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ABSTRACT. In this paper, we study the following nonlinear magnetic Kirchhoff
equation with critical growth

— <a62 + be [UE\/E)AA/EUJF V(z)u = f(|lul®)u + |ul*uv in R®,
u € Hl(R3,C),

where € > 0 is a parameter, a,b > 0 are constants, V : R — Rand 4 : R3 — R3
are continuous potentials, and f : R — R is a nonlinear term with subcritical
growth. Under a local assumption on the potential V', combining variational
methods, penalization techniques and the Ljusternik-Schnirelmann theory, we
establish multiplicity and concentration properties of solutions to the above
problem for € small. A feature of this paper is that the function f is assumed
to be only continuous, which allows to consider larger classes of nonlinearities
in the reaction.

1. Introduction. In this paper, we are concerned with multiplicity and concen-
tration phenomena of the solutions for the following nonlinear magnetic Kirchhoff
equation with critical growth

- (ae2 + be [u]i/e) Ayjeu+Vi(z)u= f(lu*)u+|ul*u inR?
u € HY(R?,Q),

(1.1)
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where € > 0 is a parameter, a,b > 0 are constants, V : R3 — R is a continuous
function, the magnetic potential A : R? — R? is Holder continuous with exponent
a € (0,1], and —A 4qu is the magnetic Laplace operator with the following form

—Aju = (%V - A(a:)>2u =—Au— %A(z) “Vu+ |A(z) [Pu — %u div(A(z)),

while the definition of [u]} will be given in Section 2.

For problem (1.1), there is a vast literature concerning the existence and con-
centration of solutions for the case without magnetic potential, that is, if A = 0.
The first result in this direction was given by Floer and Weinstein in [8], where the
case N =1 and f = ig is considered. Later on, by using different methods, several
authors generalized this result to larger values of N, see [6, 21, 22, 24, 27]. In [6],
del Pino and Felmer studied the following problem

—e2Au+ V(x)u = f(u) in Q,
u=0o0n 0N, u>0in Q,

where € is a possibly unbounded domain in R, N > 3. By introducing a penal-
ization method, they found solutions of the above problem that concentrate around
the local minimum of V. More precisely, the authors assumed that there exists a
bounded open set A C 2 such that

;IégV(gc) < min V(x), (1.2)
and the nonlinearity f satisfies the subcritical growth condition. In [10], He and
Zou considered the following fractional Schrédinger equation

& (=A)Yu+V(z)u = f(u) +u>"1, zeRY,

where V satisfies the local assumption (1.2), and f is subcritical. By using the Ne-
hari manifold method and the Ljusternik-Schnirelmann category theory, the authors
obtained the multiplicity of positive solutions. We notice that f is only continuous
n [10], hence the Nehari manifold is only a topological manifold. Thus, the critical
point theory in C! manifold cannot be applied in this framework. To overcome this
difficulty, He and Zou [10] used some variants of critical point theorems developed
by Szulkin and Weth [25]. There are also many results about the existence, multi-
plicity and concentration of solutions for Kirchhoff equations, that is, provided that
A=0and a,b> 0, see [9, 12, 18, 23, 29, 30] (see also [11] for the fractional case).
In [23], Perera and Zhang studied the existence of solutions for Kirchhoff equation
by using the Yang index and critical groups. Later on, He and Zou [9] studied
the existence, multiplicity and concentration properties of positive solutions for the
problem (1.1) without critical term and magnetic field by using the Nehari mani-
fold method, the penalization technique and the Ljusternik-Schnirelmann category
theory. We notice that the nonlinear term f is a C' function in this paper, which
allows to apply the critical point theory in C! manifolds. Next, He and Zou [10]
applied the method introduced by Szulkin and Weth [25] and studied multiplicity
and concentration behavior of positive solutions for a fracional Kirchhoff equation
where the nonlinear term f is only continuous.

On the other hand, when a = b = 0, the nonlinear magnetic Schrédinger equa-
tion (1.1) has been extensively investigated by many authors applying suitable vari-
ational and topological methods (see [1, 2, 3, 4, 5, 7, 13, 14, 16, 20, 31] and references
therein). It is well known that the first result involving the magnetic field was ob-
tained by Esteban and Lions [7]. They used the concentration-compactness principle
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and minimization arguments to obtain solutions for € > 0 fixed and N = 2,3. In
particular, due to our scope, we also refer to Ji and Radulescu [15] who used Ne-
hari manifold analysis, penalization techniques and the Ljusternik-Schnirelmann
category theory to study multiplicity and concentration results for a magnetic
Schrodinger equation in which the subcritical nonlinearity f € C(R,R). After that,
Ji and Rédulescu [16] studied multiplicity and concentration of the solutions for the
magnetic Schrédinger equation with critical growth. To the best of our knowledge,
there are few results in the literature on the magnetic Kirchhoff equations. Re-
cently, Ji and Rédulescu [17] considered multiplicity and concentrating phenomena
of nontrivial solutions for magnetic Kirchhoff equations with subcritical growth and
assuming that nonlinearity f is only continuous.

It is quite natural to consider multiplicity and concentrating phenomena of non-
trivial solutions for the problem (1.1) with critical growth. Inspired by [15, 17], the
main purpose of this paper is to investigate qualitative properties of solutions to
problem (1.1) by combining a local assumption on V' and adapting the penalization
method and Ljusternik-Schnirelmann category theory.

Throughout the paper, we make the following assumptions on the potential V:

(V1) There exists Vy > 0 such that V(x) >V, for all x € R?;
(V) There exists a bounded open set A C R? such that
Vo = min Viz) < Inin V(z).

Observe that
M:={zeAN:V(z)=Vo} #0.
Moreover, let f € C(R,R) be a nonlinearity satisfying:

(f1) f) =0ift <0, and lim;_,o+ & =
(f2) There exist o,q € (4,6) and p > 0 buch that

lim f(i? =0;

t—+oo 5=

Ft) >t ¥t>0, and

(f3) There exists a positive constant 4 < 6 < 6 such that

O<§F(t)§tf() Vt >0, where F(t /f

(f4) The mapping t — f( ) i strictly increasing in (0, 00).
The main result of thls paper is the following multiplicity and concentration

properties of solutions.

Theorem 1.1. Assume that V satisfies (V1), (Va) and f satisfies (f1)—(fs). Then,
for any 6 > 0 such that

M; = {x € R® : dist (x, M) < §} C A,

there exists €5 > 0 such that, for any 0 < € < g5, problem (1.1) has at least
catpr, (M) nontrivial solutions. Moreover, for every sequence {e,} such that €, —
0T as n — 400, if we denote by u., one of these solutions of (1.1) for e = e, and
ne, € R3 is the global mazimum point of |ue, |, then

hm V(nen) =V5.



5554 CHAO JI AND VICENTIU D. RADULESCU

The proof of Theorem 1.1 uses some ideas introduced in [15, 17]. Notice that,
due to the presence of the magnetic field A(z), the problem (1.1) cannot be changed
into a pure real-valued problem, hence we must deal directly with a complex-valued
problem. This fact creates several new difficulties in employing the methods to deal
with our problem. On the other hand, due to the presence of the nonlocal term, it
is possible that the weak limit of a bounded Palais-Smale sequence of the Kirchhoff
equation is not a solution of this equation. Moreover, since the problem we deal
with has critical growth, we need more refined estimates to overcome the lack of
compactness.

The present paper is organized as follows. In Section 2 we introduce the func-
tional setting and give some preliminaries. In Section 3, we study an auxilliary
problem. We prove the Palais-Smale condition for the auxilliary functional and
provide some tools which are useful to establish a multiplicity result. In Section
4, we study the associated autonomous problem. This allows us to show that the
auxilliary problem has multiple solutions. Finally, in Section 5, we give the proof
of Theorem 1.1.

Notation.

e (C,C1,C,... denote positive constants whose exact values are inessential and
can change from line to line;

e Br(y) denotes the open ball centered at y € R? with radius R > 0 and B%(y)
denotes the complement of Bg(y) in R3;

o |-, I llgs and || - || Lo () denote the usual norms of the spaces H'(R? R),
L4(R3 R), and L>(, R), respectively, where Q C R3. (-,-)o denotes the inner
product of the space H(R?R).

