > 0, 2∗s = 2N
N−2s is the

fractional critical Sobolev exponent, N > 2s, 2 < α+ 2 < 2∗s.
One refers to this type of solutions as to normalized solutions, since conditions

(4) impose a normalization on the L2-masses of u and v. This fact implies that λ1

and λ2 cannot be determined a priori, but are part of the unknown.
Our purpose is to establish the existence of normalized solutions of problem

(3)–(4) under suitable conditions on the coupling parameter β.
The fractional Laplacian (−∆)s is defined by

(−∆)su(x) = C(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN

with a suitable positive normalizing constant C(N, s).
From the mathematical point of view, problem (3)–(4) is nonlocal since the

appearance of the operator (−∆)s indicates that equations describing (3) are not
pointwise identities. This kind of problem has been paid much attention after the
pioneering work of Lions [17], in which an abstract functional analysis framework
was introduced. Nowadays, since physicists are interested in normalized solutions,
mathematical researchers began to focus on solutions having a prescribed L2-norm,
that is, solutions which satisfy ‖u‖22 = c for a priori given c. To the best of our
knowledge, the study of solutions with prescribed norm was initiated by Jeanjean
[16] in the framework of semilinear elliptic equations. We also refer to Bartsch,
Zhong and Zou [5], Bellazzini, Jeanjean and Luo [6] and Cingolani and Jeanjean [10]
(for normalized solutions of the Schrödinger-Poisson system), and Chen, Rădulescu
and Tang [9] (for normalized solutions of nonautonomous Kirchhoff problems).

Let Ds(RN ) be Hilbert space obtained as the completion of C∞c (RN ) equipped
with the norm

‖u‖2Ds(RN ) =
C(N, s)

2

∫
RN

∫
RN

|u(x)− u(y)|2

|y − x|N+2s
dxdy.

The energy functional associated with problem (3)–(4) is given by

J(u, v) =
1

2
||(u, v)||2D −

1

α+ 2

∫
RN

(µ1|v|α+2 + µ2|v|α+2 + 2β|u|
α+2
2 |v|

α+2
2 )dx,

on the constraint Tb1 × Tb2 , where for b ∈ R we define

Tb :=

{
u ∈ Ds(RN ) :

∫
RN

u2 = b2
}
.

We set D := Ds(RN ) × Ds(RN ), which is endowed with the norm ||(u, v)||2D =
‖u‖2Ds(RN ) + ‖v‖2Ds(RN ).
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Our first result is concerned with the case of low perturbations of the coupling
parameter.

Theorem 1.1. Let b1, b2, µ1, µ2 > 0 be fixed and define β1 > 0 by

max

{
b

2Nα−4s(α+2)
Nα−4s

1 µ
− 4s
Nα−4s

1 , b
2Nα−4s(α+2)

Nα−4s

2 µ
− 4s
Nα−4s

2

}
(5)

= b
2Nα−4s(α+2)

Nα−4s

1 (µ1 + β1)−
4s

Nα−4s + b
2Nα−4s(α+2)

Nα−4s

2 (µ2 + β1)−
4s

Nα−4s .

If 0 < β < β1, then system (3)–(4) has a solution (λ̃1, λ̃2, ũ, ṽ) such that λ̃1, λ̃2 < 0
and ũ and ṽ are both positive and radial.

In order to state our next main result, we define

V := {(u, v) ∈ Tb1 × Tb2 : G(u, , v) = 0}, (6)

where

G(u, v) = ‖(u, v)‖2D −
Nα

2s(α+ 2)

∫
RN

(
µ1|u|α+2 + µ2|v|α+2 + 2β|u|

α+2
2 |v|

α+2
2

)
dx.

By Pohozaev’s identity, we know that V contains all solutions of system (3)–(4).
To obtain ground state solutions of system (3)–(4), we define

Rb(u, v) (7)

=
αN − 4s

2Nα

(
2s(α+ 2)

αN

) 4s
αN−4s

(
||u||2Ds(RN ) + ||v||2Ds(RN )

) αN
αN−4s

(∫
RN

(
µ1uα+2 + µ2vα+2 + 2βu

α+2
2 v

α+2
2

)
dx
) 4s
αN−4s

.

(8)

Our second main result of this paper deals with high perturbations of the coupling
parameter.

Theorem 1.2. Let b1, b2, µ1, µ2 > 0 be fixed and β2 > 0 be fixed by

(b21 + b22)
Nα

Nα−4s(
µ1b

α+2
1 + µ2b

α+2
2 + 2β2b

α+2
2

1 b
α+2
2

2

) 4s
Nα−4s

(9)

= min

{
b

2Nα−4s(α+2)
Nα−4s

1 µ
− 4s
Nα−4s

1 , b
2Nα−4s(α+2)

Nα−4s

2 µ
− 4s
Nα−4s

2

}
.

If β > β2, then system (3)–(4) has a solution (λ̃1, λ̃2, ũ, ṽ) such that λ̃1, λ̃2 < 0

and ũ and ṽ are both positive and radial. Moreover, (λ̃1, λ̃2, ũ, ṽ) is a ground state
solution in the sense that

J(ũ, ṽ) = inf{J(u, v) : (u, v) ∈ V } = inf
(u,v)∈(u,v)∈Tb1×Tb2

Rb(u, v)

= inf{J(u, v) : (u, v) is a solution of (3)− (4) for some λ1, λ2}.

Remark 1. For the special case N = 3, s = 1, α = 2, the results in this paper are
the same as those in [2]. In fact, we use in this paper some ideas introduced by
Bartsch et al. in [2], where they considered the coupled cubic semilinear Schrödinger
system on R3. Here, we would like to point out that the assumption 4s

N < α ≤ 2s
N−2s

is an essential condition in the present paper.
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Finally, let us sketch the proof of Theorems 1.1–1.2. The solution in Theorem
1.1 is obtained by two-dimensional linking arguments. It is well known that the
Sobolev embedding Hs(RN ) ↪→ Lp(RN ) is not compact for 2 ≤ p ≤ 2∗. Hence, the
associated functional of problem (3)–(4) does not satisfy the Palais-Smale condition.
In order to overcome the lack of compactness, we first set our working space in
Hs
r (RN )×Hs

r (RN ), where

Hs
r (RN ) = {ϕ ∈ Hs(RN ) : ϕ is radial}

andHs
r (RN ) is endowed with theHs(RN ) topology, that is, ‖ϕ‖Hsr (RN ) = ‖ϕ‖Hs(RN ).

Then we search for solutions of (3)–(4) as critical points of J constrained on Sb1×Sb2 ,
where Sb is defined by

Sb :=

{
w ∈ Hs

r (RN ) :

∫
RN

w2 = b2
}
.

Eventually, by Palais’ principle of symmetric criticality [23, Theorem 1.28], we know
that the solutions for of (3)–(4) for J on Sb1 × Sb2 are also the critical points of
J on Tb1 × Tb2 . To this end, we first define a minimax class and show that the
energy functional has a minimax structure, then we apply the minimax principle
(see Theorem 2.2) to J on Γ and hence we are able to obtain a Palais-Smale sequence
for J on Sb1 × Sb2 . However, the boundedness of the Palais-Smale sequence will
be still unknown. Furthermore, in order to overcome the lack of compactness for
Hs
rad(RN ) ↪→ L2(RN ), we need a Liouville-type result, which can be found in [13].

The solution in Theorem 1.2 is a mountain pass solution of J constrained to Tb1×Tb2
and the main novelty is to introduce a suitable minimax class so that we can use
the mountain pass lemma.

