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Abstract. In this paper, we study the following nonlinear magnetic Kirchhoff
equation with critical growth−

(
aε2 + bε [u]2A/ε

)
∆A/εu+ V (x)u = f(|u|2)u+ |u|4u in R3,

u ∈ H1(R3,C),

where ε > 0 is a parameter, a, b > 0 are constants, V : R3 → R andA : R3 → R3

are continuous potentials, and f : R → R is a nonlinear term with subcritical

growth. Under a local assumption on the potential V , combining variational
methods, penalization techniques and the Ljusternik-Schnirelmann theory, we

establish multiplicity and concentration properties of solutions to the above

problem for ε small. A feature of this paper is that the function f is assumed
to be only continuous, which allows to consider larger classes of nonlinearities

in the reaction.

1. Introduction. In this paper, we are concerned with multiplicity and concen-
tration phenomena of the solutions for the following nonlinear magnetic Kirchhoff
equation with critical growth−

(
aε2 + bε [u]2A/ε

)
∆A/εu+ V (x)u = f(|u|2)u+ |u|4u in R3,

u ∈ H1(R3,C),
(1.1)
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where ε > 0 is a parameter, a, b > 0 are constants, V : R3 → R is a continuous
function, the magnetic potential A : R3 → R3 is Hölder continuous with exponent
α ∈ (0, 1], and −∆Au is the magnetic Laplace operator with the following form

−∆Au :=
(1

i
∇−A(x)

)2

u = −∆u− 2

i
A(x) · ∇u+ |A(x)|2u− 1

i
udiv(A(x)),

while the definition of [u]2A will be given in Section 2.
For problem (1.1), there is a vast literature concerning the existence and con-

centration of solutions for the case without magnetic potential, that is, if A ≡ 0.
The first result in this direction was given by Floer and Weinstein in [8], where the
case N = 1 and f = iR is considered. Later on, by using different methods, several
authors generalized this result to larger values of N , see [6, 21, 22, 24, 27]. In [6],
del Pino and Felmer studied the following problem{

−ε2∆u+ V (x)u = f(u) in Ω,

u = 0 on ∂Ω, u > 0 in Ω,

where Ω is a possibly unbounded domain in RN , N ≥ 3. By introducing a penal-
ization method, they found solutions of the above problem that concentrate around
the local minimum of V . More precisely, the authors assumed that there exists a
bounded open set Λ ⊂ Ω such that

inf
x∈Λ

V (x) < min
x∈∂Λ

V (x), (1.2)

and the nonlinearity f satisfies the subcritical growth condition. In [10], He and
Zou considered the following fractional Schrödinger equation

ε2s(−∆)su+ V (x)u = f(u) + u2∗s−1, x ∈ RN ,
where V satisfies the local assumption (1.2), and f is subcritical. By using the Ne-
hari manifold method and the Ljusternik-Schnirelmann category theory, the authors
obtained the multiplicity of positive solutions. We notice that f is only continuous
in [10], hence the Nehari manifold is only a topological manifold. Thus, the critical
point theory in C1 manifold cannot be applied in this framework. To overcome this
difficulty, He and Zou [10] used some variants of critical point theorems developed
by Szulkin and Weth [25]. There are also many results about the existence, multi-
plicity and concentration of solutions for Kirchhoff equations, that is, provided that
A = 0 and a, b > 0, see [9, 12, 18, 23, 29, 30] (see also [11] for the fractional case).
In [23], Perera and Zhang studied the existence of solutions for Kirchhoff equation
by using the Yang index and critical groups. Later on, He and Zou [9] studied
the existence, multiplicity and concentration properties of positive solutions for the
problem (1.1) without critical term and magnetic field by using the Nehari mani-
fold method, the penalization technique and the Ljusternik-Schnirelmann category
theory. We notice that the nonlinear term f is a C1 function in this paper, which
allows to apply the critical point theory in C1 manifolds. Next, He and Zou [10]
applied the method introduced by Szulkin and Weth [25] and studied multiplicity
and concentration behavior of positive solutions for a fracional Kirchhoff equation
where the nonlinear term f is only continuous.

On the other hand, when a = b = 0, the nonlinear magnetic Schrödinger equa-
tion (1.1) has been extensively investigated by many authors applying suitable vari-
ational and topological methods (see [1, 2, 3, 4, 5, 7, 13, 14, 16, 20, 31] and references
therein). It is well known that the first result involving the magnetic field was ob-
tained by Esteban and Lions [7]. They used the concentration-compactness principle
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and minimization arguments to obtain solutions for ε > 0 fixed and N = 2, 3. In
particular, due to our scope, we also refer to Ji and Rădulescu [15] who used Ne-
hari manifold analysis, penalization techniques and the Ljusternik-Schnirelmann
category theory to study multiplicity and concentration results for a magnetic
Schrödinger equation in which the subcritical nonlinearity f ∈ C(R,R). After that,
Ji and Rădulescu [16] studied multiplicity and concentration of the solutions for the
magnetic Schrödinger equation with critical growth. To the best of our knowledge,
there are few results in the literature on the magnetic Kirchhoff equations. Re-
cently, Ji and Rădulescu [17] considered multiplicity and concentrating phenomena
of nontrivial solutions for magnetic Kirchhoff equations with subcritical growth and
assuming that nonlinearity f is only continuous.

It is quite natural to consider multiplicity and concentrating phenomena of non-
trivial solutions for the problem (1.1) with critical growth. Inspired by [15, 17], the
main purpose of this paper is to investigate qualitative properties of solutions to
problem (1.1) by combining a local assumption on V and adapting the penalization
method and Ljusternik-Schnirelmann category theory.

Throughout the paper, we make the following assumptions on the potential V :

(V1) There exists V0 > 0 such that V (x) ≥ V0 for all x ∈ R3;
(V2) There exists a bounded open set Λ ⊂ R3 such that

V0 = min
x∈Λ

V (x) < min
x∈∂Λ

V (x).

Observe that

M := {x ∈ Λ : V (x) = V0} 6= ∅.
Moreover, let f ∈ C(R,R) be a nonlinearity satisfying:

(f1) f(t) = 0 if t ≤ 0, and limt→0+
f(t)
t = 0;

(f2) There exist σ, q ∈ (4, 6) and µ > 0 such that

f(t) ≥ µt
σ−2

2 ∀t > 0, and lim
t→+∞

f(t)

t
q−2

2

= 0;

(f3) There exists a positive constant 4 < θ < 6 such that

0 <
θ

2
F (t) ≤ tf(t), ∀ t > 0, where F (t) =

∫ t

0

f(s)ds;

(f4) The mapping t 7→ f(t)
t is strictly increasing in (0,∞).

The main result of this paper is the following multiplicity and concentration
properties of solutions.

Theorem 1.1. Assume that V satisfies (V1), (V2) and f satisfies (f1)–(f4). Then,
for any δ > 0 such that

Mδ := {x ∈ R3 : dist (x,M) < δ} ⊂ Λ,

there exists εδ > 0 such that, for any 0 < ε < εδ, problem (1.1) has at least
catMδ

(M) nontrivial solutions. Moreover, for every sequence {εn} such that εn →
0+ as n→ +∞, if we denote by uεn one of these solutions of (1.1) for ε = εn and
ηεn ∈ R3 is the global maximum point of |uεn |, then

lim
εn→0+

V (ηεn) = V0.
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The proof of Theorem 1.1 uses some ideas introduced in [15, 17]. Notice that,
due to the presence of the magnetic field A(x), the problem (1.1) cannot be changed
into a pure real-valued problem, hence we must deal directly with a complex-valued
problem. This fact creates several new difficulties in employing the methods to deal
with our problem. On the other hand, due to the presence of the nonlocal term, it
is possible that the weak limit of a bounded Palais-Smale sequence of the Kirchhoff
equation is not a solution of this equation. Moreover, since the problem we deal
with has critical growth, we need more refined estimates to overcome the lack of
compactness.

The present paper is organized as follows. In Section 2 we introduce the func-
tional setting and give some preliminaries. In Section 3, we study an auxilliary
problem. We prove the Palais-Smale condition for the auxilliary functional and
provide some tools which are useful to establish a multiplicity result. In Section
4, we study the associated autonomous problem. This allows us to show that the
auxilliary problem has multiple solutions. Finally, in Section 5, we give the proof
of Theorem 1.1.

Notation.

• C,C1, C2, . . . denote positive constants whose exact values are inessential and
can change from line to line;

• BR(y) denotes the open ball centered at y ∈ R3 with radius R > 0 and BcR(y)
denotes the complement of BR(y) in R3;

• ‖ · ‖, ‖ · ‖q, and ‖ · ‖L∞(Ω) denote the usual norms of the spaces H1(R3,R),

Lq(R3,R), and L∞(Ω,R), respectively, where Ω ⊂ R3. 〈·, ·〉0 denotes the inner
product of the space H1(R3,R).

2. Variational framework and the limit problem. For u : R3 → C, let us
denote by

∇Au :=
(∇
i
−A

)
u.

Consider the function spaces

D1
A(R3,C) := {u ∈ L6(R3,C) : |∇Au| ∈ L2(R3,R)},

and

H1
A(R3,C) := {u ∈ D1

A(R3,C) : u ∈ L2(R3,C)}.
ThenD1

A(R3,C) andH1
A(R3,C) are Hilbert spaces endowed with the scalar products

〈u, v〉D := Re

∫
R3

∇Au∇Avdx, for any u, v ∈ D1
A(R3,C),

〈u, v〉H := Re

∫
R3

(
∇Au∇Av + uv

)
dx, for any u, v ∈ H1

A(R3,C),

where Re and the bar denote the real part of a complex number and the complex
conjugation, respectively. Let ‖u‖D and ‖u‖A denote the norms induced by inner
products 〈u, v〉D and 〈u, v〉A, and 〈u, u〉D = [u]2A.