2. Variational framework and the limit problem. For v : R? — C, let us
denote by

\Y
Vau := (7 — A)u.
Consider the function spaces
DL (R3,C) := {u € L°(R3,C) : |Vau| € L*(R3R)},
and
HY(R? C) := {u € D4(R? C):uec L*(R?C)}.
Then D} (R3,C) and H} (R3, C) are Hilbert spaces endowed with the scalar products

(u,v)p :=Re | VauVavdr, forany u,v € D4(R? C),
R3

(u,v)y g := Re/

RB
where Re and the bar denote the real part of a complex number and the complex
conjugation, respectively. Let ||u||p and ||ul|a denote the norms induced by inner
products (u,v)p and (u,v) 4, and (u,u)p = [u]%.

On H}(R3? C) we will frequently use the following diamagnetic inequality (see
e.g. [19, Theorem 7.21)):

(VAUVAU + u@)dm, for any u,v € H;(R?, C),

IVau(z)| = [V]u(@)]|. (2.1)
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Moreover, making a simple change of variables, since Ay, = €Ay, and [u]% =
Llu)? /e» we can see that the problem (1.1) is equivalent to

~ (a+ b, ) Anu+ Va@)u = f(uf)u+ ful'u i R?, (2.2)

where A.(z) = A(ex) and V.(z) = V(ex).
Let D. and H. be the Hilbert spaces obtained as the closure of C2°(RY, C) with
respect to the scalar products

(u,v)p, == Re/ aV 4, uV 4 vdx

R3
and
(u,v)¢ 1= Re/ (aVAEuVAEv + Vg(:z:)lw)dx
R3
respectively, where a > 0. We denote by | - ||p. and || - || the norms induced by

inner products (-, -)p. and (-, ).

The diamagnetic inequality (2.1) implies that, if u € H}‘E (R3,C), then |u| €
HY(R3,R) and |ju|| < C|jul.. Therefore, the embedding H. — L"(R3,C) is contin-
uous for 2 < r < 6 and the embedding H. < L] (R? C) is compact for 1 < r < 6.

loc
For the compact supported functions in H!(R3, R), we have the following result,

which will be very uesful for some estimates below.

Lemma 2.1. If u € H'(R? R) and u has compact support, then w := e*4(0) %y, ¢
H..

Proof. Assume that supp(u) C Bgr(0). Since V' is continuous, it is clear that
| V@l = [ V@)oo < Clulf < +ox.
R3 Br(0)

Moreover, since V and A are continuous, we have
/ |V 4.w|?dx :/ |Vw|2d:r+/ |A5(x)|2|w|2dx—|—2Re/ 1A (x)wVwdx
R3 R3 R3 R3

<2 [ [VuPdot2 [ |A0)PluPds
R3 R3

<C [/ |Vu|2da:—|—/ |u2dx] < 400
RS R3

and we conclude. O

3. The auxilliary problem. To study problem (1.1), or equivalently, the problem
(2.2) by variational methods, we shall modify suitably the nonlinearity f so that,
for € > 0 small enough, the solutions of such auxilliary problem are also solutions of
the original one. More precisely, choosing K > 2, then there exists a unique number
ag > 0 verifying f(ag) + a2 = Vo/K by (f1), where Vj is given in (V7). Consider
the function
f(t) R f(t) + (t+)2? t< ao,
’ Vo/K, t > ag,

and introduce the penalized nonlinearity g : R® x R — R by setting

gla,t) = xa(@)(f() + (7)) + (1 = xa(2)) J (1), (3.1)
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t
where x, is the characteristic function on A and G(x,t) := / g(x, s)ds.

0
In view of (f1)—(fs), we have that g is a Carathéodory function satisfying the
following properties:

(9,) g(z,t) =0 for each t < 0;

(g9,) lim 9@t — 0 uniformly in z € R3;

t—0+
g.) g(z,t) < f(t) +t2 for all t > 0 and any z € R3;
g,) 0 <0G(x,t) < 2g(x,t)t for each x € A and ¢ > 0;
g;) 0 < G(z,t) < g(z,t)t < Vot/K, for each z € A°, ¢ > 0;
g,) for each x € A, the function t — M

and for each x € A¢, the function ¢ — @ is strictly increasing in (0, agp).

(
(
(
( is strictly increasing in ¢ € (0, +00)

Next, we consider the auxilliary problem
- (a +b [u]iE)AAEu + Ve(z)u = g(ex, |ul*)u  in R3. (3.2)
Note that, if u is a nontrivial solution of the problem (3.2) with
lu(x)]* <ag forallz € AS, A.:={zx€R>:cx €A},

then w is a nontrivial solution of the problem (2.2).
The energy functional associated to the problem (3.2) is

a 1 1

b
Jo(w) = Ll 4 1 / V(o) uf?de + Dpupty, — 2 / Glex, [uf?)dz
2 € 2 RB 4 € 2 ]R3

for all u € H.. By standard arguments, J. € C'(H.,R) and its critical points are
the weak solutions of the auxilliary problem (3.2).
We denote by N the Nehari manifold of .J,, that is,

Ne = {u € HA\{0} : Jl(u)[u] = 0},

and define the number c. by
ce = inf J.(u).

ueN;

Let H be an open subset H. given by
HF ={u € H, : |supp(u) N A.| > 0},

and S = S. N H, where S. is the unit sphere of H.. Note that ST is a non-
complete Ct'1-manifold of codimension 1, modeled on H. and contained in HZ.
Therefore, H. = T,,S+ @ Ru for each u € T,,SF, where T,,S+ = {v € H, : (u,v)e =
0.

Now we show that the functional J. satisfies the Mountain Pass Geometry (see
[28]).

Lemma 3.1. For any fized € > 0, the functional J. satisfies the following properties:

(i) there exist 8,7 > 0 such that J.(v) > B if ||ulle = 7;
(ii) there exists e € He with ||e|le > r such that J.(e) < 0.

Proof. (i) By (g2), (g3) and (f2), for any ¢ > 0 small, there exists C;: > 0 such that
G(ex,|ul®*) < Clul* + C¢lul®  for all z € R,
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By the Sobolev embedding it follows that

/V )|ul? dx—|—b 4 /|u| dx — C/ |u|®dx
R3

[unlZ = CiCllunll2 — CoC llunll?-

Je(u) >

>

DN = 1\9\@

Hence we can choose some 3,7 > 0 such that J.(u) > 8 if ||u|. = r small.
(ii) For each uw € H. \ {0} with supp(u) C A.. By the definition of g and (f3), we
have

bt 1 91 1o t6 6
Je(tu) = *IIUIIE+*[ ua, — 5 | F@u*)de —— [ |ul’dz,
1 2 /s 6 Ja.
btt t6
< *|| 12+ T[ I4, — 5 N u|®d,
hence J(tu) — —oo as t — 400 and the conclusion follows. O

Since f is only continuous, the next results are very important because they allow
us to overcome the non-differentiability of N. and the incompleteness of SI.

Lemma 3.2. Assume that (V1)—(Va2) and (f1)—(fs) are satisfied, then the following
properties hold:

(A1) For any uw € HY, let g, : RY — R be given by g.(t) = J-(tu). Then there
exists a unique t, > 0 such that g, (t) > 0 in (0,t,) and g, (t) <0 in (ty,o0);

(A2) There is a T > 0 independent on u such that t, > 7 for allu € SF. Moreover,
for each compact W C ST there is Cyy such that t, < Cyy, for all u € W;

(A3) The map m. : HX — N given by m.(u) = t,u is continuous and m. = ﬁzg\sj
is a homeomorphism between ST and N-. Moreover, m:*(u) = Tl

(A4) If {u,} C ST is a sequence such that dist (uy,dST) — 0, then ||me(uy)|le —
0o and Jo(me(uy,)) — oo.