The paper is organized as follows. In Section 2, we introduce some preliminaries
that will be used to prove theorems. In Section 3, we prove Theorem 1.1. Finally,
Theorem 1.2 will be proved in Section 4.

2. Preliminaries. We first list some well-known results, which will be used to
prove Theorem 1.1. To this end, we first give the following definition.

Definition 2.1. (see [14, Definition 3.1]) Let B be a closed subset of X. We shall say
that a class F of compact subsets of X is a homotopy-stable family with boundary
B provided

(a) every set in F contains B.
(b) for any set A in F and any η ∈ ([0, 1] × X;X) satisfying η(t, x) = x for all

(t, x) ∈ (0×X) ∪ ([0, 1]×B), we have η(1×A) ∈ F .

Theorem 2.2. (see [14, Theorem 3.2]) Let ϕ be a C1 function on a complete
connected C1-Finsler manifold X (without boundary) and consider a homotopy-
stable family F of compact subsets of X with a closed boundary B. Set c = c(ϕ,F) =
inf
A∈F

max
x∈A

ϕ(x) and suppose that

supϕ(B) < c.

Then, for any sequence of sets (An)n in F such that lim
n

sup
An

ϕ = c, there exists a

sequence (xn)n in X such that (i) lim
n
ϕ(xn) = c (ii)lim

n
‖dϕ(xn)‖ = 0

(iii)lim
n
dist(xn,An) = 0.

Moreover, if dϕ is uniformly continuous, then xn can be chosen to be in An for
each n.



2658 MAODING ZHEN, BINLIN ZHANG AND VICENŢIU D. RĂDULESCU

In order to apply Theorem 2.2, we consider the following auxiliary problem
(−∆)sw + w = |w|αw in RN ,
w > 0 in RN ,
w(0) = maxw and w ∈ Ds(RN ).

(10)

This problem has a unique positive ground state solution, denoted by w0, which is
radial; see [11] for the one-dimensional case and [12] for N ≥ 2.

Set

C0 :=

∫
RN

w2
0dx and C1 :=

∫
RN

wα+2
0 dx. (11)

We observe that wλ,µ = (−λ)
1
αµ−

1
αw0((−λ)

1
2sx), with λ < 0, is a solution of the

problem 
(−∆)sw − λw = µ|w|αw in RN ,
w > 0 in RN ,
w(0) = maxw and

∫
RN w

2 = b2.

(12)

When λ appears as a Lagrange multiplier, the solution of (12) can be found as a
critical point of the following energy functional associated with (12):

Iµ(w) =
1

2
||w||2Ds(RN ) −

µ

α+ 2

∫
RN
|w|α+2dx.

Define the set

P(b, µ) :=

{
w ∈ Tb : ||w||2Ds(RN ) =

Nαµ

2s(α+ 2)

∫
RN
|w|α+2dx

}
. (13)

The following auxiliary result shows the role of P(b, µ).

Lemma 2.3. If w is a solution of (12), then w ∈ P(b, µ) and the positive solution
w of problem (12) minimizes Iµ on P(b, µ).

Proof. From [12], we find that the Pohozaev identity for (12) is

N − 2s

2
||w||2Ds(RN ) − λ

N

2

∫
RN

w2dx =
N

α+ 2

∫
RN

µ|w|α+2dx. (14)

Since w is a solution of (12), we have

||w||2Ds(RN ) − λ
∫
RN

w2dx =

∫
RN

µ|w|α+2dx. (15)

Combining (14) with (15), we obtain

||w||2Ds(RN ) =
αNµ

2s(α+ 2)

∫
RN
|w|α+2dx.

Thus w ∈ P(b, µ). By similar arguments as in Lemma 2.10 in [16], we can deduce
the last assertion, so we omit the details.

Lemma 2.4. The unique positive solution of problem (12) is (λb,µ, wb,µ), where

λb,µ = −

((
C0

b2

)α
2 1

µ

) 4s
Nα−4s
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and

wb,µ(x) =

((
C0

b2

)2s
1

µN

) 1
Nα−4s

w0

((C0

b2

)α
2 1

µ

) 2
Nα−4s

x


and the function wb,µ(x) satisfies

||wb,µ||2Ds(RN ) =
αN

2s(α+ 2)

(
C0

b2

) 2s(α+2)−Nα
Nα−4s

µ−
4s

Nα−4sC1, (16)

∫
RN

wα+2
b,µ dx =

(
C0

b2

) 2s(α+2)−Nα
Nα−4s

µ−
Nα

Nα−4sC1, (17)

`(b, µ) := Iµ(wb,µ) =
αN − 4s

4s(α+ 2)

(
C0

b2

) 2s(α+2)−Nα
Nα−4s

µ−
4s

Nα−4sC1. (18)

Proof. It is easy to check that (λb,µ, wb,µ) is the unique positive solution of (12),
where w0 is a solution of (10). By the explicit expression of wb,µ and change of
variables, we have ∫

RN
wα+2
b,µ dx =

(
C0

b2

) 2s(α+2)−Nα
Nα−4s

µ−
Nα

Nα−4sC1.

Note that
∫
RN |(−∆)

s
2wb,µ|2dx = ||wb,µ||2Ds(RN ). Similarly, we can get (16) and

(18).

When µ =
(
C0

b2

)α
2 , then w

b,(C0
b2

)
α
2

is the unique positive solution of the problem
(−∆)sw + w =

(
C0

b2

)α
2 |w|αw in RN ,

w > 0 in RN ,
w(0) = maxw and

∫
RN w

2 = b2.

By Lemma 2.3, we know that w
b,(C0

b2
)
α
2

is a minimizer of I
b,(C0

b2
)
α
2

on P(b,
(
C0

b2

)α
2 ).

Define

Rb(w) =
αN − 4s

2αN

(
2s(α+ 2)

αN

) 4s
αN−4s

(
||w||2Ds(RN )

) αN
αN−4s

((
C0

b2

)α
2
∫
RN w

α+2dx
) 4s
αN−4s

.

Our next result establishes that this level can also be characterized as an infimum
of Rb(w).

Lemma 2.5. We have

inf
P(b,(C0

b2
)
α
2 )

I
b,(C0

b2
)
α
2

(w) = inf
Tb
Rb(w).

Proof. Since w ∈ P(b,
(
C0

b2

)α
2 ), it follows that

||w||2Ds(RN ) =
αN

2s(α+ 2)

∫
RN

(
C0

b2

)α
2

wα+2dx.
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This shows that

||w||2Ds(RN )

αN
2s(α+2)

∫
RN
(
C0

b2

)α
2 wα+2dx

= 1 and I
b,(C0

b2
)
α
2

(w) =

(
1

2
− 2s

αN

)
||w||2Ds(RN ).

Therefore

I
b,(C0

b2
)
α
2

(w) =

(
1

2
− 2s

αN

)
||w||2Ds(RN )

 ||w||2Ds(RN )

αN
2s(α+2)

∫
RN
(
C0

b2

)α
2 wα+2dx

 4s
αN−4s

= Rb(w).

Thus, the above equality implies that

inf
P(b,(C0

b2
)
α
2 )

I
b,(C0

b2
)
α
2

(w) ≥ inf
Tb
Rb(w).

Next, we need to show that inf
P(b,(C0

b2
)
α
2 )

I
b,(C0

b2
)
α
2

(w) ≤ inf
Tb
Rb(w). For this purpose,

we define

(t ? w)(x) = e
Nt
2 w(etx) and Ψw(t) = Iµ(t ? w), (19)

hence

Ψw(t) = Iµ(t ? w) =
e2st

2
||w||2Ds(RN ) −

1

α+ 2
e
Nαt
2

∫
RN

µwα+2dx. (20)

It is easy to check

Rb(t ? w) = Rb(w) for all t ∈ R, w ∈ Tb.