On H1
A(R3,C) we will frequently use the following diamagnetic inequality (see

e.g. [19, Theorem 7.21]):

|∇Au(x)| ≥ |∇|u(x)||. (2.1)
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Moreover, making a simple change of variables, since ∆Aε = ε2∆A/ε and [u]2Aε =
1
ε [u]2A/ε, we can see that the problem (1.1) is equivalent to

−
(
a+ b [u]2Aε

)
∆Aεu+ Vε(x)u = f(|u|2)u+ |u|4u in R3, (2.2)

where Aε(x) = A(εx) and Vε(x) = V (εx).
Let Dε and Hε be the Hilbert spaces obtained as the closure of C∞c (RN ,C) with

respect to the scalar products

〈u, v〉Dε := Re

∫
R3

a∇Aεu∇Aεvdx

and

〈u, v〉ε := Re

∫
R3

(
a∇Aεu∇Aεv + Vε(x)uv

)
dx

respectively, where a > 0. We denote by ‖ · ‖Dε and ‖ · ‖ε the norms induced by
inner products 〈·, ·〉Dε and 〈·, ·〉ε.

The diamagnetic inequality (2.1) implies that, if u ∈ H1
Aε

(R3,C), then |u| ∈
H1(R3,R) and ‖u‖ ≤ C‖u‖ε. Therefore, the embedding Hε ↪→ Lr(R3,C) is contin-
uous for 2 ≤ r ≤ 6 and the embedding Hε ↪→ Lrloc(R3,C) is compact for 1 ≤ r < 6.

For the compact supported functions in H1(R3,R), we have the following result,
which will be very uesful for some estimates below.

Lemma 2.1. If u ∈ H1(R3,R) and u has compact support, then ω := eiA(0)·xu ∈
Hε.

Proof. Assume that supp(u) ⊂ BR(0). Since V is continuous, it is clear that∫
R3

Vε(x)|ω|2dx =

∫
BR(0)

Vε(x)|ω|2dx ≤ C‖u‖22 < +∞.

Moreover, since V and A are continuous, we have∫
R3

|∇Aεω|2dx =

∫
R3

|∇ω|2dx+

∫
R3

|Aε(x)|2|ω|2dx+ 2Re

∫
R3

iAε(x)ω∇ωdx

≤ 2

∫
R3

|∇ω|2dx+ 2

∫
R3

|Aε(x)|2|ω|2dx

≤ C
[∫

R3

|∇u|2dx+

∫
R3

|u|2dx
]
< +∞

and we conclude.

3. The auxilliary problem. To study problem (1.1), or equivalently, the problem
(2.2) by variational methods, we shall modify suitably the nonlinearity f so that,
for ε > 0 small enough, the solutions of such auxilliary problem are also solutions of
the original one. More precisely, choosing K > 2, then there exists a unique number
a0 > 0 verifying f(a0) + a2

0 = V0/K by (f4), where V0 is given in (V1). Consider
the function

f̃(t) :=

{
f(t) + (t+)2, t ≤ a0,

V0/K, t > a0,

and introduce the penalized nonlinearity g : R3 × R→ R by setting

g(x, t) := χΛ(x)(f(t) + (t+)2) + (1− χΛ(x))f̃(t), (3.1)
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where χΛ is the characteristic function on Λ and G(x, t) :=

∫ t

0

g(x, s)ds.

In view of (f1)–(f4), we have that g is a Carathéodory function satisfying the
following properties:

(g
1
) g(x, t) = 0 for each t ≤ 0;

(g
2
) lim
t→0+

g(x,t)
t = 0 uniformly in x ∈ R3;

(g
3
) g(x, t) ≤ f(t) + t2 for all t ≥ 0 and any x ∈ R3;

(g4) 0 < θG(x, t) ≤ 2g(x, t)t for each x ∈ Λ and t > 0;
(g5) 0 < G(x, t) ≤ g(x, t)t ≤ V0t/K, for each x ∈ Λc, t > 0;

(g
6
) for each x ∈ Λ, the function t 7→ g(x,t)

t is strictly increasing in t ∈ (0,+∞)

and for each x ∈ Λc, the function t 7→ g(x,t)
t is strictly increasing in (0, a0).

Next, we consider the auxilliary problem

−
(
a+ b [u]2Aε

)
∆Aεu+ Vε(x)u = g(εx, |u|2)u in R3. (3.2)

Note that, if u is a nontrivial solution of the problem (3.2) with

|u(x)|2 ≤ a0 for all x ∈ Λcε, Λε := {x ∈ R3 : εx ∈ Λ},

then u is a nontrivial solution of the problem (2.2).
The energy functional associated to the problem (3.2) is

Jε(u) :=
a

2
[u]2Aε +

1

2

∫
R3

Vε(x)|u|2dx+
b

4
[u]4Aε −

1

2

∫
R3

G(εx, |u|2)dx

for all u ∈ Hε. By standard arguments, Jε ∈ C1(Hε,R) and its critical points are
the weak solutions of the auxilliary problem (3.2).

We denote by Nε the Nehari manifold of Jε, that is,

Nε := {u ∈ Hε\{0} : J ′ε(u)[u] = 0},

and define the number cε by

cε = inf
u∈Nε

Jε(u).

Let H+
ε be an open subset Hε given by

H+
ε = {u ∈ Hε : |supp(u) ∩ Λε| > 0},

and S+
ε = Sε ∩ H+

ε , where Sε is the unit sphere of Hε. Note that S+
ε is a non-

complete C1,1-manifold of codimension 1, modeled on Hε and contained in H+
ε .

Therefore, Hε = TuS
+
ε

⊕
Ru for each u ∈ TuS+

ε , where TuS
+
ε = {v ∈ Hε : 〈u, v〉ε =

0}.
Now we show that the functional Jε satisfies the Mountain Pass Geometry (see

[28]).

Lemma 3.1. For any fixed ε > 0, the functional Jε satisfies the following properties:

(i) there exist β, r > 0 such that Jε(u) ≥ β if ‖u‖ε = r;
(ii) there exists e ∈ Hε with ‖e‖ε > r such that Jε(e) < 0.

Proof. (i) By (g2), (g3) and (f2), for any ζ > 0 small, there exists Cζ > 0 such that

G(εx, |u|2) ≤ ζ|u|4 + Cζ |u|6 for all x ∈ R3.
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By the Sobolev embedding it follows that

Jε(u) ≥ a

2
[u]2Aε +

1

2

∫
R3

Vε(x)|u|2dx+
b

4
[u]4Aε −

ζ

2

∫
R3

|u|4dx− Cζ
2

∫
R3

|u|6dx

≥ 1

2
‖un‖2ε − C1ζ‖un‖4ε − C2Cζ‖un‖6ε.

Hence we can choose some β, r > 0 such that Jε(u) ≥ β if ‖u‖ε = r small.
(ii) For each u ∈ Hε \ {0} with supp(u) ⊂ Λε. By the definition of g and (f3), we
have

Jε(tu) =
t2

2
‖u‖2ε +

bt4

4
[u]4Aε −

1

2

∫
Λε

F (t2|u|2)dx− t6

6

∫
Λε

|u|6dx,

≤ t2

2
‖u‖2ε +

bt4

4
[u]4Aε −

t6

6

∫
Λε

|u|6dx,

hence Jε(tu)→ −∞ as t→ +∞ and the conclusion follows.

Since f is only continuous, the next results are very important because they allow
us to overcome the non-differentiability of Nε and the incompleteness of S+

ε .

Lemma 3.2. Assume that (V1)–(V2) and (f1)–(f4) are satisfied, then the following
properties hold:

(A1) For any u ∈ H+
ε , let gu : R+ → R be given by gu(t) = Jε(tu). Then there

exists a unique tu > 0 such that g′u(t) > 0 in (0, tu) and g′u(t) < 0 in (tu,∞);
(A2) There is a τ > 0 independent on u such that tu ≥ τ for all u ∈ S+

ε . Moreover,
for each compact W ⊂ S+

ε there is CW such that tu ≤ CW , for all u ∈ W;
(A3) The map m̂ε : H+

ε → Nε given by m̂ε(u) = tuu is continuous and mε = m̂ε|S+
ε

is a homeomorphism between S+
ε and Nε. Moreover, m−1

ε (u) = u
‖u‖ε ;

(A4) If {un} ⊂ S+
ε is a sequence such that dist (un, ∂S

+
ε )→ 0, then ‖mε(un)‖ε →

∞ and Jε(mε(un))→∞.

Proof. (A1) Arguing as in the proof of Lemma 3.1, we have gu(0) = 0, gu(t) > 0
for t > 0 small and gu(t) < 0 for t > 0 large. Therefore, maxt≥0 gu(t) is achieved at
a global maximum point t = tu verifying g′u(tu) = 0 and tuu ∈ Nε. Now, we show
that tu is unique. Arguing by contradiction, suppose that there exist t1 > t2 > 0
such that g′u(t1) = g′u(t2) = 0. Then, for i = 1, 2,

tia[u]2Aε + ti

∫
R3

Vε(x)|u|2dx+ t3i b[u]4Aε =

∫
R3

g(εx, t2i |u|2)ti|u|2dx.

Hence,

a[u]2Aε +
∫
R3 Vε(x)|u|2dx
t2i

+ b[u]4Aε =

∫
R3

g(εx, t2i |u|2)|u|2

t2i
dx,
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which implies that

( 1

t21
− 1

t22

)(
a[u]2Aε +

∫
R3

Vε(x)|u|2dx
)

=

∫
R3

(g(εx, t21|u|2)

t21|u|2
− g(εx, t22|u|2)

t22|u|2
)
|u|4dx

≥
∫

Λcε∩{t22|u|2≤a0≤t21|u|2}

(g(εx, t21|u|2)

t21|u|2
− g(εx, t22|u|2)

t22|u|2
)
|u|4dx

+

∫
Λcε∩{a0≤t22|u|2}

(g(εx, t21|u|2)

t21|u|2
− g(εx, t22|u|2)

t22|u|2
)
|u|4dx

=

∫
Λcε∩{t22|u|2≤a0≤t21|u|2}

(V0

K

1

t21|u|2
− f(t22|u|2) + t42|u|4

t22|u|2
)
|u|4dx

+
1

K
(

1

t21
− 1

t22
)

∫
Λcε∩{a0≤t22|u|2}

V0|u|2dx.