Proof. (A1) Arguing as in the proof of Lemma 3.1, we have g,(0) = 0, g, (¢) > 0
for ¢ > 0 small and g, (t) < 0 for ¢ > 0 large. Therefore, max;>¢ g, (t) is achieved at
a global maximum point ¢ = ¢, verifying g/, (¢,) = 0 and t,u € N.. Now, we show
that ¢, is unique. Arguing by contradiction, suppose that there exist t; > to > 0
such that g, (t1) = g, (t2) = 0. Then, for i = 1,2,

b, +4 [ Ve@luPdo+ ull, = [ oten,gluP)ituPds

Hence,

au124 + Jps V=( |u|2dx+b[u]4 :/ g(ex, t2|ul? )|u|2dx
t2 S t2
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which implies that

(- 7) (ol + [ Velwlular)

/ vat%‘ul ) . g<5x7t%|u‘2)>|u|4dﬂf
R3

£ ul? t3lul?

>/ (g(em,tf|u|2) . g<€x,t§|u|2))|u‘4d$
Acn{t2|ul2 <ao<t2|u|?} t3]ul? t3lul?
€ t2 2 € t2 2
+/ (g( J;’ 1|2u| ) _ g( 3;’ 2‘2u| ))|u|4dx
Acn{ao<t3|u|?} t1 |ul t5|ul
V 1 t2 2 t4 4

-/ (oL S+t

Aen{e2lul<ao<t2|u2} S K t7]u] t3]ul

1 1 1
+—V-w/ Volu[*dz.
K t% t% Acn{ao<t3|ul?}

Since t1 > t9 > 0, we have

+/ Vg(x)\u|2dx)
R3
242 2 2 4 4
< 2t1t22/ (E 21 - f(tz‘“|2)+2t2‘“| >|u|4dx
t3 =17 Jacngezulp<ao<eziu?y N K ti[ul t5|ul

1
+7/ Volu|*da
K Jasnfao<tziuf?y

1 1
S e Volu|?dz < EH“HE»

which is a contradiction. Therefore, max;>g g, (¢) is achieved at a unique ¢t = t,, so
that g/,(t) = 0 and t,u € N.
(A2) For Vu € ST, by (A1), there exists a unique t,, > 0 such that

bu + 0[]y, = / g(ez, £ |ul?)tulul2da.
R3
From (g2), the Sobolev embeddings and ¢ > 4, we get
ty < gti/ lu*dx + Cct1™? / |lu|Tdx + ti/ lulSdz < C1(t3 + CoCetd™ + O3t
R3 R3 R3

which implies that ¢, > 7 for some 7 > 0. If W C S is compact, and suppose by
contradiction that there is {u,} C W with t,, := t,,, — oo. Since W is compact,
there exists a u € W such that u,, — u in H.. Moreover, using the proof of Lemma
3.1(ii), we have that J.(t,u,) — —oo.
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On the other hand, let v, := t,u, € N, from the definition of g and (g4), (g5)
and 4 < 0 < 6, it yields that

.
gj (vn)[vn]
> (3~ S el + (- %)b[vnrzs

1
+/ (6. |vn| onl? — 5 Glew, o)) d

>(5-5) (o2 = & [ vieoloPas)

1 1 1
>(2 = 2)1 = =)ol
>(5- 7)1 = Plenl?
Thus, substituting v, := t,u, and ||v,|. = t,, we obtain
1 1
0 (f—f) 1——)< <0
<G g)l-g=—p =

as n — 0o, which yields a contradiction. This proves (A2).

(A3) First of all, we note that 7., m. and m_- ! are well defined. Indeed, by (A42),
for each u € H, there is a unique m.(u) € M. On the other hand, if u € N, then
u € HF. Otherwise, we have |supp(u) N Ac| = 0 and by (g5), it follows

Julf2 + b, = | gfea u)jufds

- / glex, [ul?)|uf*dz
Ac

€

1
1 /]RS V(ex)|u>dx
1

= lull?

Je(vn) :Js(vn) -

IN

IN

which is impossible since K > 2 and u # 0. Therefore, m_ " (u) = - € ST is well
defined and continuous. From

_ tuU
m_ 1(mg(u)) =m_ 1(tuu) =

tullulle

=u, Yue ST,

we conclude that me is a bijection. We now prove that m. : H} — AN is continuous.
Let {u,} C HY and u € HF be such that u,, — u in H.. By (A2), there is a tg > 0
such that t, :=t, — to. Using t,u, € Nz, we obtain

Balunlh, +82 [ Ve@luaPdottbualh, = [ a(eo ) fo. vne .
and passing to the limit as n — oo in the last inequality, we obtain

Baful’ + 12 /R Ve (a)lulPde + t8bulh, = Agg(sm,t8|u|2)t%|u|2dx.
We obtain that tou € M and t, = to. This proves m.(u,) — Mme(u) in HF. Thus,
m. and m. are continuous functions and (A3) is proved.

(A4) Let {u,} C ST be a subsequence such that dist (u,,dS) — 0, then for
each v € 9SH and n € N, we have |u,| = |u, — v| a.e. in A.. Therefore, by (V),
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(V2) and the Sobolev embedding, for any r € [2, 6], there exists a constant C,. > 0
such that

ray < — 0|
lnllernny < I0f flun = vllera

e

SCT( inf /(|VAEun—v|2—|—VE(:E)|un—v\2)d:E)§
vedsSt Ja

< C, dist (u,, dST)
for all n € N. By (g2), (g93) and (g5), for each ¢ > 0, we have

€

t5un|®

2 2 2 2
t7un|")de < F(t"|un
L Gt Punide < [ (Pl + G

42
)dm+ —/ V(ez)|un |*dz
K A

t° t?
< Clt4/ [t | da + C’th/ |wn |Tde + — / |un |®dz + —HuWH?
Ac Ac 6 Ja. K

t2
< Cat*dist (un, 0ST)* + Catdist (un, 9ST)? + Cst®dist (un,,057)° + e

Therefore,
t2
limsup/ G(ex, ?|u,|?)dz < —, Yt > 0.
n R3 K

On the other hand, from the definition of m. and the last inequality, for all ¢ > 0,
one has

lim inf J. (me (uy)) > liminf J. (tu,,)

> limint & u 2 - &
2 liminf —flunls — -
_K-2,
T 2K

this implies that

K-2,
t t )
% , V>0

1 b
lim inf {§Hms(un)||§ + Z[ms(%)]jgs} > Tim inf J. (me (u,)) >

From the arbitrary of t > 0, it is easy to see that ||mc(u,)|. — oo and Je(me(uy,)) —
o0 as n — oo. We conclude the proof of Lemma 3.2. O

Now we define the function
U.:HY 5 R,
by We(u) = J. (e (u)) and we denote W, := (U.)|g+.

From Lemma 3.2, arguing as in [26, Corollary 10] we may obtain the following
result.

Lemma 3.3. Assume that (V1)—~(V2) and (f1)—(f1) are satisfied, then
(B1) ¥, € C*(HF,R) and
V! (u)v = WJ;(WLEW))[U], Vu€ HI andVv € H;
(B2) ¥, € CY(SH,R) and
VL (u)v = [me(u)||e T2 (e (u))[v], Vo e TSt
(B3) If{un} is a (PS). sequence of V., then {me(uy)} is a (PS). sequence of J..
If {un} C N: is a bounded (PS). sequence of Je, then {m-'(uy)} is a (PS).
sequence of W, ;
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(B4) w is a critical point of V. if and only if me(u) is a critical point of J.. More-
over, the corresponding critical values coincide and

1Sn+f\1/ = inf J..