By (20), we know that Ψw(t) has a unique t∗w ∈ R such that t∗w ? w ∈ P(b,
(
C0

b2

)α
2 )

and t∗w satisfies

e(
Nα−4s

2 )t∗w =
2s(α+ 2)||w||2Ds(RN )

Nα
(
C0

b2

)α
2
∫
RN w

α+2dx
.

Moreover, t∗w is the unique critical point of Ψw(t), which is a strict maximum.
Consequently,

Rb(w) = Rb(t∗w ? w) = I
b,(C0

b2
)
α
2

(t∗w ? w) ≥ inf
P(b,(C0

b2
)
α
2 )

I
b,(C0

b2
)
α
2

(w),

hence

inf
P(b,(C0

b2
)
α
2 )

I
b,(C0

b2
)
α
2

(w) ≤ inf
Tb
Rb(w).

The proof is now complete.

Consider the following fractional Gagliardo-Nirenberg-Sobolev inequality (see[12])∫
RN
|w|α+2dx ≤ Copt

(∫
RN
|(−∆)

s
2w|2dx

)Nα
4s
(∫

RN
|w|2dx

)α+2
2 −

Nα
4s

, (21)

for all w ∈ Hs(RN ), where α is a positive number and Copt > 0 denotes the optimal
constant depending only on α, N and s. In particular, the optimal constant Copt
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is defined as follows

1

(Copt)
4s

αN−4s

= inf
w∈Ds(RN )\{0}

(∫
RN |w|

2dx
) 2s(α+2)−Nα

Nα−4s

(
||w||2Ds(RN )

) αN
αN−4s

(∫
RN |w|α+2dx

) 4s
Nα−4s

= inf
Tb

(b2)
2s(α+2)−Nα
Nα−4s

(
||w||2Ds(RN )

) αN
αN−4s

(∫
RN |w|α+2dx

) 4s
Nα−4s

=
2αN

αN − 4s

(
αN

2s(α+ 2)

) 4s
αN−4s

C
4s

αN−4s

0 b
4s(α+1)−2Nα

αN−4s inf
Tb
Rb(w).

3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1, which is based
on a two-dimensional linking argument. As mentioned earlier, we will only work
in the radial function space. We search for solutions of problem (3)–(4) as critical
points of J constrained on Sb1 × Sb2 , where Sb is defined by

Sb :=

{
w ∈ Hs

r (RN ) :

∫
RN

w2 = b2
}
.

Let us recall that (t?w)(x) = e
Nt
2 w(etx) in (19). We have the following auxiliary

property.

Lemma 3.1. For every µ > 0 and w ∈ Ds(RN ), there holds

Iµ(t ? w) =
e2st

2
||w||2Ds(RN ) −

µ

α+ 2
e
Nαt
2

∫
RN

wα+2dx,

∂

∂t
Iµ(t ? w) = se2st||w||2Ds(RN ) −

Nαµ

2(α+ 2)
e
Nαt
2

∫
RN

wα+2dx.

In particular, if w = wa,µ, then

∂

∂t
Iµ(t ? wa,µ)


> 0 if t < 0,

= 0 if t = 0,

< 0 if t > 0.

Proof. By the definition of t ? w and a change of variables, it is easy to obtain the
two identities. Since

∂

∂t
Iµ(t ? w) = e2st

[
s||w||2Ds(RN ) −

Nαµ

2(α+ 2)
e

(Nα−4s)t
2

∫
RN

wα+2dx

]
,

we have

∂

∂t
Iµ(t ? wa,µ) is


> 0 if t < t?,

= 0 if t = t?,

< 0 if t > t?,

where t? satisfies

e
(Nα−4s)

2 t? =
2s(α+ 2)||w||2Ds(RN )

Nαµ
∫
RN w

α+2dx
.

By Lemma 2.3, when w = wa,µ, we have e
(Nα−4s)

2 t? = 1, thus t? = 0.
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Lemma 3.2. Let β1 = β1(b1, b2, µ1, µ2) is defined by (5). Then for all 0 < β < β1

is defined by (5), we have

inf{J(u, v) : (u, v) ∈ P(b1, µ1 + β)× P(b2, µ2 + β)} > max{`(b1, µ1), `(b2, µ2)},
where `(bi, µi) is defined by (18).

Proof. By Young’s inequality, for (u, v) ∈ P(b1, µ1 + β)× P(b2, µ2 + β), we have

J(u, v) =
1

2
||(u, v)||2D −

1

α+ 2

∫
RN

(
µ1|u|α+2 + µ2|v|α+2 + 2β|u|

α+2
2 |v|

α+2
2

)
dx

= Iµ1(u) + Iµ2(v)− 1

α+ 2

∫
RN

2β|u|
α+2
2 |v|

α+2
2 dx

≥ Iµ1
(u) + Iµ2

(v)− β

α+ 2

∫
RN

(
|u|α+2 + |v|α+2

)
dx

= Iµ1+β(u) + Iµ2+β(v) ≥ inf
u∈P(b1,µ1+β)

Iµ1+β(u) + inf
v∈P(b2,µ2+β)

Iµ2+β(v)

= `(b1, µ1 + β) + `(b2, µ2 + β).

Thus, we need to show that

max{`(b1, µ1), `(b2, µ2)} < `(b1, µ1 + β) + `(b2, µ2 + β).

By Lemma 2.4, we have

max

{
b

2Nα−4s(α+2)
Nα−4s

1 µ
− 4s
Nα−4s

1 , b
2Nα−4s(α+2)

Nα−4s

2 µ
− 4s
Nα−4s

2

}
< b

2Nα−4s(α+2)
Nα−4s

1 (µ1 + β)−
4s

Nα−4s + b
2Nα−4s(α+2)

Nα−4s

2 (µ2 + β)−
4s

Nα−4s ,

since 0 < β < β1. It follows that

inf{J(u, v) : (u, v) ∈ P(b1, µ1 + β)× P(b2, µ2 + β)} > max{`(b1, µ1), `(b2, µ2)}.
The proof is now complete.

Now we fix 0 < β < β1 = β1(b1, b2, µ1, µ2) and choose ε > 0 such that

inf{J(u, v) : (u, v) ∈ P(b1, µ1 + β)×P(b2, µ2 + β)} > max{`(b1, µ1), `(b2, µ2)}+ ε.
(22)

Define

w1 = wb1,µ1+β , w2 = wb2,µ2+β (23)

and

ϕi(t) = Iµi(t ? wi), ψi(t) =
∂

∂t
Iµi+β(t ? wi) for i = 1, 2. (24)

By Lemma 3.1, it is easy to get the following property.

Lemma 3.3. For i = 1, 2 there exists ρi < 0 and Ri > 0 such that

(i) 0 < ϕi(ρi) < ε and ϕi(Ri) ≤ 0.
(ii) ψi(t) > 0 for any t < 0 and ψi(t) < 0 for any t > 0. In particular, ψi(ρi) > 0

and ψi(Ri) > 0.

Let Q = [ρ1, R1]× [ρ2, R2] and let

γ0(k1, k2) = (k1 ? w1, k2 ? w2) ∈ Sb1 × Sb2 ∀ (k1, k2) ∈ Q.
Define the minimax class

Γ := {γ ∈ C(Q,Sb1 × Sb2) : γ = γ0 on ∂Q}.
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From Lemma 3.2 it follows that if we want to apply Theorem 2.2, we need to prove
the following technical lemmas.