Since t1 > t2 > 0, we have

(
a[u]2Aε +

∫
R3

Vε(x)|u|2dx
)

≤ t21t
2
2

t22 − t21

∫
Λcε∩{t22|u|2≤a0≤t21|u|2}

(V0

K

1

t21|u|2
− f(t22|u|2) + t42|u|4

t22|u|2
)
|u|4dx

+
1

K

∫
Λcε∩{a0≤t22|u|2}

V0|u|2dx

≤ 1

K

∫
Λcε

V0|u|2dx ≤
1

K
‖u‖2ε,

which is a contradiction. Therefore, maxt≥0 gu(t) is achieved at a unique t = tu so
that g′u(t) = 0 and tuu ∈ Nε.

(A2) For ∀u ∈ S+
ε , by (A1), there exists a unique tu > 0 such that

tu + t3ub[u]4Aε =

∫
R3

g(εx, t2u|u|2)tu|u|2dx.

From (g2), the Sobolev embeddings and q > 4, we get

tu ≤ ζt3u
∫
R3

|u|4dx+Cζt
q−1
u

∫
R3

|u|qdx+ t5u

∫
R3

|u|6dx ≤ C1ζt
3
u +C2Cζt

q−1
u +C3t

5
u,

which implies that tu ≥ τ for some τ > 0. If W ⊂ S+
ε is compact, and suppose by

contradiction that there is {un} ⊂ W with tn := tun → ∞. Since W is compact,
there exists a u ∈ W such that un → u in Hε. Moreover, using the proof of Lemma
3.1(ii), we have that Jε(tnun)→ −∞.
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On the other hand, let vn := tnun ∈ Nε, from the definition of g and (g4), (g5)
and 4 < θ < 6, it yields that

Jε(vn) =Jε(vn)− 1

θ
J ′ε(vn)[vn]

≥
(1

2
− 1

θ

)
‖vn‖2ε + (

1

4
− 1

θ
)b[vn]4Aε

+

∫
Λcε

(1

θ
g(εx, |vn|2)|vn|2 −

1

2
G(εx, |vn|2)

)
dx

≥
(1

2
− 1

θ

)(
‖vn‖2ε −

1

K

∫
R3

V (εx)|vn|2dx
)

≥
(1

2
− 1

θ

)
(1− 1

K
)‖vn‖2ε.

Thus, substituting vn := tnun and ‖vn‖ε = tn, we obtain

0 <
(1

2
− 1

θ

)
(1− 1

K
) ≤ Jε(vn)

t2n
≤ 0

as n→∞, which yields a contradiction. This proves (A2).
(A3) First of all, we note that m̂ε, mε and m−1

ε are well defined. Indeed, by (A2),
for each u ∈ H+

ε , there is a unique m̂ε(u) ∈ Nε. On the other hand, if u ∈ Nε, then
u ∈ H+

ε . Otherwise, we have |supp(u) ∩ Λε| = 0 and by (g5), it follows

‖u‖2ε + b[u]4Aε =

∫
R3

g(εx, |u|2)|u|2dx

=

∫
Λcε

g(εx, |u|2)|u|2dx

≤ 1

K

∫
R3

V (εx)|u|2dx

≤ 1

K
‖u‖2ε

which is impossible since K > 2 and u 6= 0. Therefore, m−1
ε (u) = u

‖u‖ε ∈ S
+
ε is well

defined and continuous. From

m−1
ε

(
mε(u)

)
= m−1

ε (tuu) =
tuu

tu‖u‖ε
= u, ∀u ∈ S+

ε ,

we conclude that mε is a bijection. We now prove that m̂ε : H+
ε → Nε is continuous.

Let {un} ⊂ H+
ε and u ∈ H+

ε be such that un → u in Hε. By (A2), there is a t0 > 0
such that tn := tun → t0. Using tnun ∈ Nε, we obtain

t2na[un]2Aε + t2n

∫
R3

Vε(x)|un|2dx+ t4nb[un]4Aε =

∫
R3

g(εx, t2n|un|2)t2n|un|2dx, ∀n ∈ N,

and passing to the limit as n→∞ in the last inequality, we obtain

t20a[u]2Aε + t20

∫
R3

Vε(x)|u|2dx+ t40b[u]4Aε =

∫
R3

g(εx, t20|u|2)t20|u|2dx.

We obtain that t0u ∈ Nε and tu = t0. This proves m̂ε(un)→ m̂ε(u) in H+
ε . Thus,

m̂ε and mε are continuous functions and (A3) is proved.
(A4) Let {un} ⊂ S+

ε be a subsequence such that dist (un, ∂S
+
ε ) → 0, then for

each v ∈ ∂S+
ε and n ∈ N , we have |un| = |un − v| a.e. in Λε. Therefore, by (V1),
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(V2) and the Sobolev embedding, for any r ∈ [2, 6], there exists a constant Cr > 0
such that

‖un‖Lr(Λε) ≤ inf
v∈∂S+

ε

‖un − v‖Lr(Λε)

≤ Cr
(

inf
v∈∂S+

ε

∫
Λε

(|∇Aεun − v|2 + Vε(x)|un − v|2)dx
) 1

2

≤ Cr dist (un, ∂S
+
ε )

for all n ∈ N . By (g2), (g3) and (g5), for each t > 0, we have∫
RN

G(εx, t
2|un|2)dx ≤

∫
Λε

(
F (t

2|un|2) +
t6|un|6

6

)
dx+

t2

K

∫
Λcε

V (εx)|un|2dx

≤ C1t
4
∫

Λε

|un|4dx+ C2t
q
∫

Λε

|un|qdx+
t6

6

∫
Λε

|un|6dx+
t2

K
‖un‖2ε

≤ C3t
4
dist (un, ∂S

+
ε )

4
+ C4t

q
dist (un, ∂S

+
ε )
q

+ C5t
6
dist (un, ∂S

+
ε )

6
+
t2

K
.

Therefore,

lim sup
n

∫
R3

G(εx, t2|un|2)dx ≤ t2

K
, ∀ t > 0.

On the other hand, from the definition of mε and the last inequality, for all t > 0,
one has

lim inf
n

Jε(mε(un)) ≥ lim inf
n

Jε(tun)

≥ lim inf
n

t2

2
‖un‖2ε −

t2

K

=
K − 2

2K
t2,

this implies that

lim inf
n

{1

2
‖mε(un)‖2ε +

b

4
[mε(un)]4Aε

}
≥ lim inf

n
Jε(mε(un)) ≥ K − 2

2K
t2, ∀ t > 0.

From the arbitrary of t > 0, it is easy to see that ‖mε(un)‖ε →∞ and Jε(mε(un))→
∞ as n→∞. We conclude the proof of Lemma 3.2.

Now we define the function

Ψ̂ε : H+
ε → R,

by Ψ̂ε(u) = Jε(m̂ε(u)) and we denote Ψε := (Ψ̂ε)|S+
ε

.

From Lemma 3.2, arguing as in [26, Corollary 10] we may obtain the following
result.

Lemma 3.3. Assume that (V1)–(V2) and (f1)–(f4) are satisfied, then

(B1) Ψ̂ε ∈ C1(H+
ε ,R) and

Ψ̂′ε(u)v =
‖m̂ε(u)‖ε
‖u‖ε

J ′ε(m̂ε(u))[v], ∀u ∈ H+
ε and ∀ v ∈ Hε;

(B2) Ψε ∈ C1(S+
ε ,R) and

Ψ′ε(u)v = ‖mε(u)‖εJ ′ε(m̂ε(u))[v], ∀ v ∈ TuS+
ε ;

(B3) If {un} is a (PS)c sequence of Ψε, then {mε(un)} is a (PS)c sequence of Jε.
If {un} ⊂ Nε is a bounded (PS)c sequence of Jε, then {m−1

ε (un)} is a (PS)c
sequence of Ψε;
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(B4) u is a critical point of Ψε if and only if mε(u) is a critical point of Jε. More-
over, the corresponding critical values coincide and

inf
S+
ε

Ψε. = inf
Nε
Jε.

As in [26], we have the following variational characterization of the infimum of
Jε over Nε:

cε = inf
u∈Nε

Jε(u) = inf
u∈H+

ε

sup
t>0

Jε(tu) = inf
u∈S+

ε

sup
t>0

Jε(tu). (3.3)

The following result is important to prove the (PS)c condition for the functional
Jε.

Lemma 3.4. Let c > 0 and {un} is a (PS)c sequence for Jε, then {un} is bounded
in Hε.

Proof. Assume that {un} ⊂ Hε is a (PS)c sequence for Jε, that is, Jε(un)→ c and
J ′ε(un)→ 0. By (g4), (g5) and 4 < θ < 6, we have

c+ on(1) + on(1)‖un‖ε =Jε(un)− 1

θ
J ′ε(un)[un]

=
(1

2
− 1

θ

)
‖un‖2ε + (

1

4
− 1

θ
)b[un]4Aε

+

∫
R3

(1

θ
g(εx, |un|2)|un|2 −

1

2
G(εx, |un|2)

)
dx

≥
(1

2
− 1

θ

)
‖un‖2ε +

∫
Λcε

(1

θ
g(εx, |un|2)|un|2 −

1

2
G(εx, |un|2)

)
dx

≥
(1

2
− 1

θ

)
‖un‖2ε −

1

2

∫
Λcε

G(εx, |un|2)dx

≥
(1

2
− 1

θ

)
‖un‖2ε −

1

2K

∫
R3

V (εx)|un|2dx

≥
(1

2
− 1

θ
− 1

2K

)
‖un‖2ε.