As in [26], we have the following variational characterization of the infimum of
J. over Ny:

ce = inf J.(u) = inf supJ.(tu)= mf sup J.(tu). (3.3)
u€EN ueHT >0 ueSTE t>0

The following result is important to prove the (PS). condition for the functional
Je.
Lemma 3.4. Let ¢ > 0 and {u,} is a (PS). sequence for J., then {u,} is bounded
in H.
Proof. Assume that {u,} C H, is a (PS). sequence for J., that is, Je(u,) — ¢ and
J!(un) — 0. By (g4), (g5) and 4 < 6 < 6, we have

1
¢+ on(1) +on(unlle =Je(un) = 5 (un)un]
1 1 1 1
=(5 = ) lual? + (5 = Fblunlt,

1 2 2 1 2
+ [ (Goten P Yual® = 56 (e un ) ) da
1 1 5 1 2 5 1 2
>(Z _ = - _ =
>(3 )||un||5 . (ag<em,|un| unl? ~ 2 Gew, un)) da

1
>(Z2 - =
>(5 — ) luall? - / Gex, |un|?)
1
>(2 - = _
>(5 — ) luall? 2K/3V(ex)\un\ dz

(4~ 3- gt

Since K > 2, from the last inequality we obtain that {u,} is bounded in H.. O

Define g6
_ab ANy ~3\3/2 | 13
Co=—1— + 51 ((b +4aS7°)>% 4+ b )7 (3.4)

where S is the best constant for the Sobolev embedding D12(R3,R) — L%(R3 R).
The following lemma provides a range of levels in which the functional J, verifies
the Palais-Smale condition.

Lemma 3.5. The functional J. satisfies the (PS). condition for any ¢ € (0,¢cp).

Proof. Let (u,) C H be a (PS). for J.. By Lemma 3.4, (u,) is bounded in H..
Thus, up to a subsequence, u,, — v in H, and u,, — uin L{OC( 3.C)foralll1 <r <6
as n — +00.

Step 1: For the fixed € > 0, let R > 0 be such that A, C Bg/2(0). We show that
for any given ¢ > 0, for R large enough,

limsup/ (a|VA€un\2 + Vé(w)\un\Q)dx <. (3.5)
B%(0)

n

Let ¢r € C(R3,R) be a cut-off function such that
¢r =0 x€ Bgp(0), ¢r=1 x€Bx(0), 0<¢r<1, and [Vor| <C/R
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where C' > 0 is a constant independent of R. Since the sequence (¢ruy,) is bounded
in He, we have

Jé(un) [¢Run] = on(1).
Therefore

aRe | Vau,Va, (drun)dz + / Ve(x)|un|*prdz + blun]h, Re [ Va, unVa, (¢run)ds
R3

R3 R3

— [ otelun P o + 00 (1)
R3
Since Va_(¢ruyn) = iU, Vor + ¢rV 4. Un, using (gs), we have

/ (@I A un? + V(@) [un]?) e
R3

S/ g(ex, [un|*)|un|*¢rda — (a+b[un]?46> Re/ iUV A, unVordr + o,(1)
R3 R3

< — Ve(:z:)|un|2¢)Rdgc—|—C" Re/ vaeuandx\ +on(1).
K R3 R3
By the definition of ¢, the Holder inequality and the boundedness of (u,) in H.,
we obtain
1

C C
4 2 d 2 < <4
(1= ) [ @V acual® + V@)l P)onds < ZlualellVacunla + 00(1) € T+ 00(1)

and so (3.5) holds.
Step 2: For any R > 0, the following limit holds

lim sup / (0l i tn]? + Vi) ) = / (a]V a1
n BRr(0) Br(0)

2 Ve(@)ul?)da.
(3.6)

Let ¢, € C(R? R) be a cut-off function such that
¢p=1 w€B,0), ¢,=0 x€B;,0), 0<¢,<1, and [V, <C/p
where C' > 0 is a constant independent of p. Let
Py(x) = M(up)|Vaun = Va,ul® + Ve(@)|uy —ul?

where M (uy) = a+b [s |V, un|*dz. For the fixed R > 0, choosing p > R > 0, we
have

Po(a)ds < / Pu@)6y(a)da

Br R

= M) [ V= VaaPos(aido+ [ Vo)l — uPo,(o)ds
=Jy =T T, (3.7)
where
Ty = M) [V acunPep@ds + [ Ve@luno, @)z = [ alen,funl?)ua gy,
J2 , = M(un)Re /}R3 V. unVa,up,(z)dc+Re /}R3 Ve (@) un U, (x)ds—Re /R3 glex, |un|*)unTo, (z)de,
J2 = —M(un) Re /Rs(VAeun — Va,u)Va,ud,(z)dz — Re /R3 V(@) (un — w)Td,(x)de,

and

Ty =Re [ glea,un Pyl = w0, (o).
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It is easy to see that

Tp o = JL(un)[@pun] — M (uyn) Re / iUV 4, un V,da,

R3
and
Jzyp = Jl(un)[ppu] — M(u,)Re /11@ Vo, unVo,dz.
Then
pli—{gohffip J}L’p‘ =0, pli_>nololi711n_>sol<1)p J,%,p‘ =0.

On the other hand, since the sequence (u,) is bounded in H., we assume that
Jgs IVa,un|*dz — 2. Then
J:,p =—(a+ bl2) Re /RS (Vacun —Va u)Va (upy(x))de — Re /]R3 Ve(x)(un — u)(ud,(x))dz

+ (a+ bl*)Re /RS(VAeun — Va w)iaVe,de + o, (1)

= — (a4 bl®)(un — u, ud,(x))e + (a + bl*) Re /S(VAeun — Va, w)itVe,de + o (1),
R

thus,
lim lim sup|.J? ol =0.
P00 n—oo ’
Now we prove that
lim limsup|J;: )| = 0. 3.8
Jim Tim supl (38)

First we show

lim/ |un|6dx:/ lulda. (3.9)
o JA. A

Using the boundedness of (u,,) in D, and the diamagnetic inequality (2.1), we may
assume that

IV|up||> = p and |u,|® — v (3.10)
in the sense of measures. By the concentration-compactness principle in [28], we

can find an at most countable index I, sequences (z;) C R?, (u;), (v;) C (0, 00) such
that

> |VulPde + " pida,,
iel
V= |’u,‘6 + ZVZ'(SM and SZ/Z-l/3 < (311)
il

for any ¢ € I, where J,, is the Dirac mass at the point z;. Let us show that
(zi)ier N Ae = (). Assume, by contradiction, that z; € A, for some ¢ € I. For
any p > 0, we define ¢,(x) = ¢(*,*) where ¢ € Cs°(R3,[0,1]) is such that
Y =11in By, ¢ = 0in R®\ By and IV Lo (rs gy < 2. We suppose that p > 0

is such that supp(¢),) C A.. Since (¢,u,) is bounded in H., we can see that
Jé(un)[%un] = 0,(1), that is

(a T b[un]is) /R3 IV Ao tn |2 ds + (a T b[un]ie) Re /}R3 UV A tn Vib,da + /p@ Ve () lun |29 da

:/, g(ex,\unﬁ)\un\%pdx+on<1)=/ f(\un\z)\unlzwpdwr/ [t |®9hpda + 0n (1).
R3 rN rN

I
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Using the diamagnetic inequality (2.1) again, it follows that
(a+b/ |V\un\|2wpdm)/ V[t |24z + (a+ bunl% )Re/ TV 4t Vbpdz
R3 R3

< [ fuePYuPvda+ [l s+ 0u(0). (3.12)

Due to the fact that f has the subcritical growth and 1), has the compact support,
we have that

lim 1im/ f(|un|2)|un|2wpda::hm/ ), dz = 0. (3.13)
R3 p—0 Jrs3

p—0n—o0

Now, we show that

hmhmsup)/ UV A, unV¢pdm) =0. (3.14)
R3

=0 nooo

Because of the boundedness of (u,,) in H., using the Holder inequality, the strong
convergence of (|u,|) in L (R3,R), |u| € LS(R3,R), |V4,| < Cp~' and | By (zi)| ~
p3, we have that

0 < hmhmsup‘/ UnVa unVippdz| < hr%hmsup/ [TV, ||V a, un|dz
R3 3

n— oo n—roo

. . . 2 1/2
< lim lim (/ |UnV7/1p\ dx) [Un]As
Bap(@i)

p—0n—o0

1/2
< Clim(/ |u|2dx) =0
PONS By (@)

which shows that (3.14) holds.
Then, taking into account (3.10), (3.12), (3.13) and (3.14), we can conclude that

vi > ap; + bu?. Together with the inequality Suil/g < p; in (3.11), we have

3
i > %(b + Vb2 +4aS73). (3.15)