Lemma 3.4. There holds

sup
∂Q

J(γ0) ≤ max{`(b1, µ1), `(b2, µ2)}+ ε.

Proof. Since β > 0, for every (u, v) ∈ Sb1 × Sb2 , we have

J(u, v) = Iµ1(u) + Iµ2(v)− 1

α+ 2

∫
RN

2β|u|
α+2
2 |v|

α+2
2 dx ≤ Iµ1

(u) + Iµ2
(v). (25)

Therefore, by (25) and Lemma 3.3, we infer that

J(k1 ? w1, ρ2 ? w2) ≤ Iµ1
(k1 ? w1) + Iµ2

(ρ2 ? w2) ≤ Iµ1
(k1 ? w1) + ε (26)

≤ sup
t∈R

Iµ1
(t ? w1) + ε. (27)

Next, we estimate sup
t∈R

Iµ1
(t ? w1), by Lemma 2.4, we obtain

wbi,µ1
= t? ? wi for e

(Nsα−4s)
2 t? =

2s(α+ 2)||wi||2Ds(RN )

Nα
∫
RN µiw

α+2
i dx

=
µi + β

µi
.

Since

t1 ? (t2 ? w) = (t1 + t2) ? w,

we have

sup
t∈R

Iµ1
(t ? w1) = sup

t∈R
Iµ1

(t ? wb1,µ1
). (28)

By Lemma 3.1, we know that the supremum of sup
t∈R

Iµ1(t ? wb1,µ1) is achieved for

t = 0. It follows that

J(k1 ? w1, ρ2 ? w2) ≤ sup
t∈R

Iµ1
(t ? wb1,µ1

) + ε = `(b1, µ1) + ε, ∀ k1 ∈ [ρ1, R1]. (29)

Similarly,

J(ρ1 ? w1, k2 ? w2) ≤ sup
t∈R

Iµ2
(t ? wb2,µ2

) + ε = `(b2, µ2) + ε, ∀ k2 ∈ [ρ2, R2]. (30)

By (28) and Lemma 3.3, we have

J(k1 ? w1, R2 ? w2) ≤ Iµ1(k1 ? w1) + Iµ2(R2 ? w2) (31)

≤ sup
t∈R

Iµ1
(t ? wb1,µ1

) = `(b1, µ1), ∀ k1 ∈ [ρ1, R1].

Similarly,

J(R1 ? w1, k2 ? w2) ≤ Iµ1
(R1 ? w1) + Iµ2

(k2 ? w2) (32)

≤ sup
t∈R

Iµ2
(t ? wb2,µ2

) = `(b2, µ2), ∀ k2 ∈ [ρ2, R2].

By (29)–(32), we complete the proof.

Lemma 3.5. For every γ ∈ Γ, there exists (k1,γ , k2,γ) ∈ Q such that

γ(k1,γ , k2,γ) ∈ P(b1, µ1 + β)× P(b2, µ2 + β)}.
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Proof. For γ ∈ Γ, γ(k1, k2) = (γ1(k1, k2), γ2(k1, k2)) ∈ Sb1 × Sb2 , define

Fγ(k1, k2) :=

(
∂

∂t
Iµ1+β(t ? γ1(k1, k2))|t=0,

∂

∂t
Iµ2+β(t ? γ2(k1, k2)) |t=0

)
.

We have

∂

∂t
Iµi+β(t ? γi(k1, k2))|t=0

=

(
se2st||γi(k1, k2)||2Ds(RN ) −

Nsα(µi + β)

2(α+ 2)
e
Nsαt

2

∫
RN

γα+2
i (k1, k2)dx

) ∣∣
t=0

= s||γi(k1, k2)||2Ds(RN ) −
Nsα(µi + β)

2(α+ 2)

∫
RN

γα+2
i (k1, k2)dx.

Thus, Fγ(k1, k2) = 0 if and only if γ(k1, k2) ∈ P(b1, µ1 + β)× P(b2, µ2 + β).
Since γ = γ0 on ∂Q and

Fγ0(k1, k2) =

(
se2sk1 ||w1||2Ds(RN ) −

Nsα(µ1 + β)

2(α+ 2)
e
Nsαk1

2

∫
RN

wα+2
1 dx,

se2sk2 ||w2||2Ds(RN ) −
Nsα(µ2 + β)

2(α+ 2)
e
Nsαk2

2

∫
RN

wα+2
2 dx

)
= (ψ1(k1), ψ2(k2)) .

By the definition of ψi in (24) and direct computation, we have

deg (Fγ , Q, (0, 0)) = deg (Fγ0 , Q, (0, 0) = 1.

Thus, according to the properties of the topological degree, there exists (k1,γ , k2,γ) ∈
Q such that

Fγ(k1,γ , k2,γ) = (0, 0).

The proof is now complete.

Remark 2. By Lemmas 3.4 and 3.5, we can apply the minimax principle (see
Theorem 2.2) to J on Γ and we obtain a Palais-Smale sequence for J on Sb1 ×
Sb2 . However, the boundedness of the Palais-Smale sequence is unknown. For this
purpose, we will use some ideas found in [16].

Lemma 3.6. There exists a Palais-Smale sequence (un, vn) for J on Sb1 × Sb2 at
the level

c := inf
γ∈Γ

max
(k1,k2)∈Q

J(γ(k1, k2)) > max{`(b1, µ1), `(b2, µ2)}

and satisfying

‖un‖2Ds(RN ) + ‖vn‖2Ds(RN ) (33)

=
Nα

2s(α+ 2)

∫
RN

(
µ1|un|α+2 + µ2|vn|α+2 + 2β|un|

α+2
2 |vn|

α+2
2

)
dx+ o(1),

where o(1)→ 0 as n→ +∞.

Proof. Define

J̃(s, u, v) := J(s ? u, s ? v), ∀ (s, u, v) ∈ R× Sb1 × Sb2 ,

γ̃0(k1, k2) := (0, γ0(k1, k2)) = (0, k1 ? w1, k2 ? w2),

and

Γ̃ := {γ̃ ∈ C(Q,R× Sb1 × Sb2) : γ̃ = γ̃0 on ∂Q}.
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To use the minimax principle (Theorem 2.2) for the function J̃ with the minimax

class Γ̃, we define

c̃ := inf
γ̃∈Γ̃

max
(k1,k2)∈Q

J̃(γ̃(k1, k2)).

Since J̃(γ̃0) = J(γ0) on ∂Q, we know by Lemmas 3.4 and 3.5 that if we show that
c̃ = c, then the hypotheses of the minimax principle (Theorem 2.2) will be satisfied.

On the one hand, since Γ ⊂ Γ̃, we have c̃ ≤ c. But

γ̃(k1, k2) = (s(k1, k2), γ1(k1, k2), γ2(k1, k2))

for any γ̃ ∈ Γ̃ and (k1, k2) ∈ Q. So

J̃(γ̃(k1, k2)) = J(s(k1, k2) ? γ1(k1, k2), s(k1, k2) ? γ2(k1, k2)),

= J̃(0, s(k1, k2) ? γ1(k1, k2), s(k1, k2) ? γ2(k1, k2))

and (s(k1, k2) ? γ1(k1, k2), s(k1, k2) ? γ2(k1, k2)) ∈ Γ. Thus, c = c̃. Since J̃(s, u, v) =

J̃(s, |u|, |v|), by the minimax principle (Theorem 2.2), we can choose the minimizing
sequence γ̃n = (sn, γ1,n, γ2,n) for c̃ satisfying sn = 0, γ1,n(k1, k2) ≥ 0 , γ2,n(k1, k2) ≥
0 a.e. in RN for every (k1, k2) ∈ Q.