Since K > 2, from the last inequality we obtain that {un} is bounded in Hε.

Define

c0 =
abS3

4
+
S6

24

(
(b2 + 4aS−3)3/2 + b3

)
, (3.4)

where S is the best constant for the Sobolev embedding D1,2(R3,R) ↪→ L6(R3,R).
The following lemma provides a range of levels in which the functional Jε verifies

the Palais-Smale condition.

Lemma 3.5. The functional Jε satisfies the (PS)c condition for any c ∈ (0, c0).

Proof. Let (un) ⊂ Hε be a (PS)c for Jε. By Lemma 3.4, (un) is bounded in Hε.
Thus, up to a subsequence, un ⇀ u in Hε and un → u in Lrloc(R3,C) for all 1 ≤ r < 6
as n→ +∞.

Step 1: For the fixed ε > 0, let R > 0 be such that Λε ⊂ BR/2(0). We show that
for any given ζ > 0, for R large enough,

lim sup
n

∫
BcR(0)

(a|∇Aεun|2 + Vε(x)|un|2)dx ≤ ζ. (3.5)

Let φR ∈ C∞(R3,R) be a cut-off function such that

φR = 0 x ∈ BR/2(0), φR = 1 x ∈ BcR(0), 0 ≤ φR ≤ 1, and |∇φR| ≤ C/R
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where C > 0 is a constant independent of R. Since the sequence (φRun) is bounded
in Hε, we have

J ′ε(un)[φRun] = on(1).

Therefore

aRe

∫
R3

∇Aεun∇Aε(φRun)dx+

∫
R3

Vε(x)|un|2φRdx+ b[un]2Aε Re

∫
R3

∇Aεun∇Aε(φRun)dx

=

∫
R3

g(εx, |un|2)|un|2φRdx+ on(1).

Since ∇Aε(φRun) = iun∇φR + φR∇Aεun, using (g5), we have∫
R3

(a|∇Aεun|2 + Vε(x)|un|2)φRdx

≤
∫
R3

g(εx, |un|2)|un|2φRdx−
(
a+ b[un]2Aε

)
Re

∫
R3

iun∇Aεun∇φRdx+ on(1)

≤ 1

K

∫
R3

Vε(x)|un|2φRdx+ C
∣∣∣Re

∫
R3

iun∇Aεun∇φRdx
∣∣∣+ on(1).

By the definition of φR, the Hölder inequality and the boundedness of (un) in Hε,
we obtain(

1− 1

K

)∫
R3

(a|∇Aεun|
2 + Vε(x)|un|2)φRdx ≤

C

R
‖un‖2‖∇Aεun‖2 + on(1) ≤ C1

R
+ on(1)

and so (3.5) holds.

Step 2: For any R > 0, the following limit holds

lim sup
n

∫
BR(0)

(a|∇Aεun|2 + Vε(x)|un|2)dx =

∫
BR(0)

(a|∇Aεu|2 + Vε(x)|u|2)dx.

(3.6)

Let φρ ∈ C∞(R3,R) be a cut-off function such that

φρ = 1 x ∈ Bρ(0), φρ = 0 x ∈ Bc2ρ(0), 0 ≤ φρ ≤ 1, and |∇φρ| ≤ C/ρ
where C > 0 is a constant independent of ρ. Let

Pn(x) = M(un)|∇Aεun −∇Aεu|2 + Vε(x)|un − u|2

where M(un) = a+ b
∫
R3 |∇Aεun|2dx. For the fixed R > 0, choosing ρ > R > 0, we

have∫
BR

Pn(x)dx ≤
∫
R3

Pn(x)φρ(x)dx

= M(un)

∫
R3

|∇Aεun −∇Aεu|2φρ(x)dx+

∫
R3

Vε(x)|un − u|2φρ(x)dx

= J1
n,ρ − J2

n,ρ + J3
n,ρ + J4

n,ρ, (3.7)

where

J
1
n,ρ = M(un)

∫
R3
|∇Aεun|

2
φρ(x)dx+

∫
R3
Vε(x)|un|2φρ(x)dx−

∫
R3
g(εx, |un|2)|un|2φρdx,

J
2
n,ρ = M(un) Re

∫
R3
∇Aεun∇Aεuφρ(x)dx+Re

∫
R3
Vε(x)unuφρ(x)dx−Re

∫
R3
g(εx, |un|2)unuφρ(x)dx,

J
3
n,ρ = −M(un) Re

∫
R3

(∇Aεun −∇Aεu)∇Aεuφρ(x)dx− Re

∫
R3
Vε(x)(un − u)uφρ(x)dx,

and

J4
n,ρ = Re

∫
R3

g(εx, |un|2)un(un − u)φρ(x)dx.
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It is easy to see that

J1
n,ρ = J ′ε(un)[φρun]−M(un) Re

∫
R3

iun∇Aεun∇φρdx,

and

J2
n,ρ = J ′ε(un)[φρu]−M(un) Re

∫
R3

iu∇Aεun∇φρdx.

Then

lim
ρ→∞

lim sup
n→∞

∣∣∣J1
n,ρ

∣∣∣ = 0, lim
ρ→∞

lim sup
n→∞

∣∣∣J2
n,ρ

∣∣∣ = 0.

On the other hand, since the sequence (un) is bounded in Hε, we assume that∫
R3 |∇Aεun|2dx→ l2. Then

J
3
n,ρ =− (a+ bl

2
) Re

∫
R3

(∇Aεun −∇Aεu)∇Aε (uφρ(x))dx− Re

∫
R3
Vε(x)(un − u)(uφρ(x))dx

+ (a+ bl
2
) Re

∫
R3

(∇Aεun −∇Aεu)iu∇φρdx+ on(1)

=− (a+ bl
2
)〈un − u, uφρ(x)〉ε + (a+ bl

2
) Re

∫
R3

(∇Aεun −∇Aεu)iu∇φρdx+ on(1),

thus,

lim
ρ→∞

lim sup
n→∞

∣∣∣J3
n,ρ

∣∣∣ = 0.

Now we prove that

lim
ρ→∞

lim sup
n→∞

∣∣∣J4
n,ρ

∣∣∣ = 0. (3.8)

First we show

lim
n

∫
Λε

|un|6dx =

∫
Λε

|u|6dx. (3.9)

Using the boundedness of (un) in Dε and the diamagnetic inequality (2.1), we may
assume that

|∇|un||2 ⇀ µ and |un|6 ⇀ ν (3.10)

in the sense of measures. By the concentration-compactness principle in [28], we
can find an at most countable index I, sequences (xi) ⊂ R3, (µi), (νi) ⊂ (0,∞) such
that

µ ≥ |∇|u||2dx+
∑
i∈I

µiδxi ,

ν = |u|6 +
∑
i∈I

νiδxi and Sν
1/3
i ≤ µi (3.11)

for any i ∈ I, where δxi is the Dirac mass at the point xi. Let us show that
(xi)i∈I ∩ Λε = ∅. Assume, by contradiction, that xi ∈ Λε for some i ∈ I. For
any ρ > 0, we define ψρ(x) = ψ(x−xiρ ) where ψ ∈ C∞0 (R3, [0, 1]) is such that

ψ = 1 in B1, ψ = 0 in R3 \ B2 and ‖∇ψ‖L∞(R3,R) ≤ 2. We suppose that ρ > 0
is such that supp(ψρ) ⊂ Λε. Since (ψρun) is bounded in Hε, we can see that
J ′ε(un)[ψρun] = on(1), that is(

a+ b[un]
2
Aε

)∫
R3
|∇Aεun|

2
ψρdx+

(
a+ b[un]

2
Aε

)
Re

∫
R3
iun∇Aεun∇ψρdx+

∫
R3
Vε(x)|un|2ψρdx

=

∫
R3
g(εx, |un|2)|un|2ψρdx+ on(1) =

∫
RN

f(|un|2)|un|2ψρdx+

∫
RN
|un|6ψρdx+ on(1).
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Using the diamagnetic inequality (2.1) again, it follows that(
a+ b

∫
R3

|∇|un||2ψρdx
)∫

R3

|∇|un||2ψρdx+
(
a+ b[un]2Aε

)
Re

∫
R3

iun∇Aεun∇ψρdx

≤
∫
RN

f(|un|2)|un|2ψρdx+

∫
RN
|un|6ψρdx+ on(1). (3.12)

Due to the fact that f has the subcritical growth and ψρ has the compact support,
we have that

lim
ρ→0

lim
n→∞

∫
R3

f(|un|2)|un|2ψρdx = lim
ρ→0

∫
R3

f(|u|2)|u|2ψρdx = 0. (3.13)

Now, we show that

lim
ρ→0

lim sup
n→∞

∣∣∣ ∫
R3

iun∇Aεun∇ψρdx
∣∣∣ = 0. (3.14)

Because of the boundedness of (un) in Hε, using the Hölder inequality, the strong
convergence of (|un|) in L2

loc(R3,R), |u| ∈ L6(R3,R), |∇ψρ| ≤ Cρ−1 and |B2ρ(xi)| ∼
ρ3, we have that

0 ≤ lim
ρ→0

lim sup
n→∞

∣∣∣ ∫
R3

iun∇Aεun∇ψρdx
∣∣∣ ≤ lim

ρ→0
lim sup
n→∞

∫
R3

|un∇ψρ||∇Aεun|dx

≤ lim
ρ→0

lim
n→∞

(∫
B2ρ(xi)

|un∇ψρ|2dx
)1/2

[un]Aε

≤ C lim
ρ→0

(∫
B2ρ(xi)

|u|2dx
)1/2

= 0

which shows that (3.14) holds.
Then, taking into account (3.10), (3.12), (3.13) and (3.14), we can conclude that