Now, from (f3), (g4) and (gs5), we have

1
c :Je(un) - Z‘]é(un)[un] + On(l)
_1 2 1 2 2 1 2
et + [ | (Goten o Plun P = 56 (e ) do +0u(1)

1 1 1
>l + [ (Gt funPlual? - 3G e, un ) ) da
Ae

+ % N \un\ﬁdx + o,(1)

1 2 2 1 2
> ([ aw Wl Pdr+ [ Ve@lua?) ~ 2 [ Glea Jun?)da

4\ Ja, Ae 2 Jae

1 6

—|—E |tn | dz 4+ 0, (1)

/w\w Pdrt (2 — o) [ Vi) lual?d +i/w\ Sz + 0 (1)
_4 I Unp, wi 4 2K Ag (X)) Uy X 12 As pun X On,

zf/ z/Jp\V|un||2dx+—/ By lunl®dz + on (1),
4 Al 12 AL
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From the above arguments, (3.11) and (3.15), we have

1 1
c > Z Z awp(xi)ﬂi + E Z '@[Jp(wi)yi
{iel:x;eA} {iel:x;€A}
a 1

2> Z,LM‘WLEW
aS bS®+ V28t +4aS i(b52+\/b254+4a5)3_c
4 2 12 2 -

which gives a contradiction. This means that (3.9) holds. Next, we observe that

>

<

4
e

. Jun Py T = w)|da - |

’g(ex, |t |* )t (th, — u)‘dw.
AeNB2,(0)

/(R"’\As)ﬂsz(O)

By the Sobolev compact embedding H. — LI (R3,C) for 1 <r < 6, and (gs), we
have

/ ’g(e:r7 |t |* )t (2, — u)’dx — 0, as n — oo.
(R3\A.)NBs, (0)

Moreover, using the Sobolev compact embedding H. < LI (R3 C) for 1 <r < 6,
again, and (3.9), we have,
/ ’g(ex, | |? )ty (1, — u)’da: — 0, as n — oo.
Asﬂsz(O)

Thus, (3.8) holds. Moreover, by (3.7), it follows that

0< limsup/B P, (z)dx < limsup (\J}lp| + |J,2L7p| + \J37p| + |Jf;7p|) =0.
R n

n

Then,

limsup/ P, (z)dx = 0.
Br

n

Thus (3.6) holds.
Step 3: From (3.5) and (3.6), we have

lul? < timinf |2 < limsup fun|)?
n

IN

li nl? + Ve(@)un|*)d nl? + Ve(@)un|*)d
lmnsup{/BR(O)(a\VAeu I” 4+ Ve(@)|un|™) w+/3%(0)(a\VAeu I” + Ve(@)|unl") w}
< [ @Vacl 4 Ve@ludo + .
BRr(0)
Passing to the limit as ( — 0 we have R — oo, which implies that
]2 < Tim inf [|up |2 < Tim sup [Jun |2 < [Jull2.
n
Then u,, — u in H. and we complete the proof. O

Since f is only assumed to be continuous, the following result is required for the
multiplicity result in the next section.

Corollary 3.1. The functional V. satisfies the (PS). condition on ST at any level
c € (0,¢).



5566 CHAO JI AND VICENTIU D. RADULESCU

Proof. Let {u,} C St be a (PS). sequence for ¥.. Then ¥.(u,) — c¢ and
. (up)|[« — 0, where || - || is the norm in the dual space (T, S+)*. By Lemma
3.3(B3), we know that {m.(u,)} is a (PS). sequence for J. in H.. From Lemma 3.5,
we know that there exists a u € ST such that, up to a subsequence, me (u,) — me(u)
in H.. By Lemma 3.2(A3), we obtain

Up — u in ST,

and the proof is complete. O

4. Multiple solutions of the auxilliary problem.

4.1. The autonomous problem. For our scope, we need also to study the fol-
lowing limit problem

—(a +b / |Vu|2dm> Au+ Vou = f|lu®)u+ |ulu, u:R> =R, (4.1)
R3
whose associated C'-functional, defined in H!(R3,R), is

1 b 2 1 1
Ty, (u) = §AS(a|Vu|2+%u2)dx+1( B Vultdr) 2 G g/Rs(qu)(jdm.

Let
No = {ue H'(R®,R)\ {0} : Ij; (u)[u] = 0}
and
ey, 1= inj\f/ Iy, (u).
By (f1) and (fy), for each u € H*(R?,R)\{0}, there is a unique ¢(u) > 0 such that
Iy, (t(u)u) = max Iy, (tu) and t(u)u € Ny,.

Then, using the assumptions on f, arguing as in [28, Lemma 4.1 and Theorem 4.2]
we have that

max [y, (tu).

0< = inf
Vo ueHl(ﬁg,R)\{o} >0

Now, we estimate the ground state energy cy;, and show that cy, € (0, co).
Lemma 4.1. Assume that (f1)—(f4) hold, then 0 < cy, < cp.
Proof. For § > 0, the function ws : R> — R defined by
§1/4
(6 + [x[*)1/2

is a family of functions on which S is attained. Let ¢ € C§°(R3,[0,1]) be a cut-off
function with

ws(x) = 3"/

¢p=1 z€B,0), ¢=0 =€ B0),
then we define the test function by vs = ws/||ws||s, Where us = ¢uvs. Since
2

t 2 2 bt! 2, \2 1 2 2 t° 6
Iy, (tvs) :== —/ (a|Vus| +Vov5)daz+—(/ |Vus| d:c) ff/ F(t v(g)dmf—/ vsdz,
2 Jos 1\ [ 2 Jos 6

under the conditions (f1)—(f1), arguing as in [29, Lemma 3.11], we can show that
for small 6 > 0, max¢~o Iy, (tvs) < co. Thus, since 0 < ¢y, < ¢g, we conclude the
proof. O
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Let Hy := H'(R? R) and define by H; the open set of Hy given by
Hi = {u € Hy : |supp(u")| > 0},
and Sg' =5nN Hg', where Sy be the unit sphere of Hy.

As in Section 3, S is a non-complete C'*'-manifold of codimension 1, modeled
on Hy and contained in Hy. Therefore, Hy = T,Sq @ Ru for each u € T,S;,
where T,,S¢ = {v € Hy : (u,v)o = 0}.

Arguing as in Lemma 3.2, we have the following property.
Lemma 4.2. Let Vj be given in (Vi) and suppose that (f1)—(f1) are satisfied, then
the following properties hold:

(al) For any u € Hy, let g, : RTY — R be given by g,(t) = Ly, (tu). Then there
exists a unique t, > 0 such that g.,(t) > 0 in (0,t,) and g, (t) <0 in (t,,o0);

(a2) Thereis a T > 0 independent on u such that t, > T for allu € Si". Moreover,
for each compact W C SS“ there is Cyy such that t,, < Cyy, for all u € W;

(a3) The map m : Hf — Ny given by m(u) = t,u is continuous and mqy = 7/7\7/0‘5;
is a homeomorphism between S{)" and Ny. Moreover, m=*(u) = m;

(ad) If there is a sequence {u,} C Si such that dist(un,dSF) — 0, then ||m(un)|lo — oo
and Iy, (m(uy)) — oo.

We shall consider the functional defined by
o(u) = Iy, (M(u)) and Wg:= Ygg,.
Arguing as in [26, Proposition 9 and Corollary 10], we have that

Lemma 4.3. Let Vy be given in (V1) and suppose that (f1)—(f4) are satisfied, then
(b1) Uy € CY(HF,R) and
Ul (u)v = W)I"/O (M(u))[v], Yu € Hy and Vv € Hy;
0
(b2) Vo € CH(ST,R) and
T (u)v = [[m(w)lloTy, (M(w))[v], Vv € TSy

(03) If {un} is a (PS). sequence of Wy, then {m(un)} is a (PS). sequence of Iy, .