In conclusion, by the minimax principle (Theorem 2.2), there exists a Palais-

Smale sequence (s̃n, ũn, ṽn) for J̃ on R× Sb1 × Sb2 at level c̃, and such that

lim
n→+∞

|s̃n|+ dist((ũn, ṽn), γ̃n(Q)) = 0. (34)

In order to obtain a Palais-Smale sequence for J at level c satisfying (33), we can
argue as in Lemma 2.4 of [16] with minor changes. The fact that u−n , v

−
n → 0 a.e in

RN as n→∞ comes from (34). The proof is now complete.

It is well known that the embedding Hs(RN ) ↪→ L2(RN ) is not compact. To
overcome the lack of such compactness, we need following Liouville-type property.

Lemma 3.7. (see [13, Theorem 1.3]) Let w be a nonnegative solution of the frac-
tional inequality

(−∆)sw ≥ wα+1 in RN .
If 0 < α ≤ 2s

N−2s and N > 2s, then w = 0.

By Lemma 3.6, we obtain a Palais-Smale sequence (un, vn) for J at level c sat-
isfying (33). Next, we show the (un, vn) is bounded.

Lemma 3.8. The Palais-Smale sequence (un, vn) for J at level c is bounded in

Hs(RN ,R2). Furthermore, there exists C̃ > 0 such that

‖un‖2Ds(RN ) + ‖vn‖2Ds(RN ) ≥ C̃ for all n.

Proof. By (33), it is easy to obtain

J(un, vn) =
Nα− 4s

2Nα

(
‖un‖2Ds(RN ) + ‖vn‖2Ds(RN )

)
→ c > 0,

where o(1)→ 0 as n→ +∞. Therefore, the Palais-Smale sequence (un, vn) for J at

level c is bounded in Hs(RN ,R2) and there exists C̃ > 0 such that

‖un‖2Ds(RN ) + ‖vn‖2Ds(RN ) ≥ C̃ for all n.

The proof is now complete.
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By Lemma 3.8, (un, vn), up to a subsequence, (un, vn) → (ũ, ṽ) weakly in
Hs(RN ). By the compact embedding ofHs

rad(RN ) ↪→ Lα+2(RN ), we have (un, vn)→
(ũ, ṽ) strongly in Lα+2(RN ). Note that Hs

rad(RN ) ↪→ L2(RN ) is not a compact em-
bedding. So, we cannot conclude that (ũ, ṽ) ∈ Sb1 × Sb2 .

Since dJ |Sb1×Sb2
→ 0, then there exist two sequences of real numbers (λ1,n) and

(λ2,n) such that

〈un, ϕ〉+ 〈vn, ψ〉 −
∫
RN

(λ1,nunϕ+ λ2,nvnψ)dx (35)

−
∫
RN

(µ1|un|αunϕ+ µ2|vn|αvnψ+)dx

−
∫
RN

(β|un|
α−2
2 unϕ|vn|

α+2
2 + β|un|

α+2
2 |vn|

α−2
2 vnψ)dx = o(1)‖(ϕ,ψ)‖,

where

〈un, ϕ〉 =
C(N, s)

2

∫∫
R2N

(un(x)− un(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dxdy

for every (ϕ,ψ) ∈ Hs(RN ,R2), with o(1)→ 0 as n→ +∞.

Lemma 3.9. Both sequences (λ1,n) and (λ2,n) are bounded and at least one of them
is convergent, up to a subsequence, to a strictly negative value.

Proof. By (35), we deduce that

λ1,nb
2
1 = ‖un‖2Ds(RN ) −

∫
RN

(µ1|un|α+2 + β|un|
α+2
2 |vn|

α+2
2 dx− o(1),

λ2,nb
2
2 = ‖vn‖2Ds(RN ) −

∫
RN

(µ2|vn|α+2 + β|un|
α+2
2 |vn|

α+2
2 dx− o(1),

with o(1) → 0 as n → +∞. Since (un, vn) is bounded in Hs(RN ) and Lα+2(RN ),
then (λ1,n) and (λ2,n) are bounded sequences. By (33) and Lemma 3.8, we have

λ1,nb
2
1 + λ2,nb

2
2 = ‖un‖2Ds(RN ) + ‖vn‖2Ds(RN )

−
∫
RN

(µ1|un|α+2 + µ2|vn|α+2 + 2β|un|
α+2
2 |vn|

α+2
2 dx− o(1)

=
Nα− 2s(α+ 2)

Nα
(‖un‖2Ds(RN ) + ‖vn‖2Ds(RN ))

≤ Nα− 2s(α+ 2)

Nα
C̃

for every n large enough. Note that the last inequality holds because of the fact
that 4s

N < α ≤ 2s
N−2s . Thus, at least one of the two limits is strictly negative.

Let us consider the convergent subsequences λ1,n → λ1 ∈ R and λ2,n → λ2 ∈ R.
Then we obtain the following crucial lemma to deal with the lack of the compact
embedding of Hs(RN ) ↪→ L2(RN ).

Lemma 3.10. If λ1 < 0 (or λ2 < 0) then un → ũ (or vn → ṽ) strongly in Hs(RN ).
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Proof. Since un is bounded inHs(RN ), then un → ũ weakly inHs(RN ) and strongly
in Lα+2(RN ). By (35), we have

o(1) = (dJ(un, vn)− dJ(ũ, ṽ))[(un − ũ, 0)]− λ1

∫
RN

(un − ũ)2dx

= ‖un − ũ‖2Ds(RN ) − λ1

∫
RN

(un − ũ)2dx+ o(1)

with o(1) → 0 as n → +∞. Since λ1 < 0, we obtain that un → ũ strongly in
Hs(RN ). Similarly, we can prove that if λ2 < 0, then vn → ṽ strongly in Hs(RN ).

3.1. Proof of Theorem 1.1 completed. Since (un, vn) is bounded inHs(RN ,R2),
then (un, vn)→ (ũ, ṽ) weakly in Hs(RN ). So (ũ, ṽ) is a solution of (3).

Next, we show that (ũ, ṽ) satisfies (4). Without loss of generality, we assume
that λ1 < 0, then by Lemma 3.10, un → ũ strongly in Hs(RN ). If λ2 < 0, then
vn → ṽ strongly in Hs(RN ), which completes the proof of Theorem 1.1. Assume
by contradiction that λ2 ≥ 0, and vn → ṽ not strongly in Hs(RN ). Since ũ, ṽ ≥
0 in RN , we have

(−∆)2ṽ = λ2ṽ + µ2|ṽ|αṽ + β|ũ|
α+2
2 |ṽ|

α−2
2 ṽ ≥ µ2|ṽ|α+1 in RN .

By Lemma 3.7, ṽ = 0, which implies that ũ solves
(−∆)sũ− λ1ũ = µ1|ũ|αũ in RN ,
ũ > 0 in RN ,∫
RN |ũ|

2 = b1,

so ũ ∈ P(b1, µ1) and Iµ1
(ũ) = `(b1, µ1). By (33), we have

c = lim
n→∞

J(un, vn)

= lim
n→∞

Nα− 4s

4s(α+ 2)

∫
RN

(
µ1|un|α+2 + µ2|vn|α+2 + 2β|un|

α+2
2 |vn|

α+2
2

)
dx

= lim
n→∞

Nα− 4s

4s(α+ 2)

∫
RN

µ1|ũ|α+2dx = Iµ1(ũ) = `(b1, µ1),

which contradicts Lemma 3.6. The proof is now complete.