νi ≥ aµi + bµ2
i . Together with the inequality Sν

1/3
i ≤ µi in (3.11), we have

µi ≥
S3

2
(b+

√
b2 + 4aS−3). (3.15)

Now, from (f3), (g4) and (g5), we have

c =Jε(un)− 1

4
J ′ε(un)[un] + on(1)

=
1

4
‖un‖2ε +

∫
R3

(1

4
g(εx, |un|2)|un|2 −

1

2
G(εx, |un|2)

)
dx+ on(1)

≥1

4
‖un‖2ε +

∫
Λcε

(1

4
g(εx, |un|2)|un|2 −

1

2
G(εx, |un|2)

)
dx

+
1

12

∫
Λε

|un|6dx+ on(1)

≥1

4

(∫
Λε

aψρ|∇|un||2dx+

∫
Λcε

Vε(x)|un|2
)
− 1

2

∫
Λcε

G(εx, |un|2)dx

+
1

12

∫
Λε

|un|6dx+ on(1)

≥a
4

∫
Λε

ψρ|∇|un||2dx+ (
1

4
− 1

2K
)

∫
Λcε

Vε(x)|un|2dx+
1

12

∫
Λε

ψρ|un|6dx+ on(1)

≥a
4

∫
Λε

ψρ|∇|un||2dx+
1

12

∫
Λε

ψρ|un|6dx+ on(1).
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From the above arguments, (3.11) and (3.15), we have

c ≥ 1

4

∑
{i∈I:xi∈Λε}

aψρ(xi)µi +
1

12

∑
{i∈I:xi∈Λε}

ψρ(xi)νi

≥ a

4
µi +

1

12
νi

≥ aS

4
· bS

2 +
√
b2S4 + 4aS

2
+

1

12

(bS2 +
√
b2S4 + 4aS

2

)3

= c0

which gives a contradiction. This means that (3.9) holds. Next, we observe that∣∣∣J4
n,ρ

∣∣∣ ≤ ∫
(R3\Λε)∩B2ρ(0)

∣∣∣g(εx, |un|2)un(un − u)
∣∣∣dx+

∫
Λε∩B2ρ(0)

∣∣∣g(εx, |un|2)un(un − u)
∣∣∣dx.

By the Sobolev compact embedding Hε ↪→ Lrloc(R3,C) for 1 ≤ r < 6, and (g5), we
have ∫

(R3\Λε)∩B2ρ(0)

∣∣∣g(εx, |un|2)un(un − u)
∣∣∣dx→ 0, as n→∞.

Moreover, using the Sobolev compact embedding Hε ↪→ Lrloc(R3,C) for 1 ≤ r < 6,
again, and (3.9), we have,∫

Λε∩B2ρ(0)

∣∣∣g(εx, |un|2)un(un − u)
∣∣∣dx→ 0, as n→∞.

Thus, (3.8) holds. Moreover, by (3.7), it follows that

0 ≤ lim sup
n

∫
BR

Pn(x)dx ≤ lim sup
n

(
|J1
n,ρ|+ |J2

n,ρ|+ |J3
n,ρ|+ |J4

n,ρ|
)

= 0.

Then,

lim sup
n

∫
BR

Pn(x)dx = 0.

Thus (3.6) holds.

Step 3: From (3.5) and (3.6), we have

‖u‖2ε ≤ lim inf
n
‖un‖2ε ≤ lim sup

n
‖un‖2ε

≤ lim sup
n

{∫
BR(0)

(a|∇Aεun|
2

+ Vε(x)|un|2)dx+

∫
Bc
R

(0)

(a|∇Aεun|
2

+ Vε(x)|un|2)dx
}

≤
∫
BR(0)

(a|∇Aεu|
2

+ Vε(x)|u|2)dx+ ζ.

Passing to the limit as ζ → 0 we have R→∞, which implies that

‖u‖2ε ≤ lim inf
n
‖un‖2ε ≤ lim sup

n
‖un‖2ε ≤ ‖u‖2ε.

Then un → u in Hε and we complete the proof.

Since f is only assumed to be continuous, the following result is required for the
multiplicity result in the next section.

Corollary 3.1. The functional Ψε satisfies the (PS)c condition on S+
ε at any level

c ∈ (0, c0).
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Proof. Let {un} ⊂ S+
ε be a (PS)c sequence for Ψε. Then Ψε(un) → c and

‖Ψ′ε(un)‖∗ → 0, where ‖ · ‖∗ is the norm in the dual space (TunS
+
ε )∗. By Lemma

3.3(B3), we know that {mε(un)} is a (PS)c sequence for Jε in Hε. From Lemma 3.5,
we know that there exists a u ∈ S+

ε such that, up to a subsequence, mε(un)→ mε(u)
in Hε. By Lemma 3.2(A3), we obtain

un → u in S+
ε ,

and the proof is complete.

4. Multiple solutions of the auxilliary problem.

4.1. The autonomous problem. For our scope, we need also to study the fol-
lowing limit problem

−
(
a+ b

∫
R3

|∇u|2dx
)

∆u+ V0u = f(|u|2)u+ |u|4u, u : R3 → R, (4.1)

whose associated C1-functional, defined in H1(R3,R), is

IV0(u) :=
1

2

∫
R3

(a|∇u|2 + V0u
2)dx+

b

4

(∫
R3

|∇u|2dx
)2

− 1

2

∫
R3

F (u2)dx− 1

6

∫
R3

(u+)6dx.

Let

N0 := {u ∈ H1(R3,R) \ {0} : I ′V0
(u)[u] = 0}

and

cV0
:= inf

u∈N0

IV0
(u).

By (f1) and (f4), for each u ∈ H1(R3,R)\{0}, there is a unique t(u) > 0 such that

IV0(t(u)u) = max
t≥0

IV0(tu) and t(u)u ∈ NV0 .

Then, using the assumptions on f , arguing as in [28, Lemma 4.1 and Theorem 4.2]
we have that

0 < cV0 = inf
u∈H1(R3,R)\{0}

max
t≥0

IV0(tu).

Now, we estimate the ground state energy cV0 and show that cV0 ∈ (0, c0).

Lemma 4.1. Assume that (f1)–(f4) hold, then 0 < cV0 < c0.

Proof. For δ > 0, the function ωδ : R3 → R defined by

ωδ(x) = 31/4 δ1/4

(δ + |x|2)1/2

is a family of functions on which S is attained. Let φ ∈ C∞0 (R3, [0, 1]) be a cut-off
function with

φ = 1 x ∈ Bρ/2(0), φ = 0 x ∈ Bcρ(0),

then we define the test function by vδ = ωδ/‖ωδ‖6, where uδ = φvδ. Since

IV0(tvδ) :=
t2

2

∫
R3

(a|∇vδ|2+V0v
2
δ )dx+

bt4

4

(∫
R3

|∇vδ|2dx
)2

−1

2

∫
R3

F (t2v2
δ )dx− t

6

6

∫
R3

v6
δdx,

under the conditions (f1)–(f4), arguing as in [29, Lemma 3.11], we can show that
for small δ > 0, maxt>0 IV0(tvδ) < c0. Thus, since 0 < cV0 < c0, we conclude the
proof.
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Let H0 := H1(R3,R) and define by H+
0 the open set of H0 given by

H+
0 = {u ∈ H0 : |supp(u+)| > 0},

and S+
0 = S0 ∩H+

0 , where S0 be the unit sphere of H0.

As in Section 3, S+
0 is a non-complete C1,1-manifold of codimension 1, modeled

on H0 and contained in H+
0 . Therefore, H0 = TuS

+
0

⊕
Ru for each u ∈ TuS

+
0 ,

where TuS
+
0 = {v ∈ H0 : 〈u, v〉0 = 0}.

Arguing as in Lemma 3.2, we have the following property.

Lemma 4.2. Let V0 be given in (V1) and suppose that (f1)–(f4) are satisfied, then
the following properties hold:

(a1) For any u ∈ H+
0 , let gu : R+ → R be given by gu(t) = IV0(tu). Then there

exists a unique tu > 0 such that g′u(t) > 0 in (0, tu) and g′u(t) < 0 in (tu,∞);
(a2) There is a τ > 0 independent on u such that tu > τ for all u ∈ S+

0 . Moreover,
for each compact W ⊂ S+

0 there is CW such that tu ≤ CW , for all u ∈ W;
(a3) The map m̂ : H+

0 → N0 given by m̂(u) = tuu is continuous and m0 = m̂0|S+
0

is a homeomorphism between S+
0 and N0. Moreover, m−1(u) = u

‖u‖0 ;

(a4) If there is a sequence {un} ⊂ S+
0 such that dist(un, ∂S

+
0 )→ 0, then ‖m(un)‖0 →∞

and IV0
(m(un))→∞.

We shall consider the functional defined by

Ψ̂0(u) = IV0(m̂(u)) and Ψ0 := Ψ̂0|S0 .

Arguing as in [26, Proposition 9 and Corollary 10], we have that

Lemma 4.3. Let V0 be given in (V1) and suppose that (f1)–(f4) are satisfied, then

(b1) Ψ̂0 ∈ C1(H+
0 ,R) and

Ψ̂′0(u)v =
‖m̂(u)‖0
‖u‖0

I ′V0
(m̂(u))[v], ∀u ∈ H+

0 and ∀v ∈ H0;

(b2) Ψ0 ∈ C1(S+
0 ,R) and

Ψ′0(u)v = ‖m(u)‖0I ′V0
(m̂(u))[v], ∀v ∈ TuS+

0 ;

(b3) If {un} is a (PS)c sequence of Ψ0, then {m(un)} is a (PS)c sequence of IV0
.