If {u,} C Ny is a bounded (PS). sequence of Iy,, then {m~(u,)} is a (PS).

sequence of Wq;

(b4) w is a critical point of Uy if and only if m(u) is a critical point of Iy, . More-
over, the corresponding critical values coincide and

inf Wy = inf Iy, .
Yo =1 v
Similar to the previous argument, we have the following variational characteri-
zation of the infimum of Iy, over Np:

ev, = inf Iy (u) = inf sup Iy, (tu) = inf sup Iy, (tu). (4.2)
u€No u€Hy t>0 ueSF >0

The next result is useful in later arguments.

Lemma 4.4. Let {u,} C Hy be a (PS).,, sequence for I, then the problem (4.1)
has a positive ground state solution.
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Proof. By (f3), it follows that
1 1
v+ 00 (1) on(Dllunll = Ty (one) — 5 (I (k) ) > el
Thus, (u,) is bounded in H!(R?,R). We can assume that there exists u € H!(R3 R)
such that u,, — u in H*(R?,R), u, — v in L2 (R* R) and u,, — u a.e. in z € R3.

loc
Now we show that (u,) is non-vanishing. Otherwise, assume that (u,) is van-

ishing, then Lions lemma (see [28]) implies that uw, — 0 in L"(R?R) for any
2 < r < 6. By the compact embedding and (f1)-(f2), we have [pq F(u2)dz — 0
and [ f(uZ)u2dz — 0 as n — co. Moreover, using the former limits, it follows
that

1 2 1
ey, = 7/ (a\Vun|2+Voui)dx+é(/ |Vun|2da:) —7/ (u)8dx+0,(1), (4.3)
2 R3 4 R3 6 R3

2
/ (a|Vun|* + Voui)derb(/ |Vun\2d:c> :/ () bdx + 0, (1). (4.4)

R3 R3 R3

Suppose that
lim [ (u})bdx=1>0.
n Rg
If | = 0, then (4.3) and (4.4) imply that ¢y, = 0, which contradicts with cy, > 0.
Then [ > 0, using the definition of S, we have
a |Vun|2dx—|—b</ |Vun|2d:r)2 < / (wh)Pda+on(1) < 5—3(/ |Vun|2dx)3+on(1).
R3 R3 R3 R3

(4.5)
If [os [Vup|?dz — 0, then

3
/ (u})bdx < S_3(/ |Vun|2dx) — 0,
R3 R3
which contradicts with [ > 0. Thus [ps [Vun|*dz # 0. By (4.5), we have

3
/ Vup|2dz > %(H VI 1 4a5-3) + on(1). (4.6)
R-’_’)

Using (4.5) again, it follows that

2 6
(/ |Vun|2dx) > aS® + %(b + Vb +4aS73) + 0, (1). (4.7)
R3

From (4.6) and (4.7), we can obtain
1

b 2
ey, = 7/ (a|Vun|? + Vou?)dx + —(/ |Vun|2dx) +o0,(1)
3 Rg 12 RS

>E/ Vu |2dx+£(/ |Vu |2daz)2—|—0 (1) > co+ on(1)
T3 Jpe " 12\ Jgs' = " = "

which contradicts with ¢y, < ¢o. Thus, (u,) is non-vanishing, that is, there exist
R,n >0, and (§,) C R? such that

lim uide > . (4.8)
" JBr(jn)

By the invariance of the translation of Iy,, we may assume that (g,) is bounded,
so u # 0.
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Now we claim that I, (u) = 0. Assume that there exists ¢+ > 0 such that

Jzs |V, |?dr — 12. Since Iy, (un) — 0, then u is a solution of the following equation

—(a+ b)) Au+Vou = f(|ul®)u+ (u)’, ue H(R3 R). (4.9)

It suffices to show that (> = Jzs |Vu|?dz. From the weakly lower semi-continuous

of the norm, it is easy to obtain that (2 > Jgs |Vu|?dz. Then, by (4.9), we have

(Iy, (u),u) < 0. By (fs), there exists t < 1 such that tu € Np. By (4.9) again, it
follows that

1
evy <Iv, (tu) — ZI(/O(tu)[tu]

1 2 2 / 1 2 2 1 2 1 / 116
== — __F il
4/][{3(a\vw\ + Voltw) )z + [ <4f(\tu| ltul® = S F(ltul ))dac+ 13 L (tu ) e
<3/ (a\w|2+vou2)dm+/ (lf(\ulz)luﬁ - 1F<|u\2>)cfloc+ = / (u") da
4 Jp3 r3 \4 2 12 Jgrs

1 2 2 1 2 2 1 2 1 +\6
<7 [y @Vunl® + Voulydn + [ (G Gunlunl® = GF(unl®))da + 35 [ @)%+ 0.(1)

=1y (un) = 30 (un)latn] + 00 (1) = v + 0 (1).
Thus ¢t =1 and
1

1 1 1
lim ~ (a\Vun\Z—&—Voui)dm—i—/ (ff(\unf)\un\2 - fF(|un|2))dm+— (uI)de
n 4 Jpa r3 \4 2 12 Jps

_1 2 2 1 2,2~ L 2 1 +16
= 443(a\Vu| + Vou )dx—!—/Rs (4f(\u| )|l 2F(|u\ ))dm—!— 13 As(u ) dx.

Then * = [ps |Vul?dz and u, — w in H'(R?R). Therefore I{, (u) = 0 and
Iy, (u) = cy,. Then u is a ground state of problem. From the assumption of f,
u > 0. Moreover, using the standard argument, we may show that u(z) > 0 for
x € RY. The proof is complete. 0

Arguing as in [30, Lemma 2.3], there exists a positive radial ground state solution
of the problem (4.1), which implies that this solution decays exponentially at infin-
ity with its gradient; moreover, this ground state solution is of class C?(R3,R) N
L>®(R3,R).

Lemma 4.5. Let (u,) C Ny be such that Io(un) — cv,. Then (uy,) has a convergent
subsequence in Hy.
Proof. Since (u,) C Ny, from Lemma 4.2(a3), Lemma 4.3(b4) and the definition of

cy,, we have

u
vy =m Huy,) = m n||0 €S, VneN,
n

and
Uo(vn) = Io(un) — ey = inf+ Uo(u).

u€ Sy
Although S is not a complete C' manifold, we still can use the Ekeland’s vari-
ational principle to the functional & : H — R U {oo} defined by &(u) := Wy(u)
if u € S and & (u) := oo if u € OS], where H = S is the complete metric
space equipped with the metric d(u,v) := ||lu — v||o. In fact, by Lemma 4.2(a4),
& € C(H,RU{o0}), and from Lemma 4.3(b4), & is bounded below. Therefore,
there exists a sequence {,} C S such that {3,} is a (PS)ey, sequence for o on

Si and
[T — vnllo = on(1).
Arguing as in Lemma 4.4 and Lemma 4.3, we conclude. O
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Now, we show the relationship between c. and cy;.
Lemma 4.6. The numbers cc and cy, satisfy the following inequality

lim ¢ = ¢y, < co.
e—0

Proof. Let n € C2°(R?,[0,1]) be a cut-off function such that n = 1 in B,/ and
supp(n) = B, C A for some p > 0. Let us define w,(z) := n.(z)w(x)e’A©* where
ne(z) = n(ex) for € > 0, w is a positive and radial ground state solution of the
problem (4.1). We observe that |we| = 7w and w. € H. in view of Lemma 2.1.
Arguing as in [5, Lemma 4.1] or [15, Lemma 4.6], we obtain

: 2 _ 2
tim ]2 = ol (4.10)
and
lim[w )% = / |Vw|?dz. (4.11)
e—0 € R3
It is also easy to check that
lim |Vw€\ de = / Vw|®dz. (4.12)
e—0 R3

Let t. > 0 be the unique number such that
Je(tewe) = ntﬂzagc Je (twe).