4. Proof of Theorem 1.2. The proof of Theorem 1.2 is based on a mountain pass
argument. For any (u, v) ∈ Sb1 × Sb2 , we consider the function

J(t ? (u, v))

=
e2st

2
||(u, v)||2Ds(RN ) −

e
Nαt
2

α+ 2

∫
RN

(µ1|u|α+2 + µ2|v|α+2 + 2β|u|
α+2
2 |v|

α+2
2 )dx,

where t ? (u, v) = (t ? u, t ? v) and t ? u is defined in (19). We observe that if
(u, v) ∈ Sb1 × Sb2 , then t ? (u, v) ∈ Sb1 × Sb2 . By the definition of t ? u, it is easy to
prove the following lemma.

Lemma 4.1. Let (u, v) ∈ Sb1 × Sb2 . Then

lim
t→−∞

[
||t ? u||2Ds(RN ) + ||t ? v||2Ds(RN )

]
= 0,

lim
t→∞

[
||t ? u||2Ds(RN ) + ||t ? v||2Ds(RN )

]
= +∞,
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and

lim
t→−∞

J(t ? (u, v)) = 0+, lim
t→∞

J(t ? (u, v)) = −∞.

Next, we construct the mountain pass structure of the problem.

Lemma 4.2. There exists K > 0 sufficiently small such that for all the sets

A :=

{
(u, v) ∈ Sb1 × Sb2 :

(
||u||2Ds(RN ) + ||v||2Ds(RN )

)
≤ K

}
and

B :=

{
(u, v) ∈ Sb1 × Sb2 :

(
||u||2Ds(RN ) + ||v||2Ds(RN )

)
= 2K

}
there hold

J(u, v) > 0 on A and sup
A
J(u, v) < inf

B
J(u, v).

Proof. By the fractional Gagliardo-Nirenberg-Sobolev inequality (21), we have∫
RN

(
µ1|u|α+2 + µ2|v|α+2 + 2β|u|

α+2
2 |v|

α+2
2

)
dx

≤ C
∫
RN

(
|u|α+2 + |v|α+2

)
dx ≤ C

(
||u||2Ds(RN ) + ||v||2Ds(RN )

)Nα
4s

for every (u, v) ∈ Sb1 ×Sb2 , where C > 0 depends on µ1, µ2, β, b1, b2. If (u1, v1) ∈ B
and (u2, v2) ∈ A, we have

J(u1, v1)− J(u2, v2)

≥ 1

2

[(
||u1||2Ds(RN ) + ||v1||2Ds(RN )

)
−
(
||u2||2Ds(RN ) + ||v2||2Ds(RN )

)]
− 1

α+ 2

∫
RN

(
µ1|u1|α+2 + µ2|v1|α+2 + 2β|u1|

α+2
2 |v1|

α+2
2

)
dx

≥ K

2
− C

α+ 2
(2K)

Nα
4s ≥ K

4

provided that K > 0 is small enough. Furthermore, we also have

J(u2, v2) (36)

≥ 1

2

(
||u2||2Ds(RN ) + ||v2||2Ds(RN )

)
− C

α+ 2

(
||u2||2Ds(RN ) + ||v2||2Ds(RN )

)Nα
4s

> 0

(37)

for every (u2, v2) ∈ A. The proof is now complete.

In order to use the mountain pass lemma, we need to introduce a suitable mini-
max class. We recall wb,µ defined in Lemma 2.4. Set

C :=

{
(u, v) ∈ Sb1 × Sb2 :

(
||u||2Ds(RN ) + ||v||2Ds(RN )

)
≥ 3K and J(u, v) ≤ 0

}
.

(38)

By Lemma 4.1, there exist t1 < 0 and t2 > 0 such that

t1 ?

w
b1,

(
C0
b21

)α
2
, w

b2,

(
C0
b22

)α
2

 := (u1, v1) ∈ A,
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t2 ?

w
b1,

(
C0
b21

)α
2
, w

b2,

(
C0
b22

)α
2

 := (u2, v2) ∈ C.

Finally, we define

Γ :=

{
γ ∈ C([0, 1],Sb1 × Sb2) : γ(0) = (u1, v1) and γ(1) = (u2, v2)

}
. (39)

By Lemma 4.2, we can use the mountain pass lemma to J on the minimax class
Γ to get a Palais-Smale sequence.

To conquer the difficulty from the lack of compactness of the embedding Hs(RN ) ↪→
L2(RN ), we establish the following property.

Lemma 4.3. If β > β2, then

sup
t∈R

J

t ?
w

b1,

(
C0
b21

)α
2
, w

b2,

(
C0
b22

)α
2

 < min
{
`(b1, µ1), `(b2, µ2)

}
where β2 is defined by (9).

Proof. By the expression of w
bi,

(
C0
b2
i

)α
2

in Lemma 2.4 and change of variables, we

obtain∫
RN

t ? w
b1,

(
C0
b21

)α
2


α+2
2
t ? w

b2,

(
C0
b22

)α
2


α+2
2

dx (40)

= e
N(α+2)t

2

(
C2

0

b21b
2
2

) s(α+2)
Nα−4s

(
C0

b21
)
α
4

−N(α+2)
Nα−4s (

C0

b22
)
α
4

−N(α+2)
Nα−4s

∫
RN

wα+2
0 (etx)dx

= e
Nαt
2

(
b21b

2
2

C2
0

)α+2
4

C1. (41)

By Lemma 2.4 and direct calculation, we have

||t ? w
b1,

(
C0
b21

)α
2
||2Ds(RN ) =

αN

2s(α+ 2)
e2st b

2
1

C0
C1,

||t ? w
b2,

(
C0
b22

)α
2
||2Ds(RN ) =

αN

2s(α+ 2)
e2st b

2
2

C0
C1,

∫
RN

t ? w
b1,

(
C0
b21

)α
2

α+2

dx = e
Nαt
2

(
b21
C0

)α+2
2

C1,

∫
RN

t ? w
b2,

(
C0
b22

)α
2

α+2

dx = e
Nαt
2

(
b22
C0

)α+2
2

C1.

Combining the above equalities, we get

J

(
t ?

(
w
b1,

C0
b1

, w
b2,

C0
b2

))
=

αN

4s(α+ 2)
e2st

[
b21
C0
C1 +

b22
C0
C1

]
− e

Nαt
2

α+ 2

[
µ1

(
b21
C0

)α+2
2

C1 + µ2

(
b22
C0

)α+2
2

C1 + 2β

(
b21b

2
2

C2
0

)α+2
4

C1

]
.
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By straightforward calculation, we have

max
t∈R

J

t ?
w

b1,

(
C0
b21

)α
2
, w

b2,

(
C0
b22

)α
2


=

αN − 4s

4s(α+ 2)

(b21 + b22)
Nα

Nα−4s(
µ1b

α+2
1 + µ2b

α+2
2 + 2βb

α+2
2

1 b
α+2
2

2

) 4s
Nα−4s

C
2s(α+2)−Nα
Nα−4s

0 C1.

Consequently, by (18), if β > β2, then

sup
t∈R

J

t ?
w

b1,

(
C0
b21

)α
2
, w

b2,

(
C0
b22

)α
2

 < min
{
`(b1, µ1), `(b2, µ2)

}
where β2 is defined by (9). The proof is now complete.

In view of Lemma 4.2 and the mountain pass lemma applied to J on the minimax
class Γ, it is easy to deduce the following lemma with similar arguments as in the
proof of Lemma 3.6.