If {un} ⊂ N0 is a bounded (PS)c sequence of IV0
, then {m−1(un)} is a (PS)c

sequence of Ψ0;
(b4) u is a critical point of Ψ0 if and only if m(u) is a critical point of IV0 . More-

over, the corresponding critical values coincide and

inf
S+

0

Ψ0 = inf
N0

IV0
.

Similar to the previous argument, we have the following variational characteri-
zation of the infimum of IV0

over N0:

cV0 = inf
u∈N0

IV0(u) = inf
u∈H+

0

sup
t>0

IV0(tu) = inf
u∈S+

0

sup
t>0

IV0(tu). (4.2)

The next result is useful in later arguments.

Lemma 4.4. Let {un} ⊂ H0 be a (PS)cV0
sequence for IV0 , then the problem (4.1)

has a positive ground state solution.
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Proof. By (f3), it follows that

cV0
+ on(1) + on(1)‖un‖ = IV0

(un)− 1

4
〈I ′V0

(un), un〉 ≥
1

4
‖un‖2.

Thus, (un) is bounded inH1(R3,R). We can assume that there exists u ∈ H1(R3,R)
such that un ⇀ u in H1(R3,R), un → u in L2

loc(R3,R) and un → u a.e. in x ∈ R3.
Now we show that (un) is non-vanishing. Otherwise, assume that (un) is van-

ishing, then Lions lemma (see [28]) implies that un → 0 in Lr(R3,R) for any
2 < r < 6. By the compact embedding and (f1)–(f2), we have

∫
R3 F (u2

n)dx → 0

and
∫
R3 f(u2

n)u2
ndx → 0 as n → ∞. Moreover, using the former limits, it follows

that

cV0
=

1

2

∫
R3

(a|∇un|2+V0u
2
n)dx+

b

4

(∫
R3

|∇un|2dx
)2

− 1

6

∫
R3

(u+
n )6dx+on(1), (4.3)

and ∫
R3

(a|∇un|2 + V0u
2
n)dx+ b

(∫
R3

|∇un|2dx
)2

=

∫
R3

(u+
n )6dx+ on(1). (4.4)

Suppose that

lim
n

∫
R3

(u+
n )6dx = l ≥ 0.

If l = 0, then (4.3) and (4.4) imply that cV0
= 0, which contradicts with cV0

> 0.
Then l > 0, using the definition of S, we have

a

∫
R3

|∇un|2dx+b
(∫

R3

|∇un|2dx
)2

≤
∫
R3

(u+
n )6dx+on(1) ≤ S−3

(∫
R3

|∇un|2dx
)3

+on(1).

(4.5)

If
∫
R3 |∇un|2dx→ 0, then∫

R3

(u+
n )6dx ≤ S−3

(∫
R3

|∇un|2dx
)3

→ 0,

which contradicts with l > 0. Thus
∫
R3 |∇un|2dx 6→ 0. By (4.5), we have∫

R3

|∇un|2dx ≥
S3

2
(b+

√
b2 + 4aS−3) + on(1). (4.6)

Using (4.5) again, it follows that(∫
R3

|∇un|2dx
)2

≥ aS3 +
bS6

2
(b+

√
b2 + 4aS−3) + on(1). (4.7)

From (4.6) and (4.7), we can obtain

cV0
=

1

3

∫
R3

(a|∇un|2 + V0u
2
n)dx+

b

12

(∫
R3

|∇un|2dx
)2

+ on(1)

≥ a

3

∫
R3

|∇un|2dx+
b

12

(∫
R3

|∇un|2dx
)2

+ on(1) ≥ c0 + on(1)

which contradicts with cV0
< c0. Thus, (un) is non-vanishing, that is, there exist

R, η > 0, and (ỹn) ⊂ R3 such that

lim
n

∫
BR(ỹn)

u2
ndx ≥ η. (4.8)

By the invariance of the translation of IV0 , we may assume that (ỹn) is bounded,
so u 6= 0.
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Now we claim that I ′V0
(u) = 0. Assume that there exists ι ≥ 0 such that∫

R3 |∇un|2dx→ ι2. Since I ′V0
(un)→ 0, then u is a solution of the following equation

−(a+ bι2)∆u+ V0u = f(|u|2)u+ (u+)5, u ∈ H1(R3,R). (4.9)

It suffices to show that ι2 =
∫
R3 |∇u|2dx. From the weakly lower semi-continuous

of the norm, it is easy to obtain that ι2 ≥
∫
R3 |∇u|2dx. Then, by (4.9), we have

〈I ′V0
(u), u〉 ≤ 0. By (f4), there exists t ≤ 1 such that tu ∈ N0. By (4.9) again, it

follows that

cV0
≤IV0

(tu)−
1

4
I
′
V0

(tu)[tu]

=
1

4

∫
R3

(a|∇tu|2 + V0(tu)
2
)dx+

∫
R3

( 1

4
f(|tu|2)|tu|2 −

1

2
F (|tu|2)

)
dx+

1

12

∫
R3

(tu
+

)
6
dx

≤
1

4

∫
R3

(a|∇u|2 + V0u
2
)dx+

∫
R3

( 1

4
f(|u|2)|u|2 −

1

2
F (|u|2)

)
dx+

1

12

∫
R3

(u
+

)
6
dx

≤
1

4

∫
R3

(a|∇un|2 + V0u
2
n)dx+

∫
R3

( 1

4
f(|un|2)|un|2 −

1

2
F (|un|2)

)
dx+

1

12

∫
R3

(u
+
n )

6
dx+ on(1)

=IV0
(un)−

1

4
I
′
V0

(un)[un] + on(1) = cV0
+ on(1).

Thus t = 1 and

lim
n

1

4

∫
R3

(a|∇un|2 + V0u
2
n)dx+

∫
R3

(1

4
f(|un|2)|un|2 −

1

2
F (|un|2)

)
dx+

1

12

∫
R3

(u+
n )6dx

=
1

4

∫
R3

(a|∇u|2 + V0u
2)dx+

∫
R3

(1

4
f(|u|2)|u|2 − 1

2
F (|u|2)

)
dx+

1

12

∫
R3

(u+)6dx.

Then ι2 =
∫
R3 |∇u|2dx and un → ω in H1(R3,R). Therefore I ′V0

(u) = 0 and
IV0

(u) = cV0
. Then u is a ground state of problem. From the assumption of f ,

u ≥ 0. Moreover, using the standard argument, we may show that u(x) > 0 for
x ∈ RN . The proof is complete.

Arguing as in [30, Lemma 2.3], there exists a positive radial ground state solution
of the problem (4.1), which implies that this solution decays exponentially at infin-
ity with its gradient; moreover, this ground state solution is of class C2(R3,R) ∩
L∞(R3,R).

Lemma 4.5. Let (un) ⊂ N0 be such that I0(un)→ cV0 . Then (un) has a convergent
subsequence in H0.

Proof. Since (un) ⊂ N0, from Lemma 4.2(a3), Lemma 4.3(b4) and the definition of
cV0

, we have

vn = m−1(un) =
un
‖un‖0

∈ S+
0 , ∀n ∈ N,

and
Ψ0(vn) = I0(un)→ cV0

= inf
u∈S+

0

Ψ0(u).

Although S+
0 is not a complete C1 manifold, we still can use the Ekeland’s vari-

ational principle to the functional E0 : H → R ∪ {∞} defined by E0(u) := Ψ̂0(u)

if u ∈ S+
0 and E0(u) := ∞ if u ∈ ∂S+

0 , where H = S+
0 is the complete metric

space equipped with the metric d(u, v) := ‖u − v‖0. In fact, by Lemma 4.2(a4),
E0 ∈ C(H,R ∪ {∞}), and from Lemma 4.3(b4), E0 is bounded below. Therefore,
there exists a sequence {ṽn} ⊂ S+

0 such that {ṽn} is a (PS)cV0
sequence for Ψ0 on

S+
0 and

‖ṽn − vn‖0 = on(1).

Arguing as in Lemma 4.4 and Lemma 4.3, we conclude.
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Now, we show the relationship between cε and cV0 .

Lemma 4.6. The numbers cε and cV0 satisfy the following inequality

lim
ε→0

cε = cV0
< c0.

Proof. Let η ∈ C∞c (R3, [0, 1]) be a cut-off function such that η = 1 in Bρ/2 and

supp(η) = Bρ ⊂ Λ for some ρ > 0. Let us define ωε(x) := ηε(x)ω(x)eiA(0)·x, where
ηε(x) = η(εx) for ε > 0, ω is a positive and radial ground state solution of the
problem (4.1). We observe that |ωε| = ηεω and ωε ∈ Hε in view of Lemma 2.1.
Arguing as in [5, Lemma 4.1] or [15, Lemma 4.6], we obtain

lim
ε→0
‖ωε‖2ε = ‖ω‖2V0

(4.10)

and

lim
ε→0

[ωε]
2
Aε =

∫
R3

|∇ω|2dx. (4.11)

It is also easy to check that

lim
ε→0

∫
R3

|∇ωε|6dx =

∫
R3

|∇ω|6dx. (4.12)

Let tε > 0 be the unique number such that

Jε(tεωε) = max
t≥0

Jε(tωε).