Then t. satisfies
tf (a[wg]i‘E +/ Vs(:c)|w€|2d:c) + btf[wé]‘js :/ g(eat,tf|we\2)tf\we|2dm
R3 RS

:/ f(tf\w6|2)tf|we|2dm+/ tf\we|6dm7
R3 R3

where we use supp(n) C A and the definition of g(z,t). Moreover, combining the
facts that n = 1 in B, ), u is a positive continuous function and hypothesis (f1),
we have

%(a[we}ii : /Rs ‘/;(x)|w€‘2dm) + b[we]ja = l? / f(tz‘we|2)|we|2d.’x + /R3 t?‘we|6dm
/ f |€ZC| ( )) 2(|6$|)W2(x)dz
2
t2 /p/(ze)(O)f(t w (Z))W (2)dz

1 2 2 2
tg/Bp/z(o)f(tew (2))w”(2)dz

2 2
2 f(t;,-y ) / UJQ(Z)dZ
iz B, /2(0)

for all 0 < € < 1 and where v = min{w(z) : |z| < p/2}.

If te = +00 as € = 0, by (f1), we deduce that [w]} — +oo which contradicts
(4.11).

Therefore, up to a subsequence, we may assume that t. — o > 0 as € — 0.

If t. — 0, using the fact that f is increasing, the Lebesgue dominated convergence
theorem and relation (4.12), we obtain

I \/

\ \/

\Y

a[wE]AE+/ Ve (z)|we|? d1:+bt [we / f(t2 |w€\ )wel dz+/ t Y we|® ‘dz — 0, as € — 0
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which contradicts (4.10). Thus, we have to > 0 and

2
t%/ (a\Vw|2+V0w2)dx+bt§(/ |Vw|2da:) :/ f(tgouQ)t%w2dx+/ tS|w|®da,
R3 R3 R2 R3

so that tow € My,. Since w € Ny, we obtain that ¢x = 1 and so, using the Lebesgue
dominated convergence theorem, we get

lim [ F(|tewe|?)dx = / F(w?)dz.
e—0 R3 R2

Hence

li_% Je(tewe) = Iy, (u) = cy,.

Since ¢ < maxy>g Je(twe) = Je(tewe), we can conclude that limsup, ,gc. < cy,.
Moreover, by (3.3), (4.2) and Iy, (Ju|) < Je(u) for any v € H., we have ¢y, < c..
Then cy, < liminf._,gc.. Combining with the previous arguments, we conclude
that lim._,o c. = ¢y, < co. O

Remark 4.1. From Lemma 4.2 and Lemma 3.5, we see that for € > 0 small, the
problem (3.2) has a ground state solution u. such that J.(uc) = c. and J.(ue) = 0.

4.2. The technical results. In this subsection, we prove a multiplicity result for
the auxilliary problem (3.2) using the Ljusternik-Schnirelmann category theory. In
order to get this property, we first provide some useful preliminaries.

Let 6 > 0 be such that Ms C A, w € H'(R3 R) be a positive ground state
solution of the limit problem (4.1), and n € C*°(R*,[0,1]) be a nonincreasing cut-
off function defined in [0, +00) such that n(t) = 1if 0 < ¢ < §/2 and n(t) = 0 if
t>9.

For any y € M, let us introduce the function

Ve, (@) = ez — yhw (=) exp (i, (FF) ),

9

where
3
() =Y Ai(y)m;.

Let t. > 0 be the unique positive number such that
J(tP = J.(teWe ).
I?Zaé’( (tWe,y) (teVey)

Note that t.¥. , € N:.
Let us define &, : M — N as

O (y) ==t Ve y.

By construction, ®.(y) has compact support for any y € M.
Moreover, arguing as in Lemma 4.2, the energy of the above functions has the
following behavior as ¢ — 0F.

Lemma 4.7. The limit
lim J.(P.(y)) = e,

e—0t

holds uniformly in y € M.
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Now we define the barycenter map.
Let p > 0 be such that M; C B, and consider Y : R® — R? defined by setting

x, if |z] < p
Y(z) := . ’
(=) { pu/lal, if |z] > p.

The barycenter map S. : No — R? is defined by
1
Be(u) :

=0 Y (ex)|u(z)|*da.
l[ullz Jrs
We have the following asymptotic property.

Lemma 4.8. The limit
lim B:(®:(y)) =y

e—0t

holds uniformly in y € M.

Proof. Assume by contradiction that there exist k > 0, (y,) C M and ¢, — 0 such
that

1B, (Pe,, (Yn)) — Ynl = K. (4.13)
Using the change of variable z = (¢, — y,)/en, we can see that

00z ) = ez ()=

/ i (Jenzl)w? (2)dz
RS

Taking into account that (y,) C M C M; C B, and applying the Lebesgue domi-
nated convergence theorem, we obtain

|1Be., (®e,, (Yn)) — yn| = 0n(1),
which contradicts (4.13). O

/8571 ((I)En (yn)) =Yn +

Now, we prove the following useful compactness result.

Proposition 4.1. Let ¢, — 0" and (u,) C N;, be such that J., (un) — cy,.
Then there exists (§,) C RN such that the sequence (|v,|) C H*(R3,R), where
v (2) := up(x + §n), has a convergent subsequence in H*(R®,R). Moreover, up to
a subsequence, Yy, ‘= €pyp =Yy € M as n — +00.

Proof. Since J. (un)[un] =0 and J., (un) — cv,, arguing as in the proof of Lemma
3.4, we can prove that there exists C' > 0 such that |juy,ll., < C for all n € N.

Arguing as in the proof of Lemma 4.4 and recalling that cy, > 0, we have that
there exist a sequence {§,} C R® and constants R, 3 > 0 such that

liminf/ U |2dx > . (4.14)
Br(gn)

n
Now, let us consider the sequence {|v,|} C H'(R3 R), where v,,(2) := w, (z+7y)-
By the diamagnetic inequality (2.1), we get that {|v,|} is bounded in H'(R3 R),
and using (4.14), we may assume that |v,| — v in H}(R3,R) for some v # 0.
Let now ¢, > 0 be such that v, := t,|v,| € J\fvo, and set Y, := €,Un-
Using the diamagnetic inequality (2.1) again, we have

Cv, < IO(fjn) < r?>aOX an (tun) = Jen (un) =cy, + On(1)7

which yields Iy(9,) — ¢y, as n — +o0.
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Since the sequences {|v,|} and {#,} are bounded in H!(R3,R) and |v,| 4 0 in
H'(R3 R), then (t,) is also bounded and so, up to a subsequence, we may assume
that t, — tg > 0.

We claim that ¢ > 0. Indeed, if to = 0, then, since (|v,|) is bounded, we have
U, — 0 in HY(R3,R), that is, Io(9,) — 0, which contradicts ¢y, > 0.

Thus, up to a subsequence, we may assume that 9, — 9 := tov # 0 in H*(R3 R),
and, by Lemma 4.5, we can deduce that 9, — ¥ in H*(R?,R), which gives |v,,| — v
in H'(R3,R).

Now we show the final part, namely that {y,} has a subsequence such that
Yn — y € M. Assume by contradiction that {y,} is not bounded and so, up to a
subsequence, |y,| — 400 as n — 400. Choose R > 0 such that A C Bg(0). Then
for n large enough, we have |y,| > 2R, and, for any = € Bg/., (0),

len® + yn| > |yn| — enlz| > R.

Since u,, € N¢,, using (V1) and the diamagnetic inequality (2.1), we get that

n?
(@lVIvnll? + Volvn ?)de < alvnld, + [ . V(enz + yn)lvnl®de + blun]h
R3 € r3 e
2 2
< [ 9ene + v lon ) lon|2da
Rr3

</ Foalonlaz+ [ foalPonlPdet [ jual%ds.
BR/en BRen© Ryen (@
(4.15)

Since |v,| — v in H'(R3 R) and f(t) < Vo/K, we can see that (4.15) yields

min {1, 5(1 - %)}/RSW'“"”Q + lon|B)dz = on(1),

that is |v,| — 0 in H'(R3,R), which contradicts to v # 0.

Therefore, we may assume that y, — yo € R3. Assume by contradiction that
Yo ¢ A. Then there exists © > 0 such that for every n large enough we have that
|y —yo| < r and Ba,(yo) C A°. Then,ifz € B, /e, (0), we have that |e, x4y, —yo| <
2r so that e,z +yn € A and so, arguing as before, we reach a contradiction. Thus,
Yo € A.