Lemma 4.4. There exists a Palais-Smale sequence (un, vn) for J on Sb1 × Sb2 at
the level

d = inf
γ∈Γ

max
k∈[0,1]

J(γ(k))

satisfying

‖un‖2Ds(RN ) + ‖vn‖2Ds(RN ) (42)

=
Nα

2s(α+ 2)

∫
RN

(
µ1|un|α+2 + µ2|vn|α+2 + 2β|un|

α+2
2 |vn|

α+2
2

)
dx+ o(1),

where o(1)→ 0 as n→ +∞. Furthermore, u−n , v
−
n → 0 a.e. in RN as n→ +∞.

By Lemmas 3.7–3.10 and the same arguments as in the proof of Theorem 1.1, if
vn → ṽ not strongly in Hs(RN ) and λ2 ≥ 0, then we can deduce that ṽ = 0 and
d = `(b1, µ1).

To get a contradiction, let us consider the path

γ(k) := (((1− k)t1 + kt2) ? (w
b1,

(
C0
b21

)α
2
, w

b2,

(
C0
b22

)α
2

)).

We observe that γ ∈ Γ. Thus, by Lemma 4.3

d ≤ max
k∈[0,1]

J(γ(k)) ≤ sup
t∈R

J

t ?
w

b1,

(
C0
b21

)α
2
, w

b2,

(
C0
b22

)α
2

 < `(b1, µ1),

which is a contradiction. Thus, we obtain a nontrivial positive solution (ũ, ṽ). Next,
we show that this solution is a ground state solution. For this purpose we prove
that

J(ũ, ṽ) = inf
{
J(u, v) : (u, v) ∈ V

}
= inf

(u,v)∈Sb1×Sb2

Rb(u, v)

= inf
{
J(u, v) : (u, v) is a solution of (3)− (4) for some λ1, λ2

}
,

where V and Rb(u, v) have been defined in (6) and (7).
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Recalling the definition of the sets A (see Lemma 4.2) and C (see relation (38)),
we set

A+ := {(u, v) ∈ A : u, v ≥ 0 a.e in RN}
and

C+ := {(u, v) ∈ C : u, v ≥ 0 a.e in RN}.
For any (u1, v1) ∈ A+ and (u2, v2) ∈ C+, let

Γ(u1, v1, u2, v2) :=

{
γ ∈ C([0, 1],Sb1 × Sb2) : γ(0) = (u1, v1) and γ(1) = (u2, v2)

}
.

Lemma 4.5. The sets A+ and C+ are connected by arcs, so that

d = inf
γ∈Γ(u1,v1,u2,v2)

max
k∈[0,1]

J(γ(k)) (43)

for every (u1, v1) ∈ A+ and (u2, v2) ∈ C+.

Proof. The proof uses some ideas found in the proof of Lemma 2.8 in [16]. Once
we show that A+ and C+ are connected by arcs, then we can get (43). Let
(u1, v1), (u2, v2) ∈ Sb1 × Sb2 be nonnegative functions such that

‖u1‖2Ds(RN ) + ‖v1‖2Ds(RN ) = ‖u2‖2Ds(RN ) + ‖v2‖2Ds(RN ) = α2 (44)

for some α > 0. We define

h(t, k)(x) := (cos k(t ? u1)(x) + sin k(t ? u2)(x), cos k(t ? v1)(x) + sin k(t ? v2)(x))

for t ∈ R and k ∈ [0, π2 ].

Setting h = (h1, h2), we observe that h1(t, k), h2(t, k) ≥ 0 a.e. in RN . By
straightforward computation we find∫

RN
h2

1(t, k)dx = b21 + sin(2k)

∫
RN

u1u2dx,∫
RN

h2
2(t, k)dx = b22 + sin(2k)

∫
RN

v1v2dx,

‖h1(t, k)‖2Ds(RN ) + ‖h2(t, k)‖2Ds(RN )

= e2st

[
α2 + sin(2k)

[∫
RN

(−∆)
s
2u1(−∆)

s
2u2dx+

∫
RN

(−∆)
s
2 v1(−∆)

s
2 v2dx

] ]
,

for all t ∈ R and k ∈ [0, π2 ]. Since (u1, v1), (u2, v2) ∈ Sb1 × Sb2 are nonnegative
functions, by Hölder’s inequality, there exists C > 0 such that

b21 ≤
∫
RN

h2
1(t, k)dx = b21 + sin(2k)

∫
RN

u1u2dx ≤ 2b21,

b22 ≤
∫
RN

h2
2(t, k)dx = b22 + sin(2k)

∫
RN

v1v2dx ≤ 2b22,

Ce2st ≤ ‖h1(t, k)‖2Ds(RN ) + ‖h2(t, k)‖2Ds(RN ) ≤ 2α2e2st.

Thus, for all (t, k) ∈ R× [0, π2 ], we define the function

ĥ(t, k)(x) :=

(
b1

h1(t, k)

‖h1(t, k)‖L2(RN )

, b2
h2(t, k)

‖h2(t, k)‖L2(RN )

)
. (45)
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We observe that ĥ(t, k)(x) ∈ Sb1 × Sb2 . Thus, we obtain the following estimate

Ce2st min{b21, b22}
2 max{b21, b22}

≤ ‖ĥ1(t, k)‖2Ds(RN ) + ‖ĥ2(t, k)‖2Ds(RN ) ≤
2α2e2st max{b21, b22}

min{b21, b22}
.

(46)

We have∫
RN

ĥα+2
1 (t, k)dx =

bα+2
1

‖h1(t, k)‖α+2
L2(RN )

∫
RN

hα+2
1 (t, k)dx

=
bα+2
1

‖h1(t, k)‖α+2
L2(RN )

e
Nαt
2

∫
RN

(u1 cos k + u2 sin k)α+2dx,

∫
RN

ĥα+2
2 (t, k)dx =

bα+2
2

‖h2(t, k)‖α+2
L2(RN )

∫
RN

hα+2
2 (t, k)dx

=
bα+2
2

‖h2(t, k)‖α+2
L2(RN )

e
Nαt
2

∫
RN

(v1 cos k + v2 sin k)α+2dx

and ∫
RN

ĥ
α+2
2

1 (t, k)ĥ
α+2
2

2 (t, k)dx

=
b
α+2
2

1 b
α+2
2

2

‖h1(t, k)‖
α+2
2

L2(RN )
‖h2(t, k)‖

α+2
2

L2(RN )

∫
RN

h
α+2
2

1 (t, k)h
α+2
2

2 (t, k)dx

=
b
α+2
2

1 b
α+2
2

2

‖h1(t, k)‖
α+2
2

L2(RN )
‖h2(t, k)‖

α+2
2

L2(RN )

× eNαt2

∫
RN

(u1 cos k + u2 sin k)
α+2
2 (v1 cos k + v2 sin k)

α+2
2 dx.

By these relations, there exists C > 0 small enough such that∫
RN

ĥα+2
1 (t, k)dx ≥ CeNαt2 and

∫
RN

ĥα+2
2 (t, k)dx ≥ CeNαt2 , (47)

∫
RN

ĥ
α+2
2

1 (t, k)ĥ
α+2
2

2 (t, k)dx ≥ CeNαt2 , (48)

for all (t, k) ∈ R× [0, π2 ].