Then tε satisfies

t2ε

(
a[ωε]

2
Aε +

∫
R3

Vε(x)|ωε|2dx
)

+ bt4ε [ωε]
4
Aε =

∫
R3

g(εx, t2ε |ωε|2)t2ε |ωε|2dx

=

∫
R3

f(t2ε |ωε|2)t2ε |ωε|2dx+

∫
R3

t6ε |ωε|6dx,

where we use supp(η) ⊂ Λ and the definition of g(x, t). Moreover, combining the
facts that η = 1 in Bρ/2, u is a positive continuous function and hypothesis (f4),
we have

1

t2ε

(
a[ωε]

2
Aε +

∫
R3

Vε(x)|ωε|2dx
)

+ b[ωε]
4
Aε =

1

t2ε

∫
R3

f(t2ε |ωε|2)|ωε|2dx+

∫
R3

t2ε |ωε|6dx

≥ 1

t2ε

∫
R3

f(t2εη
2(|εx|)ω2(x))η2(|εx|)ω2(x)dz

≥ 1

t2ε

∫
Bρ/(2ε)(0)

f(t2εω
2(z))ω2(z)dz

≥ 1

t2ε

∫
Bρ/2(0)

f(t2εω
2(z))ω2(z)dz

≥ f(t2εγ
2)

t2ε

∫
Bρ/2(0)

ω2(z)dz

for all 0 < ε < 1 and where γ = min{ω(z) : |z| ≤ ρ/2}.
If tε → +∞ as ε → 0, by (f4), we deduce that [ωε]

4
Aε
→ +∞ which contradicts

(4.11).
Therefore, up to a subsequence, we may assume that tε → t0 ≥ 0 as ε→ 0.
If tε → 0, using the fact that f is increasing, the Lebesgue dominated convergence

theorem and relation (4.12), we obtain

a[ωε]
2
Aε

+

∫
R3
Vε(x)|ωε|2dx+ bt

2
ε [ωε]

4
Aε

=

∫
R3
f(t

2
ε |ωε|

2
)|ωε|2dx+

∫
R3
t
4
ε |ωε|

6
dx→ 0, as ε→ 0
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which contradicts (4.10). Thus, we have t0 > 0 and

t20

∫
R3

(a|∇ω|2 + V0ω
2)dx+ bt40

(∫
R3

|∇ω|2dx
)2

=

∫
R2

f(t20ω
2)t20ω

2dx+

∫
R3

t60|ω|6dx,

so that t0ω ∈ NV0
. Since ω ∈ NV0

, we obtain that t0 = 1 and so, using the Lebesgue
dominated convergence theorem, we get

lim
ε→0

∫
R3

F (|tεωε|2)dx =

∫
R2

F (ω2)dx.

Hence

lim
ε→0

Jε(tεωε) = IV0(u) = cV0 .

Since cε ≤ maxt≥0 Jε(tωε) = Jε(tεωε), we can conclude that lim supε→0 cε ≤ cV0
.

Moreover, by (3.3), (4.2) and IV0(|u|) ≤ Jε(u) for any u ∈ Hε, we have cV0 ≤ cε.
Then cV0 ≤ lim infε→0 cε. Combining with the previous arguments, we conclude
that limε→0 cε = cV0

< c0.

Remark 4.1. From Lemma 4.2 and Lemma 3.5, we see that for ε > 0 small, the
problem (3.2) has a ground state solution uε such that Jε(uε) = cε and J ′ε(uε) = 0.

4.2. The technical results. In this subsection, we prove a multiplicity result for
the auxilliary problem (3.2) using the Ljusternik-Schnirelmann category theory. In
order to get this property, we first provide some useful preliminaries.

Let δ > 0 be such that Mδ ⊂ Λ, ω ∈ H1(R3,R) be a positive ground state
solution of the limit problem (4.1), and η ∈ C∞(R+, [0, 1]) be a nonincreasing cut-
off function defined in [0,+∞) such that η(t) = 1 if 0 ≤ t ≤ δ/2 and η(t) = 0 if
t ≥ δ.

For any y ∈M , let us introduce the function

Ψε,y(x) := η(|εx− y|)ω
(εx− y

ε

)
exp

(
iτy

(εx− y
ε

))
,

where

τy(x) :=

3∑
i

Ai(y)xi.

Let tε > 0 be the unique positive number such that

max
t≥0

Jε(tΨε,y) = Jε(tεΨε,y).

Note that tεΨε,y ∈ Nε.
Let us define Φε : M → Nε as

Φε(y) := tεΨε,y.

By construction, Φε(y) has compact support for any y ∈M .
Moreover, arguing as in Lemma 4.2, the energy of the above functions has the

following behavior as ε→ 0+.

Lemma 4.7. The limit

lim
ε→0+

Jε(Φε(y)) = cV0

holds uniformly in y ∈M .
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Now we define the barycenter map.
Let ρ > 0 be such that Mδ ⊂ Bρ and consider Υ : R3 → R3 defined by setting

Υ(x) :=

{
x, if |x| < ρ,
ρx/|x|, if |x| ≥ ρ.

The barycenter map βε : Nε → R3 is defined by

βε(u) :=
1

‖u‖44

∫
R3

Υ(εx)|u(x)|4dx.

We have the following asymptotic property.

Lemma 4.8. The limit
lim
ε→0+

βε(Φε(y)) = y

holds uniformly in y ∈M .

Proof. Assume by contradiction that there exist κ > 0, (yn) ⊂M and εn → 0 such
that

|βεn(Φεn(yn))− yn| ≥ κ. (4.13)

Using the change of variable z = (εnx− yn)/εn, we can see that

βεn(Φεn(yn)) = yn +

∫
R3

(Υ(εnz + yn)− yn)η4(|εnz|)ω4(z)dz∫
R3

η4(|εnz|)ω4(z)dz

.

Taking into account that (yn) ⊂ M ⊂ Mδ ⊂ Bρ and applying the Lebesgue domi-
nated convergence theorem, we obtain

|βεn(Φεn(yn))− yn| = on(1),

which contradicts (4.13).

Now, we prove the following useful compactness result.

Proposition 4.1. Let εn → 0+ and (un) ⊂ Nεn be such that Jεn(un) → cV0
.

Then there exists (ỹn) ⊂ RN such that the sequence (|vn|) ⊂ H1(R3,R), where
vn(x) := un(x + ỹn), has a convergent subsequence in H1(R3,R). Moreover, up to
a subsequence, yn := εnỹn → y ∈M as n→ +∞.

Proof. Since J ′εn(un)[un] = 0 and Jεn(un)→ cV0
, arguing as in the proof of Lemma

3.4, we can prove that there exists C > 0 such that ‖un‖εn ≤ C for all n ∈ N.
Arguing as in the proof of Lemma 4.4 and recalling that cV0 > 0, we have that

there exist a sequence {ỹn} ⊂ R3 and constants R, β > 0 such that

lim inf
n

∫
BR(ỹn)

|un|2dx ≥ β. (4.14)

Now, let us consider the sequence {|vn|} ⊂ H1(R3,R), where vn(x) := un(x+ỹn).
By the diamagnetic inequality (2.1), we get that {|vn|} is bounded in H1(R3,R),
and using (4.14), we may assume that |vn|⇀ v in H1(R3,R) for some v 6= 0.

Let now tn > 0 be such that ṽn := tn|vn| ∈ NV0
, and set yn := εnỹn.

Using the diamagnetic inequality (2.1) again, we have

cV0
≤ I0(ṽn) ≤ max

t≥0
Jεn(tun) = Jεn(un) = cV0

+ on(1),

which yields I0(ṽn)→ cV0
as n→ +∞.
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Since the sequences {|vn|} and {ṽn} are bounded in H1(R3,R) and |vn| 6→ 0 in
H1(R3,R), then (tn) is also bounded and so, up to a subsequence, we may assume
that tn → t0 ≥ 0.

We claim that t0 > 0. Indeed, if t0 = 0, then, since (|vn|) is bounded, we have
ṽn → 0 in H1(R3,R), that is, I0(ṽn)→ 0, which contradicts cV0

> 0.
Thus, up to a subsequence, we may assume that ṽn ⇀ ṽ := t0v 6= 0 in H1(R3,R),

and, by Lemma 4.5, we can deduce that ṽn → ṽ in H1(R3,R), which gives |vn| → v
in H1(R3,R).

Now we show the final part, namely that {yn} has a subsequence such that
yn → y ∈ M . Assume by contradiction that {yn} is not bounded and so, up to a
subsequence, |yn| → +∞ as n → +∞. Choose R > 0 such that Λ ⊂ BR(0). Then
for n large enough, we have |yn| > 2R, and, for any x ∈ BR/εn(0),

|εnx+ yn| ≥ |yn| − εn|x| > R.

Since un ∈ Nεn , using (V1) and the diamagnetic inequality (2.1), we get that∫
R3

(a|∇|vn||2 + V0|vn|
2
)dx ≤ a[vn]

2
Aε

+

∫
R3
V (εnx + yn)|vn|2dx + b[vn]

4
Aε

≤
∫
R3
g(εnx + yn, |vn|2)|vn|2dx

≤
∫
BR/εn

(0)
f̃(|vn|2)|vn|2dx +

∫
Bc
R/εn

(0)
f(|vn|2)|vn|2dx +

∫
Bc
R/εn

(0)
|vn|6dx.

(4.15)

Since |vn| → v in H1(R3,R) and f̃(t) ≤ V0/K, we can see that (4.15) yields

min
{

1, V0

(
1− 1

K

)}∫
R3

(|∇|vn||2 + |vn|2)dx = on(1),

that is |vn| → 0 in H1(R3,R), which contradicts to v 6≡ 0.
Therefore, we may assume that yn → y0 ∈ R3. Assume by contradiction that

y0 6∈ Λ. Then there exists r > 0 such that for every n large enough we have that
|yn−y0| < r and B2r(y0) ⊂ Λ

c
. Then, if x ∈ Br/εn(0), we have that |εnx+yn−y0| <

2r so that εnx+ yn ∈ Λ
c

and so, arguing as before, we reach a contradiction. Thus,
y0 ∈ Λ.