To prove that V(yg) = Vi, we suppose by contradiction that V(yo) > V. Using
the Fatou’s lemma, the change of variable z = z + g, and maxy>g Je, (tu,) =
J., (un), we obtain

vo = To(3) < f/ (@l V31 + V(o) 51> de + - / V5 [2dx) / F(9]?)da
< hmmf / (a\an\ + V(enz + yn) \vn\ Ydz + — / \V'vn\ da: - 7/ F(\vn| )dz
:limninf / (a|V|uﬂH +V(snz)|un\ )dz+— / |Vun\ dz / F(|tnun| )dz)

< limnianEn (thun) < hmnlanEn (up) = ey,

which is impossible and the proof is complete. O

Let now
Nei={ueN-: J.(u) < ey, + h(e)},
where h : RT — R, h(e) = 0 as e — 0F.
Fixing y € M, by Lemma 4.7, |J.(®.(y)) — cy,| — 0 as € — 0T, we get that

N. # 0 for any € > 0 small enough. )
We have the following relation between N and the barycenter map.
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Lemma 4.9. We have
lim sup dist(S.(uw), Ms) = 0.

e—07+ weN.
Proof. Let €, — 07 as n — +oo. For any n € N, there exists u,, € ./\~f€n such that

su inf |8 (u) —y|= inf |B. (u) — y| + on(1).
im0, () = = nf e, (i) =31+ 0a(1)

Therefore, it is enough to prove that there exists (y,) C Mjs such that
lim [, () — 3| = 0.
By the diamagnetic inequality (2.1), we can see that Iy, (t{un|) < J., (tun) for any
t > 0. Therefore, recalling that {u,} C N, C N, , we can deduce that
cvy < max Iy, (tlug|) < max Je, (tuy) = Je, (un) < ey, + h(ey) (4.16)
which implies that J. (u,) — cy, as n — +o00. Then Proposition 4.1 implies that

there exists {f,} C R® such that y,, = &,%, € M; for n large enough.
Thus, making the change of variable z = x — 7,,, we get

+ fRS (Y(enz + Yn) — yn)|un(z + gn)‘4dz
fR3 |un(z + ﬂn)|4dz

Since, up to a subsequence, |u,|(- + 9,) converges strongly in H!(R3,R) and ¢,z +
Yn — y € M for any z € R3, we conclude. O

5En (un) = Yn

4.3. Multiplicity of solutions for the problem (3.2). Finally, we present a
relation between the topology of M and the number of solutions of the auxilliary
problem (3.2).

Theorem 4.1. For any § > 0 such that Ms C A, there exists €5 > 0 such that, for
any € € (0,&5), the problem (3.2) has at least catpr, (M) nontrivial solutions.

Proof. For any € > 0, we define the function 7. : M — S by
me(y) = mo (Rc(y)), Yy € M.
By Lemma 4.7 and Lemma 3.3(B4), we obtain
611_r>r(1) U (me(y)) = lgr(l) Je(Pe(y)) = cvp, uniformly in y € M.

Hence, there is a number ¢ > 0 such that the set S := {u € St : U (u) <
cv, + h(€)} is nonempty, for all € € (0,¢), since 7(M) C ST. Here h is given in the
definition of N..

Given § > 0, by Lemma 4.7, Lemma 3.2(A3), Lemma 4.8, and Lemma 4.9, we
can find €5 > 0 such that for any ¢ € (0,£s), the following diagram

mfl
M 2oy o (M) 2 1 (M) 5 B (M) L M

is well defined and continuous. From Lemma 4.8, we can choose a function O(e, z)
with [©(e, z)| < & uniformly in 2 € M, for all € € (0,¢€) such that B.(®-(z)) = z +
O(e, z) for all z € M. Define H(t, z) = z+(1—1)O(¢, z). Then H : [0,1] x M — M;
is continuous. Clearly, H(0,z) = B.(®.(2)), H(1,z) = z for all z € M. That
is, H(t, z) is a homotopy between . o &, = (8. o m.) o m. and the embedding
t: M — Ms. Thus, this fact implies that

caty, vy (me(M)) > catpr, (M). (4.17)
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By Corollary 3.1 and the abstract category theorem [26], W, has at least cat,_(as)(7mc(M))
critical points on SI. Therefore, from Lemma 3.3(B4) and (4.17), we have that J.
has at least catps, (M) critical points in N which implies that the problem (3.2)
has at least catps, (M) solutions. O

5. Proof of Theorem 1.1. In this section we prove our main result. The idea is
to show that the solutions u. obtained in Theorem 4.1 satisfy

luc(x)|* < ag for x € AS
for € small. The key ingredient is the following result.

Lemma 5.1. Let ¢, — 07 and u, € N., be a solution of the problem (3.2) for
€ = ¢en. Then J., (u,) — cv,. Moreover, there exists {§,} C RY such that, if
V(%) := Up (T + §n), we have that {|v,|} is bounded in L>=(RN R) and
lim |v,(2)] =0 wuniformly in n € N.
|z|—+o0

We use the Moser iteration method to prove the above lemma. For our prob-
lem (3.2), there is one more nonlocal term and the nonlinear term has the critical
growth, arguing as in [15, Lemma 5.1], just make some appropriate changes, it is
easy to prove it and we omit it here.

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let § > 0 be such that Ms; C A. We want to show that there
exists €5 > 0 such that for any ¢ € (0,€5) and any u. € N; solution of the problem
(3.2), it holds

Jte 13 ngy < ao. (5.1)

We argue by contradiction and assume that there is a sequence €, — 0 such that
for every n there exists u,, € N, which satisfies J. (u,) =0 and

HunH%OO(Agn) > ao. (5.2)

Arguing as in Lemma 5.1, we have that J. (u,) — cy,, and therefore we can use
Proposition 4.1 to obtain a sequence (,,) C R? such that y,, := €,7, — yo for some
Yo € M. Then, we can find r > 0, such that B,(y,) C A, and so B, /. (9.) C A,
for all n large enough.

Using Lemma 5.1, there exists R > 0 such that |v,,|> < ag in BE(0) and n large
enough, where v,, = u,(- + ). Hence |u,|*> < ag in B%(9,) and n large enough.
Moreover, if n is so large that r/e, > R, then AS C B¢, (9n) C B%(¥n), which

r/en
gives |u,|* < a for any x € AS . This contradicts (5.2) and proves the claim.
Let now &5 := min{és,&s}, where €5 > 0 is given by Theorem 4.1. Then we

have catys, (M) nontrivial solutions to the problem (3.2). If u. € N is one of
these solutions, then, by (5.1) and the definition of g, we conclude that . is also a
solution to the problem (2.2).

Finally, we study the behavior of the maximum points of |i.|, where 4. (z) :=
us(x/€) is a solution to the problem (1.1), as e — 07.

Take €, — 07 and the sequence (u,) where each u,, is a solution of (3.2) for
€ = &,. From the definition of g, there exists v € (0, ag) such that

0

\%
glex, t*)t* < Ft27 for all z € RN |t| < .
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Arguing as above we can take R > 0 such that, for n large enough,

[un | Lo (BS, (5)) <7 (5.3)

Up to a subsequence, we may also assume that for n large enough

[un Lo (Brg.)) = 7- (5.4)

Indeed, if (5.4) does not hold, up to a subsequence, if necessary, we have ||uy,[|co < 7.
Thus, since J. (u.,) = 0, using (g5) and the diamagnetic inequality (2.1) that

2
[ @l + Vol Py + b [ (FlunlPde)” < [ glenfunf?)fun P
R3 R3 3

< fO/Rs [, |2 d

and, since K > 2, we get |lu,| = 0, which is a contradiction.

Taking into account (5.3) and (5.4), we can infer that the global maximum points
pn of |ue, | belongs to Br(yn), that is p, = ¢, + ¥, for some ¢, € Bg. Recalling
that the associated solution of the problem (1.1) is @y, (x) = un(x/cy), we can see
that a maximum point 7., of |G, | iS 1., = €nn + Engn. Since ¢, € Br, €nln — Yo
and V(yo) = Vb, the continuity of V' allows to conclude that

ImV(n., ) =V.

The proof is now complete. O
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