Let (u1, v1), (u2, v2) ∈ A+ and ĥ(t, k)(x) defined as (45). By (46), there exists
t0 > 0 such that

‖ĥ1(−t0, k)‖2Ds(RN ) + ‖ĥ2(−t0, k)‖2Ds(RN ) ≤ K for all k ∈ [0,
π

2
],

where K has been defined in Lemma 4.2. By the choice of t0, we let

σ1(r) =


−r ? (u1, v1) = ĥ(−r, 0), 0 ≤ r ≤ t0,

ĥ(−t0, r − t0), t0 < r ≤ t0 + π
2 ,

(r − 2t0 − π
2 ) ? (u2, v2) = ĥ(r − 2t0 − π

2 ,
π
2 ), t0 + π

2 < r ≤ 2t0 + π
2 .
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It follows that σ1 is a continuous path connecting (u1, v1) and (u2, v2) and lying
in A+. To conclude that A+ is connected by arcs, it remains to analyze the cases
when condition (44) is not satisfied. Suppose that

‖u1‖2Ds(RN ) + ‖v1‖2Ds(RN ) > ‖u2‖2Ds(RN ) + ‖v2‖2Ds(RN ).

Then, by Lemma 4.1, there exists t1 < 0 such that

‖t1 ? u1‖2Ds(RN ) + ‖t1 ? v1‖2Ds(RN ) = ‖u2‖2Ds(RN ) + ‖v2‖2Ds(RN ).

Therefore, to connect (u1, v1) and u2, v2 by a path in A+ we can first connect (u1, v1)
with t1 ? (u1, v1), and then connect this point with (u2, v2).

To prove that C+ is connected by arcs, let us fix (u1, v1), (u2, v2) ∈ C+ and
suppose that (44) holds. By relations (46)–(48), there exists t0 > 0 such that

‖ĥ1(t0, k)‖2Ds(RN ) + ‖ĥ2(t0, k)‖2Ds(RN ) ≥ 3K and J(ĥ(t0, k)) ≤ 0,

for all k ∈ [0, π2 ], By the choice of t0, we let

σ2(r) =


r ? (u1, v1) = ĥ(r, 0), 0 ≤ r ≤ t0,

ĥ(t0, r − t0), t0 < r ≤ t0 + π
2 ,

(2t0 + π
2 − r) ? (u2, v2) = ĥ(2t0 + π

2 − r,
π
2 ), t0 + π

2 < r ≤ 2t0 + π
2 .

which is the desired continuous path connecting (u1, v1) and (u2, v2) in C+.

Let us recall the set

V := {(u, v) ∈ Tb1 × Tb2 : G(u, , v) = 0}
and its radial subset

Vrad := {(u, v) ∈ Sb1 × Sb2 : G(u, , v) = 0},

where

G(u, v) = ‖(u, v)‖2D −
Nα

2s(α+ 2)

∫
RN

(
µ1|u|α+2 + µ2|v|α+2 + 2β|u|

α+2
2 |v|

α+2
2

)
dx.

Lemma 4.6. If (u, v) is a solution of problem (3)–(4) for some λ1, λ2 ∈ R, then
(u, v) ∈ V.

Proof. The Pohozaev identity for (3) is

N − 2s

2
||(u, v)||2D −

N

2

∫
RN

(λ1u
2 + λ2v

2)dx

=
N

α+ 2

∫
RN

(
µ1|u|α+2 + µ2|v|α+2 + 2β|u|

α+2
2 |v|

α+2
2

)
dx.

On the other hand,

||(u, v)||2D−
∫
RN

(λ1u
2 +λ2v

2)dx =

∫
RN

(
µ1|u|α+2 + µ2|v|α+2 + 2β|u|

α+2
2 |v|

α+2
2

)
dx.

Combining the above two equalities, we get the desired result.

For (u, v) ∈ Tb1 ×Tb2 , we set Ψu,v(t) := J(t ? (u, v)). The proof of the following
lemma follows by straightforward computation and we shall omit it.

Lemma 4.7. For every (u, v) ∈ Tb1 ×Tb2 , there exists a unique tu,v ∈ R such that
tu,v ? (u, v) ∈ V and tu,v is the unique critical point of Ψu,v(t), which is a strict
maximum.
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Lemma 4.8. We have inf
V
J = inf

Vrad
J.

Proof. Assume by contradiction that there exists (u, v) ∈ V such that

0 < J(u, v) < inf
Vrad

J. (49)

For u ∈ Hs(RN ), let u∗ be its Schwartz spherical rearrangement. By the prop-
erties of the Schwartz symmetrization, J(u∗, v∗) ≤ J(u, v) and G(u∗, v∗) ≤ G(u, v).
Thus, there exists t0 ≤ 0 such that G(t0 ? (u∗, v∗)) = 0. We show that

J(t0 ? (u∗, v∗)) ≤ e2st0J(u, v).

Since G(t0 ? (u∗, v∗)) = G(u, v) = 0, we have

J(t0 ? (u∗, v∗)) =
Nα− 4s

2Nα
e2st0 ||(u∗, v∗)||2D

≤ Nα− 4s

2Nα
e2st0 ||(u, v)||2D = e2st0J(u, v).

Therefore

0 < J(u, v) < inf
Vrad

J ≤ J(t0 ? (u∗, v∗)) ≤ e2st0J(u, v),

which contradicts the fact that t0 ≤ 0.

4.1. Proof of Theorem 1.2 completed. Notice that any solution of problem
(3)–(4) is in V . If we assume that

J(u, v) = d ≤ inf{J(u, v) : (u, v) ∈ Vrad}, (50)

then, by Lemma 4.8, we obtain J(u, v) = inf
V
J(u, v).

Next, we prove relation (50). We choose arbitrarily (u, v) ∈ Vrad and show that
J(u, v) ≥ d. Firstly, since (u, v) ∈ Vrad, we have (|u|, |v|) ∈ Vrad and J(u, v) =
J(|u|, |v|), hence we can suppose that u, v ≥ 0 a.e in RN . Let us consider the
function Ψu,v. By Lemma 4.1, there exists t0 � 1 such that −t0 ? (u, v) ∈ A+ and
t0 ? (u, v) ∈ C+. Therefore, the continuous path

γ(k)((2k − 1)t0) ? (u, v), t ∈ [0, 1]

connects A+ and C+. By Lemma 4.5 and Lemma 4.7, we have

d ≤ max
k∈[0,1]

J(γ(k)) = J(u, v).

Thus, we have proved (50).
Finally, we claim that

inf
V
J = inf

Tb1×Tb2

Rb(u, v).

In fact, since the proof is similar to that of Lemma 2.5, we give a concise treatment
for the reader’s convenience. Since (u, v) ∈ V , then

‖(u, v)‖2D
Nα

2s(α+2)

∫
RN

(
µ1|u|α+2 + µ2|v|α+2 + 2β|u|α+2

2 |v|α+2
2

)
dx

= 1

and

J(u, v) =
Nα− 4s

2Nα
||(u, v)||2D .
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Therefore

J(u, v)

=
Nα− 4s

2Nα
||(u, v)||2D

×

 ‖(u, v)‖2D
Nα

2s(α+2)

∫
RN

(
µ1|u|α+2 + µ2|v|α+2 + 2β|u|

α+2
2 |v|

α+2
2

)
dx

 4s
αN−4s

=
Nα− 4s

2Nα

(
2s(α+ 2)

Nα

) 4s
Nα−4s

(
||(u, v)||2D

) αN
αN−4s(∫

RN

(
µ1uα+2 + µ2vα+2 + 2βu

α+2
2 v

α+2
2

)
dx
) 4s
αN−4s

= Rb(u, v),

which implies that

inf
V
J ≥ inf

Tb1×Tb2

Rb(u, v).

On the other hand, it is easy to check that

Rb(t ? (u, v)) = Rb(u, v) for all t ∈ R, (u, v) ∈ Tb1 × Tb2 .

By Lemma 4.7, we have

Rb(u, v) = Rb(tu,v ? (u, v)) = J(tu,v ? (u, v)) ≥ inf
V
J

for every (u, v) ∈ Tb1 × Tb2 . The proof is now complete.
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