To prove that V (y0) = V0, we suppose by contradiction that V (y0) > V0. Using
the Fatou’s lemma, the change of variable z = x + ỹn and maxt≥0 Jεn(tun) =
Jεn(un), we obtain

cV0
= I0(ṽ) <

1

2

∫
R3

(a|∇ṽ|2 + V (y0)|ṽ|2)dx +
b

4

( ∫
R3
|∇ṽ|2dx

)2
−

1

2

∫
R3
F (|ṽ|2)dx

≤ lim inf
n

( 1

2

∫
R3

(a|∇ṽn|2 + V (εnx + yn)|ṽn|2)dx +
b

4

( ∫
R3
|∇ṽn|2dx

)2
−

1

2

∫
R3
F (|ṽn|2)dx

)
= lim inf

n

( t2n
2

∫
R3

(a|∇|un||2 + V (εnz)|un|2)dx +
t4nb

4

( ∫
R3
|∇un|2dx

)2
−

1

2

∫
R3
F (|tnun|2)dx

)
≤ lim inf

n
Jεn (tnun) ≤ lim inf

n
Jεn (un) = cV0

which is impossible and the proof is complete.

Let now

Ñε := {u ∈ Nε : Jε(u) ≤ cV0 + h(ε)},
where h : R+ → R+, h(ε)→ 0 as ε→ 0+.

Fixing y ∈ M , by Lemma 4.7, |Jε(Φε(y)) − cV0
| → 0 as ε → 0+, we get that

Ñε 6= ∅ for any ε > 0 small enough.
We have the following relation between Ñε and the barycenter map.
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Lemma 4.9. We have

lim
ε→0+

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

Proof. Let εn → 0+ as n→ +∞. For any n ∈ N, there exists un ∈ Ñεn such that

sup
u∈Ñεn

inf
y∈Mδ

|βεn(u)− y| = inf
y∈Mδ

|βεn(un)− y|+ on(1).

Therefore, it is enough to prove that there exists (yn) ⊂Mδ such that

lim
n
|βεn(un)− yn| = 0.

By the diamagnetic inequality (2.1), we can see that IV0
(t|un|) ≤ Jεn(tun) for any

t ≥ 0. Therefore, recalling that {un} ⊂ Ñεn ⊂ Nεn , we can deduce that

cV0
≤ max

t≥0
IV0

(t|un|) ≤ max
t≥0

Jεn(tun) = Jεn(un) ≤ cV0
+ h(εn) (4.16)

which implies that Jεn(un) → cV0
as n → +∞. Then Proposition 4.1 implies that

there exists {ỹn} ⊂ R3 such that yn = εnỹn ∈Mδ for n large enough.
Thus, making the change of variable z = x− ỹn, we get

βεn(un) = yn +

∫
R3(Υ(εnz + yn)− yn)|un(z + ỹn)|4dz∫

R3 |un(z + ỹn)|4dz
.

Since, up to a subsequence, |un|(·+ ỹn) converges strongly in H1(R3,R) and εnz+
yn → y ∈M for any z ∈ R3, we conclude.

4.3. Multiplicity of solutions for the problem (3.2). Finally, we present a
relation between the topology of M and the number of solutions of the auxilliary
problem (3.2).

Theorem 4.1. For any δ > 0 such that Mδ ⊂ Λ, there exists ε̃δ > 0 such that, for
any ε ∈ (0, ε̃δ), the problem (3.2) has at least catMδ

(M) nontrivial solutions.

Proof. For any ε > 0, we define the function πε : M → S+
ε by

πε(y) = m−1
ε (Φε(y)), ∀y ∈M.

By Lemma 4.7 and Lemma 3.3(B4), we obtain

lim
ε→0

Ψε(πε(y)) = lim
ε→0

Jε(Φε(y)) = cV0 , uniformly in y ∈M.

Hence, there is a number ε̂ > 0 such that the set S̃+
ε := {u ∈ S+

ε : Ψε(u) ≤
cV0

+ h(ε)} is nonempty, for all ε ∈ (0, ε̂), since πε(M) ⊂ S̃+
ε . Here h is given in the

definition of Ñε.
Given δ > 0, by Lemma 4.7, Lemma 3.2(A3), Lemma 4.8, and Lemma 4.9, we

can find ε̃δ > 0 such that for any ε ∈ (0, ε̃δ), the following diagram

M
Φε−−→ Φε(M)

m−1
ε−−−→ πε(M)

mε−−→ Φε(M)
βε−→Mδ

is well defined and continuous. From Lemma 4.8, we can choose a function Θ(ε, z)
with |Θ(ε, z)| < δ

2 uniformly in z ∈ M , for all ε ∈ (0, ε̂) such that βε(Φε(z)) = z +
Θ(ε, z) for all z ∈M . Define H(t, z) = z+(1− t)Θ(ε, z). Then H : [0, 1]×M →Mδ

is continuous. Clearly, H(0, z) = βε(Φε(z)), H(1, z) = z for all z ∈ M . That
is, H(t, z) is a homotopy between βε ◦ Φε = (βε ◦ mε) ◦ πε and the embedding
ι : M →Mδ. Thus, this fact implies that

catπε(M)(πε(M)) ≥ catMδ
(M). (4.17)
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By Corollary 3.1 and the abstract category theorem [26], Ψε has at least catπε(M)(πε(M))

critical points on S+
ε . Therefore, from Lemma 3.3(B4) and (4.17), we have that Jε

has at least catMδ
(M) critical points in Ñε which implies that the problem (3.2)

has at least catMδ
(M) solutions.

5. Proof of Theorem 1.1. In this section we prove our main result. The idea is
to show that the solutions uε obtained in Theorem 4.1 satisfy

|uε(x)|2 ≤ a0 for x ∈ Λcε

for ε small. The key ingredient is the following result.

Lemma 5.1. Let εn → 0+ and un ∈ Ñεn be a solution of the problem (3.2) for
ε = εn. Then Jεn(un) → cV0

. Moreover, there exists {ỹn} ⊂ RN such that, if
vn(x) := un(x+ ỹn), we have that {|vn|} is bounded in L∞(RN ,R) and

lim
|x|→+∞

|vn(x)| = 0 uniformly in n ∈ N.

We use the Moser iteration method to prove the above lemma. For our prob-
lem (3.2), there is one more nonlocal term and the nonlinear term has the critical
growth, arguing as in [15, Lemma 5.1], just make some appropriate changes, it is
easy to prove it and we omit it here.

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let δ > 0 be such that Mδ ⊂ Λ. We want to show that there
exists ε̂δ > 0 such that for any ε ∈ (0, ε̂δ) and any uε ∈ Ñε solution of the problem
(3.2), it holds

‖uε‖2L∞(Λcε)
≤ a0. (5.1)

We argue by contradiction and assume that there is a sequence εn → 0 such that
for every n there exists un ∈ Ñεn which satisfies J ′εn(un) = 0 and

‖un‖2L∞(Λcεn ) > a0. (5.2)

Arguing as in Lemma 5.1, we have that Jεn(un) → cV0
, and therefore we can use

Proposition 4.1 to obtain a sequence (ỹn) ⊂ R3 such that yn := εnỹn → y0 for some
y0 ∈ M . Then, we can find r > 0, such that Br(yn) ⊂ Λ, and so Br/εn(ỹn) ⊂ Λεn
for all n large enough.

Using Lemma 5.1, there exists R > 0 such that |vn|2 ≤ a0 in BcR(0) and n large
enough, where vn = un(· + ỹn). Hence |un|2 ≤ a0 in BcR(ỹn) and n large enough.
Moreover, if n is so large that r/εn > R, then Λcεn ⊂ Bcr/εn(ỹn) ⊂ BcR(ỹn), which

gives |un|2 ≤ a for any x ∈ Λcεn . This contradicts (5.2) and proves the claim.
Let now εδ := min{ε̂δ, ε̃δ}, where ε̃δ > 0 is given by Theorem 4.1. Then we

have catMδ
(M) nontrivial solutions to the problem (3.2). If uε ∈ Ñε is one of

these solutions, then, by (5.1) and the definition of g, we conclude that uε is also a
solution to the problem (2.2).

Finally, we study the behavior of the maximum points of |ûε|, where ûε(x) :=
uε(x/ε) is a solution to the problem (1.1), as ε→ 0+.

Take εn → 0+ and the sequence (un) where each un is a solution of (3.2) for
ε = εn. From the definition of g, there exists γ ∈ (0, a0) such that

g(εx, t2)t2 ≤ V0

K
t2, for all x ∈ RN , |t| ≤ γ.
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Arguing as above we can take R > 0 such that, for n large enough,

‖un‖L∞(BcR(ỹn)) < γ. (5.3)

Up to a subsequence, we may also assume that for n large enough

‖un‖L∞(BR(ỹn)) ≥ γ. (5.4)

Indeed, if (5.4) does not hold, up to a subsequence, if necessary, we have ‖un‖∞ < γ.
Thus, since J ′εn(uεn) = 0, using (g5) and the diamagnetic inequality (2.1) that∫

R3

(a|∇|un||2 + V0|un|2)dx+ b
(∫

R3

(|∇|un||2dx
)2

≤
∫
R3

g(εnx, |un|2)|un|2dx

≤ V0

K

∫
R3

|un|2dx

and, since K > 2, we get ‖un‖ = 0, which is a contradiction.
Taking into account (5.3) and (5.4), we can infer that the global maximum points

pn of |uεn | belongs to BR(ỹn), that is pn = qn + ỹn for some qn ∈ BR. Recalling
that the associated solution of the problem (1.1) is ûn(x) = un(x/εn), we can see
that a maximum point ηεn of |ûn| is ηεn = εnỹn + εnqn. Since qn ∈ BR, εnỹn → y0

and V (y0) = V0, the continuity of V allows to conclude that

lim
n
V (ηεn) = V0.

The proof is now complete.
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[14] C. Ji and V. D. Rădulescu, Multi-bump solutions for the nonlinear magnetic Schrödinger
equation with exponential critical growth in R2, Manuscripta Math., 164 (2021), 509–542.
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[17] C. Ji and V. D. Rădulescu, Multiplicity and concentration of solutions for Kirchhoff equations

with magnetic field, Adv. Nonlinear Stud., (2021), in the press.
[18] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

[19] E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, American Mathe-

matical Society, Providence, 2001.
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